Complete parameter inference for GW150914 using deep learning
The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing...
        Saved in:
      
    
          | Published in | Machine learning: science and technology Vol. 2; no. 3; pp. 3 - 11 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Bristol
          IOP Publishing
    
        01.09.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2632-2153 2632-2153  | 
| DOI | 10.1088/2632-2153/abfaed | 
Cover
| Abstract | The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing to measured strain data. However, as the rate of detections grows with detector sensitivity, this poses a growing computational challenge. To confront this challenge, as well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative surrogate models for the Bayesian posterior. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows—specifically, a
neural spline
flow—which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a
global
set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the training distribution. We demonstrate our method by performing inference on GW150914, and obtain results in close agreement with standard techniques. | 
    
|---|---|
| AbstractList | The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing to measured strain data. However, as the rate of detections grows with detector sensitivity, this poses a growing computational challenge. To confront this challenge, as well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative surrogate models for the Bayesian posterior. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows—specifically, a neural spline flow—which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the training distribution. We demonstrate our method by performing inference on GW150914, and obtain results in close agreement with standard techniques. The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing to measured strain data. However, as the rate of detections grows with detector sensitivity, this poses a growing computational challenge. To confront this challenge, as well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative surrogate models for the Bayesian posterior. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows—specifically, a neural spline flow—which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the training distribution. We demonstrate our method by performing inference on GW150914, and obtain results in close agreement with standard techniques.  | 
    
| Author | Green, Stephen R Gair, Jonathan  | 
    
| Author_xml | – sequence: 1 givenname: Stephen R orcidid: 0000-0002-6987-6313 surname: Green fullname: Green, Stephen R – sequence: 2 givenname: Jonathan orcidid: 0000-0002-1671-3668 surname: Gair fullname: Gair, Jonathan  | 
    
| BookMark | eNqNkEtLw0AUhQepYK3duwy4cGPsPJPpwoUUrULBTcXlcDOZkZRkZpykSP-9KREVkeLqPvjO5Zx7ikbOO4PQOcHXBEs5oxmjKSWCzaCwYMojNP5ajX70J2jathuMMRWECYrH6Gbhm1CbziQBIjR9E5PKWRON0yaxPibLFyLwnPBk21buNSmNCUltILp-OkPHFurWTD_rBD3f360XD-nqafm4uF2lmnPZpZwYW2gJc1Hw0giBcZEJKSTJJcVSZ0RDIQhIa3vAcg5zbAloTsqSQJlTNkFkuLt1AXbvUNcqxKqBuFMEq_0L1D6j2mdUwwt6zcWgCdG_bU3bqY3fRtfbVFRwlmdY5LKnsoHS0bdtNFbpqoOu8q6LUNWHzuNfwn84uhoklQ_fZg7gl3_gTd0noYopzFZrTFQoLfsA5saaXw | 
    
| CODEN | MLSTCK | 
    
| CitedBy_id | crossref_primary_10_3390_info14080451 crossref_primary_10_1103_PhysRevD_105_024024 crossref_primary_10_1051_0004_6361_202348367 crossref_primary_10_1116_5_0162505 crossref_primary_10_1103_PhysRevD_110_123007 crossref_primary_10_1103_PhysRevD_104_064046 crossref_primary_10_1103_PhysRevD_106_083003 crossref_primary_10_1103_PhysRevD_108_124037 crossref_primary_10_1088_1475_7516_2023_04_010 crossref_primary_10_1103_PhysRevD_108_044029 crossref_primary_10_1103_PhysRevD_108_042004 crossref_primary_10_1007_s41114_022_00041_y crossref_primary_10_1088_2632_2153_ad8da9 crossref_primary_10_1103_PhysRevD_110_083010 crossref_primary_10_1088_1361_6382_ac1618 crossref_primary_10_1103_PhysRevD_109_024053 crossref_primary_10_1088_2632_2153_ac3843 crossref_primary_10_1103_PhysRevD_104_024030 crossref_primary_10_1360_SSPMA_2024_0087 crossref_primary_10_1088_2632_2153_acc8b8 crossref_primary_10_1016_j_physletb_2022_137505 crossref_primary_10_3390_universe7110394 crossref_primary_10_1007_s41114_024_00054_9 crossref_primary_10_1103_PhysRevD_105_044016 crossref_primary_10_3390_sym16080942 crossref_primary_10_1088_1361_6382_ad8f26 crossref_primary_10_3390_universe10010006 crossref_primary_10_3390_galaxies10010016 crossref_primary_10_1093_mnras_stae646 crossref_primary_10_1088_1475_7516_2024_09_009 crossref_primary_10_1103_PhysRevLett_130_171403 crossref_primary_10_1103_PhysRevLett_127_241103 crossref_primary_10_1103_PhysRevLett_130_171402 crossref_primary_10_1038_s41567_021_01425_7 crossref_primary_10_1093_mnras_stad2502 crossref_primary_10_1103_PhysRevD_109_044051 crossref_primary_10_3390_universe9090407 crossref_primary_10_1103_PhysRevD_106_023032 crossref_primary_10_1146_annurev_nucl_121423_100725 crossref_primary_10_1007_s11433_023_2270_7 crossref_primary_10_1038_s41586_025_08593_z crossref_primary_10_3390_sym15051123 crossref_primary_10_1093_mnras_stab2977 crossref_primary_10_1088_2632_2153_acfa63 crossref_primary_10_1103_PhysRevD_111_023009 crossref_primary_10_1103_PhysRevD_111_024019 crossref_primary_10_1016_j_fmre_2024_11_007 crossref_primary_10_1093_mnras_stad3448 crossref_primary_10_1103_PhysRevD_110_083033 crossref_primary_10_1103_PhysRevD_104_083531 crossref_primary_10_3389_frai_2022_828672 crossref_primary_10_1088_1674_1137_ad2a5f crossref_primary_10_1088_1674_1137_ad73ac crossref_primary_10_1103_PhysRevD_108_023001 crossref_primary_10_1103_PhysRevD_108_082006 crossref_primary_10_1103_PhysRevD_108_124063 crossref_primary_10_1103_PhysRevD_107_084046 crossref_primary_10_1103_PhysRevD_109_064056 crossref_primary_10_1088_1361_6587_ac828d crossref_primary_10_3847_1538_4357_ac4bc0  | 
    
| Cites_doi | 10.1103/PhysRevD.102.104057 10.21105/joss.00045 10.1103/PhysRevD.91.042003 10.1093/mnras/staa278 10.1103/PhysRevD.87.124005 10.1103/PhysRevLett.116.061102 10.1088/2632-2153/abb93a 10.1007/s41114-020-00026-9 10.3847/1538-4365/ab06fc 10.1103/PhysRevD.94.044031 10.1103/PhysRevLett.124.041102 10.1103/PhysRevD.102.043015 10.1103/PhysRevD.90.024018 10.1103/PhysRevLett.113.151101 10.1103/PhysRevX.9.011001 10.1016/j.physletb.2021.136161 10.1093/mnras/staa2850 10.3847/2041-8213/ab75f5 10.1103/PhysRevD.102.044055 10.1109/MCSE.2007.55 10.3847/2041-8213/ab960f 10.1103/PhysRevD.93.044007 10.1103/PhysRevX.9.031040 10.1016/j.physletb.2017.12.053  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 The Author(s). Published by IOP Publishing Ltd 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2021 The Author(s). Published by IOP Publishing Ltd – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| DOI | 10.1088/2632-2153/abfaed | 
    
| DatabaseName | Institute of Physics Open Access Journals IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2632-2153 | 
    
| ExternalDocumentID | 10.1088/2632-2153/abfaed 10_1088_2632_2153_abfaed mlstabfaed  | 
    
| GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA AAYXX AEINN CITATION PHGZM PHGZT PQGLB PUEGO 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c448t-41efbc8a95b4de5500b65858178208c61cab51a8ff5b4f44a90f1ac41dd1ad723 | 
    
| IEDL.DBID | O3W | 
    
| ISSN | 2632-2153 | 
    
| IngestDate | Sun Oct 26 03:46:55 EDT 2025 Fri Jul 25 06:27:23 EDT 2025 Wed Oct 01 03:35:03 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Tue Aug 20 22:16:44 EDT 2024 Wed Aug 21 03:31:14 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c448t-41efbc8a95b4de5500b65858178208c61cab51a8ff5b4f44a90f1ac41dd1ad723 | 
    
| Notes | MLST-100356.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6987-6313 0000-0002-1671-3668  | 
    
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/2632-2153/abfaed | 
    
| PQID | 2543760578 | 
    
| PQPubID | 4916454 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_journals_2543760578 unpaywall_primary_10_1088_2632_2153_abfaed crossref_citationtrail_10_1088_2632_2153_abfaed iop_journals_10_1088_2632_2153_abfaed crossref_primary_10_1088_2632_2153_abfaed  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-09-01 | 
    
| PublicationDateYYYYMMDD | 2021-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Bristol | 
    
| PublicationPlace_xml | – name: Bristol | 
    
| PublicationTitle | Machine learning: science and technology | 
    
| PublicationTitleAbbrev | MLST | 
    
| PublicationTitleAlternate | Mach. Learn.: Sci. Technol | 
    
| PublicationYear | 2021 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | Canizares (mlstabfaedbib37) 2013; 87 Ossokine (mlstabfaedbib42) 2020; 102 Abbott (mlstabfaedbib1) 2016; 116 Veitch (mlstabfaedbib8) 2015; D91 Durkan (mlstabfaedbib25) 2019 Chen (mlstabfaedbib23) 2016 Rory Smith (mlstabfaedbib38) 2016; 94 (mlstabfaedbib24) 2009 Paszke (mlstabfaedbib44) 2019 Kingma (mlstabfaedbib18) 2013 Clevert (mlstabfaedbib28) 2015 Abbott (mlstabfaedbib5) 2020; 896 Cuoco (mlstabfaedbib14) 2020; 2 Papamakarios (mlstabfaedbib22) 2017 Kingma (mlstabfaedbib21) 2016 Ashton (mlstabfaedbib40) 2019; 241 Kingma (mlstabfaedbib33) 2014 Durkan (mlstabfaedbib29) 2019 Rezende (mlstabfaedbib19) 2014 Abbott (mlstabfaedbib4) 2020; 892 Dinh (mlstabfaedbib31) 2014 Khan (mlstabfaedbib35) 2016; D93 Gabbard (mlstabfaedbib16) 2019 Krastev (mlstabfaedbib43) 2021; 815 Abbott (mlstabfaedbib3) 2020; 102 Chua (mlstabfaedbib15) 2020; 124 Bohé (mlstabfaedbib36) 2016 Ioffe (mlstabfaedbib27) 2015 Kaiming (mlstabfaedbib32) 2015 Abbott (mlstabfaedbib2) 2019; 9 mlstabfaedbib7 Kaiming (mlstabfaedbib26) 2016 Hunter (mlstabfaedbib45) 2007; 9 Abbott (mlstabfaedbib6) 2020 Romero-Shaw (mlstabfaedbib9) 2020; 499 Allen (mlstabfaedbib13) 2019 Abbott (mlstabfaedbib10) 2019; X9 Abbott (mlstabfaedbib11) 2018; 21 George (mlstabfaedbib12) 2018; 778 Loshchilov (mlstabfaedbib39) 2016 Green (mlstabfaedbib17) 2020; 102 Hannam (mlstabfaedbib34) 2014; 113 Speagle (mlstabfaedbib41) 2020; 493 Hinton (mlstabfaedbib46) 2016; 1 Rezende (mlstabfaedbib20) 2015 Singer (mlstabfaedbib47) 2020 Farr (mlstabfaedbib30) 2014; 90  | 
    
| References_xml | – volume: 102 year: 2020 ident: mlstabfaedbib17 article-title: Gravitational-wave parameter estimation with autoregressive neural network flows publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.104057 – year: 2013 ident: mlstabfaedbib18 article-title: Auto-encoding variational Bayes – year: 2019 ident: mlstabfaedbib13 article-title: Deep learning for multi-messenger astrophysics: a gateway for discovery in the big data era – year: 2014 ident: mlstabfaedbib31 article-title: Nice: non-linear independent components estimation – volume: 1 year: 2016 ident: mlstabfaedbib46 article-title: ChainConsumer publication-title: J. Open Source Softw. doi: 10.21105/joss.00045 – year: 2020 ident: mlstabfaedbib6 article-title: GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run – volume: D91 year: 2015 ident: mlstabfaedbib8 article-title: Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library publication-title: Phys. Rev. doi: 10.1103/PhysRevD.91.042003 – start-page: 4743 year: 2016 ident: mlstabfaedbib21 article-title: Improved variational inference with inverse autoregressive flow – year: 2015 ident: mlstabfaedbib32 article-title: Deep residual learning for image recognition – volume: 493 start-page: 3132 year: 2020 ident: mlstabfaedbib41 article-title: Dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/staa278 – start-page: 2338 year: 2017 ident: mlstabfaedbib22 article-title: Masked autoregressive flow for density estimation – volume: 87 year: 2013 ident: mlstabfaedbib37 article-title: Gravitational wave parameter estimation with compressed likelihood evaluations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.124005 – volume: 116 year: 2016 ident: mlstabfaedbib1 article-title: Observation of gravitational waves from a binary black hole merger publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – volume: 2 year: 2020 ident: mlstabfaedbib14 article-title: Enhancing gravitational-wave science with machine learning publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/abb93a – volume: 21 start-page: 3 year: 2018 ident: mlstabfaedbib11 article-title: Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo and KAGRA publication-title: Living Rev. Rel. doi: 10.1007/s41114-020-00026-9 – year: 2016 ident: mlstabfaedbib36 article-title: PhenomPv2—technical notes for the LAL implementation – year: 2009 ident: mlstabfaedbib24 article-title: Advanced LIGO anticipated sensitivity curves – volume: 241 start-page: 27 year: 2019 ident: mlstabfaedbib40 article-title: BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy publication-title: Astrophys. J. Suppl. doi: 10.3847/1538-4365/ab06fc – year: 2016 ident: mlstabfaedbib39 article-title: Sgdr: stochastic gradient descent with warm restarts – year: 2016 ident: mlstabfaedbib23 article-title: Variational Lossy autoencoder – year: 2019 ident: mlstabfaedbib25 article-title: Neural spline flows – volume: 94 year: 2016 ident: mlstabfaedbib38 article-title: Fast and accurate inference on gravitational waves from precessing compact binaries publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.044031 – volume: 124 year: 2020 ident: mlstabfaedbib15 article-title: Learning Bayesian posteriors with neural networks for gravitational-wave inference publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.041102 – volume: 102 year: 2020 ident: mlstabfaedbib3 article-title: GW190412: observation of a binary-black-hole coalescence with asymmetric masses doi: 10.1103/PhysRevD.102.043015 – volume: 90 year: 2014 ident: mlstabfaedbib30 article-title: A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.024018 – volume: 113 year: 2014 ident: mlstabfaedbib34 article-title: Simple model of complete precessing black-hole-binary gravitational waveforms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.151101 – volume: X9 year: 2019 ident: mlstabfaedbib10 article-title: Properties of the binary neutron star merger GW170817 publication-title: Phys. Rev. doi: 10.1103/PhysRevX.9.011001 – volume: 815 year: 2021 ident: mlstabfaedbib43 article-title: Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136161 – year: 2020 ident: mlstabfaedbib47 article-title: ligo.skymap – ident: mlstabfaedbib7 article-title: Gravitational-wave candidate event database – start-page: 1530 year: 2015 ident: mlstabfaedbib20 article-title: Variational inference with normalizing flows – volume: 499 start-page: 3295 year: 2020 ident: mlstabfaedbib9 article-title: Bayesian inference for compact binary coalescences with BILBY: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue publication-title: Mon. Notices Royal Astron. Soc doi: 10.1093/mnras/staa2850 – start-page: 448 year: 2015 ident: mlstabfaedbib27 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – year: 2015 ident: mlstabfaedbib28 article-title: Fast and accurate deep network learning by exponential linear units (elus) – year: 2016 ident: mlstabfaedbib26 article-title: Identity mappings in deep residual networks – year: 2019 ident: mlstabfaedbib29 article-title: Neural spline flows – volume: 892 start-page: L3 year: 2020 ident: mlstabfaedbib4 article-title: GW190425: observation of a compact binary coalescence with total mass 3.4M⊙ publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ab75f5 – start-page: pp 8024 year: 2019 ident: mlstabfaedbib44 – year: 2019 ident: mlstabfaedbib16 article-title: Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy – year: 2014 ident: mlstabfaedbib33 article-title: Adam: a method for stochastic optimization – volume: 102 year: 2020 ident: mlstabfaedbib42 article-title: Multipolar effective-one-body waveforms for precessing binary black holes: construction and validation publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.044055 – volume: 9 start-page: 90 year: 2007 ident: mlstabfaedbib45 article-title: Matplotlib: a 2d graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 896 start-page: L44 year: 2020 ident: mlstabfaedbib5 article-title: GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object publication-title: Astrophys. J. doi: 10.3847/2041-8213/ab960f – start-page: 1278 year: 2014 ident: mlstabfaedbib19 article-title: Stochastic backpropagation and approximate inference in deep generative models – volume: D93 year: 2016 ident: mlstabfaedbib35 article-title: Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era publication-title: Phys. Rev. doi: 10.1103/PhysRevD.93.044007 – volume: 9 year: 2019 ident: mlstabfaedbib2 article-title: GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.031040 – volume: 778 start-page: 64 year: 2018 ident: mlstabfaedbib12 article-title: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.12.053  | 
    
| SSID | ssj0002513520 | 
    
| Score | 2.5283225 | 
    
| Snippet | The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative... | 
    
| SourceID | unpaywall proquest crossref iop  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3 | 
    
| SubjectTerms | Algorithms black holes Conditional probability Deep learning Density Gravitational waves Inference Iterative methods Machine learning Mathematical models Neural networks Observatories parameter estimation Parameters Sampling Training Waveforms  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZgHODCGzFeygEOIFVr2vR1QAgQY0IwITTEblHaJNOkbiswhPj3xF26scu4u1VlN_k-J_ZngNPIgIp2VeJEWYQJihs4iaSBE6JeEfOUThU2OD-1w9Yre-gG3SVoV70wWFZZ7YnlRi1HGZ6RN7BpOzLcO4qvincHp0bh7Wo1QkPY0QryspQYW4YVD5WxarByc9d-fpmeuhg0N4zDtfeVZoU1UK_cMbjnN0SqBQLQH3xa7o-KOeq5-jUsxM-3yPM_KNTchHVLH8n1JN5bsKSG27BRjWYgdqXuADZ-FCYkiqC29wBrXki_6u0jhqiS-zeKKM4IVr73iFSqIHaERG8XXpt3nduWYyclOJlJr8YOo8apWSySIGVSmaTDTQ2zCGKKanhxFtJMpAEVsdbGQDMmEldTkTEqJRUy8vw9qA1HQ7UPRPoCsxLhh9JlTCcpiwVNtFShMJkSDevQqPzDMysjjtMscl5eZ8cxR49y9CifeLQO59MniomExgLbM-NybtfR5wI7Mmc3yD_H3OM-d_3Hjkt5IXUdjqq4zexmf1EdLqax_PezDha_6xDWPCx1KUvPjqA2_vhSx4arjNMT-wP-Asbe5hA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BedhexmCblsEmP4wHJqWNGydxHhGiVIihPbQae_Kc2EZoJUQj1bT9eu4ah1E0FaG95eGz4tydc3fy3XcAHzN0Ki6yeZiVGSUoURLmhidhSnxFYmhdYanB-fNZOp6Kk_Pk3M85XfTCXNf-19_Hx5YouBWhL4iTA2IYD9FTxQNdOG3NoDZuHTbSBIPxHmxMz74cfKORch3MX07-a-mSM1rHFy7Fmc_mVa1__9Kz2T2XM9qE791m20qTH_15U_TLPw94HP_ja17CCx-OsoMWvgVrttqGzW7UA_Mn_xVQI0mNKraMuMKvqIaGXXa9ggwDX3b8lVNUIBhV0l8wY23N_EiKi9cwHR1NDsehn7wQlpiuNaHgqKRS6jwphLGYxEQFRiqJ5MSuJ8uUl7pIuJbOIcAJofPIcV0KbgzXJhvGb6BXXVf2LTATa8pydJyaSAiXF0JqnjtjU42ZF08DGHQqUKWnJafpGDO1uB6XUpGEFElItRIKYP9uRd1ScqzA7qHglT-XNytwbAl3Nbtp1FDFKopPJxFXqJQAdjvT-IsjKoEMM8JMBvDpzlwe3da7p4B34PmQCmkWhW270Gt-zu17jISa4oO39lueWwNh priority: 102 providerName: Unpaywall  | 
    
| Title | Complete parameter inference for GW150914 using deep learning | 
    
| URI | https://iopscience.iop.org/article/10.1088/2632-2153/abfaed https://www.proquest.com/docview/2543760578 https://iopscience.iop.org/article/10.1088/2632-2153/abfaed/pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: IOP dateStart: 20200301 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED5ReICXsQ0QHV3lB_YwpNC4cRJHPHVTC0OjVIgKeLKc2EZIpURQhPay385d4xYqTbAXK1LOivU5zt3l7r4D2E1RqbjQZkFapOSghHGQGR4HCfEVibZ1uaUC55N-cjQUx5fx5RIczGth7kr_6d_Hy4oouILQJ8TJFjGMB6ipopbOnbamBisU3SLi_NPoYv6DBRU3GhehD03-a-KCKqrh4xaszNXHcan_POnR6JXC6X2ED95SZJ1qXZ9gyY4_w_qsCwPzh3IDqMajRPQtIxrvW0pvYTezMj6GNik7vOCksAWjJPdrZqwtme8Wcb0Jw173_OdR4JsiBAV6UpNAcMSvkDqLc2Es-hdhjkZELDkR38ki4YXOY66lcyjghNBZ6LguBDeGa5O2oy1YHt-N7TYwE2lyQHSUmFAIl-VCap45YxONThFP6tCa4aMKzxhOjStGahq5llIRoooQVRWidfg-n1FWbBlvyH5DyJU_Mg9vyLEFudvRw0S1VaTC6Pd5yFVpXB0as317kaMq_xSdtVTWYW--l-8u68t_LmsH1tqU3jJNN2vA8uT-0X5F-2SSN6Eme4dNWPnR7Q_OmlMvH8dfpwMcT_52m9P3FO8P-4PO1TPzg-Yf | 
    
| linkProvider | IOP Publishing | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTyMxDLZ4HODCc1d0l0cOcGClUSczmdcBId4FSrVaFS23kJkkCKm0s9sixJ_jt2G3mQKXcuLuGUWOY39O7M8A2wkGFeubzEuKhBIUP_IyzSMvJr4iERibG2pwvmrFjWtxcRPdTMFL1QtDZZWVTxw6at0r6I68Tk3bCWLvJN0v_3k0NYpeV6sRGsqNVtB7Q4ox19hxaZ6fMIXr750f437vBMHpSfuo4bkpA16BqcnAExwXVKQqi3KhDQJ2P8eoHKWcmOTSIuaFyiOuUmtRwAqhMt9yVQiuNVc6IeIDDAGzIhQZJn-zhyet33_GtzyIHhDh-O59FE90nfjRPYyzYV3lVlHAexcPp-975QeoO_fYLdXzk-p03kW90yVYcHCVHYzsaxmmTHcFFqtREMx5hlWgRpMSTcAw4hJ_oBobdl_1EjIExuzsLyfUIBhV2t8xbUzJ3MiKu29w_SU6-w4z3V7XrAHToaIsSIWx9oWwWS5SxTOrTawwM-NxDeqVfmThaMtpekZHDp_P01SSRiVpVI40WoPd8RfliLJjguwOqly6c9ufIMc-yD10-gMZyFD6YbPtc1lqW4P1at_e5N6stga_xnv56bJ-TP7XFsw12ldN2TxvXf6E-YDKbIZlb-swM_j_aDYQJw3yTWeMDG6_2v5fAdLuI4c | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLf4kBgv43PiNsbysD2A1Lvmmrbp47Tt-BzwABpvWdokaNpxVKMnxP762W164xBiSHurKkd1bae2G_tngPcpOhUX2ixIi5QSlDAOMsPjICG8ItG3LrfU4Pz1ONk7FwcX8YWfc1r3wlyX_tPfxcsGKLgRoS-Ikz1CGA_QU0U9nTttTa80bhbma5wS6uA7OZ38ZEHnjXdDfzz52OIpdzSLj5yKNF-MR6W-u9XD4T2nM1iC7y27Ta3Jz-64yrvF7wdIjv_xPsvw0gek7GNDvgIzdrQKS-2wB-b3_hpQK0mJSraM0MKvqIqG_Wi7BRmGvmz3G6e4QDCqpb9kxtqS-aEUl-twPvhy9mkv8LMXggITtioQHNVUSJ3FuTAW05gwx1gllpzw9WSR8ELnMdfSOSRwQugsdFwXghvDtUn70SuYG12P7AYwE2nKc3SUmFAIl-VCap45YxONuRdPOtBrVaAKD0xO8zGGqj4gl1KRhBRJSDUS6sD2ZEXZgHI8QfsBBa_8zrx5go5N0V0NbyrVV5EKo6OzkCtUSgc2W9P4S0dgAinmhKnswM7EXP7J1utnsvUOFk4_D9TR_vHhG1jsU0FNXeC2CXPVr7F9ixFRlW_VVv8HK7AD7g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BedhexmCblsEmP4wHJqWNGydxHhGiVIihPbQae_Kc2EZoJUQj1bT9eu4ah1E0FaG95eGz4tydc3fy3XcAHzN0Ki6yeZiVGSUoURLmhidhSnxFYmhdYanB-fNZOp6Kk_Pk3M85XfTCXNf-19_Hx5YouBWhL4iTA2IYD9FTxQNdOG3NoDZuHTbSBIPxHmxMz74cfKORch3MX07-a-mSM1rHFy7Fmc_mVa1__9Kz2T2XM9qE791m20qTH_15U_TLPw94HP_ja17CCx-OsoMWvgVrttqGzW7UA_Mn_xVQI0mNKraMuMKvqIaGXXa9ggwDX3b8lVNUIBhV0l8wY23N_EiKi9cwHR1NDsehn7wQlpiuNaHgqKRS6jwphLGYxEQFRiqJ5MSuJ8uUl7pIuJbOIcAJofPIcV0KbgzXJhvGb6BXXVf2LTATa8pydJyaSAiXF0JqnjtjU42ZF08DGHQqUKWnJafpGDO1uB6XUpGEFElItRIKYP9uRd1ScqzA7qHglT-XNytwbAl3Nbtp1FDFKopPJxFXqJQAdjvT-IsjKoEMM8JMBvDpzlwe3da7p4B34PmQCmkWhW270Gt-zu17jISa4oO39lueWwNh | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complete+parameter+inference+for+GW150914+using+deep+learning&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Green%2C+Stephen+R&rft.au=Gair%2C+Jonathan&rft.date=2021-09-01&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=2&rft.issue=3&rft.spage=3&rft_id=info:doi/10.1088%2F2632-2153%2Fabfaed&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_abfaed | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |