Complete parameter inference for GW150914 using deep learning

The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing...

Full description

Saved in:
Bibliographic Details
Published inMachine learning: science and technology Vol. 2; no. 3; pp. 3 - 11
Main Authors Green, Stephen R, Gair, Jonathan
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.09.2021
Subjects
Online AccessGet full text
ISSN2632-2153
2632-2153
DOI10.1088/2632-2153/abfaed

Cover

Abstract The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing to measured strain data. However, as the rate of detections grows with detector sensitivity, this poses a growing computational challenge. To confront this challenge, as well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative surrogate models for the Bayesian posterior. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows—specifically, a neural spline flow—which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the training distribution. We demonstrate our method by performing inference on GW150914, and obtain results in close agreement with standard techniques.
AbstractList The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing to measured strain data. However, as the rate of detections grows with detector sensitivity, this poses a growing computational challenge. To confront this challenge, as well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative surrogate models for the Bayesian posterior. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows—specifically, a neural spline flow—which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the training distribution. We demonstrate our method by performing inference on GW150914, and obtain results in close agreement with standard techniques.
The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating waveforms and comparing to measured strain data. However, as the rate of detections grows with detector sensitivity, this poses a growing computational challenge. To confront this challenge, as well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative surrogate models for the Bayesian posterior. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows—specifically, a neural spline flow—which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the training distribution. We demonstrate our method by performing inference on GW150914, and obtain results in close agreement with standard techniques.
Author Green, Stephen R
Gair, Jonathan
Author_xml – sequence: 1
  givenname: Stephen R
  orcidid: 0000-0002-6987-6313
  surname: Green
  fullname: Green, Stephen R
– sequence: 2
  givenname: Jonathan
  orcidid: 0000-0002-1671-3668
  surname: Gair
  fullname: Gair, Jonathan
BookMark eNqNkEtLw0AUhQepYK3duwy4cGPsPJPpwoUUrULBTcXlcDOZkZRkZpykSP-9KREVkeLqPvjO5Zx7ikbOO4PQOcHXBEs5oxmjKSWCzaCwYMojNP5ajX70J2jathuMMRWECYrH6Gbhm1CbziQBIjR9E5PKWRON0yaxPibLFyLwnPBk21buNSmNCUltILp-OkPHFurWTD_rBD3f360XD-nqafm4uF2lmnPZpZwYW2gJc1Hw0giBcZEJKSTJJcVSZ0RDIQhIa3vAcg5zbAloTsqSQJlTNkFkuLt1AXbvUNcqxKqBuFMEq_0L1D6j2mdUwwt6zcWgCdG_bU3bqY3fRtfbVFRwlmdY5LKnsoHS0bdtNFbpqoOu8q6LUNWHzuNfwn84uhoklQ_fZg7gl3_gTd0noYopzFZrTFQoLfsA5saaXw
CODEN MLSTCK
CitedBy_id crossref_primary_10_3390_info14080451
crossref_primary_10_1103_PhysRevD_105_024024
crossref_primary_10_1051_0004_6361_202348367
crossref_primary_10_1116_5_0162505
crossref_primary_10_1103_PhysRevD_110_123007
crossref_primary_10_1103_PhysRevD_104_064046
crossref_primary_10_1103_PhysRevD_106_083003
crossref_primary_10_1103_PhysRevD_108_124037
crossref_primary_10_1088_1475_7516_2023_04_010
crossref_primary_10_1103_PhysRevD_108_044029
crossref_primary_10_1103_PhysRevD_108_042004
crossref_primary_10_1007_s41114_022_00041_y
crossref_primary_10_1088_2632_2153_ad8da9
crossref_primary_10_1103_PhysRevD_110_083010
crossref_primary_10_1088_1361_6382_ac1618
crossref_primary_10_1103_PhysRevD_109_024053
crossref_primary_10_1088_2632_2153_ac3843
crossref_primary_10_1103_PhysRevD_104_024030
crossref_primary_10_1360_SSPMA_2024_0087
crossref_primary_10_1088_2632_2153_acc8b8
crossref_primary_10_1016_j_physletb_2022_137505
crossref_primary_10_3390_universe7110394
crossref_primary_10_1007_s41114_024_00054_9
crossref_primary_10_1103_PhysRevD_105_044016
crossref_primary_10_3390_sym16080942
crossref_primary_10_1088_1361_6382_ad8f26
crossref_primary_10_3390_universe10010006
crossref_primary_10_3390_galaxies10010016
crossref_primary_10_1093_mnras_stae646
crossref_primary_10_1088_1475_7516_2024_09_009
crossref_primary_10_1103_PhysRevLett_130_171403
crossref_primary_10_1103_PhysRevLett_127_241103
crossref_primary_10_1103_PhysRevLett_130_171402
crossref_primary_10_1038_s41567_021_01425_7
crossref_primary_10_1093_mnras_stad2502
crossref_primary_10_1103_PhysRevD_109_044051
crossref_primary_10_3390_universe9090407
crossref_primary_10_1103_PhysRevD_106_023032
crossref_primary_10_1146_annurev_nucl_121423_100725
crossref_primary_10_1007_s11433_023_2270_7
crossref_primary_10_1038_s41586_025_08593_z
crossref_primary_10_3390_sym15051123
crossref_primary_10_1093_mnras_stab2977
crossref_primary_10_1088_2632_2153_acfa63
crossref_primary_10_1103_PhysRevD_111_023009
crossref_primary_10_1103_PhysRevD_111_024019
crossref_primary_10_1016_j_fmre_2024_11_007
crossref_primary_10_1093_mnras_stad3448
crossref_primary_10_1103_PhysRevD_110_083033
crossref_primary_10_1103_PhysRevD_104_083531
crossref_primary_10_3389_frai_2022_828672
crossref_primary_10_1088_1674_1137_ad2a5f
crossref_primary_10_1088_1674_1137_ad73ac
crossref_primary_10_1103_PhysRevD_108_023001
crossref_primary_10_1103_PhysRevD_108_082006
crossref_primary_10_1103_PhysRevD_108_124063
crossref_primary_10_1103_PhysRevD_107_084046
crossref_primary_10_1103_PhysRevD_109_064056
crossref_primary_10_1088_1361_6587_ac828d
crossref_primary_10_3847_1538_4357_ac4bc0
Cites_doi 10.1103/PhysRevD.102.104057
10.21105/joss.00045
10.1103/PhysRevD.91.042003
10.1093/mnras/staa278
10.1103/PhysRevD.87.124005
10.1103/PhysRevLett.116.061102
10.1088/2632-2153/abb93a
10.1007/s41114-020-00026-9
10.3847/1538-4365/ab06fc
10.1103/PhysRevD.94.044031
10.1103/PhysRevLett.124.041102
10.1103/PhysRevD.102.043015
10.1103/PhysRevD.90.024018
10.1103/PhysRevLett.113.151101
10.1103/PhysRevX.9.011001
10.1016/j.physletb.2021.136161
10.1093/mnras/staa2850
10.3847/2041-8213/ab75f5
10.1103/PhysRevD.102.044055
10.1109/MCSE.2007.55
10.3847/2041-8213/ab960f
10.1103/PhysRevD.93.044007
10.1103/PhysRevX.9.031040
10.1016/j.physletb.2017.12.053
ContentType Journal Article
Copyright 2021 The Author(s). Published by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Author(s). Published by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1088/2632-2153/abfaed
DatabaseName Institute of Physics Open Access Journals
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID 10.1088/2632-2153/abfaed
10_1088_2632_2153_abfaed
mlstabfaed
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c448t-41efbc8a95b4de5500b65858178208c61cab51a8ff5b4f44a90f1ac41dd1ad723
IEDL.DBID O3W
ISSN 2632-2153
IngestDate Sun Oct 26 03:46:55 EDT 2025
Fri Jul 25 06:27:23 EDT 2025
Wed Oct 01 03:35:03 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Tue Aug 20 22:16:44 EDT 2024
Wed Aug 21 03:31:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-41efbc8a95b4de5500b65858178208c61cab51a8ff5b4f44a90f1ac41dd1ad723
Notes MLST-100356.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6987-6313
0000-0002-1671-3668
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/abfaed
PQID 2543760578
PQPubID 4916454
PageCount 9
ParticipantIDs proquest_journals_2543760578
unpaywall_primary_10_1088_2632_2153_abfaed
crossref_citationtrail_10_1088_2632_2153_abfaed
iop_journals_10_1088_2632_2153_abfaed
crossref_primary_10_1088_2632_2153_abfaed
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Canizares (mlstabfaedbib37) 2013; 87
Ossokine (mlstabfaedbib42) 2020; 102
Abbott (mlstabfaedbib1) 2016; 116
Veitch (mlstabfaedbib8) 2015; D91
Durkan (mlstabfaedbib25) 2019
Chen (mlstabfaedbib23) 2016
Rory Smith (mlstabfaedbib38) 2016; 94
(mlstabfaedbib24) 2009
Paszke (mlstabfaedbib44) 2019
Kingma (mlstabfaedbib18) 2013
Clevert (mlstabfaedbib28) 2015
Abbott (mlstabfaedbib5) 2020; 896
Cuoco (mlstabfaedbib14) 2020; 2
Papamakarios (mlstabfaedbib22) 2017
Kingma (mlstabfaedbib21) 2016
Ashton (mlstabfaedbib40) 2019; 241
Kingma (mlstabfaedbib33) 2014
Durkan (mlstabfaedbib29) 2019
Rezende (mlstabfaedbib19) 2014
Abbott (mlstabfaedbib4) 2020; 892
Dinh (mlstabfaedbib31) 2014
Khan (mlstabfaedbib35) 2016; D93
Gabbard (mlstabfaedbib16) 2019
Krastev (mlstabfaedbib43) 2021; 815
Abbott (mlstabfaedbib3) 2020; 102
Chua (mlstabfaedbib15) 2020; 124
Bohé (mlstabfaedbib36) 2016
Ioffe (mlstabfaedbib27) 2015
Kaiming (mlstabfaedbib32) 2015
Abbott (mlstabfaedbib2) 2019; 9
mlstabfaedbib7
Kaiming (mlstabfaedbib26) 2016
Hunter (mlstabfaedbib45) 2007; 9
Abbott (mlstabfaedbib6) 2020
Romero-Shaw (mlstabfaedbib9) 2020; 499
Allen (mlstabfaedbib13) 2019
Abbott (mlstabfaedbib10) 2019; X9
Abbott (mlstabfaedbib11) 2018; 21
George (mlstabfaedbib12) 2018; 778
Loshchilov (mlstabfaedbib39) 2016
Green (mlstabfaedbib17) 2020; 102
Hannam (mlstabfaedbib34) 2014; 113
Speagle (mlstabfaedbib41) 2020; 493
Hinton (mlstabfaedbib46) 2016; 1
Rezende (mlstabfaedbib20) 2015
Singer (mlstabfaedbib47) 2020
Farr (mlstabfaedbib30) 2014; 90
References_xml – volume: 102
  year: 2020
  ident: mlstabfaedbib17
  article-title: Gravitational-wave parameter estimation with autoregressive neural network flows
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.104057
– year: 2013
  ident: mlstabfaedbib18
  article-title: Auto-encoding variational Bayes
– year: 2019
  ident: mlstabfaedbib13
  article-title: Deep learning for multi-messenger astrophysics: a gateway for discovery in the big data era
– year: 2014
  ident: mlstabfaedbib31
  article-title: Nice: non-linear independent components estimation
– volume: 1
  year: 2016
  ident: mlstabfaedbib46
  article-title: ChainConsumer
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00045
– year: 2020
  ident: mlstabfaedbib6
  article-title: GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run
– volume: D91
  year: 2015
  ident: mlstabfaedbib8
  article-title: Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevD.91.042003
– start-page: 4743
  year: 2016
  ident: mlstabfaedbib21
  article-title: Improved variational inference with inverse autoregressive flow
– year: 2015
  ident: mlstabfaedbib32
  article-title: Deep residual learning for image recognition
– volume: 493
  start-page: 3132
  year: 2020
  ident: mlstabfaedbib41
  article-title: Dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/staa278
– start-page: 2338
  year: 2017
  ident: mlstabfaedbib22
  article-title: Masked autoregressive flow for density estimation
– volume: 87
  year: 2013
  ident: mlstabfaedbib37
  article-title: Gravitational wave parameter estimation with compressed likelihood evaluations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.124005
– volume: 116
  year: 2016
  ident: mlstabfaedbib1
  article-title: Observation of gravitational waves from a binary black hole merger
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– volume: 2
  year: 2020
  ident: mlstabfaedbib14
  article-title: Enhancing gravitational-wave science with machine learning
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/abb93a
– volume: 21
  start-page: 3
  year: 2018
  ident: mlstabfaedbib11
  article-title: Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo and KAGRA
  publication-title: Living Rev. Rel.
  doi: 10.1007/s41114-020-00026-9
– year: 2016
  ident: mlstabfaedbib36
  article-title: PhenomPv2—technical notes for the LAL implementation
– year: 2009
  ident: mlstabfaedbib24
  article-title: Advanced LIGO anticipated sensitivity curves
– volume: 241
  start-page: 27
  year: 2019
  ident: mlstabfaedbib40
  article-title: BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy
  publication-title: Astrophys. J. Suppl.
  doi: 10.3847/1538-4365/ab06fc
– year: 2016
  ident: mlstabfaedbib39
  article-title: Sgdr: stochastic gradient descent with warm restarts
– year: 2016
  ident: mlstabfaedbib23
  article-title: Variational Lossy autoencoder
– year: 2019
  ident: mlstabfaedbib25
  article-title: Neural spline flows
– volume: 94
  year: 2016
  ident: mlstabfaedbib38
  article-title: Fast and accurate inference on gravitational waves from precessing compact binaries
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.044031
– volume: 124
  year: 2020
  ident: mlstabfaedbib15
  article-title: Learning Bayesian posteriors with neural networks for gravitational-wave inference
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.041102
– volume: 102
  year: 2020
  ident: mlstabfaedbib3
  article-title: GW190412: observation of a binary-black-hole coalescence with asymmetric masses
  doi: 10.1103/PhysRevD.102.043015
– volume: 90
  year: 2014
  ident: mlstabfaedbib30
  article-title: A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.024018
– volume: 113
  year: 2014
  ident: mlstabfaedbib34
  article-title: Simple model of complete precessing black-hole-binary gravitational waveforms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.151101
– volume: X9
  year: 2019
  ident: mlstabfaedbib10
  article-title: Properties of the binary neutron star merger GW170817
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.9.011001
– volume: 815
  year: 2021
  ident: mlstabfaedbib43
  article-title: Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136161
– year: 2020
  ident: mlstabfaedbib47
  article-title: ligo.skymap
– ident: mlstabfaedbib7
  article-title: Gravitational-wave candidate event database
– start-page: 1530
  year: 2015
  ident: mlstabfaedbib20
  article-title: Variational inference with normalizing flows
– volume: 499
  start-page: 3295
  year: 2020
  ident: mlstabfaedbib9
  article-title: Bayesian inference for compact binary coalescences with BILBY: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue
  publication-title: Mon. Notices Royal Astron. Soc
  doi: 10.1093/mnras/staa2850
– start-page: 448
  year: 2015
  ident: mlstabfaedbib27
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– year: 2015
  ident: mlstabfaedbib28
  article-title: Fast and accurate deep network learning by exponential linear units (elus)
– year: 2016
  ident: mlstabfaedbib26
  article-title: Identity mappings in deep residual networks
– year: 2019
  ident: mlstabfaedbib29
  article-title: Neural spline flows
– volume: 892
  start-page: L3
  year: 2020
  ident: mlstabfaedbib4
  article-title: GW190425: observation of a compact binary coalescence with total mass  3.4M⊙
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab75f5
– start-page: pp 8024
  year: 2019
  ident: mlstabfaedbib44
– year: 2019
  ident: mlstabfaedbib16
  article-title: Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
– year: 2014
  ident: mlstabfaedbib33
  article-title: Adam: a method for stochastic optimization
– volume: 102
  year: 2020
  ident: mlstabfaedbib42
  article-title: Multipolar effective-one-body waveforms for precessing binary black holes: construction and validation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.044055
– volume: 9
  start-page: 90
  year: 2007
  ident: mlstabfaedbib45
  article-title: Matplotlib: a 2d graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 896
  start-page: L44
  year: 2020
  ident: mlstabfaedbib5
  article-title: GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/ab960f
– start-page: 1278
  year: 2014
  ident: mlstabfaedbib19
  article-title: Stochastic backpropagation and approximate inference in deep generative models
– volume: D93
  year: 2016
  ident: mlstabfaedbib35
  article-title: Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevD.93.044007
– volume: 9
  year: 2019
  ident: mlstabfaedbib2
  article-title: GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.031040
– volume: 778
  start-page: 64
  year: 2018
  ident: mlstabfaedbib12
  article-title: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.12.053
SSID ssj0002513520
Score 2.5283225
Snippet The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Algorithms
black holes
Conditional probability
Deep learning
Density
Gravitational waves
Inference
Iterative methods
Machine learning
Mathematical models
Neural networks
Observatories
parameter estimation
Parameters
Sampling
Training
Waveforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZgHODCGzFeygEOIFVr2vR1QAgQY0IwITTEblHaJNOkbiswhPj3xF26scu4u1VlN_k-J_ZngNPIgIp2VeJEWYQJihs4iaSBE6JeEfOUThU2OD-1w9Yre-gG3SVoV70wWFZZ7YnlRi1HGZ6RN7BpOzLcO4qvincHp0bh7Wo1QkPY0QryspQYW4YVD5WxarByc9d-fpmeuhg0N4zDtfeVZoU1UK_cMbjnN0SqBQLQH3xa7o-KOeq5-jUsxM-3yPM_KNTchHVLH8n1JN5bsKSG27BRjWYgdqXuADZ-FCYkiqC29wBrXki_6u0jhqiS-zeKKM4IVr73iFSqIHaERG8XXpt3nduWYyclOJlJr8YOo8apWSySIGVSmaTDTQ2zCGKKanhxFtJMpAEVsdbGQDMmEldTkTEqJRUy8vw9qA1HQ7UPRPoCsxLhh9JlTCcpiwVNtFShMJkSDevQqPzDMysjjtMscl5eZ8cxR49y9CifeLQO59MniomExgLbM-NybtfR5wI7Mmc3yD_H3OM-d_3Hjkt5IXUdjqq4zexmf1EdLqax_PezDha_6xDWPCx1KUvPjqA2_vhSx4arjNMT-wP-Asbe5hA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BedhexmCblsEmP4wHJqWNGydxHhGiVIihPbQae_Kc2EZoJUQj1bT9eu4ah1E0FaG95eGz4tydc3fy3XcAHzN0Ki6yeZiVGSUoURLmhidhSnxFYmhdYanB-fNZOp6Kk_Pk3M85XfTCXNf-19_Hx5YouBWhL4iTA2IYD9FTxQNdOG3NoDZuHTbSBIPxHmxMz74cfKORch3MX07-a-mSM1rHFy7Fmc_mVa1__9Kz2T2XM9qE791m20qTH_15U_TLPw94HP_ja17CCx-OsoMWvgVrttqGzW7UA_Mn_xVQI0mNKraMuMKvqIaGXXa9ggwDX3b8lVNUIBhV0l8wY23N_EiKi9cwHR1NDsehn7wQlpiuNaHgqKRS6jwphLGYxEQFRiqJ5MSuJ8uUl7pIuJbOIcAJofPIcV0KbgzXJhvGb6BXXVf2LTATa8pydJyaSAiXF0JqnjtjU42ZF08DGHQqUKWnJafpGDO1uB6XUpGEFElItRIKYP9uRd1ScqzA7qHglT-XNytwbAl3Nbtp1FDFKopPJxFXqJQAdjvT-IsjKoEMM8JMBvDpzlwe3da7p4B34PmQCmkWhW270Gt-zu17jISa4oO39lueWwNh
  priority: 102
  providerName: Unpaywall
Title Complete parameter inference for GW150914 using deep learning
URI https://iopscience.iop.org/article/10.1088/2632-2153/abfaed
https://www.proquest.com/docview/2543760578
https://iopscience.iop.org/article/10.1088/2632-2153/abfaed/pdf
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: IOP
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED5ReICXsQ0QHV3lB_YwpNC4cRJHPHVTC0OjVIgKeLKc2EZIpURQhPay385d4xYqTbAXK1LOivU5zt3l7r4D2E1RqbjQZkFapOSghHGQGR4HCfEVibZ1uaUC55N-cjQUx5fx5RIczGth7kr_6d_Hy4oouILQJ8TJFjGMB6ipopbOnbamBisU3SLi_NPoYv6DBRU3GhehD03-a-KCKqrh4xaszNXHcan_POnR6JXC6X2ED95SZJ1qXZ9gyY4_w_qsCwPzh3IDqMajRPQtIxrvW0pvYTezMj6GNik7vOCksAWjJPdrZqwtme8Wcb0Jw173_OdR4JsiBAV6UpNAcMSvkDqLc2Es-hdhjkZELDkR38ki4YXOY66lcyjghNBZ6LguBDeGa5O2oy1YHt-N7TYwE2lyQHSUmFAIl-VCap45YxONThFP6tCa4aMKzxhOjStGahq5llIRoooQVRWidfg-n1FWbBlvyH5DyJU_Mg9vyLEFudvRw0S1VaTC6Pd5yFVpXB0as317kaMq_xSdtVTWYW--l-8u68t_LmsH1tqU3jJNN2vA8uT-0X5F-2SSN6Eme4dNWPnR7Q_OmlMvH8dfpwMcT_52m9P3FO8P-4PO1TPzg-Yf
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTyMxDLZ4HODCc1d0l0cOcGClUSczmdcBId4FSrVaFS23kJkkCKm0s9sixJ_jt2G3mQKXcuLuGUWOY39O7M8A2wkGFeubzEuKhBIUP_IyzSMvJr4iERibG2pwvmrFjWtxcRPdTMFL1QtDZZWVTxw6at0r6I68Tk3bCWLvJN0v_3k0NYpeV6sRGsqNVtB7Q4ox19hxaZ6fMIXr750f437vBMHpSfuo4bkpA16BqcnAExwXVKQqi3KhDQJ2P8eoHKWcmOTSIuaFyiOuUmtRwAqhMt9yVQiuNVc6IeIDDAGzIhQZJn-zhyet33_GtzyIHhDh-O59FE90nfjRPYyzYV3lVlHAexcPp-975QeoO_fYLdXzk-p03kW90yVYcHCVHYzsaxmmTHcFFqtREMx5hlWgRpMSTcAw4hJ_oBobdl_1EjIExuzsLyfUIBhV2t8xbUzJ3MiKu29w_SU6-w4z3V7XrAHToaIsSIWx9oWwWS5SxTOrTawwM-NxDeqVfmThaMtpekZHDp_P01SSRiVpVI40WoPd8RfliLJjguwOqly6c9ufIMc-yD10-gMZyFD6YbPtc1lqW4P1at_e5N6stga_xnv56bJ-TP7XFsw12ldN2TxvXf6E-YDKbIZlb-swM_j_aDYQJw3yTWeMDG6_2v5fAdLuI4c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLf4kBgv43PiNsbysD2A1Lvmmrbp47Tt-BzwABpvWdokaNpxVKMnxP762W164xBiSHurKkd1bae2G_tngPcpOhUX2ixIi5QSlDAOMsPjICG8ItG3LrfU4Pz1ONk7FwcX8YWfc1r3wlyX_tPfxcsGKLgRoS-Ikz1CGA_QU0U9nTttTa80bhbma5wS6uA7OZ38ZEHnjXdDfzz52OIpdzSLj5yKNF-MR6W-u9XD4T2nM1iC7y27Ta3Jz-64yrvF7wdIjv_xPsvw0gek7GNDvgIzdrQKS-2wB-b3_hpQK0mJSraM0MKvqIqG_Wi7BRmGvmz3G6e4QDCqpb9kxtqS-aEUl-twPvhy9mkv8LMXggITtioQHNVUSJ3FuTAW05gwx1gllpzw9WSR8ELnMdfSOSRwQugsdFwXghvDtUn70SuYG12P7AYwE2nKc3SUmFAIl-VCap45YxONuRdPOtBrVaAKD0xO8zGGqj4gl1KRhBRJSDUS6sD2ZEXZgHI8QfsBBa_8zrx5go5N0V0NbyrVV5EKo6OzkCtUSgc2W9P4S0dgAinmhKnswM7EXP7J1utnsvUOFk4_D9TR_vHhG1jsU0FNXeC2CXPVr7F9ixFRlW_VVv8HK7AD7g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BedhexmCblsEmP4wHJqWNGydxHhGiVIihPbQae_Kc2EZoJUQj1bT9eu4ah1E0FaG95eGz4tydc3fy3XcAHzN0Ki6yeZiVGSUoURLmhidhSnxFYmhdYanB-fNZOp6Kk_Pk3M85XfTCXNf-19_Hx5YouBWhL4iTA2IYD9FTxQNdOG3NoDZuHTbSBIPxHmxMz74cfKORch3MX07-a-mSM1rHFy7Fmc_mVa1__9Kz2T2XM9qE791m20qTH_15U_TLPw94HP_ja17CCx-OsoMWvgVrttqGzW7UA_Mn_xVQI0mNKraMuMKvqIaGXXa9ggwDX3b8lVNUIBhV0l8wY23N_EiKi9cwHR1NDsehn7wQlpiuNaHgqKRS6jwphLGYxEQFRiqJ5MSuJ8uUl7pIuJbOIcAJofPIcV0KbgzXJhvGb6BXXVf2LTATa8pydJyaSAiXF0JqnjtjU42ZF08DGHQqUKWnJafpGDO1uB6XUpGEFElItRIKYP9uRd1ScqzA7qHglT-XNytwbAl3Nbtp1FDFKopPJxFXqJQAdjvT-IsjKoEMM8JMBvDpzlwe3da7p4B34PmQCmkWhW270Gt-zu17jISa4oO39lueWwNh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complete+parameter+inference+for+GW150914+using+deep+learning&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Green%2C+Stephen+R&rft.au=Gair%2C+Jonathan&rft.date=2021-09-01&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=2&rft.issue=3&rft.spage=3&rft_id=info:doi/10.1088%2F2632-2153%2Fabfaed&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_abfaed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon