Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion
Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep...
Saved in:
Published in | Journal of neurotrauma Vol. 32; no. 7; pp. 441 - 454 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Mary Ann Liebert, Inc
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0897-7151 1557-9042 1557-9042 |
DOI | 10.1089/neu.2013.3268 |
Cover
Abstract | Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies. |
---|---|
AbstractList | Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, [Formula omitted; see PDF] ) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain ( [Formula omitted; see PDF] ) with [Formula omitted; see PDF] for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between [Formula omitted; see PDF] and [Formula omitted; see PDF] in both distribution (Dice coefficient of 0.13-0.33) and extent (∼5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using [Formula omitted; see PDF] and [Formula omitted; see PDF], respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high [Formula omitted; see PDF] was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies. Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies. Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} ) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain ( \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} ) with \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as “good” to “excellent”). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09–0.28), substantial differences existed between \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} in both distribution (Dice coefficient of 0.13–0.33) and extent (∼5–10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} , respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies. Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document}) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (\documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\us e package{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pi f o nt}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document}) with \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} in both distribution (Dice coefficient of 0.13-0.33) and extent (5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document}, respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies. Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies. |
Author | Zhao, Wei Ji, Songbai Greenwald, Richard M. Flashman, Laura A. Beckwith, Jonathan G. Bolander, Richard P. Paulsen, Keith D. Ford, James C. McAllister, Thomas W. |
Author_xml | – sequence: 1 givenname: Songbai surname: Ji fullname: Ji, Songbai organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire., Department of Surgery and Orthopedic Surgery, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire – sequence: 2 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 3 givenname: James C. surname: Ford fullname: Ford, James C. organization: Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire – sequence: 4 givenname: Jonathan G. surname: Beckwith fullname: Beckwith, Jonathan G. organization: Simbex, Lebanon, New Hampshire – sequence: 5 givenname: Richard P. surname: Bolander fullname: Bolander, Richard P. organization: Simbex, Lebanon, New Hampshire – sequence: 6 givenname: Richard M. surname: Greenwald fullname: Greenwald, Richard M. organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire., Simbex, Lebanon, New Hampshire – sequence: 7 givenname: Laura A. surname: Flashman fullname: Flashman, Laura A. organization: Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire – sequence: 8 givenname: Keith D. surname: Paulsen fullname: Paulsen, Keith D. organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire – sequence: 9 givenname: Thomas W. surname: McAllister fullname: McAllister, Thomas W. organization: Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24735430$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1r1jAUxoNsuHfTS2-l4M1u-i5fTdobQV72BRuKU3YZkvbUZbRJTdKh-M-b7t2GDkQSEsL55ck5Oc8-2nHeAUJvCF4TXDdHDuY1xYStGRX1C7QiVSXLBnO6g1Y5LktJKrKH9mO8xRkTVL5Ee5RLVnGGV-jXafDzVF7bCMXxnR5mnax3hXZdsfHjpION-ej74vrGJigudUoQihNr8nqVgrZb9lL_sOM8Fp-Cda2d9PAYzPNq8iHF8jMMOsEi69o5xvzKK7Tb6yHC64f9AH09Of6yOSsvPp6ebz5clC3ndSqplJ2RVa7FdLUWvKY8l9SbBnKpHdMM96YzFW8FM1BRbTrS17IFARVgSRg7QO-3utNsRuhacDm3QU3Bjjr8VF5b9XfE2Rv1zd8pzqSgDc4Chw8CwX-fISY12tjCMGgHfo6K1EzShktJ_48Kkb8e55HRd8_QWz8Hl39ioQRjlbgXfPtn8k9ZP7YwA-UWaIOPMUD_hBCsFouobBG1WEQtFsk8e8a3Nt13fenY8I9bvwH-DcDG |
CitedBy_id | crossref_primary_10_1007_s00366_022_01697_4 crossref_primary_10_3390_brainsci11030287 crossref_primary_10_1590_1517_8692202329012022_0745 crossref_primary_10_1007_s10237_015_0754_1 crossref_primary_10_1007_s10439_022_03005_z crossref_primary_10_1093_milmed_usx181 crossref_primary_10_1007_s10439_019_02205_4 crossref_primary_10_1016_j_brain_2024_100090 crossref_primary_10_1001_jamanetworkopen_2023_16601 crossref_primary_10_3389_fneur_2020_00025 crossref_primary_10_1007_s10237_018_01106_0 crossref_primary_10_1016_j_actbio_2023_07_040 crossref_primary_10_1007_s10439_018_02159_z crossref_primary_10_1016_j_actbio_2021_07_043 crossref_primary_10_1089_neu_2020_7281 crossref_primary_10_1098_rsfs_2015_0091 crossref_primary_10_3389_fneur_2015_00028 crossref_primary_10_1016_j_jmbbm_2018_02_005 crossref_primary_10_3389_fbioe_2020_555493 crossref_primary_10_1007_s40708_017_0067_5 crossref_primary_10_1115_1_4064968 crossref_primary_10_1016_j_cobme_2022_100422 crossref_primary_10_1007_s10237_016_0829_7 crossref_primary_10_3389_fbioe_2022_754344 crossref_primary_10_1007_s10439_024_03592_z crossref_primary_10_1007_s10439_018_02161_5 crossref_primary_10_1007_s10439_021_02831_x crossref_primary_10_3389_fbioe_2021_706566 crossref_primary_10_1016_j_jsr_2019_09_003 crossref_primary_10_1007_s10237_019_01261_y crossref_primary_10_1007_s10439_018_1999_5 crossref_primary_10_1016_j_jbiomech_2017_03_025 crossref_primary_10_1007_s10439_014_1193_3 crossref_primary_10_1098_rsif_2022_0561 crossref_primary_10_1016_j_jbiomech_2021_110940 crossref_primary_10_3389_fbioe_2021_664268 crossref_primary_10_1089_neu_2020_7580 crossref_primary_10_1007_s10439_020_02703_w crossref_primary_10_1016_j_brain_2021_100024 crossref_primary_10_1007_s10439_022_02911_6 crossref_primary_10_1002_cnm_2823 crossref_primary_10_4085_1062_6050_52_2_05 crossref_primary_10_1089_neu_2016_4744 crossref_primary_10_1089_neu_2024_0183 crossref_primary_10_1007_s10237_017_0887_5 crossref_primary_10_1002_hbm_26811 crossref_primary_10_1007_s10237_022_01638_6 crossref_primary_10_1007_s10439_021_02820_0 crossref_primary_10_1007_s10237_024_01843_5 crossref_primary_10_1007_s10237_025_01940_z crossref_primary_10_1016_j_brain_2021_100037 crossref_primary_10_1016_j_cmpb_2021_106528 crossref_primary_10_1089_neu_2018_5634 crossref_primary_10_1016_j_brain_2021_100038 crossref_primary_10_1371_journal_pone_0190881 crossref_primary_10_1016_j_brain_2023_100082 crossref_primary_10_1089_neu_2021_0195 crossref_primary_10_1016_j_jmbbm_2017_04_008 crossref_primary_10_1115_1_4062968 crossref_primary_10_1007_s10237_014_0562_z crossref_primary_10_1080_10255842_2018_1549238 crossref_primary_10_1016_j_brain_2023_100086 crossref_primary_10_1016_j_cma_2022_114913 crossref_primary_10_1016_j_jbiomech_2020_109732 crossref_primary_10_1007_s10439_020_02496_y crossref_primary_10_1016_j_brain_2022_100046 crossref_primary_10_1089_neu_2015_4239 crossref_primary_10_3389_fbioe_2020_00810 crossref_primary_10_1016_j_cmpb_2022_107225 crossref_primary_10_1016_j_compbiomed_2024_108109 crossref_primary_10_1080_10255842_2017_1340462 crossref_primary_10_1089_neu_2019_6847 crossref_primary_10_3390_mi11100931 crossref_primary_10_1007_s00414_024_03186_3 crossref_primary_10_1089_neu_2022_0339 crossref_primary_10_1007_s10439_024_03525_w crossref_primary_10_1007_s10439_022_02999_w crossref_primary_10_3390_modelling1020014 crossref_primary_10_1038_s41598_019_53551_1 crossref_primary_10_1007_s10439_017_1888_3 crossref_primary_10_1016_j_nicl_2019_102102 crossref_primary_10_1007_s00401_018_1824_0 crossref_primary_10_1007_s11517_024_03267_w crossref_primary_10_1016_j_cmpb_2023_107470 crossref_primary_10_1038_s41598_018_33393_z crossref_primary_10_1109_ACCESS_2020_3026350 crossref_primary_10_1089_neu_2024_0015 crossref_primary_10_3390_biology12010083 crossref_primary_10_1016_j_cma_2022_115108 crossref_primary_10_1016_j_compbiomed_2023_107490 crossref_primary_10_1016_j_jmbbm_2016_09_020 crossref_primary_10_1115_1_4046503 crossref_primary_10_1016_j_clinbiomech_2018_03_021 crossref_primary_10_1016_j_jmbbm_2022_105294 crossref_primary_10_1016_j_jmbbm_2023_106140 crossref_primary_10_1115_1_4067765 crossref_primary_10_1371_journal_pone_0197992 crossref_primary_10_1115_1_4053796 crossref_primary_10_1007_s10237_017_0957_8 crossref_primary_10_1007_s10237_021_01509_6 crossref_primary_10_1007_s10237_017_0915_5 crossref_primary_10_1016_j_jmbbm_2021_104967 crossref_primary_10_1007_s10237_014_0634_0 crossref_primary_10_1007_s10237_020_01391_8 crossref_primary_10_1007_s00193_017_0791_z crossref_primary_10_3389_fneur_2018_00643 crossref_primary_10_1016_j_jbiomech_2017_06_023 crossref_primary_10_1115_1_4044953 crossref_primary_10_1007_s12046_022_02028_5 crossref_primary_10_1007_s12572_020_00273_7 crossref_primary_10_1089_neu_2020_7412 crossref_primary_10_1089_neu_2022_0413 crossref_primary_10_1115_1_4040230 crossref_primary_10_3390_app10207227 crossref_primary_10_4103_1673_5374_198967 crossref_primary_10_1016_j_jmbbm_2021_104579 crossref_primary_10_1007_s10439_020_02685_9 crossref_primary_10_1103_PhysRevApplied_12_014058 crossref_primary_10_1038_s41598_019_54950_0 |
Cites_doi | 10.1007/s10237-011-0307-1 10.1007/978-1-349-01604-4_34 10.1016/j.finel.2011.05.007 10.1227/01.neu.0000318162.67472.ad 10.1123/jab.23.3.238 10.1007/s10439-011-0402-6 10.1016/j.csm.2010.08.009 10.1249/MSS.0b013e3181dd9156 10.1249/MSS.0b013e3182792ed7 10.1227/01.NEU.0000249286.92255.7F 10.1007/s10237-012-0387-6 10.1115/1.4025101 10.1016/0021-9290(70)90059-X 10.1212/WNL.0b013e3182582fe7 10.1249/MSS.0b013e3182793067 10.1016/j.jbiomech.2007.09.016 10.4085/1062-6050-45.6.549 10.1016/j.jbiomech.2003.12.032 10.1016/j.pbiomolbio.2010.09.008 10.1016/j.jbiomech.2012.01.034 10.1002/hbm.22099 10.1016/S0021-9290(06)83518-9 10.1533/ijcr.2005.0384 10.1016/0021-9290(70)90007-2 10.1016/j.jmbbm.2009.09.001 10.1007/s10439-011-0422-2 10.1504/IJVS.2012.049024 10.1007/s10237-010-0243-5 10.1007/s10439-013-0907-2 10.1016/j.aap.2007.12.006 10.1115/1.1324667 10.1115/1.1449907 10.1123/jab.27.1.8 10.1146/annurev-bioeng-071910-124706 10.1093/brain/awq347 10.1097/JES.0b013e318201f53e 10.1089/neu.2012.2418 10.1016/j.jbiomech.2009.08.036 10.1016/S0021-9290(06)85195-X 10.1016/j.mri.2011.10.001 10.1016/j.jmbbm.2011.06.007 10.1115/1.1824135 10.1007/978-1-4419-9619-0_2 10.1504/IJVD.2003.003239 10.1371/journal.pcbi.1002619 10.1109/TPAMI.1987.4767965 10.1016/j.jmps.2006.05.004 |
ContentType | Journal Article |
Copyright | (©) Copyright 2015, Mary Ann Liebert, Inc. Copyright 2015, Mary Ann Liebert, Inc. 2015 |
Copyright_xml | – notice: (©) Copyright 2015, Mary Ann Liebert, Inc. – notice: Copyright 2015, Mary Ann Liebert, Inc. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 88G 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM |
DOI | 10.1089/neu.2013.3268 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1557-9042 |
EndPage | 454 |
ExternalDocumentID | PMC4376290 3634552581 24735430 10_1089_neu_2013_3268 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCIPC CDC HHS grantid: CDC R01/CE001254 – fundername: NICHD NIH HHS grantid: R01HD048638 – fundername: NINDS NIH HHS grantid: R01NS055020 – fundername: NINDS NIH HHS grantid: R21NS078607 |
GroupedDBID | --- .GJ 0R~ 0VX 29L 34G 39C 4.4 53G 5GY 5RE 7RV 7X7 88E 8FI 8FJ AAQQT AAYXX ABBKN ABIVO ABJNI ABOCM ABUWG ACGFO ACGFS ACPRK ADBBV ADFRT AENEX AFKRA AFOSN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BNQNF BPHCQ BVXVI CAG CCPQU CITATION COF CS3 DU5 DWQXO EBS EJD F5P FYUFA GNUQQ HMCUK IAO IER IHR IM4 IPY ITC M1P M2M MV1 NAPCQ NQHIM O9- P2P PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ RIG RML RMSOB UE5 UKHRP XJT ZGI 3V. CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS PUEGO Q9U SCNPE 7X8 5PM |
ID | FETCH-LOGICAL-c448t-277db75897bd8a64824151fb9e557d3a30fbdb54c63be52abd1f87ce6e5e07133 |
IEDL.DBID | 7X7 |
ISSN | 0897-7151 1557-9042 |
IngestDate | Thu Aug 21 14:35:26 EDT 2025 Fri Sep 05 11:33:06 EDT 2025 Fri Sep 05 06:30:50 EDT 2025 Sat Aug 23 13:34:46 EDT 2025 Thu Jan 02 22:17:30 EST 2025 Thu Apr 24 23:05:20 EDT 2025 Tue Jul 01 03:35:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | traumatic brain injury diffusion tensor imaging axonal injury finite element method models of injury |
Language | English |
License | http://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-277db75897bd8a64824151fb9e557d3a30fbdb54c63be52abd1f87ce6e5e07133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4376290 |
PMID | 24735430 |
PQID | 1666335672 |
PQPubID | 33649 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4376290 proquest_miscellaneous_1837294772 proquest_miscellaneous_1667350505 proquest_journals_1666335672 pubmed_primary_24735430 crossref_primary_10_1089_neu_2013_3268 crossref_citationtrail_10_1089_neu_2013_3268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-00 2015-Apr-01 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York – name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA |
PublicationTitle | Journal of neurotrauma |
PublicationTitleAlternate | J Neurotrauma |
PublicationYear | 2015 |
Publisher | Mary Ann Liebert, Inc |
Publisher_xml | – name: Mary Ann Liebert, Inc |
References | B20 B21 Crisco J.J. (B26) 2004; 126 B65 B22 B23 B24 B25 Kleiven S. (B13) 2007; 51 B27 B28 B29 Kimpara H. (B45) 2006; 50 de Lange R. (B46) 2005; 49 B31 B32 B33 B35 B36 B37 Talavage T.M. (B64) 2013; 12 B39 Hardy W.N. (B42) 2001; 45 B1 B2 B3 Funk J.R. (B58) 2006 B4 Hardy W.N. (B43) 2007; 51 B5 B6 B7 B8 B9 B41 Leemans A. (B30) 2009 B47 B48 B49 Nicolle S. (B34) 2005; 42 B50 B52 B53 B10 B54 B11 B55 B56 B57 B14 B15 B17 B18 B19 Zhang L. (B12) 2004; 126 Takhounts E.G. (B16) 2008; 52 B60 B61 Mao H. (B59) 2006; 50 B62 B63 21088602 - Exerc Sport Sci Rev. 2011 Jan;39(1):4-11 21451177 - J Appl Biomech. 2011 Feb;27(1):8-14 5521539 - J Biomech. 1970 Mar;3(2):211-21 22381736 - J Biomech. 2012 Apr 30;45(7):1265-72 5000416 - J Biomech. 1970 Oct;3(5):495-511 21062178 - J Athl Train. 2010 Nov-Dec;45(6):549-59 19085156 - Stapp Car Crash J. 2008 Nov;52:1-31 18278592 - Stapp Car Crash J. 2007 Oct;51:81-114 17311178 - Stapp Car Crash J. 2006 Nov;50:583-600 22079073 - Magn Reson Imaging. 2012 Feb;30(2):171-80 17458753 - Stapp Car Crash J. 2001 Nov;45:337-68 21074079 - Clin Sports Med. 2011 Jan;30(1):19-31, vii 20129415 - J Mech Behav Biomed Mater. 2010 Feb;3(2):158-66 21994062 - Ann Biomed Eng. 2012 Jan;40(1):127-40 21869429 - IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700 18278591 - Stapp Car Crash J. 2007 Oct;51:17-80 15796345 - J Biomech Eng. 2004 Dec;126(6):849-54 21476072 - Biomech Model Mechanobiol. 2012 Jan;11(1-2):245-60 20351593 - Med Sci Sports Exerc. 2010 Nov;42(11):2064-71 22434184 - Biomech Model Mechanobiol. 2013 Jan;12(1):137-50 20635116 - Biomech Model Mechanobiol. 2011 Jun;10(3):413-22 17311175 - Stapp Car Crash J. 2006 Nov;50:509-44 15179853 - J Biomech Eng. 2004 Apr;126(2):226-36 15894820 - Biorheology. 2005;42(3):209-23 21193486 - Brain. 2011 Feb;134(Pt 2):449-63 18496184 - Neurosurgery. 2008 Apr;62(4):789-98; discussion 798 21994068 - Ann Biomed Eng. 2012 Jan;40(1):237-48 15275841 - J Biomech. 2004 Sep;37(9):1339-52 17327793 - Neurosurgery. 2007 Mar;60(3):490-5; discussion 495-6 22915997 - PLoS Comput Biol. 2012;8(8):e1002619 22592370 - Neurology. 2012 May 29;78(22):1777-84 17961577 - J Biomech. 2008;41(2):307-15 24077860 - Ann Biomed Eng. 2014 Jan;42(1):11-24 21731153 - Finite Elem Anal Des. 2011 Oct 1;47(10):1178-1185 24065136 - J Biomech Eng. 2013 Nov;135(11):111002 23135364 - Med Sci Sports Exerc. 2013 Apr;45(4):747-54 22992118 - J Neurotrauma. 2013 Jan 15;30(2):102-18 20883154 - J Neurotrauma. 2014 Feb 15;31(4):327-38 12002135 - J Biomech Eng. 2002 Apr;124(2):244-52 18460382 - Accid Anal Prev. 2008 May;40(3):1135-48 11192383 - J Biomech Eng. 2000 Dec;122(6):615-22 18089922 - J Appl Biomech. 2007 Aug;23(3):238-44 17096285 - Stapp Car Crash J. 2005 Nov;49:457-79 21529164 - Annu Rev Biomed Eng. 2011 Aug 15;13:91-126 23135363 - Med Sci Sports Exerc. 2013 Apr;45(4):737-46 22611035 - Hum Brain Mapp. 2013 Nov;34(11):2747-66 20869383 - Prog Biophys Mol Biol. 2010 Dec;103(2-3):304-9 22098889 - J Mech Behav Biomed Mater. 2011 Nov;4(8):1905-19 19878950 - J Biomech. 2010 Jan 19;43(2):254-62 |
References_xml | – volume: 51 start-page: 81 year: 2007 ident: B13 publication-title: Stapp Car Crash J. – ident: B22 doi: 10.1007/s10237-011-0307-1 – ident: B37 doi: 10.1007/978-1-349-01604-4_34 – ident: B56 doi: 10.1016/j.finel.2011.05.007 – ident: B2 doi: 10.1227/01.neu.0000318162.67472.ad – ident: B57 doi: 10.1123/jab.23.3.238 – ident: B17 doi: 10.1007/s10439-011-0402-6 – ident: B10 doi: 10.1016/j.csm.2010.08.009 – ident: B5 doi: 10.1249/MSS.0b013e3181dd9156 – ident: B25 doi: 10.1249/MSS.0b013e3182792ed7 – volume: 52 start-page: 1 year: 2008 ident: B16 publication-title: Stapp Car Crash J. – ident: B4 doi: 10.1227/01.NEU.0000249286.92255.7F – ident: B19 doi: 10.1007/s10237-012-0387-6 – ident: B60 doi: 10.1115/1.4025101 – ident: B39 doi: 10.1016/0021-9290(70)90059-X – volume: 45 start-page: 337 year: 2001 ident: B42 publication-title: Stapp Car Crash J. – ident: B63 doi: 10.1212/WNL.0b013e3182582fe7 – ident: B9 doi: 10.1249/MSS.0b013e3182793067 – volume: 126 start-page: 226 year: 2004 ident: B12 publication-title: J. Biomed. Eng. – ident: B48 doi: 10.1016/j.jbiomech.2007.09.016 – ident: B3 doi: 10.4085/1062-6050-45.6.549 – ident: B35 doi: 10.1016/j.jbiomech.2003.12.032 – ident: B62 doi: 10.1016/j.pbiomolbio.2010.09.008 – ident: B8 doi: 10.1016/j.jbiomech.2012.01.034 – ident: B65 doi: 10.1002/hbm.22099 – start-page: 1 year: 2006 ident: B58 publication-title: Injury Biomechanics Research – volume: 49 start-page: 457 year: 2005 ident: B46 publication-title: Stapp Car Crash J. – ident: B27 doi: 10.1016/S0021-9290(06)83518-9 – ident: B47 doi: 10.1533/ijcr.2005.0384 – volume: 50 start-page: 509 year: 2006 ident: B45 publication-title: Stapp Car Crash J. – start-page: 3537 volume-title: Proceedings of the 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine year: 2009 ident: B30 – ident: B36 doi: 10.1016/0021-9290(70)90007-2 – ident: B32 doi: 10.1016/j.jmbbm.2009.09.001 – ident: B28 doi: 10.1007/s10439-011-0422-2 – ident: B31 doi: 10.1504/IJVS.2012.049024 – ident: B18 doi: 10.1007/s10237-010-0243-5 – ident: B1 – ident: B24 doi: 10.1007/s10439-013-0907-2 – ident: B14 doi: 10.1016/j.aap.2007.12.006 – ident: B52 doi: 10.1115/1.1324667 – ident: B61 doi: 10.1115/1.1449907 – ident: B7 doi: 10.1123/jab.27.1.8 – volume: 51 start-page: 17 year: 2007 ident: B43 publication-title: Stapp Car Crash J. – volume: 50 start-page: 583 year: 2006 ident: B59 publication-title: Stapp Car Crash Journal. – ident: B11 doi: 10.1146/annurev-bioeng-071910-124706 – ident: B54 doi: 10.1093/brain/awq347 – ident: B6 doi: 10.1097/JES.0b013e318201f53e – ident: B23 doi: 10.1089/neu.2012.2418 – ident: B49 doi: 10.1016/j.jbiomech.2009.08.036 – volume: 12 start-page: 1 year: 2013 ident: B64 publication-title: J. Neurotrauma – ident: B29 doi: 10.1016/S0021-9290(06)85195-X – ident: B55 doi: 10.1016/j.mri.2011.10.001 – ident: B20 doi: 10.1016/j.jmbbm.2011.06.007 – volume: 42 start-page: 209 year: 2005 ident: B34 publication-title: Biorheology – volume: 126 start-page: 849 year: 2004 ident: B26 publication-title: J. Biomech. Eng. doi: 10.1115/1.1824135 – ident: B41 doi: 10.1007/978-1-4419-9619-0_2 – ident: B15 doi: 10.1504/IJVD.2003.003239 – ident: B21 doi: 10.1371/journal.pcbi.1002619 – ident: B50 doi: 10.1109/TPAMI.1987.4767965 – ident: B53 – ident: B33 doi: 10.1016/j.jmps.2006.05.004 – reference: 11192383 - J Biomech Eng. 2000 Dec;122(6):615-22 – reference: 21062178 - J Athl Train. 2010 Nov-Dec;45(6):549-59 – reference: 5000416 - J Biomech. 1970 Oct;3(5):495-511 – reference: 21731153 - Finite Elem Anal Des. 2011 Oct 1;47(10):1178-1185 – reference: 22915997 - PLoS Comput Biol. 2012;8(8):e1002619 – reference: 23135363 - Med Sci Sports Exerc. 2013 Apr;45(4):737-46 – reference: 20351593 - Med Sci Sports Exerc. 2010 Nov;42(11):2064-71 – reference: 17096285 - Stapp Car Crash J. 2005 Nov;49:457-79 – reference: 18278592 - Stapp Car Crash J. 2007 Oct;51:81-114 – reference: 21088602 - Exerc Sport Sci Rev. 2011 Jan;39(1):4-11 – reference: 24077860 - Ann Biomed Eng. 2014 Jan;42(1):11-24 – reference: 21074079 - Clin Sports Med. 2011 Jan;30(1):19-31, vii – reference: 22611035 - Hum Brain Mapp. 2013 Nov;34(11):2747-66 – reference: 21529164 - Annu Rev Biomed Eng. 2011 Aug 15;13:91-126 – reference: 21451177 - J Appl Biomech. 2011 Feb;27(1):8-14 – reference: 20883154 - J Neurotrauma. 2014 Feb 15;31(4):327-38 – reference: 17311175 - Stapp Car Crash J. 2006 Nov;50:509-44 – reference: 22592370 - Neurology. 2012 May 29;78(22):1777-84 – reference: 15179853 - J Biomech Eng. 2004 Apr;126(2):226-36 – reference: 22992118 - J Neurotrauma. 2013 Jan 15;30(2):102-18 – reference: 20869383 - Prog Biophys Mol Biol. 2010 Dec;103(2-3):304-9 – reference: 12002135 - J Biomech Eng. 2002 Apr;124(2):244-52 – reference: 21869429 - IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700 – reference: 21193486 - Brain. 2011 Feb;134(Pt 2):449-63 – reference: 15275841 - J Biomech. 2004 Sep;37(9):1339-52 – reference: 17311178 - Stapp Car Crash J. 2006 Nov;50:583-600 – reference: 15796345 - J Biomech Eng. 2004 Dec;126(6):849-54 – reference: 17458753 - Stapp Car Crash J. 2001 Nov;45:337-68 – reference: 21476072 - Biomech Model Mechanobiol. 2012 Jan;11(1-2):245-60 – reference: 18496184 - Neurosurgery. 2008 Apr;62(4):789-98; discussion 798 – reference: 21994062 - Ann Biomed Eng. 2012 Jan;40(1):127-40 – reference: 20129415 - J Mech Behav Biomed Mater. 2010 Feb;3(2):158-66 – reference: 23135364 - Med Sci Sports Exerc. 2013 Apr;45(4):747-54 – reference: 20635116 - Biomech Model Mechanobiol. 2011 Jun;10(3):413-22 – reference: 5521539 - J Biomech. 1970 Mar;3(2):211-21 – reference: 18460382 - Accid Anal Prev. 2008 May;40(3):1135-48 – reference: 22381736 - J Biomech. 2012 Apr 30;45(7):1265-72 – reference: 15894820 - Biorheology. 2005;42(3):209-23 – reference: 19085156 - Stapp Car Crash J. 2008 Nov;52:1-31 – reference: 18089922 - J Appl Biomech. 2007 Aug;23(3):238-44 – reference: 19878950 - J Biomech. 2010 Jan 19;43(2):254-62 – reference: 24065136 - J Biomech Eng. 2013 Nov;135(11):111002 – reference: 17327793 - Neurosurgery. 2007 Mar;60(3):490-5; discussion 495-6 – reference: 22079073 - Magn Reson Imaging. 2012 Feb;30(2):171-80 – reference: 18278591 - Stapp Car Crash J. 2007 Oct;51:17-80 – reference: 17961577 - J Biomech. 2008;41(2):307-15 – reference: 21994068 - Ann Biomed Eng. 2012 Jan;40(1):237-48 – reference: 22434184 - Biomech Model Mechanobiol. 2013 Jan;12(1):137-50 – reference: 22098889 - J Mech Behav Biomed Mater. 2011 Nov;4(8):1905-19 |
SSID | ssj0013627 |
Score | 2.4809518 |
Snippet | Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies... Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 441 |
SubjectTerms | Adolescent Athletic Injuries - complications Athletic Injuries - pathology Brain Brain Concussion - etiology Brain Concussion - pathology Concussion Diffuse Axonal Injury - etiology Diffuse Axonal Injury - pathology Diffusion Tensor Imaging Female Fibers Humans Male Nerve Fibers, Myelinated - pathology Original Sports injuries Strain White Matter - pathology Young Adult |
Title | Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24735430 https://www.proquest.com/docview/1666335672 https://www.proquest.com/docview/1667350505 https://www.proquest.com/docview/1837294772 https://pubmed.ncbi.nlm.nih.gov/PMC4376290 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7avvgiFW9ra4kgPhm7O0kmyZNo2aUIW4pa3Lcht8EFm63uDgj-ec_JZKeuYmFehhxmMvPlcnLO4fsIeQlOABdS1MxEGZiIEubc2Efmo4m6NdHYTNc0P6_PLsWHhVyUgNu6lFVu18S8UIeVxxj5Caa3OJe1qt5ef2eoGoXZ1SKhcZfsT8ATQekGtVA3WYS6l2zVRjEFW1vh2IT7kxQ7rOvib8B90bt70j-O5t_1kn9sQLMDcr94jvRdD_UDciemh-RXjh2xL8t1pNOBuJvaFOjpoDBIVy3NQnh0ntk06QzLROinLA-Rbef25_Kqu6IXfegdXlMa4co66GuWq-YiPjb5Dktn0yNyOZt-Pj1jRU-BeTiEbVilVHBwPjDKBW1roXH3nrQOYJIqcECldcFJ4WvuADTrwqTVysc6ypgPs4_JXlql-JRQpKkP0nFtJ0F4rqzgQfnKVtory00ckdfbP9r4QjaO_f7W5KS3Ng0A0CAADQIwIq8G8-ueZeN_hkdbeJoy2dbNzdAYkRdDM0wTzH3YFFddtlFcomzfLTYac5hC4XOe9IgPvalQolnw8YionbEwGCBN925LWn7NdN0C1vDKjJ_d3vVDcg--UvZFQUdkb_Oji8_B39m44zyoj8n---n5xcffj60DBQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFeEIhfZQOMBDxh1sZ2nDxMCEarjq3VBJvYW-bYjqjE0o02AsT_xt_GnZNmFMTeJuUl8ulyztnx2Xf5PoBnGAQIqWTMU68cl17hnOtZz61PfVKkPjUBrmk8iUdH8v2xOl6DX8t_YaiscvlNDB9qN7N0Rr5F6S0hVKyj12fnnFijKLu6pNAwDbWC2w4QY82PHXv-xzfcws23d9-hv59H0XBwuDPiDcsAt7g1WfBIa5dj1Jzq3CUmlgmtaf0iR-OVdgJtLXKXK2ljkWNXTO76RaKtj73yYYuHeq_BuqQDlA6svx1MDj5c5DHimjQWtXONahuUT7zfKn1FlWXiFQZQyeqq-E-o-3fF5h9L4PAW3GxiV_amHmy3Yc2Xd-BnOL3in6ZzzwYtdDgzpWM7LcchmxUsUPGxccDzZEMqVGEfA0FFkB2b79PT6pQd1If_-JimEa_AxD7noW7Pk9rSVlS8W96Foyt51_egU85K_wAYAeU7lYvE9J20QhspnLaRiRKrjUh9F14u32hmG7hzsvtLFtLuSZqhAzJyQEYO6MKLVvysxvn4n-Dm0j1ZM93n2cXg7MLTthknKmVfTOlnVZDRQhFx4CUyCWVRpSY992uPt9ZERBItRa8LemUstAIEFL7aUk4_B8BwiatIlPYeXm76E7g-OhzvZ_u7k70NuIE9VnWJ0iZ0Fl8r_wijr0X-uBniDE6uelb9BnG0RSs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJiFeEIhfhQFGAp4wbWM7dh4mBFurjdGqAib2FhzbEZVYOmgjQPyH_FXcOU5GQextUl8in652zpc75y7fR8hjSAK4kCJlmZeOCS_B5wbWM-szr8vMZybANU2m6f6ReH0sjzfIr_ZbGGyrbJ-J4UHtFhbfkfexvMW5TFXSL2NbxGxv_OL0C0MGKay0tnQaJtIsuJ0ANxY_8jj0P77BcW65c7AHtn-SJOPR-919FhkHmIVjyoolSrkCMuhMFU6bVGiMb8OygIVI5TjMuyxcIYVNeQHLMoUbllpZn3rpw3EP9F4iWwqiPhwEt16NprO3ZzWNtCGQBe1MgdqI-AnX_crX2GXGn0Mypdcj5D9p79_dm3-Ew_E1cjXmsfRls_Gukw1f3SA_w5ss9mG-9HTUwYhTUzm62_Ed0kVJAy0fnQRsTzrGphX6LpBVBNmJ-T4_qU_orCkEwN_EQfgFVvYlCz18HtVWtsZG3uomObqQe32LbFaLyt8hFEHznSy4NkMnLFdGcKdsYhJtleGZ75Fn7R3NbYQ-x3l_zkMJXmc5GCBHA-RogB552omfNpgf_xPcbs2TR9df5mcbtUcedcPgtFiJMZVf1EFGcYkkgufIaKyoCoV6bjcW72aTIGG04IMeUWt7oRNA0PD1kWr-KYCHC4goSTa4e_7UH5LL4F35m4Pp4T1yBRYsm26lbbK5-lr7-5CIrYoHcYdT8vGineo3kcZJbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group-Wise+Evaluation+and+Comparison+of+White+Matter+Fiber+Strain+and+Maximum+Principal+Strain+in+Sports-Related+Concussion&rft.jtitle=Journal+of+neurotrauma&rft.au=Ji%2C+Songbai&rft.au=Zhao%2C+Wei&rft.au=d%2C+James+C&rft.au=Beckwith%2C+Jonathan+G&rft.date=2015-04-01&rft.pub=Mary+Ann+Liebert%2C+Inc&rft.issn=0897-7151&rft.eissn=1557-9042&rft.volume=32&rft.issue=7&rft.spage=441&rft_id=info:doi/10.1089%2Fneu.2013.3268&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3634552581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-7151&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-7151&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-7151&client=summon |