Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion

Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurotrauma Vol. 32; no. 7; pp. 441 - 454
Main Authors Ji, Songbai, Zhao, Wei, Ford, James C., Beckwith, Jonathan G., Bolander, Richard P., Greenwald, Richard M., Flashman, Laura A., Paulsen, Keith D., McAllister, Thomas W.
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.04.2015
Subjects
Online AccessGet full text
ISSN0897-7151
1557-9042
1557-9042
DOI10.1089/neu.2013.3268

Cover

Abstract Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.
AbstractList Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, [Formula omitted; see PDF] ) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain ( [Formula omitted; see PDF] ) with [Formula omitted; see PDF] for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between [Formula omitted; see PDF] and [Formula omitted; see PDF] in both distribution (Dice coefficient of 0.13-0.33) and extent (∼5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using [Formula omitted; see PDF] and [Formula omitted; see PDF], respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high [Formula omitted; see PDF] was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.
Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.
Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} ) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain ( \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} ) with \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as “good” to “excellent”). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09–0.28), substantial differences existed between \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} in both distribution (Dice coefficient of 0.13–0.33) and extent (∼5–10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} , respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.
Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document}) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (\documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\us e package{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pi f o nt}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document}) with \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document} in both distribution (Dice coefficient of 0.13-0.33) and extent (5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} and \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_{ep}$$ \end{document}, respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\use p ackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pif o n t}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\pagestyle{empty}\DeclareMathSizes {10} {9} {7} {6} \begin{document} $$\varepsilon_n$$ \end{document} was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.
Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. Geometrically accurate subject-specific head models with high mesh quality were created based on the Dartmouth Head Injury Model (DHIM), which was successfully validated (performance categorized as "good" to "excellent"). For WM regions estimated to be exposed to high strains using a range of injury thresholds (0.09-0.28), substantial differences existed between ε(n) and ε(ep) in both distribution (Dice coefficient of 0.13-0.33) and extent (∼ 5-10-fold differences), especially at higher threshold levels and higher rotational acceleration magnitudes. For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.
Author Zhao, Wei
Ji, Songbai
Greenwald, Richard M.
Flashman, Laura A.
Beckwith, Jonathan G.
Bolander, Richard P.
Paulsen, Keith D.
Ford, James C.
McAllister, Thomas W.
Author_xml – sequence: 1
  givenname: Songbai
  surname: Ji
  fullname: Ji, Songbai
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire., Department of Surgery and Orthopedic Surgery, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
– sequence: 2
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 3
  givenname: James C.
  surname: Ford
  fullname: Ford, James C.
  organization: Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
– sequence: 4
  givenname: Jonathan G.
  surname: Beckwith
  fullname: Beckwith, Jonathan G.
  organization: Simbex, Lebanon, New Hampshire
– sequence: 5
  givenname: Richard P.
  surname: Bolander
  fullname: Bolander, Richard P.
  organization: Simbex, Lebanon, New Hampshire
– sequence: 6
  givenname: Richard M.
  surname: Greenwald
  fullname: Greenwald, Richard M.
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire., Simbex, Lebanon, New Hampshire
– sequence: 7
  givenname: Laura A.
  surname: Flashman
  fullname: Flashman, Laura A.
  organization: Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
– sequence: 8
  givenname: Keith D.
  surname: Paulsen
  fullname: Paulsen, Keith D.
  organization: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
– sequence: 9
  givenname: Thomas W.
  surname: McAllister
  fullname: McAllister, Thomas W.
  organization: Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24735430$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1r1jAUxoNsuHfTS2-l4M1u-i5fTdobQV72BRuKU3YZkvbUZbRJTdKh-M-b7t2GDkQSEsL55ck5Oc8-2nHeAUJvCF4TXDdHDuY1xYStGRX1C7QiVSXLBnO6g1Y5LktJKrKH9mO8xRkTVL5Ee5RLVnGGV-jXafDzVF7bCMXxnR5mnax3hXZdsfHjpION-ej74vrGJigudUoQihNr8nqVgrZb9lL_sOM8Fp-Cda2d9PAYzPNq8iHF8jMMOsEi69o5xvzKK7Tb6yHC64f9AH09Of6yOSsvPp6ebz5clC3ndSqplJ2RVa7FdLUWvKY8l9SbBnKpHdMM96YzFW8FM1BRbTrS17IFARVgSRg7QO-3utNsRuhacDm3QU3Bjjr8VF5b9XfE2Rv1zd8pzqSgDc4Chw8CwX-fISY12tjCMGgHfo6K1EzShktJ_48Kkb8e55HRd8_QWz8Hl39ioQRjlbgXfPtn8k9ZP7YwA-UWaIOPMUD_hBCsFouobBG1WEQtFsk8e8a3Nt13fenY8I9bvwH-DcDG
CitedBy_id crossref_primary_10_1007_s00366_022_01697_4
crossref_primary_10_3390_brainsci11030287
crossref_primary_10_1590_1517_8692202329012022_0745
crossref_primary_10_1007_s10237_015_0754_1
crossref_primary_10_1007_s10439_022_03005_z
crossref_primary_10_1093_milmed_usx181
crossref_primary_10_1007_s10439_019_02205_4
crossref_primary_10_1016_j_brain_2024_100090
crossref_primary_10_1001_jamanetworkopen_2023_16601
crossref_primary_10_3389_fneur_2020_00025
crossref_primary_10_1007_s10237_018_01106_0
crossref_primary_10_1016_j_actbio_2023_07_040
crossref_primary_10_1007_s10439_018_02159_z
crossref_primary_10_1016_j_actbio_2021_07_043
crossref_primary_10_1089_neu_2020_7281
crossref_primary_10_1098_rsfs_2015_0091
crossref_primary_10_3389_fneur_2015_00028
crossref_primary_10_1016_j_jmbbm_2018_02_005
crossref_primary_10_3389_fbioe_2020_555493
crossref_primary_10_1007_s40708_017_0067_5
crossref_primary_10_1115_1_4064968
crossref_primary_10_1016_j_cobme_2022_100422
crossref_primary_10_1007_s10237_016_0829_7
crossref_primary_10_3389_fbioe_2022_754344
crossref_primary_10_1007_s10439_024_03592_z
crossref_primary_10_1007_s10439_018_02161_5
crossref_primary_10_1007_s10439_021_02831_x
crossref_primary_10_3389_fbioe_2021_706566
crossref_primary_10_1016_j_jsr_2019_09_003
crossref_primary_10_1007_s10237_019_01261_y
crossref_primary_10_1007_s10439_018_1999_5
crossref_primary_10_1016_j_jbiomech_2017_03_025
crossref_primary_10_1007_s10439_014_1193_3
crossref_primary_10_1098_rsif_2022_0561
crossref_primary_10_1016_j_jbiomech_2021_110940
crossref_primary_10_3389_fbioe_2021_664268
crossref_primary_10_1089_neu_2020_7580
crossref_primary_10_1007_s10439_020_02703_w
crossref_primary_10_1016_j_brain_2021_100024
crossref_primary_10_1007_s10439_022_02911_6
crossref_primary_10_1002_cnm_2823
crossref_primary_10_4085_1062_6050_52_2_05
crossref_primary_10_1089_neu_2016_4744
crossref_primary_10_1089_neu_2024_0183
crossref_primary_10_1007_s10237_017_0887_5
crossref_primary_10_1002_hbm_26811
crossref_primary_10_1007_s10237_022_01638_6
crossref_primary_10_1007_s10439_021_02820_0
crossref_primary_10_1007_s10237_024_01843_5
crossref_primary_10_1007_s10237_025_01940_z
crossref_primary_10_1016_j_brain_2021_100037
crossref_primary_10_1016_j_cmpb_2021_106528
crossref_primary_10_1089_neu_2018_5634
crossref_primary_10_1016_j_brain_2021_100038
crossref_primary_10_1371_journal_pone_0190881
crossref_primary_10_1016_j_brain_2023_100082
crossref_primary_10_1089_neu_2021_0195
crossref_primary_10_1016_j_jmbbm_2017_04_008
crossref_primary_10_1115_1_4062968
crossref_primary_10_1007_s10237_014_0562_z
crossref_primary_10_1080_10255842_2018_1549238
crossref_primary_10_1016_j_brain_2023_100086
crossref_primary_10_1016_j_cma_2022_114913
crossref_primary_10_1016_j_jbiomech_2020_109732
crossref_primary_10_1007_s10439_020_02496_y
crossref_primary_10_1016_j_brain_2022_100046
crossref_primary_10_1089_neu_2015_4239
crossref_primary_10_3389_fbioe_2020_00810
crossref_primary_10_1016_j_cmpb_2022_107225
crossref_primary_10_1016_j_compbiomed_2024_108109
crossref_primary_10_1080_10255842_2017_1340462
crossref_primary_10_1089_neu_2019_6847
crossref_primary_10_3390_mi11100931
crossref_primary_10_1007_s00414_024_03186_3
crossref_primary_10_1089_neu_2022_0339
crossref_primary_10_1007_s10439_024_03525_w
crossref_primary_10_1007_s10439_022_02999_w
crossref_primary_10_3390_modelling1020014
crossref_primary_10_1038_s41598_019_53551_1
crossref_primary_10_1007_s10439_017_1888_3
crossref_primary_10_1016_j_nicl_2019_102102
crossref_primary_10_1007_s00401_018_1824_0
crossref_primary_10_1007_s11517_024_03267_w
crossref_primary_10_1016_j_cmpb_2023_107470
crossref_primary_10_1038_s41598_018_33393_z
crossref_primary_10_1109_ACCESS_2020_3026350
crossref_primary_10_1089_neu_2024_0015
crossref_primary_10_3390_biology12010083
crossref_primary_10_1016_j_cma_2022_115108
crossref_primary_10_1016_j_compbiomed_2023_107490
crossref_primary_10_1016_j_jmbbm_2016_09_020
crossref_primary_10_1115_1_4046503
crossref_primary_10_1016_j_clinbiomech_2018_03_021
crossref_primary_10_1016_j_jmbbm_2022_105294
crossref_primary_10_1016_j_jmbbm_2023_106140
crossref_primary_10_1115_1_4067765
crossref_primary_10_1371_journal_pone_0197992
crossref_primary_10_1115_1_4053796
crossref_primary_10_1007_s10237_017_0957_8
crossref_primary_10_1007_s10237_021_01509_6
crossref_primary_10_1007_s10237_017_0915_5
crossref_primary_10_1016_j_jmbbm_2021_104967
crossref_primary_10_1007_s10237_014_0634_0
crossref_primary_10_1007_s10237_020_01391_8
crossref_primary_10_1007_s00193_017_0791_z
crossref_primary_10_3389_fneur_2018_00643
crossref_primary_10_1016_j_jbiomech_2017_06_023
crossref_primary_10_1115_1_4044953
crossref_primary_10_1007_s12046_022_02028_5
crossref_primary_10_1007_s12572_020_00273_7
crossref_primary_10_1089_neu_2020_7412
crossref_primary_10_1089_neu_2022_0413
crossref_primary_10_1115_1_4040230
crossref_primary_10_3390_app10207227
crossref_primary_10_4103_1673_5374_198967
crossref_primary_10_1016_j_jmbbm_2021_104579
crossref_primary_10_1007_s10439_020_02685_9
crossref_primary_10_1103_PhysRevApplied_12_014058
crossref_primary_10_1038_s41598_019_54950_0
Cites_doi 10.1007/s10237-011-0307-1
10.1007/978-1-349-01604-4_34
10.1016/j.finel.2011.05.007
10.1227/01.neu.0000318162.67472.ad
10.1123/jab.23.3.238
10.1007/s10439-011-0402-6
10.1016/j.csm.2010.08.009
10.1249/MSS.0b013e3181dd9156
10.1249/MSS.0b013e3182792ed7
10.1227/01.NEU.0000249286.92255.7F
10.1007/s10237-012-0387-6
10.1115/1.4025101
10.1016/0021-9290(70)90059-X
10.1212/WNL.0b013e3182582fe7
10.1249/MSS.0b013e3182793067
10.1016/j.jbiomech.2007.09.016
10.4085/1062-6050-45.6.549
10.1016/j.jbiomech.2003.12.032
10.1016/j.pbiomolbio.2010.09.008
10.1016/j.jbiomech.2012.01.034
10.1002/hbm.22099
10.1016/S0021-9290(06)83518-9
10.1533/ijcr.2005.0384
10.1016/0021-9290(70)90007-2
10.1016/j.jmbbm.2009.09.001
10.1007/s10439-011-0422-2
10.1504/IJVS.2012.049024
10.1007/s10237-010-0243-5
10.1007/s10439-013-0907-2
10.1016/j.aap.2007.12.006
10.1115/1.1324667
10.1115/1.1449907
10.1123/jab.27.1.8
10.1146/annurev-bioeng-071910-124706
10.1093/brain/awq347
10.1097/JES.0b013e318201f53e
10.1089/neu.2012.2418
10.1016/j.jbiomech.2009.08.036
10.1016/S0021-9290(06)85195-X
10.1016/j.mri.2011.10.001
10.1016/j.jmbbm.2011.06.007
10.1115/1.1824135
10.1007/978-1-4419-9619-0_2
10.1504/IJVD.2003.003239
10.1371/journal.pcbi.1002619
10.1109/TPAMI.1987.4767965
10.1016/j.jmps.2006.05.004
ContentType Journal Article
Copyright (©) Copyright 2015, Mary Ann Liebert, Inc.
Copyright 2015, Mary Ann Liebert, Inc. 2015
Copyright_xml – notice: (©) Copyright 2015, Mary Ann Liebert, Inc.
– notice: Copyright 2015, Mary Ann Liebert, Inc. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1089/neu.2013.3268
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE

Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1557-9042
EndPage 454
ExternalDocumentID PMC4376290
3634552581
24735430
10_1089_neu_2013_3268
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCIPC CDC HHS
  grantid: CDC R01/CE001254
– fundername: NICHD NIH HHS
  grantid: R01HD048638
– fundername: NINDS NIH HHS
  grantid: R01NS055020
– fundername: NINDS NIH HHS
  grantid: R21NS078607
GroupedDBID ---
.GJ
0R~
0VX
29L
34G
39C
4.4
53G
5GY
5RE
7RV
7X7
88E
8FI
8FJ
AAQQT
AAYXX
ABBKN
ABIVO
ABJNI
ABOCM
ABUWG
ACGFO
ACGFS
ACPRK
ADBBV
ADFRT
AENEX
AFKRA
AFOSN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BNQNF
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
CS3
DU5
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
HMCUK
IAO
IER
IHR
IM4
IPY
ITC
M1P
M2M
MV1
NAPCQ
NQHIM
O9-
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
RIG
RML
RMSOB
UE5
UKHRP
XJT
ZGI
3V.
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
Q9U
SCNPE
7X8
5PM
ID FETCH-LOGICAL-c448t-277db75897bd8a64824151fb9e557d3a30fbdb54c63be52abd1f87ce6e5e07133
IEDL.DBID 7X7
ISSN 0897-7151
1557-9042
IngestDate Thu Aug 21 14:35:26 EDT 2025
Fri Sep 05 11:33:06 EDT 2025
Fri Sep 05 06:30:50 EDT 2025
Sat Aug 23 13:34:46 EDT 2025
Thu Jan 02 22:17:30 EST 2025
Thu Apr 24 23:05:20 EDT 2025
Tue Jul 01 03:35:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords traumatic brain injury
diffusion tensor imaging
axonal injury
finite element method
models of injury
Language English
License http://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-277db75897bd8a64824151fb9e557d3a30fbdb54c63be52abd1f87ce6e5e07133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4376290
PMID 24735430
PQID 1666335672
PQPubID 33649
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4376290
proquest_miscellaneous_1837294772
proquest_miscellaneous_1667350505
proquest_journals_1666335672
pubmed_primary_24735430
crossref_primary_10_1089_neu_2013_3268
crossref_citationtrail_10_1089_neu_2013_3268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-00
2015-Apr-01
20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
– name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA
PublicationTitle Journal of neurotrauma
PublicationTitleAlternate J Neurotrauma
PublicationYear 2015
Publisher Mary Ann Liebert, Inc
Publisher_xml – name: Mary Ann Liebert, Inc
References B20
B21
Crisco J.J. (B26) 2004; 126
B65
B22
B23
B24
B25
Kleiven S. (B13) 2007; 51
B27
B28
B29
Kimpara H. (B45) 2006; 50
de Lange R. (B46) 2005; 49
B31
B32
B33
B35
B36
B37
Talavage T.M. (B64) 2013; 12
B39
Hardy W.N. (B42) 2001; 45
B1
B2
B3
Funk J.R. (B58) 2006
B4
Hardy W.N. (B43) 2007; 51
B5
B6
B7
B8
B9
B41
Leemans A. (B30) 2009
B47
B48
B49
Nicolle S. (B34) 2005; 42
B50
B52
B53
B10
B54
B11
B55
B56
B57
B14
B15
B17
B18
B19
Zhang L. (B12) 2004; 126
Takhounts E.G. (B16) 2008; 52
B60
B61
Mao H. (B59) 2006; 50
B62
B63
21088602 - Exerc Sport Sci Rev. 2011 Jan;39(1):4-11
21451177 - J Appl Biomech. 2011 Feb;27(1):8-14
5521539 - J Biomech. 1970 Mar;3(2):211-21
22381736 - J Biomech. 2012 Apr 30;45(7):1265-72
5000416 - J Biomech. 1970 Oct;3(5):495-511
21062178 - J Athl Train. 2010 Nov-Dec;45(6):549-59
19085156 - Stapp Car Crash J. 2008 Nov;52:1-31
18278592 - Stapp Car Crash J. 2007 Oct;51:81-114
17311178 - Stapp Car Crash J. 2006 Nov;50:583-600
22079073 - Magn Reson Imaging. 2012 Feb;30(2):171-80
17458753 - Stapp Car Crash J. 2001 Nov;45:337-68
21074079 - Clin Sports Med. 2011 Jan;30(1):19-31, vii
20129415 - J Mech Behav Biomed Mater. 2010 Feb;3(2):158-66
21994062 - Ann Biomed Eng. 2012 Jan;40(1):127-40
21869429 - IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700
18278591 - Stapp Car Crash J. 2007 Oct;51:17-80
15796345 - J Biomech Eng. 2004 Dec;126(6):849-54
21476072 - Biomech Model Mechanobiol. 2012 Jan;11(1-2):245-60
20351593 - Med Sci Sports Exerc. 2010 Nov;42(11):2064-71
22434184 - Biomech Model Mechanobiol. 2013 Jan;12(1):137-50
20635116 - Biomech Model Mechanobiol. 2011 Jun;10(3):413-22
17311175 - Stapp Car Crash J. 2006 Nov;50:509-44
15179853 - J Biomech Eng. 2004 Apr;126(2):226-36
15894820 - Biorheology. 2005;42(3):209-23
21193486 - Brain. 2011 Feb;134(Pt 2):449-63
18496184 - Neurosurgery. 2008 Apr;62(4):789-98; discussion 798
21994068 - Ann Biomed Eng. 2012 Jan;40(1):237-48
15275841 - J Biomech. 2004 Sep;37(9):1339-52
17327793 - Neurosurgery. 2007 Mar;60(3):490-5; discussion 495-6
22915997 - PLoS Comput Biol. 2012;8(8):e1002619
22592370 - Neurology. 2012 May 29;78(22):1777-84
17961577 - J Biomech. 2008;41(2):307-15
24077860 - Ann Biomed Eng. 2014 Jan;42(1):11-24
21731153 - Finite Elem Anal Des. 2011 Oct 1;47(10):1178-1185
24065136 - J Biomech Eng. 2013 Nov;135(11):111002
23135364 - Med Sci Sports Exerc. 2013 Apr;45(4):747-54
22992118 - J Neurotrauma. 2013 Jan 15;30(2):102-18
20883154 - J Neurotrauma. 2014 Feb 15;31(4):327-38
12002135 - J Biomech Eng. 2002 Apr;124(2):244-52
18460382 - Accid Anal Prev. 2008 May;40(3):1135-48
11192383 - J Biomech Eng. 2000 Dec;122(6):615-22
18089922 - J Appl Biomech. 2007 Aug;23(3):238-44
17096285 - Stapp Car Crash J. 2005 Nov;49:457-79
21529164 - Annu Rev Biomed Eng. 2011 Aug 15;13:91-126
23135363 - Med Sci Sports Exerc. 2013 Apr;45(4):737-46
22611035 - Hum Brain Mapp. 2013 Nov;34(11):2747-66
20869383 - Prog Biophys Mol Biol. 2010 Dec;103(2-3):304-9
22098889 - J Mech Behav Biomed Mater. 2011 Nov;4(8):1905-19
19878950 - J Biomech. 2010 Jan 19;43(2):254-62
References_xml – volume: 51
  start-page: 81
  year: 2007
  ident: B13
  publication-title: Stapp Car Crash J.
– ident: B22
  doi: 10.1007/s10237-011-0307-1
– ident: B37
  doi: 10.1007/978-1-349-01604-4_34
– ident: B56
  doi: 10.1016/j.finel.2011.05.007
– ident: B2
  doi: 10.1227/01.neu.0000318162.67472.ad
– ident: B57
  doi: 10.1123/jab.23.3.238
– ident: B17
  doi: 10.1007/s10439-011-0402-6
– ident: B10
  doi: 10.1016/j.csm.2010.08.009
– ident: B5
  doi: 10.1249/MSS.0b013e3181dd9156
– ident: B25
  doi: 10.1249/MSS.0b013e3182792ed7
– volume: 52
  start-page: 1
  year: 2008
  ident: B16
  publication-title: Stapp Car Crash J.
– ident: B4
  doi: 10.1227/01.NEU.0000249286.92255.7F
– ident: B19
  doi: 10.1007/s10237-012-0387-6
– ident: B60
  doi: 10.1115/1.4025101
– ident: B39
  doi: 10.1016/0021-9290(70)90059-X
– volume: 45
  start-page: 337
  year: 2001
  ident: B42
  publication-title: Stapp Car Crash J.
– ident: B63
  doi: 10.1212/WNL.0b013e3182582fe7
– ident: B9
  doi: 10.1249/MSS.0b013e3182793067
– volume: 126
  start-page: 226
  year: 2004
  ident: B12
  publication-title: J. Biomed. Eng.
– ident: B48
  doi: 10.1016/j.jbiomech.2007.09.016
– ident: B3
  doi: 10.4085/1062-6050-45.6.549
– ident: B35
  doi: 10.1016/j.jbiomech.2003.12.032
– ident: B62
  doi: 10.1016/j.pbiomolbio.2010.09.008
– ident: B8
  doi: 10.1016/j.jbiomech.2012.01.034
– ident: B65
  doi: 10.1002/hbm.22099
– start-page: 1
  year: 2006
  ident: B58
  publication-title: Injury Biomechanics Research
– volume: 49
  start-page: 457
  year: 2005
  ident: B46
  publication-title: Stapp Car Crash J.
– ident: B27
  doi: 10.1016/S0021-9290(06)83518-9
– ident: B47
  doi: 10.1533/ijcr.2005.0384
– volume: 50
  start-page: 509
  year: 2006
  ident: B45
  publication-title: Stapp Car Crash J.
– start-page: 3537
  volume-title: Proceedings of the 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine
  year: 2009
  ident: B30
– ident: B36
  doi: 10.1016/0021-9290(70)90007-2
– ident: B32
  doi: 10.1016/j.jmbbm.2009.09.001
– ident: B28
  doi: 10.1007/s10439-011-0422-2
– ident: B31
  doi: 10.1504/IJVS.2012.049024
– ident: B18
  doi: 10.1007/s10237-010-0243-5
– ident: B1
– ident: B24
  doi: 10.1007/s10439-013-0907-2
– ident: B14
  doi: 10.1016/j.aap.2007.12.006
– ident: B52
  doi: 10.1115/1.1324667
– ident: B61
  doi: 10.1115/1.1449907
– ident: B7
  doi: 10.1123/jab.27.1.8
– volume: 51
  start-page: 17
  year: 2007
  ident: B43
  publication-title: Stapp Car Crash J.
– volume: 50
  start-page: 583
  year: 2006
  ident: B59
  publication-title: Stapp Car Crash Journal.
– ident: B11
  doi: 10.1146/annurev-bioeng-071910-124706
– ident: B54
  doi: 10.1093/brain/awq347
– ident: B6
  doi: 10.1097/JES.0b013e318201f53e
– ident: B23
  doi: 10.1089/neu.2012.2418
– ident: B49
  doi: 10.1016/j.jbiomech.2009.08.036
– volume: 12
  start-page: 1
  year: 2013
  ident: B64
  publication-title: J. Neurotrauma
– ident: B29
  doi: 10.1016/S0021-9290(06)85195-X
– ident: B55
  doi: 10.1016/j.mri.2011.10.001
– ident: B20
  doi: 10.1016/j.jmbbm.2011.06.007
– volume: 42
  start-page: 209
  year: 2005
  ident: B34
  publication-title: Biorheology
– volume: 126
  start-page: 849
  year: 2004
  ident: B26
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1824135
– ident: B41
  doi: 10.1007/978-1-4419-9619-0_2
– ident: B15
  doi: 10.1504/IJVD.2003.003239
– ident: B21
  doi: 10.1371/journal.pcbi.1002619
– ident: B50
  doi: 10.1109/TPAMI.1987.4767965
– ident: B53
– ident: B33
  doi: 10.1016/j.jmps.2006.05.004
– reference: 11192383 - J Biomech Eng. 2000 Dec;122(6):615-22
– reference: 21062178 - J Athl Train. 2010 Nov-Dec;45(6):549-59
– reference: 5000416 - J Biomech. 1970 Oct;3(5):495-511
– reference: 21731153 - Finite Elem Anal Des. 2011 Oct 1;47(10):1178-1185
– reference: 22915997 - PLoS Comput Biol. 2012;8(8):e1002619
– reference: 23135363 - Med Sci Sports Exerc. 2013 Apr;45(4):737-46
– reference: 20351593 - Med Sci Sports Exerc. 2010 Nov;42(11):2064-71
– reference: 17096285 - Stapp Car Crash J. 2005 Nov;49:457-79
– reference: 18278592 - Stapp Car Crash J. 2007 Oct;51:81-114
– reference: 21088602 - Exerc Sport Sci Rev. 2011 Jan;39(1):4-11
– reference: 24077860 - Ann Biomed Eng. 2014 Jan;42(1):11-24
– reference: 21074079 - Clin Sports Med. 2011 Jan;30(1):19-31, vii
– reference: 22611035 - Hum Brain Mapp. 2013 Nov;34(11):2747-66
– reference: 21529164 - Annu Rev Biomed Eng. 2011 Aug 15;13:91-126
– reference: 21451177 - J Appl Biomech. 2011 Feb;27(1):8-14
– reference: 20883154 - J Neurotrauma. 2014 Feb 15;31(4):327-38
– reference: 17311175 - Stapp Car Crash J. 2006 Nov;50:509-44
– reference: 22592370 - Neurology. 2012 May 29;78(22):1777-84
– reference: 15179853 - J Biomech Eng. 2004 Apr;126(2):226-36
– reference: 22992118 - J Neurotrauma. 2013 Jan 15;30(2):102-18
– reference: 20869383 - Prog Biophys Mol Biol. 2010 Dec;103(2-3):304-9
– reference: 12002135 - J Biomech Eng. 2002 Apr;124(2):244-52
– reference: 21869429 - IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700
– reference: 21193486 - Brain. 2011 Feb;134(Pt 2):449-63
– reference: 15275841 - J Biomech. 2004 Sep;37(9):1339-52
– reference: 17311178 - Stapp Car Crash J. 2006 Nov;50:583-600
– reference: 15796345 - J Biomech Eng. 2004 Dec;126(6):849-54
– reference: 17458753 - Stapp Car Crash J. 2001 Nov;45:337-68
– reference: 21476072 - Biomech Model Mechanobiol. 2012 Jan;11(1-2):245-60
– reference: 18496184 - Neurosurgery. 2008 Apr;62(4):789-98; discussion 798
– reference: 21994062 - Ann Biomed Eng. 2012 Jan;40(1):127-40
– reference: 20129415 - J Mech Behav Biomed Mater. 2010 Feb;3(2):158-66
– reference: 23135364 - Med Sci Sports Exerc. 2013 Apr;45(4):747-54
– reference: 20635116 - Biomech Model Mechanobiol. 2011 Jun;10(3):413-22
– reference: 5521539 - J Biomech. 1970 Mar;3(2):211-21
– reference: 18460382 - Accid Anal Prev. 2008 May;40(3):1135-48
– reference: 22381736 - J Biomech. 2012 Apr 30;45(7):1265-72
– reference: 15894820 - Biorheology. 2005;42(3):209-23
– reference: 19085156 - Stapp Car Crash J. 2008 Nov;52:1-31
– reference: 18089922 - J Appl Biomech. 2007 Aug;23(3):238-44
– reference: 19878950 - J Biomech. 2010 Jan 19;43(2):254-62
– reference: 24065136 - J Biomech Eng. 2013 Nov;135(11):111002
– reference: 17327793 - Neurosurgery. 2007 Mar;60(3):490-5; discussion 495-6
– reference: 22079073 - Magn Reson Imaging. 2012 Feb;30(2):171-80
– reference: 18278591 - Stapp Car Crash J. 2007 Oct;51:17-80
– reference: 17961577 - J Biomech. 2008;41(2):307-15
– reference: 21994068 - Ann Biomed Eng. 2012 Jan;40(1):237-48
– reference: 22434184 - Biomech Model Mechanobiol. 2013 Jan;12(1):137-50
– reference: 22098889 - J Mech Behav Biomed Mater. 2011 Nov;4(8):1905-19
SSID ssj0013627
Score 2.4809518
Snippet Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies...
Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 441
SubjectTerms Adolescent
Athletic Injuries - complications
Athletic Injuries - pathology
Brain
Brain Concussion - etiology
Brain Concussion - pathology
Concussion
Diffuse Axonal Injury - etiology
Diffuse Axonal Injury - pathology
Diffusion Tensor Imaging
Female
Fibers
Humans
Male
Nerve Fibers, Myelinated - pathology
Original
Sports injuries
Strain
White Matter - pathology
Young Adult
Title Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion
URI https://www.ncbi.nlm.nih.gov/pubmed/24735430
https://www.proquest.com/docview/1666335672
https://www.proquest.com/docview/1667350505
https://www.proquest.com/docview/1837294772
https://pubmed.ncbi.nlm.nih.gov/PMC4376290
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7avvgiFW9ra4kgPhm7O0kmyZNo2aUIW4pa3Lcht8EFm63uDgj-ec_JZKeuYmFehhxmMvPlcnLO4fsIeQlOABdS1MxEGZiIEubc2Efmo4m6NdHYTNc0P6_PLsWHhVyUgNu6lFVu18S8UIeVxxj5Caa3OJe1qt5ef2eoGoXZ1SKhcZfsT8ATQekGtVA3WYS6l2zVRjEFW1vh2IT7kxQ7rOvib8B90bt70j-O5t_1kn9sQLMDcr94jvRdD_UDciemh-RXjh2xL8t1pNOBuJvaFOjpoDBIVy3NQnh0ntk06QzLROinLA-Rbef25_Kqu6IXfegdXlMa4co66GuWq-YiPjb5Dktn0yNyOZt-Pj1jRU-BeTiEbVilVHBwPjDKBW1roXH3nrQOYJIqcECldcFJ4WvuADTrwqTVysc6ypgPs4_JXlql-JRQpKkP0nFtJ0F4rqzgQfnKVtory00ckdfbP9r4QjaO_f7W5KS3Ng0A0CAADQIwIq8G8-ueZeN_hkdbeJoy2dbNzdAYkRdDM0wTzH3YFFddtlFcomzfLTYac5hC4XOe9IgPvalQolnw8YionbEwGCBN925LWn7NdN0C1vDKjJ_d3vVDcg--UvZFQUdkb_Oji8_B39m44zyoj8n---n5xcffj60DBQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFeEIhfZQOMBDxh1sZ2nDxMCEarjq3VBJvYW-bYjqjE0o02AsT_xt_GnZNmFMTeJuUl8ulyztnx2Xf5PoBnGAQIqWTMU68cl17hnOtZz61PfVKkPjUBrmk8iUdH8v2xOl6DX8t_YaiscvlNDB9qN7N0Rr5F6S0hVKyj12fnnFijKLu6pNAwDbWC2w4QY82PHXv-xzfcws23d9-hv59H0XBwuDPiDcsAt7g1WfBIa5dj1Jzq3CUmlgmtaf0iR-OVdgJtLXKXK2ljkWNXTO76RaKtj73yYYuHeq_BuqQDlA6svx1MDj5c5DHimjQWtXONahuUT7zfKn1FlWXiFQZQyeqq-E-o-3fF5h9L4PAW3GxiV_amHmy3Yc2Xd-BnOL3in6ZzzwYtdDgzpWM7LcchmxUsUPGxccDzZEMqVGEfA0FFkB2b79PT6pQd1If_-JimEa_AxD7noW7Pk9rSVlS8W96Foyt51_egU85K_wAYAeU7lYvE9J20QhspnLaRiRKrjUh9F14u32hmG7hzsvtLFtLuSZqhAzJyQEYO6MKLVvysxvn4n-Dm0j1ZM93n2cXg7MLTthknKmVfTOlnVZDRQhFx4CUyCWVRpSY992uPt9ZERBItRa8LemUstAIEFL7aUk4_B8BwiatIlPYeXm76E7g-OhzvZ_u7k70NuIE9VnWJ0iZ0Fl8r_wijr0X-uBniDE6uelb9BnG0RSs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJiFeEIhfhQFGAp4wbWM7dh4mBFurjdGqAib2FhzbEZVYOmgjQPyH_FXcOU5GQextUl8in652zpc75y7fR8hjSAK4kCJlmZeOCS_B5wbWM-szr8vMZybANU2m6f6ReH0sjzfIr_ZbGGyrbJ-J4UHtFhbfkfexvMW5TFXSL2NbxGxv_OL0C0MGKay0tnQaJtIsuJ0ANxY_8jj0P77BcW65c7AHtn-SJOPR-919FhkHmIVjyoolSrkCMuhMFU6bVGiMb8OygIVI5TjMuyxcIYVNeQHLMoUbllpZn3rpw3EP9F4iWwqiPhwEt16NprO3ZzWNtCGQBe1MgdqI-AnX_crX2GXGn0Mypdcj5D9p79_dm3-Ew_E1cjXmsfRls_Gukw1f3SA_w5ss9mG-9HTUwYhTUzm62_Ed0kVJAy0fnQRsTzrGphX6LpBVBNmJ-T4_qU_orCkEwN_EQfgFVvYlCz18HtVWtsZG3uomObqQe32LbFaLyt8hFEHznSy4NkMnLFdGcKdsYhJtleGZ75Fn7R3NbYQ-x3l_zkMJXmc5GCBHA-RogB552omfNpgf_xPcbs2TR9df5mcbtUcedcPgtFiJMZVf1EFGcYkkgufIaKyoCoV6bjcW72aTIGG04IMeUWt7oRNA0PD1kWr-KYCHC4goSTa4e_7UH5LL4F35m4Pp4T1yBRYsm26lbbK5-lr7-5CIrYoHcYdT8vGineo3kcZJbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group-Wise+Evaluation+and+Comparison+of+White+Matter+Fiber+Strain+and+Maximum+Principal+Strain+in+Sports-Related+Concussion&rft.jtitle=Journal+of+neurotrauma&rft.au=Ji%2C+Songbai&rft.au=Zhao%2C+Wei&rft.au=d%2C+James+C&rft.au=Beckwith%2C+Jonathan+G&rft.date=2015-04-01&rft.pub=Mary+Ann+Liebert%2C+Inc&rft.issn=0897-7151&rft.eissn=1557-9042&rft.volume=32&rft.issue=7&rft.spage=441&rft_id=info:doi/10.1089%2Fneu.2013.3268&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3634552581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-7151&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-7151&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-7151&client=summon