Ontogenesis of Testis Development and Function in Humans
Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increase...
Saved in:
Published in | Sexual Development Vol. 4; no. 4-5; pp. 199 - 212 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 9783805595681 3805595689 |
ISSN | 1661-5425 1661-5433 1661-5433 |
DOI | 10.1159/000317090 |
Cover
Abstract | Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritised agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed. |
---|---|
AbstractList | Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritised agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed. Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritized agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed. Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritized agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed.Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritized agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed. |
Author | Colón, E. Stukenborg, J.B. Söder, O. |
Author_xml | – sequence: 1 givenname: J.B. surname: Stukenborg fullname: Stukenborg, J.B. – sequence: 2 givenname: E. surname: Colón fullname: Colón, E. – sequence: 3 givenname: O. surname: Söder fullname: Söder, O. email: olle.soder@ki.se |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20664245$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:121280394$$DView record from Swedish Publication Index |
BookMark | eNptkU1P3DAQhl3YCli6h94Ryg31EPDEdmwfER8FCYnLcrYcZ7JKSextnLTi32O0HwfEySO_zzyyZ-Zk5oNHQn4CvQQQ-opSykBSTb-ROVNUCC1KLQ_ICZQl5IIzdkgWWqpdpmC2zwpxTBYx_kkOAKkp00fkuKBlyQsuToh69mNYocfYxiw02RLjmKpb_IddWPfox8z6OrufvBvb4LPWZw9Tb338Qb43tou42J6n5OX-bnnzkD89_368uX7KHedqzKFBKLjkjCuHDUcOslJ1wxnopmK1bMq6Ygwo18rWlPLKQcG4c1CpAmkt2SnJN974H9dTZdZD29vhzQTbmu3Va6rQiKRQPPEXG349hL9T-o3p2-iw66zHMEUjBadFkd6UyPMtOVU91nvzbjgJuNoAbggxDtgY1472YwzjYNvOADUf6zH79aSOX586dtKv2LMN-2qHFQ57chu_A-jhkSA |
CitedBy_id | crossref_primary_10_1016_j_biopha_2023_116063 crossref_primary_10_1002_imhj_21622 crossref_primary_10_1038_nrurol_2011_23 crossref_primary_10_3390_cancers14051190 crossref_primary_10_1111_jcmm_17837 crossref_primary_10_1016_j_socscimed_2011_05_051 crossref_primary_10_1210_jc_2012_3065 crossref_primary_10_1038_s41422_020_0283_z crossref_primary_10_3390_biom14070840 crossref_primary_10_3390_cells10071696 crossref_primary_10_1093_humrep_dex369 crossref_primary_10_1093_hropen_hoae049 crossref_primary_10_1095_biolreprod_116_144154 crossref_primary_10_1038_s41526_023_00272_5 crossref_primary_10_1016_j_gyobfe_2012_09_017 crossref_primary_10_1007_s40618_020_01284_8 crossref_primary_10_1093_biolre_ioab014 crossref_primary_10_1371_journal_pone_0144029 crossref_primary_10_1016_j_beem_2019_101295 crossref_primary_10_1016_j_tice_2013_12_001 crossref_primary_10_1371_journal_pone_0093007 crossref_primary_10_1159_000355599 crossref_primary_10_3109_19396368_2012_694009 crossref_primary_10_1210_en_2015_1966 crossref_primary_10_1016_j_fct_2024_114656 |
Cites_doi | 10.1210%2Fjcem-65-6-1210 10.1093%2Fhumrep%2Fdem126 10.1080%2F10409230903061207 10.1016%2Fj.juro.2007.08.158 10.1016%2Fj.tig.2008.10.008 10.1078%2F0171-9335-00278 10.1210%2Fjc.2004-2465 10.1038%2F348452a0 10.1242%2Fdev.00969 10.1073%2Fpnas.0600962103 10.1210%2Fen.2006-0835 10.1038%2Fnature06944 10.1093%2Fhumrep%2Fdeq053 10.1007%2Fs00392-009-0751-4 10.1086%2F301806 10.1038%2F348448A0 10.1093%2Fhmg%2F10.15.1591 10.1095%2Fbiolreprod.108.069492 10.1158%2F0008-5472.CAN-06-4111 10.1210%2Fen.2002-0095 10.1242%2Fdev.024653 10.1038%2F347667a0 10.1210%2Fen.140.3.1470 10.1016%2FS0092-8674%2801%2900284-7 10.3109%2F07435800009048597 10.1038%2F353431a0 10.1093%2Fmolehr%2Fgal101 10.1016%2Fj.tem.2004.02.002 10.1210%2Fjc.2004-0575 10.1016%2Fj.juro.2007.03.173 10.1242%2Fjcs.03392 10.1093%2Fmolehr%2Fgah193 10.1210%2Fer.18.6.739 10.1095%2Fbiolreprod.103.016394 10.1371%2Fjournal.pbio.0040187 10.1016%2FS0889-8529%2808%2970021-5 10.1158%2F1078-0432.CCR-04-1285 10.1016%2FS0140-6736%2804%2915998-9 10.1210%2Fmend-5-4-573 10.1159%2F000094142 10.1038%2Fng0996-62 10.1002%2F1096-8628%2820000717%2993%3A2%3C85%3A%3AAID-AJMG1%3E3.0.CO%3B2-B 10.1016%2Fj.cell.2009.11.021 10.1038%2F374425a0 10.1002%2Faja.1001260106 10.1002%2Fajmg.a.20578 10.1002%2Fbdra.20343 10.1159%2F000152037 10.1089%2Fdna.2009.0981 10.1093%2Fhumrep%2Fdel163 10.1006%2Fdbio.2000.9885 10.1006%2Fdbio.1997.8584 10.1006%2Fgeno.2000.6123 10.1210%2Fen.2004-1630 10.1038%2Fng1009 10.1086%2F316893 10.1371%2Fjournal.pmed.0050088 10.1146%2Fannurev.physiol.61.1.417 10.1146%2Fannurev.physiol.63.1.193 10.1038%2F9629 10.1093%2Fhmg%2Fddn016 10.1038%2Fng.470 10.1210%2Fer.2007-0028 10.1101%2Fgad.5.8.1345 10.2164%2Fjandrol.107.004655 10.1073%2Fpnas.0507692103 10.1210%2Fme.15.1.184 10.1006%2Fexcr.1998.4215 10.1530%2Frep.1.00865 10.1038%2F372525a0 10.1038%2Fnature02059 10.1038%2F17068 10.1016%2FS0303-7207%2801%2900485-3 10.1095%2Fbiolreprod63.5.1490 10.1038%2F90046 10.1006%2Fdbio.2001.0438 10.1002%2Fjcu.20473 10.1016%2FS0140-6736%2801%2906274-2 10.1006%2Fscdb.1998.0204 10.1074%2Fjbc.M304067200 10.1111%2Fj.1651-2227.2006.00159.x 10.1095%2Fbiolreprod46.5.793 10.1038%2F84735 10.1111%2Fj.1365-2605.2006.00714.x 10.1309%2F6Q0JB9CCGRQ7RKCQ 10.1016%2F0092-8674%2895%2990287-2 10.1016%2FS0925-4773%2899%2900123-9 10.1095%2Fbiolreprod65.4.1201 10.1016%2FS0303-7207%2801%2900680-3 10.1093%2Fhumrep%2Fden010 10.1111%2Fj.1365-2605.2005.00555.x 10.1159%2F000207486 10.1210%2Fjc.82.12.3976 10.1530%2Frep.0.1250769 10.1038%2Fng1900 10.1016%2Fj.jri.2003.10.003 10.1002%2Fhumu.20665 10.1016%2Fj.beem.2007.05.002 10.1210%2Fjc.2007-1690 10.1387%2Fijdb.092920ac 10.1095%2Fbiolreprod.109.078550 10.1159%2F000058098 10.1210%2Fjc.2009-1140 10.1093%2Fhmg%2Fddp237 10.1159%2F000049956 10.1016%2FS1043-2760%2898%2900142-8 10.1210%2Fendo-123-3-1449 10.1210%2Fjc.85.6.2281 10.1126%2Fscience.140.3563.184 10.1210%2Fjc.2006-0669 10.1016%2F0092-8674%2886%2990783-X 10.1210%2Fjc.2003-031240 10.1210%2Fme.2006-0534 10.1093%2Fmolehr%2Fgag025 10.1016%2FS0012-1606%2803%2900122-2 10.1095%2Fbiolreprod63.6.1825 10.1210%2Fen.2004-1454 10.1210%2Fjc.87.4.1829 10.1038%2Fnm.f.1895 10.1016%2FS0925-4773%2899%2900047-7 10.1095%2Fbiolreprod51.6.1193 10.1093%2Fnar%2F28.6.1473 10.1016%2Fj.mod.2009.02.006 10.1016%2F0888-7543%2895%2980059-U 10.1210%2Fjc.2004-0935 10.1210%2Fjc.84.12.4713 10.1038%2Fng1907 10.1007%2Fs00774-008-0009-7 10.1210%2Fjc.2002-021647 10.1210%2Fjc.86.12.5721 10.1016%2FS0083-6729%2805%2970013-3 10.1095%2Fbiolreprod.102.012617 10.1242%2Fdev.01239 10.1210%2Fer.2009-0012 10.1074%2Fjbc.M009056200 10.1038%2Fsj.ejhg.5201777 10.1038%2F84781 10.1159%2F000277141 10.1210%2Fjc.86.8.3820 10.1038%2F3822 10.1073%2Fpnas.160274797 10.1210%2Fme.10.10.1261 10.1002%2Fdvdy.1164 10.1046%2Fj.1365-2605.2001.00277.x 10.1136%2Fadc.67.7.892 10.1210%2Fen.2006-1412 10.1095%2Fbiolreprod35.2.425 10.1210%2Fjc.2007-1168 10.1016%2FS0092-8674%2800%2981527-5 10.1016%2F0092-8674%2894%2990251-8 10.1093%2Fhmg%2Fddi210 10.1093%2Fhumrep%2Fdei325 10.1210%2Fjc.2009-0060 10.1038%2F346194a0 10.1016%2Fj.juro.2008.10.074 10.1210%2Fjc.2004-0670 10.1093%2Fmolehr%2F6.3.219 10.1016%2FS0092-8674%2800%2980557-7 10.1172%2FJCI107621 10.1210%2Fer.18.3.378 10.1002%2Fajmg.a.30015 10.1038%2F35002622 10.1242%2Fdev.01890 |
ContentType | Journal Article |
Copyright | 2010 S. Karger AG, Basel |
Copyright_xml | – notice: 2010 S. Karger AG, Basel |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS D8T ZZAVC |
DOI | 10.1159/000317090 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISBN | 3805595697 9783805595698 |
EISSN | 1661-5433 |
EndPage | 212 |
ExternalDocumentID | oai_swepub_ki_se_549884 20664245 10_1159_000317090 317090 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 0R~ 0~5 0~B 123 3O. 4.4 53G 8UI AAYIC ABDBF ABJNI ABPAZ ACGFS ACPSR ADBBV AENEX AEYAO AFJJK ALDHI ALMA_UNASSIGNED_HOLDINGS AZPMC CAG COF CS3 CYUIP DU5 E0A EBS EJD F5P FB. HZ~ IAO IHR ISR IY7 KUZGX N9A O1H O9- P2P RKO UJ6 AAYXX ABBTS ABWCG ACUHS AHFRZ CITATION ITC CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c448t-1fe12474348cef4e417b8df4319fb3d7f6db3310498ad004bc1234cc1b82e0d73 |
ISBN | 9783805595681 3805595689 |
ISSN | 1661-5425 1661-5433 |
IngestDate | Tue Sep 30 03:32:33 EDT 2025 Fri Jul 11 16:20:04 EDT 2025 Wed Feb 19 01:57:09 EST 2025 Wed Oct 01 06:28:29 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Thu Aug 29 12:04:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4-5 |
Keywords | Somatic cells Germ cells Human spermatogenesis |
Language | English |
License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. https://www.karger.com/Services/SiteLicenses |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c448t-1fe12474348cef4e417b8df4319fb3d7f6db3310498ad004bc1234cc1b82e0d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:121280394 |
PMID | 20664245 |
PQID | 754022124 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_549884 crossref_citationtrail_10_1159_000317090 pubmed_primary_20664245 karger_primary_317090 proquest_miscellaneous_754022124 crossref_primary_10_1159_000317090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-00 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-00 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland |
PublicationTitle | Sexual Development |
PublicationTitleAlternate | Sex Dev |
PublicationYear | 2010 |
References | Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL: Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab 86:3820–3825 (2001).1150281810.1210%2Fjc.86.8.3820 Charest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, et al: A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 5:573–581 (1991).168142610.1210%2Fmend-5-4-573 Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, et al: Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 10:8521–8530 (2004).1562363410.1158%2F1078-0432.CCR-04-1285 Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, et al: WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 239:327–337 (2010).19918918 Wikstrom AM, Bay K, Hero M, Andersson AM, Dunkel L: Serum insulin-like factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J Clin Endocrinol Metab 91:4705–4708 (2006).1692625610.1210%2Fjc.2006-0669 Huhtaniemi IT: LH and FSH receptor mutations and their effects on puberty. Horm Res 57 Suppl 2:35–38 (2002).10.1159%2F000058098 Buehr M, McLaren A, Bartley A, Darling S: Proliferation and migration of primordial germ cells in WIWe mouse embryos. Dev Dyn 198:182–189 (1993).8136523 Salenave S, Chanson P, Bry H, Pugeat M, Cabrol S, et al: Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 93:758–763 (2008).1816047210.1210%2Fjc.2007-1168 Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, et al: Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev 5:1345–1356 (1991a).165127510.1101%2Fgad.5.8.1345 Thummer RP, Drenth-Diephuis LJ, Carney KE, Eggen BJ: Functional characterization of single-nucleotide polymorphisms in the human undifferentiated embryonic-cell transcription factor 1 gene. DNA Cell Biol 29:241–248 (2010).2021889710.1089%2Fdna.2009.0981 Ehmcke J, Luetjens CM, Schlatt S: Clonal organization of proliferating spermatogonial stem cells in adult males of two species of non-human primates, Macaca mulatta and Callithrix jacchus. Biol Reprod72:293–300 (2005). Parker KL, Schedl A, Schimmer BP: Gene interactions in gonadal development. Annu Rev Physiol 61:417–433 (1999).1009969510.1146%2Fannurev.physiol.61.1.417 Steger K, Pauls K, Klonisch T, Franke FE, Bergmann M: Expression of protamine-1 and-2 mRNA during human spermiogenesis. Mol Hum Reprod 6:219–225 (2000).1069426810.1093%2Fmolehr%2F6.3.219 Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, et al: A novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab 89:5952–5958 (2004).1557974310.1210%2Fjc.2004-0575 Kostova E, Yeung CH, Leutjens CM, Brune M, Nieschlag E, et al: Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Mol Hum Reprod 13:85–93 (2007).1711420610.1093%2Fmolehr%2Fgal101 Grumbach M: A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab 90:3122–3127 (2005).1572819810.1210%2Fjc.2004-2465 Teerds KJ, De Rooij DG, Rommerts FF, Wensing CJ: The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment. J Androl 9:343–351 (1988).2853150 Cortes D, Kjellberg EM, Breddam M, Thorup J: The true incidence of cryptorchidism in Denmark. J Urol 179:314–318 (2008).1800601610.1016%2Fj.juro.2007.08.158 Behr R, Weinbauer GF: cAMP response element modulator (CREM): an essential factor for spermatogenesis in primates? Int J Androl 24:126–135 (2001).1138070110.1046%2Fj.1365-2605.2001.00277.x Colvin JS, White AC, Pratt SJ, Ornitz DM: Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095–2106 (2001b).11493531 Arango NA, Lovell-Badge R, Behringer RR: Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99:409–419 (1999).1057118310.1016%2FS0092-8674%2800%2981527-5 Wood HM, Elder JS: Cryptorchidism and testicular cancer: separating fact from fiction. J Urol 181:452–461 (2009).1908485310.1016%2Fj.juro.2008.10.074 Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, et al: Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int J Androl 29:618–626 (2006).1701453110.1111%2Fj.1365-2605.2006.00714.x Stikkelbroeck NM, Otten BJ, Pasic A, Jager GJ, Sweep CG, et al: High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab 86:5721–5728 (2001).1173942810.1210%2Fjc.86.12.5721 Eacker SM, Agrawal N, Qian K, Dichek HL, Gong EY, et al: Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol Endocrinol 22:623–635 (2008).1803269710.1210%2Fme.2006-0534 Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, et al: Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187 (2006).1670062910.1371%2Fjournal.pbio.0040187 Andersson AM, Juul A, Petersen JH, Müller J, Groome NP, et al: Serum inhibin B in healthy pubertal and adolescent boys: relation to age, stage of puberty, and follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol levels. J Clin Endocrinol Metab 82:3976–3981 (1997).939869910.1210%2Fjc.82.12.3976 Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, et al: Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur J Cell Biol 81:592–598 (2002).1249499610.1078%2F0171-9335-00278 Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, et al: Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat 29:220–226 (2008).1808556710.1002%2Fhumu.20665 Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP: Female development in mammals is regulated by WNT-4 signalling. Nature 397:405–409 (1999).998940410.1038%2F17068 Heller CG, Clermont Y: Kinetics of the germinal epithelium in man. Recent Prog Horm Res 20:545–575 (1964).14285045 Schmahl J, Colvin JS, Ornitz DM, Capel B: Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131:3627–3636 (2004).1522918010.1242%2Fdev.01239 Cheng YS, Kuo PL, Teng YN, KuoY, Chung CL, et al: Association of spermatogenic failure with decreased CDC25A expression in infertile men. Hum Reprod 21:2346–2352 (2006).1672062310.1093%2Fhumrep%2Fdel163 De Baere E, Dixon MJ, Small KW, Jabs EW, Leroy BP, et al: Spectrum of FOXL2 gene mutations in blepharophimosis-ptosis-epicanthus inversus (BPES) families demonstrates a genotype-phenotype correlation. Hum Mol Genet 10:1591–1600 (2001).1146827710.1093%2Fhmg%2F10.15.1591 Motonaga K, Itoh M, Hachiya Y, Endo A, Kato K, et al: Age related expression of Werner’s syndrome protein in selected tissues and coexpression of transcription factors. J Clin Pathol 55:195–199 (2002).11896071 Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, et al: CXorf6 is a causative gene for hypospadias. Nat Genet 38:1369–1371 (2006).1708618510.1038%2Fng1900 Colón E, Zaman F, Axelson M, Larsson O, Carlsson-Skwirut C, et al: Insulin-like growth factor-I is an important antiapoptotic factor for rat leydig cells during postnatal development. Endocrinology 148:128–139 (2007).1702353210.1210%2Fen.2006-0835 Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, et al: Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 14:2053–2062 (2005).1594419910.1093%2Fhmg%2Fddi210 Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, et al: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369 (2002).1237985210.1038%2Fng1009 Hossain A, Saunders GF: The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276:16817–16823 (2001).1127846010.1074%2Fjbc.M009056200 Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL: A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22:125–126 (1999).1036924710.1038%2F9629 Sharpe RM: Perinatal determinants of adult testis size and function. Editorial. JCEM 91:2503–2505 (2006).16825576 Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, et al: R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309 (2006).1704160010.1038%2Fng1907 Edson MA, Nagaraja AK, Matzuk MM: The mammalian ovary from genesis to revelation. Endocr Rev 30:624–712 (2009).1977620910.1210%2Fer.2009-0012 Herren T, Gerber PA, Duru F: Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a not so rare ‘‘disease of the desmosome’’ with multiple clinical presentations. Clin Res Cardiol 98:141–158 (2009).1920577710.1007%2Fs00392-009-0751-4 Sharpe RM: Regulation of spermatogenesis, in Knobil E, Neill JD (eds): The Physiology of Reproduction, pp 1363–1394 (Raven Press, New York 1994). Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, et al: Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530 (1994).799092410.1038%2F372525a0 Wylie C: Germ cells. Cell 96:165–174 (1999).998821210.1016%2FS0092-8674%2800%2980557-7 Petersen C, Froysa B, Söder O: Endotoxin and proinflammatory cytokines modulate Sertoli cell proliferation in vitro. J Reprod Immunol 61:13–30 (2004).1502747510.1016%2Fj.jri.2003.10.003 Vidal VP, Chaboissier MC, de Rooij DG, Schedl A: Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217 (2001).1143168910 ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref20 ref159 ref22 ref157 ref21 ref158 ref28 ref27 ref29 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – reference: Dettin L, Ravindranath N, Hofmann MC, Dym M: Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biol Reprod 69:1565–1571 (2003).1285560110.1095%2Fbiolreprod.103.016394 – reference: Cortes D, Kjellberg EM, Breddam M, Thorup J: The true incidence of cryptorchidism in Denmark. J Urol 179:314–318 (2008).1800601610.1016%2Fj.juro.2007.08.158 – reference: Söder O: Sexual dimorphism of gonadal development. Best Pract Res Clin Endocrinol Metab 21:381–391 (2007).1787548610.1016%2Fj.beem.2007.05.002 – reference: Kerr CL, Hill CM, Blumenthal PD, Gearhart JD: Expression of pluripotent stem cell markers in the human fetal testis. Stem cells 26:412–421 (2008). – reference: Mallet D, Bretones P, Michel-Calemard L, Dijoud F, David M, et al: Gonadal dysgenesis without adrenal insufficiency in a 46, XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency. J Clin Endocrinol Metab 89:4829–4832 (2004).1547217110.1210%2Fjc.2004-0670 – reference: Ion A, Telvi L, Chaussain JL, Galacteros F, Valayer J, et al: A novel mutation in the putative DNA helicase XH2 is responsible for male-to-female sex reversal associated with an atypical form of the ATR-X syndrome. Am J Hum Genet 58:1185–1191 (1996).8651295 – reference: Eacker SM, Agrawal N, Qian K, Dichek HL, Gong EY, et al: Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol Endocrinol 22:623–635 (2008).1803269710.1210%2Fme.2006-0534 – reference: Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, et al: Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev 5:1345–1356 (1991a).165127510.1101%2Fgad.5.8.1345 – reference: Taketo M, Parker KL, Howard TA, Tsukiyama T, Wong M, et al: Homologs of Drosophila Fushi-Tarazu factor 1 map to mouse chromosome 2 and human chromosome 9q33. Genomics 25:565–567 (1995).778999210.1016%2F0888-7543%2895%2980059-U – reference: Hadziselimovic F, Herzog B: The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet 358:1156–1157 (2001a).1159767310.1016%2FS0140-6736%2801%2906274-2 – reference: Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM: Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–889 (2001a).1129032510.1016%2FS0092-8674%2801%2900284-7 – reference: Bendel-Stenzel M, Anderson R, Heasman J, Wylie C: The origin and migration of primordial germ cells in the mouse. Semin Cell Dev Biol 9:393–400 (1998).981318610.1006%2Fscdb.1998.0204 – reference: Arango NA, Lovell-Badge R, Behringer RR: Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99:409–419 (1999).1057118310.1016%2FS0092-8674%2800%2981527-5 – reference: Clermont Y: Two classes of spermatogonial stem cells in the monkey (Cercopithecus aethiops). Am J Anat 126:57–71 (1969).498204210.1002%2Faja.1001260106 – reference: Ge RS, Shan LX, Hardy MP: Pubertal development of Leydig cells, in Payne AH, Hardy MP, Russell LD, (eds): The Leydig Cell, pp 159–174 (Cache River Press, Vienna 1996). – reference: Ludbrook LM, Harley VR: Sex determination: a ‘window’ of DAX1 activity. Trends Endocrinol Metab 15:116–121 (2004).1504674010.1016%2Fj.tem.2004.02.002 – reference: Petersen C, Boitani C, Froysa B, Söder O: Transforming growth factor-alpha stimulates proliferation of rat Sertoli cells. Mol Cell Endocrinol 181:221–227 (2001).1147695510.1016%2FS0303-7207%2801%2900485-3 – reference: Wang Y, Barthold J, Kanetsky PA, Casalunovo T, Pearson E, et al: Allelic variants in HOX genes in cryptorchidism. Birth Defects Res A Clin Mol Teratol 79:269–275 (2007).1721661810.1002%2Fbdra.20343 – reference: Pitteloud N, Acierno JS Jr, Meysing A, Eliseenkova AV, Ma J, et al: Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 103:6281–6286 (2006).1660683610.1073%2Fpnas.0600962103 – reference: Buaas FW, Val P, Swain A: The transcription co-factor CITED2 functions during sex determination and early gonad development. Hum Mol Genet 18:2989–3001 (2009).1945792610.1093%2Fhmg%2Fddp237 – reference: Hadziselimovic F, Zivkovic D, Bica DT, Emmons LR: The importance of mini-puberty for fertility in cryptorchidism. J Urol 174:1536–1539; discussion 1538–1539 (2005). – reference: Matzuk MM, Lamb DJ: The biology of infertility: research advances and clinical challenges. Nat Med 14:1197–1213 (2008).1898930710.1038%2Fnm.f.1895 – reference: Manuylov NL, Smagulova FO, Leach L, Tevosian SG: Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 135:3731–3743 (2008).1892715410.1242%2Fdev.024653 – reference: Ivell R, Hartung S: The molecular basis of cryptorchidism. Mol Hum Reprod 9:175–181 (2003).1265189810.1093%2Fmolehr%2Fgag025 – reference: von Kopylow K, Kirchhoff C, Jezek D, Schulze W, Feig C, et al: Screening for biomarkers of spermatogonia within the human testis: a whole genome approach. Hum Reprod 25:1104–1112 (2010).2020805910.1093%2Fhumrep%2Fdeq053 – reference: Schmahl J, Colvin JS, Ornitz DM, Capel B: Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131:3627–3636 (2004).1522918010.1242%2Fdev.01239 – reference: Huhtaniemi IT, Yamamoto M, Ranta T, Jalkanen J, Jaffe RB: Follicle-stimulating hormone receptors appear earlier in the primate fetal testis than in the ovary. J Clin Endocrinol Metab 65:1210–1214 (1987).282455210.1210%2Fjcem-65-6-1210 – reference: Nishikawa N, Toyota M, Suzuki H, Honma T, Fujikane T, et al: Gene amplification and overexpression of PRDM14 in breast cancers. Cancer Res 67:9649–9657 (2007).1794289410.1158%2F0008-5472.CAN-06-4111 – reference: Ferlin A, Arredi B, Zuccarello D, Garolla A, Selice R, et al: Paracrine and endocrine roles of insulin-like factor 3. J Endocrinol Invest 29:657–664 (2006).16957417 – reference: Park SY, Lee EJ, Emge D, Jahn CL, Jameson JL: A phenotypic spectrum of sexual development in Dax1(Nr0b1)-deficient mice: consequence of the C57BL/6J strain on sex determination. Biol Reprod 79:1038–1045 (2008).1863313710.1095%2Fbiolreprod.108.069492 – reference: Merchant Larios H, Moreno Mendoza N: Mesonephric stromal cells differentiate into Leydig cells in the mouse fetal testis. Exp Cell Res 244:230–238 (1998).977036510.1006%2Fexcr.1998.4215 – reference: de Rooij DG, Russell LD: All you wanted to know about spermatogonia but were afraid to ask. J Androl21:776–798 (2000). – reference: He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M: Isolation, characterization, and culture of human spermatogonia. Biol Reprod 82:363–372 (2010).1984660210.1095%2Fbiolreprod.109.078550 – reference: Hiort O, Gillessen-Kaesbach G: Disorders of sex development in developmental syndromes. Endocr Dev 14:174–180 (2009).1929358410.1159%2F000207486 – reference: Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, et al: The putative forkhead transcription Factor FOXL2 is mutated in lepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27:159–166 (2001).1117578310.1038%2F84781 – reference: But WM, Lo IFM, Shek CC, Tse WY, Lam ST: Ambiguous genitalia, impaired steroidogenesis, and Antley-Bixler syndrome in a patient with P450 oxidoreductase deficiency. Hong Kong Med J 16:59–62 (2010).20124576 – reference: Schmahl J, Capel B: Cell proliferation is necessary for the determination of male fate in the gonad. Dev Biol 258:264–276 (2003).1279828710.1016%2FS0012-1606%2803%2900122-2 – reference: Correa RV, Domenice S, Bingham NC, Billerbeck AE, Rainey WE, et al: A microdeletion in the ligand binding domain of human steroidogenic factor 1 causes XY sex reversal without adrenal insufficiency. J Clin Endocrinol Metab 89:1767–1772 (2004).1507094310.1210%2Fjc.2003-031240 – reference: Sekido R, Lovell-Badge R: Sex determination and SRY: down to a wink and a nudge? Trends Genet 25:19–29 (2009).1902718910.1016%2Fj.tig.2008.10.008 – reference: Biason-Lauber A, Konrad D: WNT4 and sex development. Sex Dev 2:210–218 (2008).1898749510.1159%2F000152037 – reference: Escalier D, Gallo JM, Albert M, Meduri G, Bermudez D, et al: Human acrosome biogenesis: immunodetection of proacrosin in primary spermatocytes and of its partitioning pattern during meiosis. Development 113:779–788 (1991).1821849 – reference: Motro B, van der Kooy D, Rossant J, Reith A, Bernstein A: Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci. Development 113:1207–1221 (1991).1811937 – reference: Shawlot W, Behringer RR: Requirement for Lim1 in head-organizer function. Nature 374:425–430 (1995).770035110.1038%2F374425a0 – reference: Oakberg EF: Duration of spermatogenesis in the mouse. Nature180:1137–1138 (1957). – reference: Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL: Role of Ahch in gonadal development and gametogenesis. Nat Genet 20:353–357 (1998).984320610.1038%2F3822 – reference: Schepers G, Wilson M, Wilhelm D, Koopman P: Sox8 is expressed during testis differentiation in mice and synergizes with Sf1 to activate the Amh promoter in vitro. J Biol Chem 278:28101–28108 (2003).1273265210.1074%2Fjbc.M304067200 – reference: Morohashi K: Gonadal and extragonadal functions of Ad4BP/SF-1: developmental aspects. Trends Endocrinol Metab 10:169–173 (1999).1037022410.1016%2FS1043-2760%2898%2900142-8 – reference: Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, et al: Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 14:2053–2062 (2005).1594419910.1093%2Fhmg%2Fddi210 – reference: Ketola I, Toppari J, Vaskivuo T, Herva R, Tapanainen JS, et al: Transcription factor GATA-6, cell proliferation, apoptosis, and apoptosis-related proteins Bcl-2 and Bax in human fetal testis. J Clin Endocrinol Metab 88:1858–1865 (2003)1267948410.1210%2Fjc.2002-021647 – reference: Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E, et al: Steroidogenic factor 1 and Dax-1 colocalize in multiple cell lineages: potential links in endocrine development. Mol Endocrinol 10:1261–1272 (1996).912149310.1210%2Fme.10.10.1261 – reference: O’Shaughnessy PJ, Baker PJ, Monteiro A, Cassie S, Bhattacharya S, et al: Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J Clin Endocr Metab 92:4792–4801 (2007a).1784841110.1210%2Fjc.2007-1690 – reference: Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, et al: WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353:431–434 (1991b).165452510.1038%2F353431a0 – reference: Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, et al: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369 (2002).1237985210.1038%2Fng1009 – reference: Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P: A male-specific role for SOX9 in vertebrate sex determination. Development 122:2813–2822 (1996).8787755 – reference: Behr R, Weinbauer GF: cAMP response element modulator (CREM): an essential factor for spermatogenesis in primates? Int J Androl 24:126–135 (2001).1138070110.1046%2Fj.1365-2605.2001.00277.x – reference: Matsui Y, Zsebo KM, Hogan BL: Embryonic expression of a haematopoietic growth factor encoded by the SI locus and the ligand for c-kit. Nature 347:667–669 (1990).169913410.1038%2F347667a0 – reference: Herren T, Gerber PA, Duru F: Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a not so rare ‘‘disease of the desmosome’’ with multiple clinical presentations. Clin Res Cardiol 98:141–158 (2009).1920577710.1007%2Fs00392-009-0751-4 – reference: Di Cerbo A, Biason-Lauber A, Savino M, Piemontese MR, Di Giorgio A, et al: Combined 17 alpha-hydroxylase/17,20-lyase deficiency caused by Phe93Cys mutation in the CYP17 gene. J Clin Endocrinol Metab 87:898–905 (2002). – reference: Andersson AM, Juul A, Petersen JH, Müller J, Groome NP, et al: Serum inhibin B in healthy pubertal and adolescent boys: relation to age, stage of puberty, and follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol levels. J Clin Endocrinol Metab 82:3976–3981 (1997).939869910.1210%2Fjc.82.12.3976 – reference: Cigorraga SB, Chemes H, Pellizzari E: Steroidogenic and morphogenic characteristics of human peritubular cells in culture. Biol Reprod 51:1193–1205 (1994).788849710.1095%2Fbiolreprod51.6.1193 – reference: Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, et al: Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int J Androl 29:618–626 (2006).1701453110.1111%2Fj.1365-2605.2006.00714.x – reference: Prueitt RL, Zinn AR: A fork in the road to fertility. Nat Genet 27:132–134 (2001).1117577210.1038%2F84735 – reference: Vidal VP, Chaboissier MC, de Rooij DG, Schedl A: Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217 (2001).1143168910.1038%2F90046 – reference: Biason-Lauber A, Schoenle EJ: Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical insufficiency. Am J Hum Genet 67:1563–1568 (2000).1103832310.1086%2F316893 – reference: Teerds KJ, De Rooij DG, Rommerts FF, Wensing CJ: The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment. J Androl 9:343–351 (1988).2853150 – reference: Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, et al: CXorf6 is a causative gene for hypospadias. Nat Genet 38:1369–1371 (2006).1708618510.1038%2Fng1900 – reference: Achermann JC, Ozisik G, Ito M, Orun UA, Harmanci K, et al: Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J Clin Endocrinol Metab 87:1829–1833 (2002).1193232510.1210%2Fjc.87.4.1829 – reference: Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, et al: The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403:909–913 (2000).1070629110.1038%2F35002622 – reference: Harada D, Yamanaka Y, Ueda K, Tanaka H, Seino Y: FGFR3-related dwarfism and cell signaling. J Bone Miner Metab 27:9–15 (2009).1906671610.1007%2Fs00774-008-0009-7 – reference: van Alphen MM, van de Kant HJ, de Rooij DG: Follicle-stimulating hormone stimulates spermatogenesis in the adult monkey. Endocrinology 123:1449–1455 (1988).313600810.1210%2Fendo-123-3-1449 – reference: Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, et al: Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530 (1994).799092410.1038%2F372525a0 – reference: Hong SM, Frierson HF Jr, Moskaluk CA: AP-2gamma protein expression in intratubular germ cell neoplasia of testis. Am J Clin Pathol 124:873–877 (2005).1641673610.1309%2F6Q0JB9CCGRQ7RKCQ – reference: Petersen C, Boitani C, Froysa B, Söder O: Interleukin-1 is a potent growth factor for immature rat Sertoli cells. Mol Cell Endocrinol 186:37–47 (2002).1185012010.1016%2FS0303-7207%2801%2900680-3 – reference: Wistuba J, Stukenborg JB, Luetjens CM: Mammalian spermatogenesis. Funct Dev Embryol 1:99–117 (2007). – reference: Buehr M, McLaren A, Bartley A, Darling S: Proliferation and migration of primordial germ cells in WIWe mouse embryos. Dev Dyn 198:182–189 (1993).8136523 – reference: Jäger RJ, Anvret M, Hall K, Scherer G: A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348:452–454 (1990).224715110.1038%2F348452a0 – reference: Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, et al: Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142 (2009).2000580610.1016%2Fj.cell.2009.11.021 – reference: Hasegawa T, Fukami M, Sato N, Katsumata N, Sasaki G, et al: Testicular dysgenesis without adrenal insufficiency in a 46, XY patient with a heterozygous inactive mutation of steroidogenic factor-1. J Clin Endocrinol Metab 89:5930–5935 (2004).1557973910.1210%2Fjc.2004-0935 – reference: Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, et al: A novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab 89:5952–5958 (2004).1557974310.1210%2Fjc.2004-0575 – reference: Hanley NA, Ball SG, Clement-Jones M, Hagan DM, Strachan T, et al: Expression of steroidogenic factor 1 and Wilms’ tumour 1 during early human gonadal development and sex determination. Mech Dev 87:175–180 (1999).1049528210.1016%2FS0925-4773%2899%2900123-9 – reference: Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, et al: WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 239:327–337 (2010).19918918 – reference: Ritzén EM, Bergh A, Bjerknes R, Christiansen P, Cortes D, et al: Nordic consensus on treatment of undescended testes. Acta Paediatr 96:638–643 (2007).1732676010.1111%2Fj.1651-2227.2006.00159.x – reference: Pauls K, Schorle H, Jeske W, Brehm R, Steger K, et al: Spatial expression of germ cell markers during maturation of human fetal male gonads: an immunohistochemical study. Hum Reprod 21:397–404 (2006).1621038110.1093%2Fhumrep%2Fdei325 – reference: Tellier AL, Amiel J, Delezoide AL, Audollent S, Augé J, et al: Expression of the PAX2 gene in human embryos and exclusion in the CHARGE syndrome. Am J Med Genet 93:85–88 (2000).1086910710.1002%2F1096-8628%2820000717%2993%3A2%3C85%3A%3AAID-AJMG1%3E3.0.CO%3B2-B – reference: Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, et al: Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur J Cell Biol 81:592–598 (2002).1249499610.1078%2F0171-9335-00278 – reference: Edson MA, Nagaraja AK, Matzuk MM: The mammalian ovary from genesis to revelation. Endocr Rev 30:624–712 (2009).1977620910.1210%2Fer.2009-0012 – reference: Huhtaniemi IT: LH and FSH receptor mutations and their effects on puberty. Horm Res 57 Suppl 2:35–38 (2002).10.1159%2F000058098 – reference: Cotton LM, O’Bryan MK, Hinton BT: Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 29:193–216 (2008).1821621810.1210%2Fer.2007-0028 – reference: Lin Y, Liu A, Zhang S, Ruusunen T, Kreidberg JA, et al: Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Dev Dyn 222:26–39 (2005).10.1002%2Fdvdy.1164 – reference: Reijo RA, Dorfman DM, Slee R, Renshaw AA, Loughlin KR, et al: DAZ family proteins exist throughout male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice. Biol Repod 63:1490–1496 (2000).1105855610.1095%2Fbiolreprod63.5.1490 – reference: Schulze W, Davidoff MS, Holstein AF: Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol (Copenh) 115:373–377 (1987).3303786 – reference: Petersen C, Söder O: The Sertoli cell – a hormonal target and ‘super’ nurse for germ cells that determines testicular size. Horm Res 66:153–161 (2006).1680431510.1159%2F000094142 – reference: Combes AN, Spiller CM, Harley VR, Sinclair AH, Dunwoodie SL, et al: Gonadal defects in Cited2 -mutant mice indicate a role for SF1 in both testis and ovary differentiation. Int J Dev Biol 54:683–689 (2010).1975738010.1387%2Fijdb.092920ac – reference: Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, et al: Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 10:8521–8530 (2004).1562363410.1158%2F1078-0432.CCR-04-1285 – reference: Cheng YS, Kuo PL, Teng YN, KuoY, Chung CL, et al: Association of spermatogenic failure with decreased CDC25A expression in infertile men. Hum Reprod 21:2346–2352 (2006).1672062310.1093%2Fhumrep%2Fdel163 – reference: Royer-Pokora B, Beier M, Henzler M, Alam R, Schumacher V, et al: Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A 127A:249–257 (2004).1515077510.1002%2Fajmg.a.30015 – reference: Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP: The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 97:9585–9590 (2000).1092020210.1073%2Fpnas.160274797 – reference: Gibbons RJ, Picketts DJ, Villard L, Higgs DR: Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X Syndrome). Cell 80:837–845 (1995).769771410.1016%2F0092-8674%2895%2990287-2 – reference: Wylie C: Germ cells. Cell 96:165–174 (1999).998821210.1016%2FS0092-8674%2800%2980557-7 – reference: Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL: A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22:125–126 (1999).1036924710.1038%2F9629 – reference: Ehmcke J, Luetjens CM, Schlatt S: Clonal organization of proliferating spermatogonial stem cells in adult males of two species of non-human primates, Macaca mulatta and Callithrix jacchus. Biol Reprod72:293–300 (2005). – reference: Boehmer AL, Brinkmann AO, Sandkuijl LA, Halley DJ, Niermeijer MF, et al: 17 Beta-hydroxysteroid dehydrogenase-3 deficiency: diagnosis, phenotypic variability, population genetics, and worldwide distribution of ancient and de novo mutations. J Clin Endocrinol Metab 84:4713–4721 (1999).1059974010.1210%2Fjc.84.12.4713 – reference: Chemes HE, Cigorraga S, Bergada C, Schteingart H, Rey R, et al: Isolation of human Leydig cell mesenchymal precursors from patients with the androgen insensitivity syndrome: testosterone production and response to human chorionic gonadotropin stimulation in culture. Biol Reprod 46:793–801 (1992).159133510.1095%2Fbiolreprod46.5.793 – reference: Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J: The paired-box transcription factor, PAX2, positively modulates expression of the Wilms’ tumor suppressor gene (WT1). Oncogene 13:447–453 (1996).8760285 – reference: Svechnikov K, Landreh L, Weisser J, Izzo G, Colón E, et al: Origin, development and regulation of human Leydig cells. Horm Res Paediatr 73:93–101 (2010).10.1159%2F000277141 – reference: O’Shaughnessy PJ, Baker PJ, Johnston H: The foetal Leydig cell – differentiation, function and regulation. Int J Androl 29:90–95 (2006).1646652810.1111%2Fj.1365-2605.2005.00555.x – reference: Auchus RJ: The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol Metab Clin North Am 30:101–119 (2001).1134493010.1016%2FS0889-8529%2808%2970021-5 – reference: Wilhelm D, Washburn LL, Truong V, Fellous M, Eicher EM, et al: Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mech Dev 126:324–336 (2009).1926932010.1016%2Fj.mod.2009.02.006 – reference: Schepers GE, Bullejos M, Hosking BM, Koopman P: Cloning and characterisation of the Sry-related transcription factor gene Sox8. Nucleic Acids Res 28:1473–1480 (2000).1068494410.1093%2Fnar%2F28.6.1473 – reference: Hernández S, Toll A, Baselga E, Ribé A, Azua-Romeo J, et al: Fibroblast growth factor receptor 3 mutations in epidermal nevi and associated low grade bladder tumors. J Invest Dermatol 127:1664–1666 (2007).17255960 – reference: Amann RP: The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 29:469–487 (2008).1849733710.2164%2Fjandrol.107.004655 – reference: Wood HM, Elder JS: Cryptorchidism and testicular cancer: separating fact from fiction. J Urol 181:452–461 (2009).1908485310.1016%2Fj.juro.2008.10.074 – reference: Kristensen DM, Nielsen JE, Kalisz M, Dalgaard MD, Audouze K, et al: OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres. Mol Hum Reprod 2010, E-pub ahead of print. – reference: Sekido R, Lovell-Badge R: Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934 (2008).1845413410.1038%2Fnature06944 – reference: Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP: Female development in mammals is regulated by WNT-4 signalling. Nature 397:405–409 (1999).998940410.1038%2F17068 – reference: Clark AM, Garland KK, Russell LD: Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63:1825–1838 (2000).1109045510.1095%2Fbiolreprod63.6.1825 – reference: Jackson AE, O’Leary PC, Ayers MM, de Kretser DM: The effects of ethylene dimethane sulphonate (EDS) on rat Leydig cells: evidence to support a connective tissue origin of Leydig cells. Biol Reprod 35:425–437 (1986).302124910.1095%2Fbiolreprod35.2.425 – reference: Courant F, Aksglaede L, Antignac JP, Monteau F, Sorensen K, et al: Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 95:82–92 (2010).1993339310.1210%2Fjc.2009-1140 – reference: Heller CG, Clermont Y: Kinetics of the germinal epithelium in man. Recent Prog Horm Res 20:545–575 (1964).14285045 – reference: Viger RS, Silversides DW, Tremblay JJ: New insights into the regulation of mammalian sex determination and male sex differentiation. Vitam Horm 70:387–413 (2005).1572781210.1016%2FS0083-6729%2805%2970013-3 – reference: Heller CG, Clermont Y: Spermatogenesis in man: an estimate of its duration. Science 140:184–186 (1963).1395358310.1126%2Fscience.140.3563.184 – reference: Hossain A, Saunders GF: The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276:16817–16823 (2001).1127846010.1074%2Fjbc.M009056200 – reference: Stocco DM: StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63:193–213 (2001).1118195410.1146%2Fannurev.physiol.63.1.193 – reference: Parker KL, Schedl A, Schimmer BP: Gene interactions in gonadal development. Annu Rev Physiol 61:417–433 (1999).1009969510.1146%2Fannurev.physiol.61.1.417 – reference: Jeanpierre C, Denamur E, Henry I, Cabanis MO, Luce S, et al: Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am J Hum Genet 62:824–833 (1998).952936410.1086%2F301806 – reference: Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL: Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab 86:3820–3825 (2001).1150281810.1210%2Fjc.86.8.3820 – reference: Goriely A, Hansen RM, Taylor IB, Olesen IA, Jacobsen GK, et al: Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 41:1247–1252 (2009).1985539310.1038%2Fng.470 – reference: de Rooij DG, Grootegoed JA: Spermatogonial stem cells. Curr Opin Cell Biol10:694–701 (1998). – reference: Thummer RP, Drenth-Diephuis LJ, Carney KE, Eggen BJ: Functional characterization of single-nucleotide polymorphisms in the human undifferentiated embryonic-cell transcription factor 1 gene. DNA Cell Biol 29:241–248 (2010).2021889710.1089%2Fdna.2009.0981 – reference: Pesce M, Farrace MG, Piacentini M, Dolci S, De Felici M: Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 118:1089–1094 (1993).7505738 – reference: Lei ZM, Mishra S, Zou W, Xu B, Foltz M, et al: Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol 15:184–200 (2001).1114574910.1210%2Fme.15.1.184 – reference: O’Shaughnessy PJ, Abel M, Charlton HM, Hu B, Johnston H, et al: Altered expression of genes involved in regulation of vitamin A metabolism, solute transportation, and cytoskeletal function in the androgen-insensitive tfm mouse testis. Endocrinology 148:2914–2924 (2007b).1733206610.1210%2Fen.2006-1412 – reference: Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, et al: Isolation of the bovine and human genes for müllerian inhibiting substance and expression of the human gene in animal cells. Cell 45:685–698 (1986).375479010.1016%2F0092-8674%2886%2990783-X – reference: Kossack N, Simoni M, Richter-Unruh A, Themmen AP, Gromoll J: Mutations in a novel, cryptic exon of the luteinizing hormone/chorionic gonadotropin receptor gene cause male pseudohermaphroditism. PLoS Med 5:e88 (2008).1843329210.1371%2Fjournal.pmed.0050088 – reference: Cupp AS, Uzumcu M, Skinner MK: Chemotactic role of neurotropin 3 in the embryonic testis that facilitates male sex determination. Biol Reprod 68:2033–2037 (2003).1260639010.1095%2Fbiolreprod.102.012617 – reference: Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S: Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664 (1997).9165114 – reference: Cheng CY, Mruk DD: An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 44:245–263 (2009).1962206310.1080%2F10409230903061207 – reference: Failli V, Rogard M, Mattei MG, Vernier P, Rétaux S: Lhx9 and Lhx9alpha LIM-homeodomain factors: genomic structure, expression patterns, chromosomal localization, and phylogenetic analysis. Genomics 64:307–317 (2000).1075609810.1006%2Fgeno.2000.6123 – reference: Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, et al: Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development 119:1329–1341 (1993).8306891 – reference: John Radcliffe Hospital Cryptorchidism Study Group: Cryptorchidism: a prospective study of 7500 consecutive male births, 1984–1988. Arch Dis Child 67:892–899 (1992).135564310.1136%2Fadc.67.7.892 – reference: Forest MG, Sizonenko PC, Cathiard AM, Bertrand J: Hypophyso-gonadal function in humans during the first year of life. 1. Evidence for testicular activity in early infancy. J Clin Invest 53:819–828 (1974).481244110.1172%2FJCI107621 – reference: McLaren A, Southee D: Entry of mouse embryonic germ cells into meiosis. Dev Biol 187:107–113 (1997).922467810.1006%2Fdbio.1997.8584 – reference: Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, et al: Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14:62–68 (1996).878282110.1038%2Fng0996-62 – reference: Sharpe RM: Perinatal determinants of adult testis size and function. Editorial. JCEM 91:2503–2505 (2006).16825576 – reference: Chassot AA, Ranc F, Gregoire EP, Roepers- Gajadien HL, Taketo MM, et al: Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 17:1264–1277 (2008).1825009810.1093%2Fhmg%2Fddn016 – reference: Katoh Y, Katoh M: FGFR2-related pathogenesis and FGFR2-targeted therapeutics. Int J Mol Med 23:307–311 (2009).19212647 – reference: Morelli MA, Cohen PE: Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130:761–781 (2005).1632253710.1530%2Frep.1.00865 – reference: Colón E, Zaman F, Axelson M, Larsson O, Carlsson-Skwirut C, et al: Insulin-like growth factor-I is an important antiapoptotic factor for rat leydig cells during postnatal development. Endocrinology 148:128–139 (2007).1702353210.1210%2Fen.2006-0835 – reference: Park SY, Jamieson JL: Minireview: transcriptional regulation of gonadal development and differentiation. Endocrinology 146:1035–1042 (2005).1560420410.1210%2Fen.2004-1454 – reference: Salenave S, Chanson P, Bry H, Pugeat M, Cabrol S, et al: Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 93:758–763 (2008).1816047210.1210%2Fjc.2007-1168 – reference: Motonaga K, Itoh M, Hachiya Y, Endo A, Kato K, et al: Age related expression of Werner’s syndrome protein in selected tissues and coexpression of transcription factors. J Clin Pathol 55:195–199 (2002).11896071 – reference: Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, et al: R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309 (2006).1704160010.1038%2Fng1907 – reference: Grumbach M: A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab 90:3122–3127 (2005).1572819810.1210%2Fjc.2004-2465 – reference: Stikkelbroeck NM, Otten BJ, Pasic A, Jager GJ, Sweep CG, et al: High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab 86:5721–5728 (2001).1173942810.1210%2Fjc.86.12.5721 – reference: Volcik KA, Zhu H, Finnell RH, Shaw GM, Canfield M, et al: Evaluation of the Cited2 gene and risk for spina bifida and congenital heart defects. Am J Med Genet A 126A:324–325 (2004).1505485110.1002%2Fajmg.a.20578 – reference: Simoni M, Gromoll J, Nieschlag E: The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 18:739–773 (1997).940874210.1210%2Fer.18.6.739 – reference: Albrecht KH, Eicher EM: Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 204:92–107 (2001).10.1006%2Fdbio.2001.0438 – reference: Chemes HE, Gottlieb SE, Pasqualini T, Domenichini E, Rivarola MA, et al: Response to acute hCG stimulation and steroidogenic potential of Leydig cell fibroblastic precursors in humans. J Androl 6:102–112 (1985).3886616 – reference: Gromoll J, Eiholzer U, Nieschlag E, Simoni M: Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: differential action of human chorionic gonadotropin and LH. J Clin Endocrinol Metab 85:2281–2286 (2000).1085246410.1210%2Fjc.85.6.2281 – reference: Colvin JS, White AC, Pratt SJ, Ornitz DM: Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095–2106 (2001b).11493531 – reference: Kostova E, Yeung CH, Leutjens CM, Brune M, Nieschlag E, et al: Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Mol Hum Reprod 13:85–93 (2007).1711420610.1093%2Fmolehr%2Fgal101 – reference: Sharpe RM, McKinnell C, Kivlin C, Fisher JS: Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784 (2003).1277309910.1530%2Frep.0.1250769 – reference: Simard J, Ricketts ML, Moisan AM, Tardy V, Peter M, et al: A new insight into the molecular basis of 3beta-hydroxysteroid dehydrogenase deficiency. Endocr Res 26:761–770 (2000).1119645210.3109%2F07435800009048597 – reference: De Baere E, Dixon MJ, Small KW, Jabs EW, Leroy BP, et al: Spectrum of FOXL2 gene mutations in blepharophimosis-ptosis-epicanthus inversus (BPES) families demonstrates a genotype-phenotype correlation. Hum Mol Genet 10:1591–1600 (2001).1146827710.1093%2Fhmg%2F10.15.1591 – reference: Juul A, Aksglaede L, Lund AM, Duno M, Skakkebaek NE, et al: Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene: case report. Hum Reprod 22:1907–1911(2007).1755410510.1093%2Fhumrep%2Fdem126 – reference: Ge RS, Dong Q, Sottas CM, Papadopoulos V, Zirkin BR, et al: In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc Natl Acad Sci USA 103:2719–2724 (2006).1646714110.1073%2Fpnas.0507692103 – reference: Krishnamurthy H, Kats R, Danilovich N, Javeshghani D, Sairam MR: Intercellular communication between Sertoli cells and Leydig cells in the absence of follicle-stimulating hormone-receptor signaling. Biol Reprod 65:1201–1207 (2001).1156674410.1095%2Fbiolreprod65.4.1201 – reference: Meistrich ML, van Beek ME: Spermatogonial stem cells, in Desjardins C, Ewing LL (eds): Cell and Molecular Biology of the Testis, pp 266–295 (Oxford University Press, New York 1993). – reference: Brennan D, Hu Y, Joubeh S, Choi YW, Whitaker-Menezes D, et al: Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J Cell Sci 120:758–771 (2007).1728451510.1242%2Fjcs.03392 – reference: Petersen C, Froysa B, Söder O: Endotoxin and proinflammatory cytokines modulate Sertoli cell proliferation in vitro. J Reprod Immunol 61:13–30 (2004).1502747510.1016%2Fj.jri.2003.10.003 – reference: Kim JY, Lee CS, Kim HO, Jo YH, Lee J, et al: The association between genetic polymorphisms in CYP19 and breast cancer risk in Korean women. Oncol Rep 22:487–492 (2009).19639193 – reference: Behringer RR, Finegold MJ, Cate RL: Müllerian-inhibiting substance function during mammalian sexual development. Cell 79:415–425 (1994).795480910.1016%2F0092-8674%2894%2990251-8 – reference: Boisen KA, Kaleva M, Main KM, Virtanen HE, Haavisto AM, et al: Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet 363:1264–1269 (2004).1509427010.1016%2FS0140-6736%2804%2915998-9 – reference: Tan KA, De Gendt K, Atanassova N, Walker M, Sharpe RM, et al: The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or sertoli cell-selective ablation of the androgen receptor. Endocrinology 146:2674–2683 (2005).1576103810.1210%2Fen.2004-1630 – reference: Kristensen DM, Nielsen JE, Skakkebaek NE, Graem N, Jacobsen GK, et al: Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Hum Reprod 23:775–782 (2008).1828124410.1093%2Fhumrep%2Fden010 – reference: Ketola I, Rahman N, Toppari J, Bielinska M, Porter-Tinge SB, et al: Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology 140:1470–1480 (1999).1006787610.1210%2Fen.140.3.1470 – reference: Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, et al: The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197 (1990).216415910.1038%2F346194a0 – reference: Zivkovic D, Bica DT, Hadziselimovic F: Relationship between adult dark spermatogonia and secretory capacity of Leydig cells in cryptorchidism. Paediatr Urol 100:1147–1149 (2007). – reference: Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, et al: Testis determination requires insulin receptor family function in mice. Nature 426:291–295 (2003).1462805110.1038%2Fnature02059 – reference: Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, et al: Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development 132:3045–3054 (2005).1594418810.1242%2Fdev.01890 – reference: Loffler KA, Zarkower D, Koopman P: Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology 144:3237–3243 (2003).1281058010.1210%2Fen.2002-0095 – reference: Berkowitz GS, Lapinski RH, Dolgin SE, Gazella JG, Bodian CA, et al: Prevalence and natural history of cryptorchidism. Pediatrics 92:44–49 (1993).8100060 – reference: Capel B, Albrecht KH, Washburn LL, Eicher EM: Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84:127–131 (1999).1047312610.1016%2FS0925-4773%2899%2900047-7 – reference: Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, et al: Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187 (2006).1670062910.1371%2Fjournal.pbio.0040187 – reference: Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, et al: Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat 29:220–226 (2008).1808556710.1002%2Fhumu.20665 – reference: Hadziselimovic F, Herzog B: Importance of early postnatal germ cell maturation for fertility of cryptorchid males. Horm Res 55:6–10 (2001b).1142373510.1159%2F000049956 – reference: Jagła M, Kruczek P, Kwinta P: Association between X-linked lissencephaly with ambiguous genitalia syndrome and lenticulostriate vasculopathy in neonate. J Clin Ultrasound 36:387–390 (2008).1841223210.1002%2Fjcu.20473 – reference: Nurmio M, Keros V, Lähteenmäki P, Salmi T, Kallajoki M, et al: Effect of childhood acute lymphoblastic leukemia therapy on spermatogonia populations and future fertility. J Clin Endocrinol Metab 94:2119–2122 (2009).1931844710.1210%2Fjc.2009-0060 – reference: Oliver-Bonet M, Turek PJ, Sun F, Ko E, Martin RH: Temporal progression of recombination in human males. Mol Hum Reprod 11:517–522 (2005).1612308110.1093%2Fmolehr%2Fgah193 – reference: Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, et al: The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131:933–942 (2004).1473674510.1242%2Fdev.00969 – reference: Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, et al: Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450 (1990).224714910.1038%2F348448A0 – reference: Sharpe RM: Regulation of spermatogenesis, in Knobil E, Neill JD (eds): The Physiology of Reproduction, pp 1363–1394 (Raven Press, New York 1994). – reference: Claahsen-van der Grinten HL, Hulsbergen-van de Kaa CA, Otten BJ: Ovarian adrenal rest tissue in congenital adrenal hyperplasia–a patient report. J Pediatr Endocrinol Metab 19:177–182 (2006).16562593 – reference: Zhengwei Y, McLachlan RI, Bremner WJ, Wreford NG: Quantitative (stereological) study of the normal spermatogenesis in the adult monkey (Macaca fascicularis). J Androl 18:681–687 (1997).9432141 – reference: Wikstrom AM, Bay K, Hero M, Andersson AM, Dunkel L: Serum insulin-like factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J Clin Endocrinol Metab 91:4705–4708 (2006).1692625610.1210%2Fjc.2006-0669 – reference: Kollin C, Karpe B, Hesser U, Granholm T, Ritzén EM: Surgical treatment of unilaterally undescended testes: testicular growth after randomization to orchiopexy at age 9 months or 3 years. J Urol 178:1589–1593 (2007).1770704510.1016%2Fj.juro.2007.03.173 – reference: Ruggieri M, Pavone P, Scapagnini G, Romeo L, Lombardo I, et al: The aristaless (Arx) gene: one gene for many ‘interneuronopathies’. Front Biosci (Elite Ed) 2:701–710 (2010). – reference: Yan W, Kero J, Huhtaniemi I, Toppari J: Stem cell factor functions as a survival factor for mature Leydig cells and a growth factor for precursor Leydig cells after ethylene dimethane sulfonate treatment: implication of a role of the stem cell factor/c-Kit system in Leydig cell development. Dev Biol 227:169–182 (2000).1107668510.1006%2Fdbio.2000.9885 – reference: Torres M, Gómez-Pardo E, Dressler GR, Gruss P: Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065 (1995).8575306 – reference: Charest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, et al: A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 5:573–581 (1991).168142610.1210%2Fmend-5-4-573 – reference: Haider SG, Laue D, Schwochau G, Hilscher B: Morphological studies on the origin of adult-type Leydig cells in rat testis. Ital J Anat Embryol 100 Suppl 1:535–541 (1995). – reference: Schmahl J, Eicher EM, Washburn LL, Capel B: Sry induces cell proliferation in the mouse gonad. Development 127:65–73 (2000).10654601 – reference: Mesiano S, Jaffe RB: Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev 18:378–403 (1997).918356910.1210%2Fer.18.3.378 – reference: Beleza-Meireles A, Lundberg F, Lagerstedt K, Zhou X, Omrani D, et al: FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur J Hum Genet 15:405–410 (2007).1726486710.1038%2Fsj.ejhg.5201777 – reference: Steger K, Pauls K, Klonisch T, Franke FE, Bergmann M: Expression of protamine-1 and-2 mRNA during human spermiogenesis. Mol Hum Reprod 6:219–225 (2000).1069426810.1093%2Fmolehr%2F6.3.219 – ident: ref70 doi: 10.1210%2Fjcem-65-6-1210 – ident: ref78 doi: 10.1093%2Fhumrep%2Fdem126 – ident: ref28 doi: 10.1080%2F10409230903061207 – ident: ref37 doi: 10.1016%2Fj.juro.2007.08.158 – ident: ref134 doi: 10.1016%2Fj.tig.2008.10.008 – ident: ref46 doi: 10.1078%2F0171-9335-00278 – ident: ref56 doi: 10.1210%2Fjc.2004-2465 – ident: ref74 doi: 10.1038%2F348452a0 – ident: ref132 doi: 10.1242%2Fdev.00969 – ident: ref121 doi: 10.1073%2Fpnas.0600962103 – ident: ref33 doi: 10.1210%2Fen.2006-0835 – ident: ref133 doi: 10.1038%2Fnature06944 – ident: ref156 doi: 10.1093%2Fhumrep%2Fdeq053 – ident: ref64 doi: 10.1007%2Fs00392-009-0751-4 – ident: ref76 doi: 10.1086%2F301806 – ident: ref13 doi: 10.1038%2F348448A0 – ident: ref42 doi: 10.1093%2Fhmg%2F10.15.1591 – ident: ref111 doi: 10.1095%2Fbiolreprod.108.069492 – ident: ref103 doi: 10.1158%2F0008-5472.CAN-06-4111 – ident: ref90 doi: 10.1210%2Fen.2002-0095 – ident: ref93 doi: 10.1242%2Fdev.024653 – ident: ref94 doi: 10.1038%2F347667a0 – ident: ref79 doi: 10.1210%2Fen.140.3.1470 – ident: ref34 doi: 10.1016%2FS0092-8674%2801%2900284-7 – ident: ref137 doi: 10.3109%2F07435800009048597 – ident: ref116 doi: 10.1038%2F353431a0 – ident: ref85 doi: 10.1093%2Fmolehr%2Fgal101 – ident: ref91 doi: 10.1016%2Fj.tem.2004.02.002 – ident: ref49 doi: 10.1210%2Fjc.2004-0575 – ident: ref83 doi: 10.1016%2Fj.juro.2007.03.173 – ident: ref20 doi: 10.1242%2Fjcs.03392 – ident: ref105 doi: 10.1093%2Fmolehr%2Fgah193 – ident: ref138 doi: 10.1210%2Fer.18.6.739 – ident: ref43 doi: 10.1095%2Fbiolreprod.103.016394 – ident: ref81 doi: 10.1371%2Fjournal.pbio.0040187 – ident: ref8 doi: 10.1016%2FS0889-8529%2808%2970021-5 – ident: ref66 doi: 10.1158%2F1078-0432.CCR-04-1285 – ident: ref18 doi: 10.1016%2FS0140-6736%2804%2915998-9 – ident: ref25 doi: 10.1210%2Fmend-5-4-573 – ident: ref117 doi: 10.1159%2F000094142 – ident: ref99 doi: 10.1038%2Fng0996-62 – ident: ref147 doi: 10.1002%2F1096-8628%2820000717%2993%3A2%3C85%3A%3AAID-AJMG1%3E3.0.CO%3B2-B – ident: ref150 doi: 10.1016%2Fj.cell.2009.11.021 – ident: ref136 doi: 10.1038%2F374425a0 – ident: ref32 doi: 10.1002%2Faja.1001260106 – ident: ref155 doi: 10.1002%2Fajmg.a.20578 – ident: ref157 doi: 10.1002%2Fbdra.20343 – ident: ref14 doi: 10.1159%2F000152037 – ident: ref148 doi: 10.1089%2Fdna.2009.0981 – ident: ref29 doi: 10.1093%2Fhumrep%2Fdel163 – ident: ref162 doi: 10.1006%2Fdbio.2000.9885 – ident: ref96 doi: 10.1006%2Fdbio.1997.8584 – ident: ref47 doi: 10.1006%2Fgeno.2000.6123 – ident: ref146 doi: 10.1210%2Fen.2004-1630 – ident: ref82 doi: 10.1038%2Fng1009 – ident: ref15 doi: 10.1086%2F316893 – ident: ref84 doi: 10.1371%2Fjournal.pmed.0050088 – ident: ref112 doi: 10.1146%2Fannurev.physiol.61.1.417 – ident: ref142 doi: 10.1146%2Fannurev.physiol.63.1.193 – ident: ref1 doi: 10.1038%2F9629 – ident: ref26 doi: 10.1093%2Fhmg%2Fddn016 – ident: ref54 doi: 10.1038%2Fng.470 – ident: ref38 doi: 10.1210%2Fer.2007-0028 – ident: ref115 doi: 10.1101%2Fgad.5.8.1345 – ident: ref4 doi: 10.2164%2Fjandrol.107.004655 – ident: ref52 doi: 10.1073%2Fpnas.0507692103 – ident: ref88 doi: 10.1210%2Fme.15.1.184 – ident: ref97 doi: 10.1006%2Fexcr.1998.4215 – ident: ref100 doi: 10.1530%2Frep.1.00865 – ident: ref50 doi: 10.1038%2F372525a0 – ident: ref102 doi: 10.1038%2Fnature02059 – ident: ref151 doi: 10.1038%2F17068 – ident: ref118 doi: 10.1016%2FS0303-7207%2801%2900485-3 – ident: ref124 doi: 10.1095%2Fbiolreprod63.5.1490 – ident: ref153 doi: 10.1038%2F90046 – ident: ref3 doi: 10.1006%2Fdbio.2001.0438 – ident: ref75 doi: 10.1002%2Fjcu.20473 – ident: ref57 doi: 10.1016%2FS0140-6736%2801%2906274-2 – ident: ref12 doi: 10.1006%2Fscdb.1998.0204 – ident: ref128 doi: 10.1074%2Fjbc.M304067200 – ident: ref125 doi: 10.1111%2Fj.1651-2227.2006.00159.x – ident: ref27 doi: 10.1095%2Fbiolreprod46.5.793 – ident: ref123 doi: 10.1038%2F84735 – ident: ref5 doi: 10.1111%2Fj.1365-2605.2006.00714.x – ident: ref67 doi: 10.1309%2F6Q0JB9CCGRQ7RKCQ – ident: ref53 doi: 10.1016%2F0092-8674%2895%2990287-2 – ident: ref59 doi: 10.1016%2FS0925-4773%2899%2900123-9 – ident: ref86 doi: 10.1095%2Fbiolreprod65.4.1201 – ident: ref119 doi: 10.1016%2FS0303-7207%2801%2900680-3 – ident: ref87 doi: 10.1093%2Fhumrep%2Fden010 – ident: ref106 doi: 10.1111%2Fj.1365-2605.2005.00555.x – ident: ref65 doi: 10.1159%2F000207486 – ident: ref6 doi: 10.1210%2Fjc.82.12.3976 – ident: ref135 doi: 10.1530%2Frep.0.1250769 – ident: ref51 doi: 10.1038%2Fng1900 – ident: ref120 doi: 10.1016%2Fj.jri.2003.10.003 – ident: ref149 doi: 10.1002%2Fhumu.20665 – ident: ref139 doi: 10.1016%2Fj.beem.2007.05.002 – ident: ref107 doi: 10.1210%2Fjc.2007-1690 – ident: ref35 doi: 10.1387%2Fijdb.092920ac – ident: ref62 doi: 10.1095%2Fbiolreprod.109.078550 – ident: ref69 doi: 10.1159%2F000058098 – ident: ref39 doi: 10.1210%2Fjc.2009-1140 – ident: ref21 doi: 10.1093%2Fhmg%2Fddp237 – ident: ref58 doi: 10.1159%2F000049956 – ident: ref101 doi: 10.1016%2FS1043-2760%2898%2900142-8 – ident: ref152 doi: 10.1210%2Fendo-123-3-1449 – ident: ref55 doi: 10.1210%2Fjc.85.6.2281 – ident: ref63 doi: 10.1126%2Fscience.140.3563.184 – ident: ref158 doi: 10.1210%2Fjc.2006-0669 – ident: ref24 doi: 10.1016%2F0092-8674%2886%2990783-X – ident: ref36 doi: 10.1210%2Fjc.2003-031240 – ident: ref44 doi: 10.1210%2Fme.2006-0534 – ident: ref72 doi: 10.1093%2Fmolehr%2Fgag025 – ident: ref130 doi: 10.1016%2FS0012-1606%2803%2900122-2 – ident: ref31 doi: 10.1095%2Fbiolreprod63.6.1825 – ident: ref110 doi: 10.1210%2Fen.2004-1454 – ident: ref2 doi: 10.1210%2Fjc.87.4.1829 – ident: ref95 doi: 10.1038%2Fnm.f.1895 – ident: ref22 doi: 10.1016%2FS0925-4773%2899%2900047-7 – ident: ref30 doi: 10.1095%2Fbiolreprod51.6.1193 – ident: ref129 doi: 10.1093%2Fnar%2F28.6.1473 – ident: ref159 doi: 10.1016%2Fj.mod.2009.02.006 – ident: ref145 doi: 10.1016%2F0888-7543%2895%2980059-U – ident: ref61 doi: 10.1210%2Fjc.2004-0935 – ident: ref17 doi: 10.1210%2Fjc.84.12.4713 – ident: ref113 doi: 10.1038%2Fng1907 – ident: ref60 doi: 10.1007%2Fs00774-008-0009-7 – ident: ref80 doi: 10.1210%2Fjc.2002-021647 – ident: ref141 doi: 10.1210%2Fjc.86.12.5721 – ident: ref154 doi: 10.1016%2FS0083-6729%2805%2970013-3 – ident: ref41 doi: 10.1095%2Fbiolreprod.102.012617 – ident: ref131 doi: 10.1242%2Fdev.01239 – ident: ref45 doi: 10.1210%2Fer.2009-0012 – ident: ref68 doi: 10.1074%2Fjbc.M009056200 – ident: ref11 doi: 10.1038%2Fsj.ejhg.5201777 – ident: ref40 doi: 10.1038%2F84781 – ident: ref143 doi: 10.1159%2F000277141 – ident: ref144 doi: 10.1210%2Fjc.86.8.3820 – ident: ref163 doi: 10.1038%2F3822 – ident: ref23 doi: 10.1073%2Fpnas.160274797 – ident: ref71 doi: 10.1210%2Fme.10.10.1261 – ident: ref89 doi: 10.1002%2Fdvdy.1164 – ident: ref9 doi: 10.1046%2Fj.1365-2605.2001.00277.x – ident: ref77 doi: 10.1136%2Fadc.67.7.892 – ident: ref108 doi: 10.1210%2Fen.2006-1412 – ident: ref73 doi: 10.1095%2Fbiolreprod35.2.425 – ident: ref127 doi: 10.1210%2Fjc.2007-1168 – ident: ref7 doi: 10.1016%2FS0092-8674%2800%2981527-5 – ident: ref10 doi: 10.1016%2F0092-8674%2894%2990251-8 – ident: ref109 doi: 10.1093%2Fhmg%2Fddi210 – ident: ref114 doi: 10.1093%2Fhumrep%2Fdei325 – ident: ref104 doi: 10.1210%2Fjc.2009-0060 – ident: ref122 doi: 10.1038%2F346194a0 – ident: ref160 doi: 10.1016%2Fj.juro.2008.10.074 – ident: ref92 doi: 10.1210%2Fjc.2004-0670 – ident: ref140 doi: 10.1093%2Fmolehr%2F6.3.219 – ident: ref161 doi: 10.1016%2FS0092-8674%2800%2980557-7 – ident: ref48 doi: 10.1172%2FJCI107621 – ident: ref98 doi: 10.1210%2Fer.18.3.378 – ident: ref126 doi: 10.1002%2Fajmg.a.30015 – ident: ref16 doi: 10.1038%2F35002622 – ident: ref19 doi: 10.1242%2Fdev.01890 |
SSID | ssj0001179039 ssj0060225 ssib033927647 ssib014289536 |
Score | 1.9887092 |
SecondaryResourceType | review_article |
Snippet | Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or... |
SourceID | swepub proquest pubmed crossref karger |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 199 |
SubjectTerms | Cell Lineage Humans Male Organogenesis Puberty - physiology Spermatogenesis - physiology Spermatozoa - cytology Testis - embryology Testis - physiology |
Title | Ontogenesis of Testis Development and Function in Humans |
URI | https://karger.com/doi/10.1159/000317090 https://www.ncbi.nlm.nih.gov/pubmed/20664245 https://www.proquest.com/docview/754022124 http://kipublications.ki.se/Default.aspx?queryparsed=id:121280394 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate isbn: 9783805595681 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1661-5433 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0060225 issn: 1661-5425 databaseCode: ABDBF dateStart: 20061201 isFulltext: true eisbn: 3805595697 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKxwMvCNiA8iULoYmXlDZxYuexBaoJCfbQTtpbZDsOmrol05o-sL9-d3HsGigS8BKlVzut7y7nO9_5Z0LeKZXrlEuQgNRZBNYvi_JSi0jHk0plkhmhMaP79Vt2csa-nKfng8EyqFratmqsb_fuK_kfqQIN5Iq7ZP9Bsv6hQIB7kC9cQcJw_SsZn9Zt8x2NlQUVWSFixiasA-pSAwuYulxJY7dmvwk90mWHuRx28osu7XZtatARW7M7no99wqK5xAT7PLGLN56-7KhZadXgdBwuKWA2PHdLCi6yTMQEYg1EJwuMI8zlUcrsRuWxCWkWzMJZVBYoDovSwD5O7WlI_VQb2wrq3614mtuyR3BuJvY00UCa11edOBGHHtO2u4nMlxfabvfIQcyzLB6Sg9n803zhzAxizGHS2n1OwEXkDlWtW5pD1DIES7UTegZuDlbC-uHjFiHHntyCOO3Y1aNXwRA--AEg4nT_b39yf-6vsdr_Zl9w8wtybeftrB6Rh32YQmdW5x6TgamfkMNZLdvm6gc9pl3hcJeROSQiUEPaVNSqIQ00ioIaUqeG9KKmVg2PyNni8-rjSdQfyBFpiOLbaFoZcAfB52RCm4oZNuVKlBX4oHmlkpJXWakSiBdYLmQJ76nS4BcxradKxGZS8uQpGdZNbZ4TKpUsheTMcMVZrKWUGpEFmSrVhOciGZH3jk-F7tHq8dCUy6KLWtO88Nwdkbe-6bWFaNnX6Mgy2zdxdOp4X4BhxWyZrE2z3RQcYpkYNJSNyDMrE9_VCXNEjq2Q_DcI1t6T1nBnihR4IdiLP_z6S_Jg9_69IsP2Zmteg5Pbqje90t4B4ZyTtw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ontogenesis+of+Testis+Development+and+Function+in+Humans&rft.jtitle=Sexual+Development&rft.au=Stukenborg%2C+J.B.&rft.au=Col%C3%B3n%2C+E.&rft.au=S%C3%B6der%2C+O.&rft.date=2010-09-01&rft.isbn=9783805595681&rft.issn=1661-5425&rft.eissn=1661-5433&rft.volume=4&rft.issue=4-5&rft.spage=199&rft.epage=212&rft_id=info:doi/10.1159%2F000317090&rft_id=info%3Apmid%2F20664245&rft.externalDocID=317090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-5425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-5425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-5425&client=summon |