Ontogenesis of Testis Development and Function in Humans

Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increase...

Full description

Saved in:
Bibliographic Details
Published inSexual Development Vol. 4; no. 4-5; pp. 199 - 212
Main Authors Stukenborg, J.B., Colón, E., Söder, O.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland 01.09.2010
Subjects
Online AccessGet full text
ISBN9783805595681
3805595689
ISSN1661-5425
1661-5433
1661-5433
DOI10.1159/000317090

Cover

Abstract Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritised agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed.
AbstractList Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritised agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed.
Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritized agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed.
Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritized agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed.Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or inherited gonadal dysfunction and infertility are not commonly associated with severe life-threatening phenotypes. Medical progress and increased societal interest have led to more prioritized agendas for reproductive health problems. Increasing attention is focused on disorders of sex development, fertility and sexual function. Despite this engagement, our understanding of the detailed molecular and cellular adverse events behind such problems is still incomplete. Critical early steps, such as determination of the gonads, occur at precise temporal windows of development. The sex chromosomes are obvious critical contributors, but many other human chromosomes also contribute to sex differentiation, engaging multiple genes and proteins. The aim of this review is to give an up-to-date and comprehensive summary of the events required for gonadal ontogenesis in the human male, from the stage of embryonic sex determination to postnatal maturation including puberty. The principal genes involved in these processes are tabulated and discussed. Morphological events relevant for human gonadal development are covered, in particular in connection with early germ cell maturation and spermatogenesis. Consequences of maldevelopment caused by, e.g. cryptorchidism, are discussed.
Author Colón, E.
Stukenborg, J.B.
Söder, O.
Author_xml – sequence: 1
  givenname: J.B.
  surname: Stukenborg
  fullname: Stukenborg, J.B.
– sequence: 2
  givenname: E.
  surname: Colón
  fullname: Colón, E.
– sequence: 3
  givenname: O.
  surname: Söder
  fullname: Söder, O.
  email: olle.soder@ki.se
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20664245$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:121280394$$DView record from Swedish Publication Index
BookMark eNptkU1P3DAQhl3YCli6h94Ryg31EPDEdmwfER8FCYnLcrYcZ7JKSextnLTi32O0HwfEySO_zzyyZ-Zk5oNHQn4CvQQQ-opSykBSTb-ROVNUCC1KLQ_ICZQl5IIzdkgWWqpdpmC2zwpxTBYx_kkOAKkp00fkuKBlyQsuToh69mNYocfYxiw02RLjmKpb_IddWPfox8z6OrufvBvb4LPWZw9Tb338Qb43tou42J6n5OX-bnnzkD89_368uX7KHedqzKFBKLjkjCuHDUcOslJ1wxnopmK1bMq6Ygwo18rWlPLKQcG4c1CpAmkt2SnJN974H9dTZdZD29vhzQTbmu3Va6rQiKRQPPEXG349hL9T-o3p2-iw66zHMEUjBadFkd6UyPMtOVU91nvzbjgJuNoAbggxDtgY1472YwzjYNvOADUf6zH79aSOX586dtKv2LMN-2qHFQ57chu_A-jhkSA
CitedBy_id crossref_primary_10_1016_j_biopha_2023_116063
crossref_primary_10_1002_imhj_21622
crossref_primary_10_1038_nrurol_2011_23
crossref_primary_10_3390_cancers14051190
crossref_primary_10_1111_jcmm_17837
crossref_primary_10_1016_j_socscimed_2011_05_051
crossref_primary_10_1210_jc_2012_3065
crossref_primary_10_1038_s41422_020_0283_z
crossref_primary_10_3390_biom14070840
crossref_primary_10_3390_cells10071696
crossref_primary_10_1093_humrep_dex369
crossref_primary_10_1093_hropen_hoae049
crossref_primary_10_1095_biolreprod_116_144154
crossref_primary_10_1038_s41526_023_00272_5
crossref_primary_10_1016_j_gyobfe_2012_09_017
crossref_primary_10_1007_s40618_020_01284_8
crossref_primary_10_1093_biolre_ioab014
crossref_primary_10_1371_journal_pone_0144029
crossref_primary_10_1016_j_beem_2019_101295
crossref_primary_10_1016_j_tice_2013_12_001
crossref_primary_10_1371_journal_pone_0093007
crossref_primary_10_1159_000355599
crossref_primary_10_3109_19396368_2012_694009
crossref_primary_10_1210_en_2015_1966
crossref_primary_10_1016_j_fct_2024_114656
Cites_doi 10.1210%2Fjcem-65-6-1210
10.1093%2Fhumrep%2Fdem126
10.1080%2F10409230903061207
10.1016%2Fj.juro.2007.08.158
10.1016%2Fj.tig.2008.10.008
10.1078%2F0171-9335-00278
10.1210%2Fjc.2004-2465
10.1038%2F348452a0
10.1242%2Fdev.00969
10.1073%2Fpnas.0600962103
10.1210%2Fen.2006-0835
10.1038%2Fnature06944
10.1093%2Fhumrep%2Fdeq053
10.1007%2Fs00392-009-0751-4
10.1086%2F301806
10.1038%2F348448A0
10.1093%2Fhmg%2F10.15.1591
10.1095%2Fbiolreprod.108.069492
10.1158%2F0008-5472.CAN-06-4111
10.1210%2Fen.2002-0095
10.1242%2Fdev.024653
10.1038%2F347667a0
10.1210%2Fen.140.3.1470
10.1016%2FS0092-8674%2801%2900284-7
10.3109%2F07435800009048597
10.1038%2F353431a0
10.1093%2Fmolehr%2Fgal101
10.1016%2Fj.tem.2004.02.002
10.1210%2Fjc.2004-0575
10.1016%2Fj.juro.2007.03.173
10.1242%2Fjcs.03392
10.1093%2Fmolehr%2Fgah193
10.1210%2Fer.18.6.739
10.1095%2Fbiolreprod.103.016394
10.1371%2Fjournal.pbio.0040187
10.1016%2FS0889-8529%2808%2970021-5
10.1158%2F1078-0432.CCR-04-1285
10.1016%2FS0140-6736%2804%2915998-9
10.1210%2Fmend-5-4-573
10.1159%2F000094142
10.1038%2Fng0996-62
10.1002%2F1096-8628%2820000717%2993%3A2%3C85%3A%3AAID-AJMG1%3E3.0.CO%3B2-B
10.1016%2Fj.cell.2009.11.021
10.1038%2F374425a0
10.1002%2Faja.1001260106
10.1002%2Fajmg.a.20578
10.1002%2Fbdra.20343
10.1159%2F000152037
10.1089%2Fdna.2009.0981
10.1093%2Fhumrep%2Fdel163
10.1006%2Fdbio.2000.9885
10.1006%2Fdbio.1997.8584
10.1006%2Fgeno.2000.6123
10.1210%2Fen.2004-1630
10.1038%2Fng1009
10.1086%2F316893
10.1371%2Fjournal.pmed.0050088
10.1146%2Fannurev.physiol.61.1.417
10.1146%2Fannurev.physiol.63.1.193
10.1038%2F9629
10.1093%2Fhmg%2Fddn016
10.1038%2Fng.470
10.1210%2Fer.2007-0028
10.1101%2Fgad.5.8.1345
10.2164%2Fjandrol.107.004655
10.1073%2Fpnas.0507692103
10.1210%2Fme.15.1.184
10.1006%2Fexcr.1998.4215
10.1530%2Frep.1.00865
10.1038%2F372525a0
10.1038%2Fnature02059
10.1038%2F17068
10.1016%2FS0303-7207%2801%2900485-3
10.1095%2Fbiolreprod63.5.1490
10.1038%2F90046
10.1006%2Fdbio.2001.0438
10.1002%2Fjcu.20473
10.1016%2FS0140-6736%2801%2906274-2
10.1006%2Fscdb.1998.0204
10.1074%2Fjbc.M304067200
10.1111%2Fj.1651-2227.2006.00159.x
10.1095%2Fbiolreprod46.5.793
10.1038%2F84735
10.1111%2Fj.1365-2605.2006.00714.x
10.1309%2F6Q0JB9CCGRQ7RKCQ
10.1016%2F0092-8674%2895%2990287-2
10.1016%2FS0925-4773%2899%2900123-9
10.1095%2Fbiolreprod65.4.1201
10.1016%2FS0303-7207%2801%2900680-3
10.1093%2Fhumrep%2Fden010
10.1111%2Fj.1365-2605.2005.00555.x
10.1159%2F000207486
10.1210%2Fjc.82.12.3976
10.1530%2Frep.0.1250769
10.1038%2Fng1900
10.1016%2Fj.jri.2003.10.003
10.1002%2Fhumu.20665
10.1016%2Fj.beem.2007.05.002
10.1210%2Fjc.2007-1690
10.1387%2Fijdb.092920ac
10.1095%2Fbiolreprod.109.078550
10.1159%2F000058098
10.1210%2Fjc.2009-1140
10.1093%2Fhmg%2Fddp237
10.1159%2F000049956
10.1016%2FS1043-2760%2898%2900142-8
10.1210%2Fendo-123-3-1449
10.1210%2Fjc.85.6.2281
10.1126%2Fscience.140.3563.184
10.1210%2Fjc.2006-0669
10.1016%2F0092-8674%2886%2990783-X
10.1210%2Fjc.2003-031240
10.1210%2Fme.2006-0534
10.1093%2Fmolehr%2Fgag025
10.1016%2FS0012-1606%2803%2900122-2
10.1095%2Fbiolreprod63.6.1825
10.1210%2Fen.2004-1454
10.1210%2Fjc.87.4.1829
10.1038%2Fnm.f.1895
10.1016%2FS0925-4773%2899%2900047-7
10.1095%2Fbiolreprod51.6.1193
10.1093%2Fnar%2F28.6.1473
10.1016%2Fj.mod.2009.02.006
10.1016%2F0888-7543%2895%2980059-U
10.1210%2Fjc.2004-0935
10.1210%2Fjc.84.12.4713
10.1038%2Fng1907
10.1007%2Fs00774-008-0009-7
10.1210%2Fjc.2002-021647
10.1210%2Fjc.86.12.5721
10.1016%2FS0083-6729%2805%2970013-3
10.1095%2Fbiolreprod.102.012617
10.1242%2Fdev.01239
10.1210%2Fer.2009-0012
10.1074%2Fjbc.M009056200
10.1038%2Fsj.ejhg.5201777
10.1038%2F84781
10.1159%2F000277141
10.1210%2Fjc.86.8.3820
10.1038%2F3822
10.1073%2Fpnas.160274797
10.1210%2Fme.10.10.1261
10.1002%2Fdvdy.1164
10.1046%2Fj.1365-2605.2001.00277.x
10.1136%2Fadc.67.7.892
10.1210%2Fen.2006-1412
10.1095%2Fbiolreprod35.2.425
10.1210%2Fjc.2007-1168
10.1016%2FS0092-8674%2800%2981527-5
10.1016%2F0092-8674%2894%2990251-8
10.1093%2Fhmg%2Fddi210
10.1093%2Fhumrep%2Fdei325
10.1210%2Fjc.2009-0060
10.1038%2F346194a0
10.1016%2Fj.juro.2008.10.074
10.1210%2Fjc.2004-0670
10.1093%2Fmolehr%2F6.3.219
10.1016%2FS0092-8674%2800%2980557-7
10.1172%2FJCI107621
10.1210%2Fer.18.3.378
10.1002%2Fajmg.a.30015
10.1038%2F35002622
10.1242%2Fdev.01890
ContentType Journal Article
Copyright 2010 S. Karger AG, Basel
Copyright_xml – notice: 2010 S. Karger AG, Basel
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1159/000317090
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 3805595697
9783805595698
EISSN 1661-5433
EndPage 212
ExternalDocumentID oai_swepub_ki_se_549884
20664245
10_1159_000317090
317090
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0R~
0~5
0~B
123
3O.
4.4
53G
8UI
AAYIC
ABDBF
ABJNI
ABPAZ
ACGFS
ACPSR
ADBBV
AENEX
AEYAO
AFJJK
ALDHI
ALMA_UNASSIGNED_HOLDINGS
AZPMC
CAG
COF
CS3
CYUIP
DU5
E0A
EBS
EJD
F5P
FB.
HZ~
IAO
IHR
ISR
IY7
KUZGX
N9A
O1H
O9-
P2P
RKO
UJ6
AAYXX
ABBTS
ABWCG
ACUHS
AHFRZ
CITATION
ITC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c448t-1fe12474348cef4e417b8df4319fb3d7f6db3310498ad004bc1234cc1b82e0d73
ISBN 9783805595681
3805595689
ISSN 1661-5425
1661-5433
IngestDate Tue Sep 30 03:32:33 EDT 2025
Fri Jul 11 16:20:04 EDT 2025
Wed Feb 19 01:57:09 EST 2025
Wed Oct 01 06:28:29 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Thu Aug 29 12:04:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4-5
Keywords Somatic cells
Germ cells
Human spermatogenesis
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
https://www.karger.com/Services/SiteLicenses
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c448t-1fe12474348cef4e417b8df4319fb3d7f6db3310498ad004bc1234cc1b82e0d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:121280394
PMID 20664245
PQID 754022124
PQPubID 23479
PageCount 14
ParticipantIDs swepub_primary_oai_swepub_ki_se_549884
crossref_citationtrail_10_1159_000317090
pubmed_primary_20664245
karger_primary_317090
proquest_miscellaneous_754022124
crossref_primary_10_1159_000317090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-00
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-00
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
PublicationTitle Sexual Development
PublicationTitleAlternate Sex Dev
PublicationYear 2010
References Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL: Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab 86:3820–3825 (2001).1150281810.1210%2Fjc.86.8.3820
Charest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, et al: A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 5:573–581 (1991).168142610.1210%2Fmend-5-4-573
Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, et al: Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 10:8521–8530 (2004).1562363410.1158%2F1078-0432.CCR-04-1285
Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, et al: WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 239:327–337 (2010).19918918
Wikstrom AM, Bay K, Hero M, Andersson AM, Dunkel L: Serum insulin-like factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J Clin Endocrinol Metab 91:4705–4708 (2006).1692625610.1210%2Fjc.2006-0669
Huhtaniemi IT: LH and FSH receptor mutations and their effects on puberty. Horm Res 57 Suppl 2:35–38 (2002).10.1159%2F000058098
Buehr M, McLaren A, Bartley A, Darling S: Proliferation and migration of primordial germ cells in WIWe mouse embryos. Dev Dyn 198:182–189 (1993).8136523
Salenave S, Chanson P, Bry H, Pugeat M, Cabrol S, et al: Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 93:758–763 (2008).1816047210.1210%2Fjc.2007-1168
Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, et al: Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev 5:1345–1356 (1991a).165127510.1101%2Fgad.5.8.1345
Thummer RP, Drenth-Diephuis LJ, Carney KE, Eggen BJ: Functional characterization of single-nucleotide polymorphisms in the human undifferentiated embryonic-cell transcription factor 1 gene. DNA Cell Biol 29:241–248 (2010).2021889710.1089%2Fdna.2009.0981
Ehmcke J, Luetjens CM, Schlatt S: Clonal organization of proliferating spermatogonial stem cells in adult males of two species of non-human primates, Macaca mulatta and Callithrix jacchus. Biol Reprod72:293–300 (2005).
Parker KL, Schedl A, Schimmer BP: Gene interactions in gonadal development. Annu Rev Physiol 61:417–433 (1999).1009969510.1146%2Fannurev.physiol.61.1.417
Steger K, Pauls K, Klonisch T, Franke FE, Bergmann M: Expression of protamine-1 and-2 mRNA during human spermiogenesis. Mol Hum Reprod 6:219–225 (2000).1069426810.1093%2Fmolehr%2F6.3.219
Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, et al: A novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab 89:5952–5958 (2004).1557974310.1210%2Fjc.2004-0575
Kostova E, Yeung CH, Leutjens CM, Brune M, Nieschlag E, et al: Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Mol Hum Reprod 13:85–93 (2007).1711420610.1093%2Fmolehr%2Fgal101
Grumbach M: A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab 90:3122–3127 (2005).1572819810.1210%2Fjc.2004-2465
Teerds KJ, De Rooij DG, Rommerts FF, Wensing CJ: The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment. J Androl 9:343–351 (1988).2853150
Cortes D, Kjellberg EM, Breddam M, Thorup J: The true incidence of cryptorchidism in Denmark. J Urol 179:314–318 (2008).1800601610.1016%2Fj.juro.2007.08.158
Behr R, Weinbauer GF: cAMP response element modulator (CREM): an essential factor for spermatogenesis in primates? Int J Androl 24:126–135 (2001).1138070110.1046%2Fj.1365-2605.2001.00277.x
Colvin JS, White AC, Pratt SJ, Ornitz DM: Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095–2106 (2001b).11493531
Arango NA, Lovell-Badge R, Behringer RR: Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99:409–419 (1999).1057118310.1016%2FS0092-8674%2800%2981527-5
Wood HM, Elder JS: Cryptorchidism and testicular cancer: separating fact from fiction. J Urol 181:452–461 (2009).1908485310.1016%2Fj.juro.2008.10.074
Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, et al: Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int J Androl 29:618–626 (2006).1701453110.1111%2Fj.1365-2605.2006.00714.x
Stikkelbroeck NM, Otten BJ, Pasic A, Jager GJ, Sweep CG, et al: High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab 86:5721–5728 (2001).1173942810.1210%2Fjc.86.12.5721
Eacker SM, Agrawal N, Qian K, Dichek HL, Gong EY, et al: Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol Endocrinol 22:623–635 (2008).1803269710.1210%2Fme.2006-0534
Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, et al: Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187 (2006).1670062910.1371%2Fjournal.pbio.0040187
Andersson AM, Juul A, Petersen JH, Müller J, Groome NP, et al: Serum inhibin B in healthy pubertal and adolescent boys: relation to age, stage of puberty, and follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol levels. J Clin Endocrinol Metab 82:3976–3981 (1997).939869910.1210%2Fjc.82.12.3976
Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, et al: Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur J Cell Biol 81:592–598 (2002).1249499610.1078%2F0171-9335-00278
Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, et al: Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat 29:220–226 (2008).1808556710.1002%2Fhumu.20665
Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP: Female development in mammals is regulated by WNT-4 signalling. Nature 397:405–409 (1999).998940410.1038%2F17068
Heller CG, Clermont Y: Kinetics of the germinal epithelium in man. Recent Prog Horm Res 20:545–575 (1964).14285045
Schmahl J, Colvin JS, Ornitz DM, Capel B: Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131:3627–3636 (2004).1522918010.1242%2Fdev.01239
Cheng YS, Kuo PL, Teng YN, KuoY, Chung CL, et al: Association of spermatogenic failure with decreased CDC25A expression in infertile men. Hum Reprod 21:2346–2352 (2006).1672062310.1093%2Fhumrep%2Fdel163
De Baere E, Dixon MJ, Small KW, Jabs EW, Leroy BP, et al: Spectrum of FOXL2 gene mutations in blepharophimosis-ptosis-epicanthus inversus (BPES) families demonstrates a genotype-phenotype correlation. Hum Mol Genet 10:1591–1600 (2001).1146827710.1093%2Fhmg%2F10.15.1591
Motonaga K, Itoh M, Hachiya Y, Endo A, Kato K, et al: Age related expression of Werner’s syndrome protein in selected tissues and coexpression of transcription factors. J Clin Pathol 55:195–199 (2002).11896071
Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, et al: CXorf6 is a causative gene for hypospadias. Nat Genet 38:1369–1371 (2006).1708618510.1038%2Fng1900
Colón E, Zaman F, Axelson M, Larsson O, Carlsson-Skwirut C, et al: Insulin-like growth factor-I is an important antiapoptotic factor for rat leydig cells during postnatal development. Endocrinology 148:128–139 (2007).1702353210.1210%2Fen.2006-0835
Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, et al: Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 14:2053–2062 (2005).1594419910.1093%2Fhmg%2Fddi210
Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, et al: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369 (2002).1237985210.1038%2Fng1009
Hossain A, Saunders GF: The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276:16817–16823 (2001).1127846010.1074%2Fjbc.M009056200
Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL: A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22:125–126 (1999).1036924710.1038%2F9629
Sharpe RM: Perinatal determinants of adult testis size and function. Editorial. JCEM 91:2503–2505 (2006).16825576
Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, et al: R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309 (2006).1704160010.1038%2Fng1907
Edson MA, Nagaraja AK, Matzuk MM: The mammalian ovary from genesis to revelation. Endocr Rev 30:624–712 (2009).1977620910.1210%2Fer.2009-0012
Herren T, Gerber PA, Duru F: Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a not so rare ‘‘disease of the desmosome’’ with multiple clinical presentations. Clin Res Cardiol 98:141–158 (2009).1920577710.1007%2Fs00392-009-0751-4
Sharpe RM: Regulation of spermatogenesis, in Knobil E, Neill JD (eds): The Physiology of Reproduction, pp 1363–1394 (Raven Press, New York 1994).
Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, et al: Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530 (1994).799092410.1038%2F372525a0
Wylie C: Germ cells. Cell 96:165–174 (1999).998821210.1016%2FS0092-8674%2800%2980557-7
Petersen C, Froysa B, Söder O: Endotoxin and proinflammatory cytokines modulate Sertoli cell proliferation in vitro. J Reprod Immunol 61:13–30 (2004).1502747510.1016%2Fj.jri.2003.10.003
Vidal VP, Chaboissier MC, de Rooij DG, Schedl A: Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217 (2001).1143168910
ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref20
ref159
ref22
ref157
ref21
ref158
ref28
ref27
ref29
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – reference: Dettin L, Ravindranath N, Hofmann MC, Dym M: Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biol Reprod 69:1565–1571 (2003).1285560110.1095%2Fbiolreprod.103.016394
– reference: Cortes D, Kjellberg EM, Breddam M, Thorup J: The true incidence of cryptorchidism in Denmark. J Urol 179:314–318 (2008).1800601610.1016%2Fj.juro.2007.08.158
– reference: Söder O: Sexual dimorphism of gonadal development. Best Pract Res Clin Endocrinol Metab 21:381–391 (2007).1787548610.1016%2Fj.beem.2007.05.002
– reference: Kerr CL, Hill CM, Blumenthal PD, Gearhart JD: Expression of pluripotent stem cell markers in the human fetal testis. Stem cells 26:412–421 (2008).
– reference: Mallet D, Bretones P, Michel-Calemard L, Dijoud F, David M, et al: Gonadal dysgenesis without adrenal insufficiency in a 46, XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency. J Clin Endocrinol Metab 89:4829–4832 (2004).1547217110.1210%2Fjc.2004-0670
– reference: Ion A, Telvi L, Chaussain JL, Galacteros F, Valayer J, et al: A novel mutation in the putative DNA helicase XH2 is responsible for male-to-female sex reversal associated with an atypical form of the ATR-X syndrome. Am J Hum Genet 58:1185–1191 (1996).8651295
– reference: Eacker SM, Agrawal N, Qian K, Dichek HL, Gong EY, et al: Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol Endocrinol 22:623–635 (2008).1803269710.1210%2Fme.2006-0534
– reference: Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, et al: Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev 5:1345–1356 (1991a).165127510.1101%2Fgad.5.8.1345
– reference: Taketo M, Parker KL, Howard TA, Tsukiyama T, Wong M, et al: Homologs of Drosophila Fushi-Tarazu factor 1 map to mouse chromosome 2 and human chromosome 9q33. Genomics 25:565–567 (1995).778999210.1016%2F0888-7543%2895%2980059-U
– reference: Hadziselimovic F, Herzog B: The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet 358:1156–1157 (2001a).1159767310.1016%2FS0140-6736%2801%2906274-2
– reference: Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM: Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–889 (2001a).1129032510.1016%2FS0092-8674%2801%2900284-7
– reference: Bendel-Stenzel M, Anderson R, Heasman J, Wylie C: The origin and migration of primordial germ cells in the mouse. Semin Cell Dev Biol 9:393–400 (1998).981318610.1006%2Fscdb.1998.0204
– reference: Arango NA, Lovell-Badge R, Behringer RR: Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99:409–419 (1999).1057118310.1016%2FS0092-8674%2800%2981527-5
– reference: Clermont Y: Two classes of spermatogonial stem cells in the monkey (Cercopithecus aethiops). Am J Anat 126:57–71 (1969).498204210.1002%2Faja.1001260106
– reference: Ge RS, Shan LX, Hardy MP: Pubertal development of Leydig cells, in Payne AH, Hardy MP, Russell LD, (eds): The Leydig Cell, pp 159–174 (Cache River Press, Vienna 1996).
– reference: Ludbrook LM, Harley VR: Sex determination: a ‘window’ of DAX1 activity. Trends Endocrinol Metab 15:116–121 (2004).1504674010.1016%2Fj.tem.2004.02.002
– reference: Petersen C, Boitani C, Froysa B, Söder O: Transforming growth factor-alpha stimulates proliferation of rat Sertoli cells. Mol Cell Endocrinol 181:221–227 (2001).1147695510.1016%2FS0303-7207%2801%2900485-3
– reference: Wang Y, Barthold J, Kanetsky PA, Casalunovo T, Pearson E, et al: Allelic variants in HOX genes in cryptorchidism. Birth Defects Res A Clin Mol Teratol 79:269–275 (2007).1721661810.1002%2Fbdra.20343
– reference: Pitteloud N, Acierno JS Jr, Meysing A, Eliseenkova AV, Ma J, et al: Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 103:6281–6286 (2006).1660683610.1073%2Fpnas.0600962103
– reference: Buaas FW, Val P, Swain A: The transcription co-factor CITED2 functions during sex determination and early gonad development. Hum Mol Genet 18:2989–3001 (2009).1945792610.1093%2Fhmg%2Fddp237
– reference: Hadziselimovic F, Zivkovic D, Bica DT, Emmons LR: The importance of mini-puberty for fertility in cryptorchidism. J Urol 174:1536–1539; discussion 1538–1539 (2005).
– reference: Matzuk MM, Lamb DJ: The biology of infertility: research advances and clinical challenges. Nat Med 14:1197–1213 (2008).1898930710.1038%2Fnm.f.1895
– reference: Manuylov NL, Smagulova FO, Leach L, Tevosian SG: Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 135:3731–3743 (2008).1892715410.1242%2Fdev.024653
– reference: Ivell R, Hartung S: The molecular basis of cryptorchidism. Mol Hum Reprod 9:175–181 (2003).1265189810.1093%2Fmolehr%2Fgag025
– reference: von Kopylow K, Kirchhoff C, Jezek D, Schulze W, Feig C, et al: Screening for biomarkers of spermatogonia within the human testis: a whole genome approach. Hum Reprod 25:1104–1112 (2010).2020805910.1093%2Fhumrep%2Fdeq053
– reference: Schmahl J, Colvin JS, Ornitz DM, Capel B: Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131:3627–3636 (2004).1522918010.1242%2Fdev.01239
– reference: Huhtaniemi IT, Yamamoto M, Ranta T, Jalkanen J, Jaffe RB: Follicle-stimulating hormone receptors appear earlier in the primate fetal testis than in the ovary. J Clin Endocrinol Metab 65:1210–1214 (1987).282455210.1210%2Fjcem-65-6-1210
– reference: Nishikawa N, Toyota M, Suzuki H, Honma T, Fujikane T, et al: Gene amplification and overexpression of PRDM14 in breast cancers. Cancer Res 67:9649–9657 (2007).1794289410.1158%2F0008-5472.CAN-06-4111
– reference: Ferlin A, Arredi B, Zuccarello D, Garolla A, Selice R, et al: Paracrine and endocrine roles of insulin-like factor 3. J Endocrinol Invest 29:657–664 (2006).16957417
– reference: Park SY, Lee EJ, Emge D, Jahn CL, Jameson JL: A phenotypic spectrum of sexual development in Dax1(Nr0b1)-deficient mice: consequence of the C57BL/6J strain on sex determination. Biol Reprod 79:1038–1045 (2008).1863313710.1095%2Fbiolreprod.108.069492
– reference: Merchant Larios H, Moreno Mendoza N: Mesonephric stromal cells differentiate into Leydig cells in the mouse fetal testis. Exp Cell Res 244:230–238 (1998).977036510.1006%2Fexcr.1998.4215
– reference: de Rooij DG, Russell LD: All you wanted to know about spermatogonia but were afraid to ask. J Androl21:776–798 (2000).
– reference: He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M: Isolation, characterization, and culture of human spermatogonia. Biol Reprod 82:363–372 (2010).1984660210.1095%2Fbiolreprod.109.078550
– reference: Hiort O, Gillessen-Kaesbach G: Disorders of sex development in developmental syndromes. Endocr Dev 14:174–180 (2009).1929358410.1159%2F000207486
– reference: Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, et al: The putative forkhead transcription Factor FOXL2 is mutated in lepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27:159–166 (2001).1117578310.1038%2F84781
– reference: But WM, Lo IFM, Shek CC, Tse WY, Lam ST: Ambiguous genitalia, impaired steroidogenesis, and Antley-Bixler syndrome in a patient with P450 oxidoreductase deficiency. Hong Kong Med J 16:59–62 (2010).20124576
– reference: Schmahl J, Capel B: Cell proliferation is necessary for the determination of male fate in the gonad. Dev Biol 258:264–276 (2003).1279828710.1016%2FS0012-1606%2803%2900122-2
– reference: Correa RV, Domenice S, Bingham NC, Billerbeck AE, Rainey WE, et al: A microdeletion in the ligand binding domain of human steroidogenic factor 1 causes XY sex reversal without adrenal insufficiency. J Clin Endocrinol Metab 89:1767–1772 (2004).1507094310.1210%2Fjc.2003-031240
– reference: Sekido R, Lovell-Badge R: Sex determination and SRY: down to a wink and a nudge? Trends Genet 25:19–29 (2009).1902718910.1016%2Fj.tig.2008.10.008
– reference: Biason-Lauber A, Konrad D: WNT4 and sex development. Sex Dev 2:210–218 (2008).1898749510.1159%2F000152037
– reference: Escalier D, Gallo JM, Albert M, Meduri G, Bermudez D, et al: Human acrosome biogenesis: immunodetection of proacrosin in primary spermatocytes and of its partitioning pattern during meiosis. Development 113:779–788 (1991).1821849
– reference: Motro B, van der Kooy D, Rossant J, Reith A, Bernstein A: Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci. Development 113:1207–1221 (1991).1811937
– reference: Shawlot W, Behringer RR: Requirement for Lim1 in head-organizer function. Nature 374:425–430 (1995).770035110.1038%2F374425a0
– reference: Oakberg EF: Duration of spermatogenesis in the mouse. Nature180:1137–1138 (1957).
– reference: Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL: Role of Ahch in gonadal development and gametogenesis. Nat Genet 20:353–357 (1998).984320610.1038%2F3822
– reference: Schepers G, Wilson M, Wilhelm D, Koopman P: Sox8 is expressed during testis differentiation in mice and synergizes with Sf1 to activate the Amh promoter in vitro. J Biol Chem 278:28101–28108 (2003).1273265210.1074%2Fjbc.M304067200
– reference: Morohashi K: Gonadal and extragonadal functions of Ad4BP/SF-1: developmental aspects. Trends Endocrinol Metab 10:169–173 (1999).1037022410.1016%2FS1043-2760%2898%2900142-8
– reference: Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, et al: Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 14:2053–2062 (2005).1594419910.1093%2Fhmg%2Fddi210
– reference: Ketola I, Toppari J, Vaskivuo T, Herva R, Tapanainen JS, et al: Transcription factor GATA-6, cell proliferation, apoptosis, and apoptosis-related proteins Bcl-2 and Bax in human fetal testis. J Clin Endocrinol Metab 88:1858–1865 (2003)1267948410.1210%2Fjc.2002-021647
– reference: Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E, et al: Steroidogenic factor 1 and Dax-1 colocalize in multiple cell lineages: potential links in endocrine development. Mol Endocrinol 10:1261–1272 (1996).912149310.1210%2Fme.10.10.1261
– reference: O’Shaughnessy PJ, Baker PJ, Monteiro A, Cassie S, Bhattacharya S, et al: Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J Clin Endocr Metab 92:4792–4801 (2007a).1784841110.1210%2Fjc.2007-1690
– reference: Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, et al: WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353:431–434 (1991b).165452510.1038%2F353431a0
– reference: Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, et al: Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369 (2002).1237985210.1038%2Fng1009
– reference: Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P: A male-specific role for SOX9 in vertebrate sex determination. Development 122:2813–2822 (1996).8787755
– reference: Behr R, Weinbauer GF: cAMP response element modulator (CREM): an essential factor for spermatogenesis in primates? Int J Androl 24:126–135 (2001).1138070110.1046%2Fj.1365-2605.2001.00277.x
– reference: Matsui Y, Zsebo KM, Hogan BL: Embryonic expression of a haematopoietic growth factor encoded by the SI locus and the ligand for c-kit. Nature 347:667–669 (1990).169913410.1038%2F347667a0
– reference: Herren T, Gerber PA, Duru F: Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a not so rare ‘‘disease of the desmosome’’ with multiple clinical presentations. Clin Res Cardiol 98:141–158 (2009).1920577710.1007%2Fs00392-009-0751-4
– reference: Di Cerbo A, Biason-Lauber A, Savino M, Piemontese MR, Di Giorgio A, et al: Combined 17 alpha-hydroxylase/17,20-lyase deficiency caused by Phe93Cys mutation in the CYP17 gene. J Clin Endocrinol Metab 87:898–905 (2002).
– reference: Andersson AM, Juul A, Petersen JH, Müller J, Groome NP, et al: Serum inhibin B in healthy pubertal and adolescent boys: relation to age, stage of puberty, and follicle-stimulating hormone, luteinizing hormone, testosterone, and estradiol levels. J Clin Endocrinol Metab 82:3976–3981 (1997).939869910.1210%2Fjc.82.12.3976
– reference: Cigorraga SB, Chemes H, Pellizzari E: Steroidogenic and morphogenic characteristics of human peritubular cells in culture. Biol Reprod 51:1193–1205 (1994).788849710.1095%2Fbiolreprod51.6.1193
– reference: Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, et al: Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int J Androl 29:618–626 (2006).1701453110.1111%2Fj.1365-2605.2006.00714.x
– reference: Prueitt RL, Zinn AR: A fork in the road to fertility. Nat Genet 27:132–134 (2001).1117577210.1038%2F84735
– reference: Vidal VP, Chaboissier MC, de Rooij DG, Schedl A: Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217 (2001).1143168910.1038%2F90046
– reference: Biason-Lauber A, Schoenle EJ: Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical insufficiency. Am J Hum Genet 67:1563–1568 (2000).1103832310.1086%2F316893
– reference: Teerds KJ, De Rooij DG, Rommerts FF, Wensing CJ: The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment. J Androl 9:343–351 (1988).2853150
– reference: Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, et al: CXorf6 is a causative gene for hypospadias. Nat Genet 38:1369–1371 (2006).1708618510.1038%2Fng1900
– reference: Achermann JC, Ozisik G, Ito M, Orun UA, Harmanci K, et al: Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J Clin Endocrinol Metab 87:1829–1833 (2002).1193232510.1210%2Fjc.87.4.1829
– reference: Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, et al: The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403:909–913 (2000).1070629110.1038%2F35002622
– reference: Harada D, Yamanaka Y, Ueda K, Tanaka H, Seino Y: FGFR3-related dwarfism and cell signaling. J Bone Miner Metab 27:9–15 (2009).1906671610.1007%2Fs00774-008-0009-7
– reference: van Alphen MM, van de Kant HJ, de Rooij DG: Follicle-stimulating hormone stimulates spermatogenesis in the adult monkey. Endocrinology 123:1449–1455 (1988).313600810.1210%2Fendo-123-3-1449
– reference: Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, et al: Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530 (1994).799092410.1038%2F372525a0
– reference: Hong SM, Frierson HF Jr, Moskaluk CA: AP-2gamma protein expression in intratubular germ cell neoplasia of testis. Am J Clin Pathol 124:873–877 (2005).1641673610.1309%2F6Q0JB9CCGRQ7RKCQ
– reference: Petersen C, Boitani C, Froysa B, Söder O: Interleukin-1 is a potent growth factor for immature rat Sertoli cells. Mol Cell Endocrinol 186:37–47 (2002).1185012010.1016%2FS0303-7207%2801%2900680-3
– reference: Wistuba J, Stukenborg JB, Luetjens CM: Mammalian spermatogenesis. Funct Dev Embryol 1:99–117 (2007).
– reference: Buehr M, McLaren A, Bartley A, Darling S: Proliferation and migration of primordial germ cells in WIWe mouse embryos. Dev Dyn 198:182–189 (1993).8136523
– reference: Jäger RJ, Anvret M, Hall K, Scherer G: A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348:452–454 (1990).224715110.1038%2F348452a0
– reference: Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, et al: Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142 (2009).2000580610.1016%2Fj.cell.2009.11.021
– reference: Hasegawa T, Fukami M, Sato N, Katsumata N, Sasaki G, et al: Testicular dysgenesis without adrenal insufficiency in a 46, XY patient with a heterozygous inactive mutation of steroidogenic factor-1. J Clin Endocrinol Metab 89:5930–5935 (2004).1557973910.1210%2Fjc.2004-0935
– reference: Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, et al: A novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab 89:5952–5958 (2004).1557974310.1210%2Fjc.2004-0575
– reference: Hanley NA, Ball SG, Clement-Jones M, Hagan DM, Strachan T, et al: Expression of steroidogenic factor 1 and Wilms’ tumour 1 during early human gonadal development and sex determination. Mech Dev 87:175–180 (1999).1049528210.1016%2FS0925-4773%2899%2900123-9
– reference: Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, et al: WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 239:327–337 (2010).19918918
– reference: Ritzén EM, Bergh A, Bjerknes R, Christiansen P, Cortes D, et al: Nordic consensus on treatment of undescended testes. Acta Paediatr 96:638–643 (2007).1732676010.1111%2Fj.1651-2227.2006.00159.x
– reference: Pauls K, Schorle H, Jeske W, Brehm R, Steger K, et al: Spatial expression of germ cell markers during maturation of human fetal male gonads: an immunohistochemical study. Hum Reprod 21:397–404 (2006).1621038110.1093%2Fhumrep%2Fdei325
– reference: Tellier AL, Amiel J, Delezoide AL, Audollent S, Augé J, et al: Expression of the PAX2 gene in human embryos and exclusion in the CHARGE syndrome. Am J Med Genet 93:85–88 (2000).1086910710.1002%2F1096-8628%2820000717%2993%3A2%3C85%3A%3AAID-AJMG1%3E3.0.CO%3B2-B
– reference: Eshkind L, Tian Q, Schmidt A, Franke WW, Windoffer R, et al: Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur J Cell Biol 81:592–598 (2002).1249499610.1078%2F0171-9335-00278
– reference: Edson MA, Nagaraja AK, Matzuk MM: The mammalian ovary from genesis to revelation. Endocr Rev 30:624–712 (2009).1977620910.1210%2Fer.2009-0012
– reference: Huhtaniemi IT: LH and FSH receptor mutations and their effects on puberty. Horm Res 57 Suppl 2:35–38 (2002).10.1159%2F000058098
– reference: Cotton LM, O’Bryan MK, Hinton BT: Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 29:193–216 (2008).1821621810.1210%2Fer.2007-0028
– reference: Lin Y, Liu A, Zhang S, Ruusunen T, Kreidberg JA, et al: Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Dev Dyn 222:26–39 (2005).10.1002%2Fdvdy.1164
– reference: Reijo RA, Dorfman DM, Slee R, Renshaw AA, Loughlin KR, et al: DAZ family proteins exist throughout male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice. Biol Repod 63:1490–1496 (2000).1105855610.1095%2Fbiolreprod63.5.1490
– reference: Schulze W, Davidoff MS, Holstein AF: Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol (Copenh) 115:373–377 (1987).3303786
– reference: Petersen C, Söder O: The Sertoli cell – a hormonal target and ‘super’ nurse for germ cells that determines testicular size. Horm Res 66:153–161 (2006).1680431510.1159%2F000094142
– reference: Combes AN, Spiller CM, Harley VR, Sinclair AH, Dunwoodie SL, et al: Gonadal defects in Cited2 -mutant mice indicate a role for SF1 in both testis and ovary differentiation. Int J Dev Biol 54:683–689 (2010).1975738010.1387%2Fijdb.092920ac
– reference: Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, et al: Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 10:8521–8530 (2004).1562363410.1158%2F1078-0432.CCR-04-1285
– reference: Cheng YS, Kuo PL, Teng YN, KuoY, Chung CL, et al: Association of spermatogenic failure with decreased CDC25A expression in infertile men. Hum Reprod 21:2346–2352 (2006).1672062310.1093%2Fhumrep%2Fdel163
– reference: Royer-Pokora B, Beier M, Henzler M, Alam R, Schumacher V, et al: Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A 127A:249–257 (2004).1515077510.1002%2Fajmg.a.30015
– reference: Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP: The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 97:9585–9590 (2000).1092020210.1073%2Fpnas.160274797
– reference: Gibbons RJ, Picketts DJ, Villard L, Higgs DR: Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X Syndrome). Cell 80:837–845 (1995).769771410.1016%2F0092-8674%2895%2990287-2
– reference: Wylie C: Germ cells. Cell 96:165–174 (1999).998821210.1016%2FS0092-8674%2800%2980557-7
– reference: Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL: A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22:125–126 (1999).1036924710.1038%2F9629
– reference: Ehmcke J, Luetjens CM, Schlatt S: Clonal organization of proliferating spermatogonial stem cells in adult males of two species of non-human primates, Macaca mulatta and Callithrix jacchus. Biol Reprod72:293–300 (2005).
– reference: Boehmer AL, Brinkmann AO, Sandkuijl LA, Halley DJ, Niermeijer MF, et al: 17 Beta-hydroxysteroid dehydrogenase-3 deficiency: diagnosis, phenotypic variability, population genetics, and worldwide distribution of ancient and de novo mutations. J Clin Endocrinol Metab 84:4713–4721 (1999).1059974010.1210%2Fjc.84.12.4713
– reference: Chemes HE, Cigorraga S, Bergada C, Schteingart H, Rey R, et al: Isolation of human Leydig cell mesenchymal precursors from patients with the androgen insensitivity syndrome: testosterone production and response to human chorionic gonadotropin stimulation in culture. Biol Reprod 46:793–801 (1992).159133510.1095%2Fbiolreprod46.5.793
– reference: Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J: The paired-box transcription factor, PAX2, positively modulates expression of the Wilms’ tumor suppressor gene (WT1). Oncogene 13:447–453 (1996).8760285
– reference: Svechnikov K, Landreh L, Weisser J, Izzo G, Colón E, et al: Origin, development and regulation of human Leydig cells. Horm Res Paediatr 73:93–101 (2010).10.1159%2F000277141
– reference: O’Shaughnessy PJ, Baker PJ, Johnston H: The foetal Leydig cell – differentiation, function and regulation. Int J Androl 29:90–95 (2006).1646652810.1111%2Fj.1365-2605.2005.00555.x
– reference: Auchus RJ: The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol Metab Clin North Am 30:101–119 (2001).1134493010.1016%2FS0889-8529%2808%2970021-5
– reference: Wilhelm D, Washburn LL, Truong V, Fellous M, Eicher EM, et al: Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mech Dev 126:324–336 (2009).1926932010.1016%2Fj.mod.2009.02.006
– reference: Schepers GE, Bullejos M, Hosking BM, Koopman P: Cloning and characterisation of the Sry-related transcription factor gene Sox8. Nucleic Acids Res 28:1473–1480 (2000).1068494410.1093%2Fnar%2F28.6.1473
– reference: Hernández S, Toll A, Baselga E, Ribé A, Azua-Romeo J, et al: Fibroblast growth factor receptor 3 mutations in epidermal nevi and associated low grade bladder tumors. J Invest Dermatol 127:1664–1666 (2007).17255960
– reference: Amann RP: The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 29:469–487 (2008).1849733710.2164%2Fjandrol.107.004655
– reference: Wood HM, Elder JS: Cryptorchidism and testicular cancer: separating fact from fiction. J Urol 181:452–461 (2009).1908485310.1016%2Fj.juro.2008.10.074
– reference: Kristensen DM, Nielsen JE, Kalisz M, Dalgaard MD, Audouze K, et al: OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres. Mol Hum Reprod 2010, E-pub ahead of print.
– reference: Sekido R, Lovell-Badge R: Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934 (2008).1845413410.1038%2Fnature06944
– reference: Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP: Female development in mammals is regulated by WNT-4 signalling. Nature 397:405–409 (1999).998940410.1038%2F17068
– reference: Clark AM, Garland KK, Russell LD: Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63:1825–1838 (2000).1109045510.1095%2Fbiolreprod63.6.1825
– reference: Jackson AE, O’Leary PC, Ayers MM, de Kretser DM: The effects of ethylene dimethane sulphonate (EDS) on rat Leydig cells: evidence to support a connective tissue origin of Leydig cells. Biol Reprod 35:425–437 (1986).302124910.1095%2Fbiolreprod35.2.425
– reference: Courant F, Aksglaede L, Antignac JP, Monteau F, Sorensen K, et al: Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 95:82–92 (2010).1993339310.1210%2Fjc.2009-1140
– reference: Heller CG, Clermont Y: Kinetics of the germinal epithelium in man. Recent Prog Horm Res 20:545–575 (1964).14285045
– reference: Viger RS, Silversides DW, Tremblay JJ: New insights into the regulation of mammalian sex determination and male sex differentiation. Vitam Horm 70:387–413 (2005).1572781210.1016%2FS0083-6729%2805%2970013-3
– reference: Heller CG, Clermont Y: Spermatogenesis in man: an estimate of its duration. Science 140:184–186 (1963).1395358310.1126%2Fscience.140.3563.184
– reference: Hossain A, Saunders GF: The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276:16817–16823 (2001).1127846010.1074%2Fjbc.M009056200
– reference: Stocco DM: StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63:193–213 (2001).1118195410.1146%2Fannurev.physiol.63.1.193
– reference: Parker KL, Schedl A, Schimmer BP: Gene interactions in gonadal development. Annu Rev Physiol 61:417–433 (1999).1009969510.1146%2Fannurev.physiol.61.1.417
– reference: Jeanpierre C, Denamur E, Henry I, Cabanis MO, Luce S, et al: Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am J Hum Genet 62:824–833 (1998).952936410.1086%2F301806
– reference: Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL: Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab 86:3820–3825 (2001).1150281810.1210%2Fjc.86.8.3820
– reference: Goriely A, Hansen RM, Taylor IB, Olesen IA, Jacobsen GK, et al: Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 41:1247–1252 (2009).1985539310.1038%2Fng.470
– reference: de Rooij DG, Grootegoed JA: Spermatogonial stem cells. Curr Opin Cell Biol10:694–701 (1998).
– reference: Thummer RP, Drenth-Diephuis LJ, Carney KE, Eggen BJ: Functional characterization of single-nucleotide polymorphisms in the human undifferentiated embryonic-cell transcription factor 1 gene. DNA Cell Biol 29:241–248 (2010).2021889710.1089%2Fdna.2009.0981
– reference: Pesce M, Farrace MG, Piacentini M, Dolci S, De Felici M: Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 118:1089–1094 (1993).7505738
– reference: Lei ZM, Mishra S, Zou W, Xu B, Foltz M, et al: Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol 15:184–200 (2001).1114574910.1210%2Fme.15.1.184
– reference: O’Shaughnessy PJ, Abel M, Charlton HM, Hu B, Johnston H, et al: Altered expression of genes involved in regulation of vitamin A metabolism, solute transportation, and cytoskeletal function in the androgen-insensitive tfm mouse testis. Endocrinology 148:2914–2924 (2007b).1733206610.1210%2Fen.2006-1412
– reference: Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, et al: Isolation of the bovine and human genes for müllerian inhibiting substance and expression of the human gene in animal cells. Cell 45:685–698 (1986).375479010.1016%2F0092-8674%2886%2990783-X
– reference: Kossack N, Simoni M, Richter-Unruh A, Themmen AP, Gromoll J: Mutations in a novel, cryptic exon of the luteinizing hormone/chorionic gonadotropin receptor gene cause male pseudohermaphroditism. PLoS Med 5:e88 (2008).1843329210.1371%2Fjournal.pmed.0050088
– reference: Cupp AS, Uzumcu M, Skinner MK: Chemotactic role of neurotropin 3 in the embryonic testis that facilitates male sex determination. Biol Reprod 68:2033–2037 (2003).1260639010.1095%2Fbiolreprod.102.012617
– reference: Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S: Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664 (1997).9165114
– reference: Cheng CY, Mruk DD: An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 44:245–263 (2009).1962206310.1080%2F10409230903061207
– reference: Failli V, Rogard M, Mattei MG, Vernier P, Rétaux S: Lhx9 and Lhx9alpha LIM-homeodomain factors: genomic structure, expression patterns, chromosomal localization, and phylogenetic analysis. Genomics 64:307–317 (2000).1075609810.1006%2Fgeno.2000.6123
– reference: Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, et al: Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development 119:1329–1341 (1993).8306891
– reference: John Radcliffe Hospital Cryptorchidism Study Group: Cryptorchidism: a prospective study of 7500 consecutive male births, 1984–1988. Arch Dis Child 67:892–899 (1992).135564310.1136%2Fadc.67.7.892
– reference: Forest MG, Sizonenko PC, Cathiard AM, Bertrand J: Hypophyso-gonadal function in humans during the first year of life. 1. Evidence for testicular activity in early infancy. J Clin Invest 53:819–828 (1974).481244110.1172%2FJCI107621
– reference: McLaren A, Southee D: Entry of mouse embryonic germ cells into meiosis. Dev Biol 187:107–113 (1997).922467810.1006%2Fdbio.1997.8584
– reference: Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, et al: Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14:62–68 (1996).878282110.1038%2Fng0996-62
– reference: Sharpe RM: Perinatal determinants of adult testis size and function. Editorial. JCEM 91:2503–2505 (2006).16825576
– reference: Chassot AA, Ranc F, Gregoire EP, Roepers- Gajadien HL, Taketo MM, et al: Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 17:1264–1277 (2008).1825009810.1093%2Fhmg%2Fddn016
– reference: Katoh Y, Katoh M: FGFR2-related pathogenesis and FGFR2-targeted therapeutics. Int J Mol Med 23:307–311 (2009).19212647
– reference: Morelli MA, Cohen PE: Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130:761–781 (2005).1632253710.1530%2Frep.1.00865
– reference: Colón E, Zaman F, Axelson M, Larsson O, Carlsson-Skwirut C, et al: Insulin-like growth factor-I is an important antiapoptotic factor for rat leydig cells during postnatal development. Endocrinology 148:128–139 (2007).1702353210.1210%2Fen.2006-0835
– reference: Park SY, Jamieson JL: Minireview: transcriptional regulation of gonadal development and differentiation. Endocrinology 146:1035–1042 (2005).1560420410.1210%2Fen.2004-1454
– reference: Salenave S, Chanson P, Bry H, Pugeat M, Cabrol S, et al: Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 93:758–763 (2008).1816047210.1210%2Fjc.2007-1168
– reference: Motonaga K, Itoh M, Hachiya Y, Endo A, Kato K, et al: Age related expression of Werner’s syndrome protein in selected tissues and coexpression of transcription factors. J Clin Pathol 55:195–199 (2002).11896071
– reference: Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, et al: R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309 (2006).1704160010.1038%2Fng1907
– reference: Grumbach M: A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab 90:3122–3127 (2005).1572819810.1210%2Fjc.2004-2465
– reference: Stikkelbroeck NM, Otten BJ, Pasic A, Jager GJ, Sweep CG, et al: High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab 86:5721–5728 (2001).1173942810.1210%2Fjc.86.12.5721
– reference: Volcik KA, Zhu H, Finnell RH, Shaw GM, Canfield M, et al: Evaluation of the Cited2 gene and risk for spina bifida and congenital heart defects. Am J Med Genet A 126A:324–325 (2004).1505485110.1002%2Fajmg.a.20578
– reference: Simoni M, Gromoll J, Nieschlag E: The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 18:739–773 (1997).940874210.1210%2Fer.18.6.739
– reference: Albrecht KH, Eicher EM: Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 204:92–107 (2001).10.1006%2Fdbio.2001.0438
– reference: Chemes HE, Gottlieb SE, Pasqualini T, Domenichini E, Rivarola MA, et al: Response to acute hCG stimulation and steroidogenic potential of Leydig cell fibroblastic precursors in humans. J Androl 6:102–112 (1985).3886616
– reference: Gromoll J, Eiholzer U, Nieschlag E, Simoni M: Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: differential action of human chorionic gonadotropin and LH. J Clin Endocrinol Metab 85:2281–2286 (2000).1085246410.1210%2Fjc.85.6.2281
– reference: Colvin JS, White AC, Pratt SJ, Ornitz DM: Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095–2106 (2001b).11493531
– reference: Kostova E, Yeung CH, Leutjens CM, Brune M, Nieschlag E, et al: Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. Mol Hum Reprod 13:85–93 (2007).1711420610.1093%2Fmolehr%2Fgal101
– reference: Sharpe RM, McKinnell C, Kivlin C, Fisher JS: Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784 (2003).1277309910.1530%2Frep.0.1250769
– reference: Simard J, Ricketts ML, Moisan AM, Tardy V, Peter M, et al: A new insight into the molecular basis of 3beta-hydroxysteroid dehydrogenase deficiency. Endocr Res 26:761–770 (2000).1119645210.3109%2F07435800009048597
– reference: De Baere E, Dixon MJ, Small KW, Jabs EW, Leroy BP, et al: Spectrum of FOXL2 gene mutations in blepharophimosis-ptosis-epicanthus inversus (BPES) families demonstrates a genotype-phenotype correlation. Hum Mol Genet 10:1591–1600 (2001).1146827710.1093%2Fhmg%2F10.15.1591
– reference: Juul A, Aksglaede L, Lund AM, Duno M, Skakkebaek NE, et al: Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene: case report. Hum Reprod 22:1907–1911(2007).1755410510.1093%2Fhumrep%2Fdem126
– reference: Ge RS, Dong Q, Sottas CM, Papadopoulos V, Zirkin BR, et al: In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc Natl Acad Sci USA 103:2719–2724 (2006).1646714110.1073%2Fpnas.0507692103
– reference: Krishnamurthy H, Kats R, Danilovich N, Javeshghani D, Sairam MR: Intercellular communication between Sertoli cells and Leydig cells in the absence of follicle-stimulating hormone-receptor signaling. Biol Reprod 65:1201–1207 (2001).1156674410.1095%2Fbiolreprod65.4.1201
– reference: Meistrich ML, van Beek ME: Spermatogonial stem cells, in Desjardins C, Ewing LL (eds): Cell and Molecular Biology of the Testis, pp 266–295 (Oxford University Press, New York 1993).
– reference: Brennan D, Hu Y, Joubeh S, Choi YW, Whitaker-Menezes D, et al: Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J Cell Sci 120:758–771 (2007).1728451510.1242%2Fjcs.03392
– reference: Petersen C, Froysa B, Söder O: Endotoxin and proinflammatory cytokines modulate Sertoli cell proliferation in vitro. J Reprod Immunol 61:13–30 (2004).1502747510.1016%2Fj.jri.2003.10.003
– reference: Kim JY, Lee CS, Kim HO, Jo YH, Lee J, et al: The association between genetic polymorphisms in CYP19 and breast cancer risk in Korean women. Oncol Rep 22:487–492 (2009).19639193
– reference: Behringer RR, Finegold MJ, Cate RL: Müllerian-inhibiting substance function during mammalian sexual development. Cell 79:415–425 (1994).795480910.1016%2F0092-8674%2894%2990251-8
– reference: Boisen KA, Kaleva M, Main KM, Virtanen HE, Haavisto AM, et al: Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet 363:1264–1269 (2004).1509427010.1016%2FS0140-6736%2804%2915998-9
– reference: Tan KA, De Gendt K, Atanassova N, Walker M, Sharpe RM, et al: The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or sertoli cell-selective ablation of the androgen receptor. Endocrinology 146:2674–2683 (2005).1576103810.1210%2Fen.2004-1630
– reference: Kristensen DM, Nielsen JE, Skakkebaek NE, Graem N, Jacobsen GK, et al: Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Hum Reprod 23:775–782 (2008).1828124410.1093%2Fhumrep%2Fden010
– reference: Ketola I, Rahman N, Toppari J, Bielinska M, Porter-Tinge SB, et al: Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology 140:1470–1480 (1999).1006787610.1210%2Fen.140.3.1470
– reference: Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, et al: The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197 (1990).216415910.1038%2F346194a0
– reference: Zivkovic D, Bica DT, Hadziselimovic F: Relationship between adult dark spermatogonia and secretory capacity of Leydig cells in cryptorchidism. Paediatr Urol 100:1147–1149 (2007).
– reference: Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, et al: Testis determination requires insulin receptor family function in mice. Nature 426:291–295 (2003).1462805110.1038%2Fnature02059
– reference: Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, et al: Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development 132:3045–3054 (2005).1594418810.1242%2Fdev.01890
– reference: Loffler KA, Zarkower D, Koopman P: Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology 144:3237–3243 (2003).1281058010.1210%2Fen.2002-0095
– reference: Berkowitz GS, Lapinski RH, Dolgin SE, Gazella JG, Bodian CA, et al: Prevalence and natural history of cryptorchidism. Pediatrics 92:44–49 (1993).8100060
– reference: Capel B, Albrecht KH, Washburn LL, Eicher EM: Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84:127–131 (1999).1047312610.1016%2FS0925-4773%2899%2900047-7
– reference: Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, et al: Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187 (2006).1670062910.1371%2Fjournal.pbio.0040187
– reference: Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, et al: Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat 29:220–226 (2008).1808556710.1002%2Fhumu.20665
– reference: Hadziselimovic F, Herzog B: Importance of early postnatal germ cell maturation for fertility of cryptorchid males. Horm Res 55:6–10 (2001b).1142373510.1159%2F000049956
– reference: Jagła M, Kruczek P, Kwinta P: Association between X-linked lissencephaly with ambiguous genitalia syndrome and lenticulostriate vasculopathy in neonate. J Clin Ultrasound 36:387–390 (2008).1841223210.1002%2Fjcu.20473
– reference: Nurmio M, Keros V, Lähteenmäki P, Salmi T, Kallajoki M, et al: Effect of childhood acute lymphoblastic leukemia therapy on spermatogonia populations and future fertility. J Clin Endocrinol Metab 94:2119–2122 (2009).1931844710.1210%2Fjc.2009-0060
– reference: Oliver-Bonet M, Turek PJ, Sun F, Ko E, Martin RH: Temporal progression of recombination in human males. Mol Hum Reprod 11:517–522 (2005).1612308110.1093%2Fmolehr%2Fgah193
– reference: Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, et al: The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131:933–942 (2004).1473674510.1242%2Fdev.00969
– reference: Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, et al: Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450 (1990).224714910.1038%2F348448A0
– reference: Sharpe RM: Regulation of spermatogenesis, in Knobil E, Neill JD (eds): The Physiology of Reproduction, pp 1363–1394 (Raven Press, New York 1994).
– reference: Claahsen-van der Grinten HL, Hulsbergen-van de Kaa CA, Otten BJ: Ovarian adrenal rest tissue in congenital adrenal hyperplasia–a patient report. J Pediatr Endocrinol Metab 19:177–182 (2006).16562593
– reference: Zhengwei Y, McLachlan RI, Bremner WJ, Wreford NG: Quantitative (stereological) study of the normal spermatogenesis in the adult monkey (Macaca fascicularis). J Androl 18:681–687 (1997).9432141
– reference: Wikstrom AM, Bay K, Hero M, Andersson AM, Dunkel L: Serum insulin-like factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J Clin Endocrinol Metab 91:4705–4708 (2006).1692625610.1210%2Fjc.2006-0669
– reference: Kollin C, Karpe B, Hesser U, Granholm T, Ritzén EM: Surgical treatment of unilaterally undescended testes: testicular growth after randomization to orchiopexy at age 9 months or 3 years. J Urol 178:1589–1593 (2007).1770704510.1016%2Fj.juro.2007.03.173
– reference: Ruggieri M, Pavone P, Scapagnini G, Romeo L, Lombardo I, et al: The aristaless (Arx) gene: one gene for many ‘interneuronopathies’. Front Biosci (Elite Ed) 2:701–710 (2010).
– reference: Yan W, Kero J, Huhtaniemi I, Toppari J: Stem cell factor functions as a survival factor for mature Leydig cells and a growth factor for precursor Leydig cells after ethylene dimethane sulfonate treatment: implication of a role of the stem cell factor/c-Kit system in Leydig cell development. Dev Biol 227:169–182 (2000).1107668510.1006%2Fdbio.2000.9885
– reference: Torres M, Gómez-Pardo E, Dressler GR, Gruss P: Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065 (1995).8575306
– reference: Charest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, et al: A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 5:573–581 (1991).168142610.1210%2Fmend-5-4-573
– reference: Haider SG, Laue D, Schwochau G, Hilscher B: Morphological studies on the origin of adult-type Leydig cells in rat testis. Ital J Anat Embryol 100 Suppl 1:535–541 (1995).
– reference: Schmahl J, Eicher EM, Washburn LL, Capel B: Sry induces cell proliferation in the mouse gonad. Development 127:65–73 (2000).10654601
– reference: Mesiano S, Jaffe RB: Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev 18:378–403 (1997).918356910.1210%2Fer.18.3.378
– reference: Beleza-Meireles A, Lundberg F, Lagerstedt K, Zhou X, Omrani D, et al: FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur J Hum Genet 15:405–410 (2007).1726486710.1038%2Fsj.ejhg.5201777
– reference: Steger K, Pauls K, Klonisch T, Franke FE, Bergmann M: Expression of protamine-1 and-2 mRNA during human spermiogenesis. Mol Hum Reprod 6:219–225 (2000).1069426810.1093%2Fmolehr%2F6.3.219
– ident: ref70
  doi: 10.1210%2Fjcem-65-6-1210
– ident: ref78
  doi: 10.1093%2Fhumrep%2Fdem126
– ident: ref28
  doi: 10.1080%2F10409230903061207
– ident: ref37
  doi: 10.1016%2Fj.juro.2007.08.158
– ident: ref134
  doi: 10.1016%2Fj.tig.2008.10.008
– ident: ref46
  doi: 10.1078%2F0171-9335-00278
– ident: ref56
  doi: 10.1210%2Fjc.2004-2465
– ident: ref74
  doi: 10.1038%2F348452a0
– ident: ref132
  doi: 10.1242%2Fdev.00969
– ident: ref121
  doi: 10.1073%2Fpnas.0600962103
– ident: ref33
  doi: 10.1210%2Fen.2006-0835
– ident: ref133
  doi: 10.1038%2Fnature06944
– ident: ref156
  doi: 10.1093%2Fhumrep%2Fdeq053
– ident: ref64
  doi: 10.1007%2Fs00392-009-0751-4
– ident: ref76
  doi: 10.1086%2F301806
– ident: ref13
  doi: 10.1038%2F348448A0
– ident: ref42
  doi: 10.1093%2Fhmg%2F10.15.1591
– ident: ref111
  doi: 10.1095%2Fbiolreprod.108.069492
– ident: ref103
  doi: 10.1158%2F0008-5472.CAN-06-4111
– ident: ref90
  doi: 10.1210%2Fen.2002-0095
– ident: ref93
  doi: 10.1242%2Fdev.024653
– ident: ref94
  doi: 10.1038%2F347667a0
– ident: ref79
  doi: 10.1210%2Fen.140.3.1470
– ident: ref34
  doi: 10.1016%2FS0092-8674%2801%2900284-7
– ident: ref137
  doi: 10.3109%2F07435800009048597
– ident: ref116
  doi: 10.1038%2F353431a0
– ident: ref85
  doi: 10.1093%2Fmolehr%2Fgal101
– ident: ref91
  doi: 10.1016%2Fj.tem.2004.02.002
– ident: ref49
  doi: 10.1210%2Fjc.2004-0575
– ident: ref83
  doi: 10.1016%2Fj.juro.2007.03.173
– ident: ref20
  doi: 10.1242%2Fjcs.03392
– ident: ref105
  doi: 10.1093%2Fmolehr%2Fgah193
– ident: ref138
  doi: 10.1210%2Fer.18.6.739
– ident: ref43
  doi: 10.1095%2Fbiolreprod.103.016394
– ident: ref81
  doi: 10.1371%2Fjournal.pbio.0040187
– ident: ref8
  doi: 10.1016%2FS0889-8529%2808%2970021-5
– ident: ref66
  doi: 10.1158%2F1078-0432.CCR-04-1285
– ident: ref18
  doi: 10.1016%2FS0140-6736%2804%2915998-9
– ident: ref25
  doi: 10.1210%2Fmend-5-4-573
– ident: ref117
  doi: 10.1159%2F000094142
– ident: ref99
  doi: 10.1038%2Fng0996-62
– ident: ref147
  doi: 10.1002%2F1096-8628%2820000717%2993%3A2%3C85%3A%3AAID-AJMG1%3E3.0.CO%3B2-B
– ident: ref150
  doi: 10.1016%2Fj.cell.2009.11.021
– ident: ref136
  doi: 10.1038%2F374425a0
– ident: ref32
  doi: 10.1002%2Faja.1001260106
– ident: ref155
  doi: 10.1002%2Fajmg.a.20578
– ident: ref157
  doi: 10.1002%2Fbdra.20343
– ident: ref14
  doi: 10.1159%2F000152037
– ident: ref148
  doi: 10.1089%2Fdna.2009.0981
– ident: ref29
  doi: 10.1093%2Fhumrep%2Fdel163
– ident: ref162
  doi: 10.1006%2Fdbio.2000.9885
– ident: ref96
  doi: 10.1006%2Fdbio.1997.8584
– ident: ref47
  doi: 10.1006%2Fgeno.2000.6123
– ident: ref146
  doi: 10.1210%2Fen.2004-1630
– ident: ref82
  doi: 10.1038%2Fng1009
– ident: ref15
  doi: 10.1086%2F316893
– ident: ref84
  doi: 10.1371%2Fjournal.pmed.0050088
– ident: ref112
  doi: 10.1146%2Fannurev.physiol.61.1.417
– ident: ref142
  doi: 10.1146%2Fannurev.physiol.63.1.193
– ident: ref1
  doi: 10.1038%2F9629
– ident: ref26
  doi: 10.1093%2Fhmg%2Fddn016
– ident: ref54
  doi: 10.1038%2Fng.470
– ident: ref38
  doi: 10.1210%2Fer.2007-0028
– ident: ref115
  doi: 10.1101%2Fgad.5.8.1345
– ident: ref4
  doi: 10.2164%2Fjandrol.107.004655
– ident: ref52
  doi: 10.1073%2Fpnas.0507692103
– ident: ref88
  doi: 10.1210%2Fme.15.1.184
– ident: ref97
  doi: 10.1006%2Fexcr.1998.4215
– ident: ref100
  doi: 10.1530%2Frep.1.00865
– ident: ref50
  doi: 10.1038%2F372525a0
– ident: ref102
  doi: 10.1038%2Fnature02059
– ident: ref151
  doi: 10.1038%2F17068
– ident: ref118
  doi: 10.1016%2FS0303-7207%2801%2900485-3
– ident: ref124
  doi: 10.1095%2Fbiolreprod63.5.1490
– ident: ref153
  doi: 10.1038%2F90046
– ident: ref3
  doi: 10.1006%2Fdbio.2001.0438
– ident: ref75
  doi: 10.1002%2Fjcu.20473
– ident: ref57
  doi: 10.1016%2FS0140-6736%2801%2906274-2
– ident: ref12
  doi: 10.1006%2Fscdb.1998.0204
– ident: ref128
  doi: 10.1074%2Fjbc.M304067200
– ident: ref125
  doi: 10.1111%2Fj.1651-2227.2006.00159.x
– ident: ref27
  doi: 10.1095%2Fbiolreprod46.5.793
– ident: ref123
  doi: 10.1038%2F84735
– ident: ref5
  doi: 10.1111%2Fj.1365-2605.2006.00714.x
– ident: ref67
  doi: 10.1309%2F6Q0JB9CCGRQ7RKCQ
– ident: ref53
  doi: 10.1016%2F0092-8674%2895%2990287-2
– ident: ref59
  doi: 10.1016%2FS0925-4773%2899%2900123-9
– ident: ref86
  doi: 10.1095%2Fbiolreprod65.4.1201
– ident: ref119
  doi: 10.1016%2FS0303-7207%2801%2900680-3
– ident: ref87
  doi: 10.1093%2Fhumrep%2Fden010
– ident: ref106
  doi: 10.1111%2Fj.1365-2605.2005.00555.x
– ident: ref65
  doi: 10.1159%2F000207486
– ident: ref6
  doi: 10.1210%2Fjc.82.12.3976
– ident: ref135
  doi: 10.1530%2Frep.0.1250769
– ident: ref51
  doi: 10.1038%2Fng1900
– ident: ref120
  doi: 10.1016%2Fj.jri.2003.10.003
– ident: ref149
  doi: 10.1002%2Fhumu.20665
– ident: ref139
  doi: 10.1016%2Fj.beem.2007.05.002
– ident: ref107
  doi: 10.1210%2Fjc.2007-1690
– ident: ref35
  doi: 10.1387%2Fijdb.092920ac
– ident: ref62
  doi: 10.1095%2Fbiolreprod.109.078550
– ident: ref69
  doi: 10.1159%2F000058098
– ident: ref39
  doi: 10.1210%2Fjc.2009-1140
– ident: ref21
  doi: 10.1093%2Fhmg%2Fddp237
– ident: ref58
  doi: 10.1159%2F000049956
– ident: ref101
  doi: 10.1016%2FS1043-2760%2898%2900142-8
– ident: ref152
  doi: 10.1210%2Fendo-123-3-1449
– ident: ref55
  doi: 10.1210%2Fjc.85.6.2281
– ident: ref63
  doi: 10.1126%2Fscience.140.3563.184
– ident: ref158
  doi: 10.1210%2Fjc.2006-0669
– ident: ref24
  doi: 10.1016%2F0092-8674%2886%2990783-X
– ident: ref36
  doi: 10.1210%2Fjc.2003-031240
– ident: ref44
  doi: 10.1210%2Fme.2006-0534
– ident: ref72
  doi: 10.1093%2Fmolehr%2Fgag025
– ident: ref130
  doi: 10.1016%2FS0012-1606%2803%2900122-2
– ident: ref31
  doi: 10.1095%2Fbiolreprod63.6.1825
– ident: ref110
  doi: 10.1210%2Fen.2004-1454
– ident: ref2
  doi: 10.1210%2Fjc.87.4.1829
– ident: ref95
  doi: 10.1038%2Fnm.f.1895
– ident: ref22
  doi: 10.1016%2FS0925-4773%2899%2900047-7
– ident: ref30
  doi: 10.1095%2Fbiolreprod51.6.1193
– ident: ref129
  doi: 10.1093%2Fnar%2F28.6.1473
– ident: ref159
  doi: 10.1016%2Fj.mod.2009.02.006
– ident: ref145
  doi: 10.1016%2F0888-7543%2895%2980059-U
– ident: ref61
  doi: 10.1210%2Fjc.2004-0935
– ident: ref17
  doi: 10.1210%2Fjc.84.12.4713
– ident: ref113
  doi: 10.1038%2Fng1907
– ident: ref60
  doi: 10.1007%2Fs00774-008-0009-7
– ident: ref80
  doi: 10.1210%2Fjc.2002-021647
– ident: ref141
  doi: 10.1210%2Fjc.86.12.5721
– ident: ref154
  doi: 10.1016%2FS0083-6729%2805%2970013-3
– ident: ref41
  doi: 10.1095%2Fbiolreprod.102.012617
– ident: ref131
  doi: 10.1242%2Fdev.01239
– ident: ref45
  doi: 10.1210%2Fer.2009-0012
– ident: ref68
  doi: 10.1074%2Fjbc.M009056200
– ident: ref11
  doi: 10.1038%2Fsj.ejhg.5201777
– ident: ref40
  doi: 10.1038%2F84781
– ident: ref143
  doi: 10.1159%2F000277141
– ident: ref144
  doi: 10.1210%2Fjc.86.8.3820
– ident: ref163
  doi: 10.1038%2F3822
– ident: ref23
  doi: 10.1073%2Fpnas.160274797
– ident: ref71
  doi: 10.1210%2Fme.10.10.1261
– ident: ref89
  doi: 10.1002%2Fdvdy.1164
– ident: ref9
  doi: 10.1046%2Fj.1365-2605.2001.00277.x
– ident: ref77
  doi: 10.1136%2Fadc.67.7.892
– ident: ref108
  doi: 10.1210%2Fen.2006-1412
– ident: ref73
  doi: 10.1095%2Fbiolreprod35.2.425
– ident: ref127
  doi: 10.1210%2Fjc.2007-1168
– ident: ref7
  doi: 10.1016%2FS0092-8674%2800%2981527-5
– ident: ref10
  doi: 10.1016%2F0092-8674%2894%2990251-8
– ident: ref109
  doi: 10.1093%2Fhmg%2Fddi210
– ident: ref114
  doi: 10.1093%2Fhumrep%2Fdei325
– ident: ref104
  doi: 10.1210%2Fjc.2009-0060
– ident: ref122
  doi: 10.1038%2F346194a0
– ident: ref160
  doi: 10.1016%2Fj.juro.2008.10.074
– ident: ref92
  doi: 10.1210%2Fjc.2004-0670
– ident: ref140
  doi: 10.1093%2Fmolehr%2F6.3.219
– ident: ref161
  doi: 10.1016%2FS0092-8674%2800%2980557-7
– ident: ref48
  doi: 10.1172%2FJCI107621
– ident: ref98
  doi: 10.1210%2Fer.18.3.378
– ident: ref126
  doi: 10.1002%2Fajmg.a.30015
– ident: ref16
  doi: 10.1038%2F35002622
– ident: ref19
  doi: 10.1242%2Fdev.01890
SSID ssj0001179039
ssj0060225
ssib033927647
ssib014289536
Score 1.9887092
SecondaryResourceType review_article
Snippet Functional gonads are mandatory for sexual reproduction and survival of higher animal species. However, at the level of the individual subject, acquired or...
SourceID swepub
proquest
pubmed
crossref
karger
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 199
SubjectTerms Cell Lineage
Humans
Male
Organogenesis
Puberty - physiology
Spermatogenesis - physiology
Spermatozoa - cytology
Testis - embryology
Testis - physiology
Title Ontogenesis of Testis Development and Function in Humans
URI https://karger.com/doi/10.1159/000317090
https://www.ncbi.nlm.nih.gov/pubmed/20664245
https://www.proquest.com/docview/754022124
http://kipublications.ki.se/Default.aspx?queryparsed=id:121280394
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  isbn: 9783805595681
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1661-5433
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0060225
  issn: 1661-5425
  databaseCode: ABDBF
  dateStart: 20061201
  isFulltext: true
  eisbn: 3805595697
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKxwMvCNiA8iULoYmXlDZxYuexBaoJCfbQTtpbZDsOmrol05o-sL9-d3HsGigS8BKlVzut7y7nO9_5Z0LeKZXrlEuQgNRZBNYvi_JSi0jHk0plkhmhMaP79Vt2csa-nKfng8EyqFratmqsb_fuK_kfqQIN5Iq7ZP9Bsv6hQIB7kC9cQcJw_SsZn9Zt8x2NlQUVWSFixiasA-pSAwuYulxJY7dmvwk90mWHuRx28osu7XZtatARW7M7no99wqK5xAT7PLGLN56-7KhZadXgdBwuKWA2PHdLCi6yTMQEYg1EJwuMI8zlUcrsRuWxCWkWzMJZVBYoDovSwD5O7WlI_VQb2wrq3614mtuyR3BuJvY00UCa11edOBGHHtO2u4nMlxfabvfIQcyzLB6Sg9n803zhzAxizGHS2n1OwEXkDlWtW5pD1DIES7UTegZuDlbC-uHjFiHHntyCOO3Y1aNXwRA--AEg4nT_b39yf-6vsdr_Zl9w8wtybeftrB6Rh32YQmdW5x6TgamfkMNZLdvm6gc9pl3hcJeROSQiUEPaVNSqIQ00ioIaUqeG9KKmVg2PyNni8-rjSdQfyBFpiOLbaFoZcAfB52RCm4oZNuVKlBX4oHmlkpJXWakSiBdYLmQJ76nS4BcxradKxGZS8uQpGdZNbZ4TKpUsheTMcMVZrKWUGpEFmSrVhOciGZH3jk-F7tHq8dCUy6KLWtO88Nwdkbe-6bWFaNnX6Mgy2zdxdOp4X4BhxWyZrE2z3RQcYpkYNJSNyDMrE9_VCXNEjq2Q_DcI1t6T1nBnihR4IdiLP_z6S_Jg9_69IsP2Zmteg5Pbqje90t4B4ZyTtw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ontogenesis+of+Testis+Development+and+Function+in+Humans&rft.jtitle=Sexual+Development&rft.au=Stukenborg%2C+J.B.&rft.au=Col%C3%B3n%2C+E.&rft.au=S%C3%B6der%2C+O.&rft.date=2010-09-01&rft.isbn=9783805595681&rft.issn=1661-5425&rft.eissn=1661-5433&rft.volume=4&rft.issue=4-5&rft.spage=199&rft.epage=212&rft_id=info:doi/10.1159%2F000317090&rft_id=info%3Apmid%2F20664245&rft.externalDocID=317090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-5425&client=summon