COVID‐19 detection based on pre‐trained deep networks and LSTM model using X‐ray images enhanced contrast with artificial bee colony algorithm
Coronavirus (COVID‐19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sp...
Saved in:
| Published in | Expert systems Vol. 40; no. 3; pp. e13185 - n/a |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
England
Blackwell Publishing Ltd
01.03.2023
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0266-4720 1468-0394 1468-0394 |
| DOI | 10.1111/exsy.13185 |
Cover
| Abstract | Coronavirus (COVID‐19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID‐19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID‐19 testing. This study proposes the hybrid use of pre‐trained deep networks and the long short‐term memory (LSTM) for the classification of COVID‐19 from contrast‐enhanced chest X‐rays. In the proposed system, a transformation function is applied to X‐ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre‐trained deep network models and LSTM are preferred to extract features from the contrast‐enhanced chest X‐rays. At the final stage, COVID‐19, normal (healthy), and pneumonia chest X‐ray are classified using softmax. To evaluate the performance of the proposed method, the “COVID‐19 radiography” dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC‐based image enhancement, increased classification of 2.5% has been achieved against other state‐of‐the‐art models. |
|---|---|
| AbstractList | Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models. Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models. |
| Author | Er, Mehmet Bilal |
| AuthorAffiliation | 1 Department of Computer Engineering, Faculty of Engineering Harran University Şanlıurfa Turkey |
| AuthorAffiliation_xml | – name: 1 Department of Computer Engineering, Faculty of Engineering Harran University Şanlıurfa Turkey |
| Author_xml | – sequence: 1 givenname: Mehmet Bilal orcidid: 0000-0002-2074-1776 surname: Er fullname: Er, Mehmet Bilal email: bilal.er@harran.edu.tr organization: Harran University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36718212$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFDQ-ALLFBoCl2nMTOBgkNBSoN6qIFlZXlODczLh57sBOG7HgEFjwhT4JDyl-F6o0t3-9c3XvOAdpz3gFC9yk5ouk8hc9xOKKMiuIWmtG8FHPCqnwPzUhWlvOcZ2QfHcR4SQihnJd30D4rORUZzWbo2-L03cmL71--0go30IHujHe4VhEanB7bAKnWBWVc-mgAtthBt_PhQ8TKNXh5dv4Gb3wDFvfRuBW-SHhQAzYbtYKIwa2V00mqvUtdYod3pltjFTrTGm2UxTVAKlrvBqzsyodU3txFt1tlI9y7ug_R25fH54vX8-Xpq5PF8-Vc57ko5rQURaZ5WZeCF7pqcspZmYmiqmvBmNC6bomgSrFW1LpqK07ytuF5IRqeKV607BA9mfr2bquGnbJWbkOaPAySEjl6K0dv5U9vE_1sord9vYFGw7jRH4VXRv5bcWYtV_6TrAQXlI4NHl01CP5jD7GTGxM1WKsc-D7KjHPKWJZSSujDa-il74NLZowUS6tUZZWoB39P9HuUX_EmgEyADj7GAK3UplNjxGOk9v9bPr4mudESOsE7Y2G4gZTHF2fvJ80PdCHapA |
| CitedBy_id | crossref_primary_10_1016_j_radmp_2024_12_003 crossref_primary_10_1016_j_bspc_2024_106814 crossref_primary_10_3390_app13074159 crossref_primary_10_1007_s11042_024_19264_y crossref_primary_10_1007_s13369_024_09221_0 crossref_primary_10_1111_exsy_13799 crossref_primary_10_1007_s13369_024_09599_x crossref_primary_10_1007_s42001_024_00356_6 crossref_primary_10_1007_s42452_024_05796_3 crossref_primary_10_1109_ACCESS_2024_3502292 crossref_primary_10_1016_j_bspc_2024_107136 |
| Cites_doi | 10.35741/issn.0258-2724.56.2.19 10.1016/j.compbiomed.2020.103792 10.1016/j.media.2020.101794 10.1109/ACCESS.2020.3005510 10.1016/j.eswa.2020.114054 10.1016/j.scitotenv.2020.138762 10.1016/j.asoc.2020.106859 10.1016/j.compbiomed.2021.104319 10.9781/ijimai.2021.04.001 10.1101/2020.02.14.20023028 10.1117/12.2010802 10.1016/j.inffus.2020.11.005 10.20944/preprints202003.0300.v1 10.1016/j.chaos.2020.110120 10.1016/j.media.2020.101913 10.1088/1757-899X/864/1/012080 10.1016/j.cmpb.2020.105608 10.1186/s12938-018-0544-y 10.3390/healthcare 10.1016/j.cmpb.2018.04.025 10.1016/j.asoc.2020.106885 10.1016/j.radi.2020.09.012 10.3390/ijerph18063056 10.1016/j.irbm.2020.05.003 10.1016/j.jinf.2020.03.051 10.1109/JSEN.2021.3062442 10.1007/s11760-015-0758-4 10.1007/s10489-020-01888-w 10.1016/j.chaos.2020.109944 10.1016/j.chaos.2020.110190 10.1016/j.asoc.2021.107160 10.1109/NABIC.2009.5393603 10.1162/neco.1997.9.8.1735 10.1007/s13755-020-00119-3 10.1016/j.imu.2021.100620 10.1101/2020.05.12.20099937 10.1016/j.asoc.2021.107675 10.1016/j.matpr.2021.05.553 10.1007/s13246-020-00865-4 10.1016/j.bspc.2019.101819 10.1007/s10489-020-01714-3 10.1016/j.ejrad.2020.109009 10.1109/ACCESS.2020.3010287 10.1109/ACCESS.2020.3016780 10.1007/s12559-021-09859-0 10.1016/j.mehy.2020.109761 10.1016/j.asoc.2020.106912 10.21533/pen.v9i1.1774 10.1016/j.bbe.2020.08.008 10.1007/s10044-021-00984-y 10.9781/ijimai.2021.04.002 10.1016/j.scs.2020.102589 10.1109/CVPR.2016.90 10.1016/j.cmpb.2020.105581 10.1016/j.imu.2020.100412 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION NPM 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1111/exsy.13185 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | Er |
| EISSN | 1468-0394 |
| EndPage | n/a |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:9878115 PMC9878115 36718212 10_1111_exsy_13185 EXSY13185 |
| Genre | article Journal Article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT 77I AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION NPM 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4485-16852c76b6875c9d417362859bb8338ccbf081aa3f8bc9f9704fd7458d72a75f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0266-4720 1468-0394 |
| IngestDate | Sun Oct 26 03:48:05 EDT 2025 Tue Sep 30 17:16:14 EDT 2025 Fri Sep 05 11:48:11 EDT 2025 Fri Jul 25 22:41:08 EDT 2025 Mon Jul 21 06:07:55 EDT 2025 Wed Oct 01 02:56:04 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Wed Jan 22 16:24:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | LSTM COVID‐19 artificial bee Colony algorithm pre‐trained CNN |
| Language | English |
| License | 2022 John Wiley & Sons Ltd. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4485-16852c76b6875c9d417362859bb8338ccbf081aa3f8bc9f9704fd7458d72a75f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2074-1776 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9878115 |
| PMID | 36718212 |
| PQID | 2773970969 |
| PQPubID | 32130 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1111_exsy_13185 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9878115 proquest_miscellaneous_2771332001 proquest_journals_2773970969 pubmed_primary_36718212 crossref_citationtrail_10_1111_exsy_13185 crossref_primary_10_1111_exsy_13185 wiley_primary_10_1111_exsy_13185_EXSY13185 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
| PublicationTitle | Expert systems |
| PublicationTitleAlternate | Expert Syst |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
| References | 2021; 9 2021; 24 2021; 68 2021; 6 2021; 22 2018; 161 2020; 140 2020; 20 2020; 40 2021; 103 2020; 121 2020; 81 2020; 864 2020; 127 2020; 57 2016; 2016 2021; 164 2005 2020; 99 2015; 9 2020; 728 2021; 51 1997; 9 2020; 8 2016; 4 2021; 13 2009; 2009 2018; 17 2021; 98 2021; 56 2020; 31 2020; 196 2021 2020 2021; 18 2020; 27 2020; 138 2020; 23 2021; 111 2020; 43 2020; 65 2021; 132 2013 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Öztürk S. (e_1_2_8_37_1) 2016; 4 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 103 year: 2021 article-title: DeepCoroNet: A deep LSTM approach for automated detection of COVID‐19 cases from chest X‐ray images publication-title: Applied Soft Computing – volume: 140 year: 2020 article-title: A deep learning and grad‐CAM based color visualization approach for fast detection of COVID‐19 cases using chest X‐ray and CT‐scan images publication-title: Chaos, Solitons and Fractals – volume: 111 year: 2021 article-title: An oppositional‐Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID‐19 diagnosis publication-title: Applied Soft Computing – volume: 6 year: 2021 article-title: COVID‐19 mortality risk prediction using X‐ray images publication-title: International Journal of Interactive Multimedia and Artificial Intelligence – year: 2005 – volume: 9 start-page: 29 year: 2021 end-page: 36 article-title: COVID‐19 detection based on deep learning and artificial bee colony publication-title: Periodicals of Engineering and Natural Sciences (PEN) – volume: 164 year: 2021 article-title: Deep learning approaches for COVID‐19 detection based on chest X‐ray images publication-title: Expert Systems with Applications – volume: 8 start-page: 132665 year: 2020 end-page: 132676 article-title: Can AI help in screening viral and COVID‐19 pneumonia? publication-title: IEEE Access – volume: 65 year: 2020 article-title: Deep learning and medical image processing for coronavirus (COVID‐19) pandemic: A survey publication-title: Sustainable Cities and Society – volume: 9 start-page: 522 year: 2021 article-title: A novel method for COVID‐19 diagnosis using artificial intelligence in chest X‐ray images publication-title: Healthcare (Basel) – volume: 56 start-page: 235 year: 2021 end-page: 248 article-title: Fast COVID‐19 detection of chest X‐ray images using single shot detection MobileNet convolutional neural networks publication-title: Journal of Southwest Jiaotong University. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Computation – volume: 23 year: 2020 article-title: Deep transfer learning‐based COVID‐19 prediction using chest X‐rays publication-title: Sage Journal – volume: 13 start-page: 761 year: 2021 end-page: 770 article-title: Analysis and prediction of COVID‐19 pandemic in Bangladesh by using ANFIS and LSTM network publication-title: Cognitive Computation – volume: 65 year: 2020 article-title: Deep‐COVID: Predicting COVID‐19 from chest X‐ray images using deep transfer learning publication-title: Medical Image Analysis – volume: 9 start-page: 967 year: 2015 end-page: 990 article-title: A survey on the applications of artificial bee colony in signal, image, and video processing publication-title: Signal Image Video Process – volume: 43 start-page: 87 year: 2020 end-page: 92 article-title: Deep transfer learning based classification model for COVID‐19 disease publication-title: IRBM – volume: 196 year: 2020 article-title: Explainable deep learning for pulmonary disease and coronavirus COVID‐19 detection from X‐rays publication-title: Computer Methods and Programs in Biomedicine – volume: 127 year: 2020 article-title: Chest CT findings of COVID‐19 pneumonia by duration of symptoms publication-title: European Journal of Radiology – volume: 57 year: 2020 article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM publication-title: Biomedical Signal Processing and Control – volume: 17 start-page: 113 year: 2018 article-title: Computer‐aided detection in chest radiography based on artificial intelligence: A survey publication-title: Biomedical Engineering Online – volume: 132 year: 2021 article-title: Exploring the effect of image enhancement techniques on COVID‐19 detection using chest X‐ray images publication-title: Computers in Biology and Medicine – volume: 140 year: 2020 article-title: COVIDiagnosis‐net: Deep Bayes‐SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID‐19) from X‐ray images publication-title: Medical Hypotheses – volume: 8 start-page: 27 year: 2020 article-title: PDCOVIDNet: A parallel‐dilated convolutional neural network architecture for detecting COVID‐19 from chest X‐ray images publication-title: Health Information Science and Systems – volume: 24 year: 2021 article-title: COV‐SNET: A deep learning model for X‐ray‐based COVID‐19 classification publication-title: Informatics in Medicine Unlocked – volume: 161 start-page: 173 year: 2018 end-page: 180 article-title: Small lung nodules detection based on local variance analysis and probabilistic neural network publication-title: Computer Methods and Programs in Biomedicine – volume: 196 year: 2020 article-title: CoroNet: A deep neural network for detection and diagnosis of COVID‐19 from chest X‐ray images publication-title: Computer Methods and Programs in Biomedicine – year: 2020 article-title: Detection of coronavirus disease (COVID‐19) based on deep features publication-title: Preprints – volume: 20 year: 2020 article-title: A combined deep CNN‐LSTM network for the detection of novel coronavirus (COVID‐19) using X‐ray images publication-title: Informatics in Medicine Unlocked – year: 2021 article-title: Overview of deep learning models for identification COVID‐19 publication-title: Materials Today: Proceedings – volume: 99 year: 2020 article-title: InstaCovNet‐19: A deep learning classification model for the detection of COVID‐19 patients using chest X‐ray publication-title: Applied Soft Computing – volume: 8 start-page: 118869 year: 2020 end-page: 118883 article-title: Weakly supervised deep learning for COVID‐19 infection detection and classification from CT images publication-title: IEEE Access – volume: 68 start-page: 131 year: 2021 end-page: 148 article-title: COVID‐19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis publication-title: Information Fusion – volume: 31 year: 2020 article-title: A deep learning algorithm using CT images to screen for Corona virus disease (COVID‐19) publication-title: medRxiv – volume: 68 year: 2021 article-title: COVID‐AL: The diagnosis of COVID‐19 with deep active learning publication-title: Medical Image Analysis – volume: 140 year: 2020 article-title: Comparison of deep learning approaches to predict COVID‐19 infection publication-title: Chaos, Solitons and Fractals – volume: 51 start-page: 1213 year: 2021 end-page: 1226 article-title: COVIDetectioNet: COVID‐19 diagnosis system based on X‐ray images using features selected from pre‐learned deep features ensemble publication-title: Applied Intelligence – volume: 6 start-page: 1 year: 2021 article-title: Automated detection of COVID‐19 using chest X‐ray images and CT scans through multilayer‐spatial convolutional neural networks publication-title: International Journal of Interactive Multimedia and Artificial Intelligence – volume: 27 start-page: 743 year: 2020 end-page: 747 article-title: Typical CT findings of COVID‐19 pneumonia in patients presenting with repetitive negative RT‐PCR publication-title: Radiography – volume: 98 year: 2021 article-title: The ensemble deep learning model for novel COVID‐19 on CT images publication-title: Applied Soft Computing – volume: 43 start-page: 635 year: 2020 end-page: 640 article-title: COVID‐19: Automatic detection from X‐ray images utilizing transfer learning with convolutional neural networks publication-title: Australasian Physical & Engineering Sciences in Medicine/Supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine. – volume: 98 year: 2021 article-title: CNN‐based transfer learning–BiLSTM network: A novel approach for COVID‐19 infection detection publication-title: Applied Soft Computing – volume: 40 start-page: 1391 year: 2020 end-page: 1405 article-title: A deep learning approach to detect COVID‐19 coronavirus with X‐ray images publication-title: Biocybernetics and Biomedical Engineering – start-page: 1 year: 2020 end-page: 7 article-title: Deep learning system to screen coronavirus disease 2019 pneumonia publication-title: Applied Intelligence – volume: 121 year: 2020 article-title: Automated detection of COVID‐19 cases using deep neural networks with X‐ray images publication-title: Computers in Biology and Medicine – volume: 864 year: 2020 – volume: 2009 start-page: 72 year: 2009 end-page: 77 article-title: Gray‐level image enhancement by particle swarm optimization, in publication-title: World Congress on Nature & Biologically Inspired Computing (NaBIC) – volume: 18 start-page: 1 year: 2021 end-page: 14 article-title: Role of hybrid deep neural networks (HDNNS), computed tomography, and chest x‐rays for the detection of COVID‐19 publication-title: International Journal of Environmental Research and Public Health – volume: 4 start-page: 173 year: 2016 end-page: 183 article-title: Yapay Arı Koloni Algoritması Kullanılarak Görüntü İyileştirme Yönteminin Geliştirilmesi publication-title: Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. – year: 2020 – volume: 728 year: 2020 article-title: Prediction for the spread of COVID‐19 in India and effectiveness of preventive measures publication-title: Science of The Total Environment – volume: 2016 start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition, in publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 8 start-page: 149808 year: 2020 end-page: 149824 article-title: COVID‐19 detection through transfer learning using multimodal imaging data publication-title: IEEE Access – volume: 81 start-page: e28 year: 2020 end-page: e32 article-title: Serological immunochromatographic approach in diagnosis with SARS‐CoV‐2 infected COVID‐19 patients publication-title: The Journal of Infection – volume: 22 start-page: 1 year: 2021 end-page: 17438 article-title: AVNC: Attention‐based VGG‐style network for COVID‐19 diagnosis by CBAM publication-title: IEEE Sensors Journal – volume: 138 year: 2020 article-title: Application of deep learning for fast detection of COVID‐19 in X‐rays using nCOVnet publication-title: Chaos, Solitons and Fractals – year: 2013 – ident: e_1_2_8_6_1 doi: 10.35741/issn.0258-2724.56.2.19 – ident: e_1_2_8_38_1 doi: 10.1016/j.compbiomed.2020.103792 – ident: e_1_2_8_34_1 doi: 10.1016/j.media.2020.101794 – ident: e_1_2_8_24_1 doi: 10.1109/ACCESS.2020.3005510 – ident: e_1_2_8_27_1 doi: 10.1016/j.eswa.2020.114054 – ident: e_1_2_8_49_1 doi: 10.1016/j.scitotenv.2020.138762 – ident: e_1_2_8_19_1 doi: 10.1016/j.asoc.2020.106859 – ident: e_1_2_8_46_1 doi: 10.1016/j.compbiomed.2021.104319 – ident: e_1_2_8_43_1 doi: 10.9781/ijimai.2021.04.001 – ident: e_1_2_8_44_1 – ident: e_1_2_8_52_1 doi: 10.1101/2020.02.14.20023028 – ident: e_1_2_8_57_1 doi: 10.1117/12.2010802 – ident: e_1_2_8_54_1 doi: 10.1016/j.inffus.2020.11.005 – ident: e_1_2_8_48_1 doi: 10.20944/preprints202003.0300.v1 – ident: e_1_2_8_3_1 doi: 10.1016/j.chaos.2020.110120 – ident: e_1_2_8_56_1 doi: 10.1016/j.media.2020.101913 – ident: e_1_2_8_58_1 doi: 10.1088/1757-899X/864/1/012080 – ident: e_1_2_8_10_1 doi: 10.1016/j.cmpb.2020.105608 – ident: e_1_2_8_45_1 doi: 10.1186/s12938-018-0544-y – ident: e_1_2_8_4_1 doi: 10.3390/healthcare – ident: e_1_2_8_55_1 doi: 10.1016/j.cmpb.2018.04.025 – ident: e_1_2_8_59_1 doi: 10.1016/j.asoc.2020.106885 – ident: e_1_2_8_9_1 doi: 10.1016/j.radi.2020.09.012 – ident: e_1_2_8_25_1 doi: 10.3390/ijerph18063056 – ident: e_1_2_8_42_1 doi: 10.1016/j.irbm.2020.05.003 – ident: e_1_2_8_39_1 doi: 10.1016/j.jinf.2020.03.051 – ident: e_1_2_8_53_1 doi: 10.1109/JSEN.2021.3062442 – ident: e_1_2_8_2_1 doi: 10.1007/s11760-015-0758-4 – ident: e_1_2_8_50_1 doi: 10.1007/s10489-020-01888-w – ident: e_1_2_8_41_1 doi: 10.1016/j.chaos.2020.109944 – ident: e_1_2_8_40_1 doi: 10.1016/j.chaos.2020.110190 – ident: e_1_2_8_16_1 doi: 10.1016/j.asoc.2021.107160 – ident: e_1_2_8_18_1 doi: 10.1109/NABIC.2009.5393603 – ident: e_1_2_8_22_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_8_15_1 doi: 10.1007/s13755-020-00119-3 – ident: e_1_2_8_21_1 doi: 10.1016/j.imu.2021.100620 – ident: e_1_2_8_33_1 doi: 10.1101/2020.05.12.20099937 – ident: e_1_2_8_29_1 doi: 10.1016/j.asoc.2021.107675 – ident: e_1_2_8_35_1 doi: 10.1016/j.matpr.2021.05.553 – ident: e_1_2_8_5_1 doi: 10.1007/s13246-020-00865-4 – ident: e_1_2_8_12_1 doi: 10.1016/j.bspc.2019.101819 – ident: e_1_2_8_11_1 doi: 10.1007/s10489-020-01714-3 – ident: e_1_2_8_17_1 doi: 10.1016/j.ejrad.2020.109009 – ident: e_1_2_8_14_1 doi: 10.1109/ACCESS.2020.3010287 – ident: e_1_2_8_23_1 doi: 10.1109/ACCESS.2020.3016780 – ident: e_1_2_8_13_1 doi: 10.1007/s12559-021-09859-0 – ident: e_1_2_8_51_1 doi: 10.1016/j.mehy.2020.109761 – ident: e_1_2_8_7_1 doi: 10.1016/j.asoc.2020.106912 – ident: e_1_2_8_30_1 – ident: e_1_2_8_47_1 doi: 10.21533/pen.v9i1.1774 – ident: e_1_2_8_28_1 doi: 10.1016/j.bbe.2020.08.008 – ident: e_1_2_8_36_1 doi: 10.1007/s10044-021-00984-y – volume: 4 start-page: 173 year: 2016 ident: e_1_2_8_37_1 article-title: Yapay Arı Koloni Algoritması Kullanılarak Görüntü İyileştirme Yönteminin Geliştirilmesi publication-title: Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. – ident: e_1_2_8_32_1 doi: 10.9781/ijimai.2021.04.002 – ident: e_1_2_8_8_1 doi: 10.1016/j.scs.2020.102589 – ident: e_1_2_8_20_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_8_31_1 doi: 10.1016/j.cmpb.2020.105581 – ident: e_1_2_8_26_1 doi: 10.1016/j.imu.2020.100412 |
| SSID | ssj0001776 |
| Score | 2.34963 |
| Snippet | Coronavirus (COVID‐19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main... Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e13185 |
| SubjectTerms | artificial bee Colony algorithm Casualties COVID-19 Feature extraction Image classification Image contrast Image enhancement Infectious diseases LSTM Medical imaging Model accuracy Original pre‐trained CNN Search algorithms Signs and symptoms Swarm intelligence Throats Viral diseases Viruses |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuBCKc_QgozoBaSs1nZiJxIXVFoVREGiLVoOKPIrbdWtd7XJCpYTP4EDv5Bfwth5lKWoEtyieLKbeGfG32S_-YzQliHDTHFtYlhqszihlsUZz2mcG0b1UCuRMd8ovP-W7x0lr0fpaAU973phGn2I_oWbj4yQr32AS1X9FuT2S7UYEN_8CwmYMB7qqfcX2lFEhJ3loMbgcSLosNUm9TSei0uXV6NLEPMyU_La3E3l4rMcj5fRbFiOdtfQp-5BGhbK2WBeq4H--ofG4_8-6U10o8Wp-EXjWOtoxbpbaK3bAwK3KeE2-rH97sOrlz-_fSc5NrYOxC6H_dpoMBxMZxbGwj4UcMJYO8WuIZ5XWDqD3xwc7uOwGw_2DPxjPALzmVzg03NIdBW27iRQFHCg1Muqxv7FMfb-3khfYGUt9srbboHl-Hgyg-HzO-hod-dwey9ud3qINZSHaUx4llItuOJQPuncJEQw39uZK5VBDa21KgG6SMnKTOm8zMUwKY1I0swIKkVasrto1U2cvY8wkZYzwIWGKplYlkpN4aOoVCRRCvJbhJ52v3ihWxl0PwvjoiuH_HQXYboj9KS3nTbiH3-12uwcp2gTQFVQIQDpQX2YR-hxPwyh6_-Pkc5O5sGGMOZJbRG61_hZ_zWMA2gAWBEhseSBvYGXBV8ecacnQR48z3z3MNzWVu-rV979s-B7V5gUO6ODj-Howb8Yb6DrFBBhQ9jbRKv1bG4fAoKr1aMQqb8ArgJHsQ priority: 102 providerName: Wiley-Blackwell |
| Title | COVID‐19 detection based on pre‐trained deep networks and LSTM model using X‐ray images enhanced contrast with artificial bee colony algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13185 https://www.ncbi.nlm.nih.gov/pubmed/36718212 https://www.proquest.com/docview/2773970969 https://www.proquest.com/docview/2771332001 https://pubmed.ncbi.nlm.nih.gov/PMC9878115 https://www.ncbi.nlm.nih.gov/pmc/articles/9878115 |
| UnpaywallVersion | submittedVersion |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1468-0394 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1468-0394 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0266-4720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-0394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001776 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1V6QI2lDeGUg2iG5DsZmZsj72sSquCaEFtg9KVNS-3Ec4kykM0XfEJLPhCvoQ7YztSKKpgZ-VeORP7jOdc59wzCG1r0s1kqnQIS20WxtSwMEtzGuaaUdVVkmfMNQofHaeHvfhDP-mvIdL2wnjRvpKDyFbDyA4uvbZyPFQ7rU5sB4rkjLi28vU0AfrdQeu948-75_W7lDSMubdi9B1FXZbHjSWpU--Yq-kiIq5deHURusEsbwok78ztWCy-iapaJbF-FTrYQCft-GvxyddoPpORuv7D2vG_fuB9dK_hpHi3Dj1Aa8Y-RBvtfg-4mf6P0M-9T1_ev_v1_QfJsTYzL-Ky2K2DGsPBeGIg5vecgA-0MWNsa5H5FAur8cfTsyPsd97BTm1_gfuQPhELPBjCQ22Kjb30cgTs5fNiOsPuJTF2I65tLrA0BjuXbbvAoroYTSA8fIx6B_tne4dhs6tDqKAUTEKSZglVPJUplEoq1zHhzPVx5lJmUC8rJUugKUKwMpMqL3PejUvN4yTTnAqelOwJ6tiRNc8QJsKkDDigplLEhiVCUTgVFZLEUsKzLEBv2ttcqMby3F2FqmhLHweJwkMiQK-XuePa6OOvWZstWopmsk8LyjmwOqgF8wC9WoZhmrr_XoQ1o7nPIYw5AVuAntbgWn4NS4EgAIUIEF-B3TLBWYCvRgA43gq8wUqAtpcAvXX0bz12b0kp9vun5_7o-b-d8wW6S4H31bK8TdSZTebmJfC0mdyCCuWEbjXz8zemtkJs |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1BOZQL5ZuUAovoBSRH8a7ttY-otEohKRJNUThZ--W2It1EcaISTvwEDvxCfgkza8clFFWCm5WdJM5mZvfN-s0bQrZN2ElVok0AW20aRMzyIE0yFmSGM93RSqQcC4X7B0n3KHo7jIc1NwdrYSp9iObADSPDr9cY4Hgg_VuU2y_loh1i9e91ciNKIFFBTPThQj0qFL63HGQZSRAJ1qnVSZHIc_He1f3oEsi8zJVcn7uJXJzL0WgVz_oNaW-j6rpaeh1D5KF8bs9nqq2__qHy-N-_9Ta5VUNV-rryrTvkmnV3ycayDQStV4V75MfO-4_7b35--x5m1NiZ53Y5itujoXAxmVoY860o4AVj7YS6inteUukM7R0O-tQ35KFIwj-mQzCfygU9PYO1rqTWnXiWAvWselnOKJ4dU3T5Sv2CKmspim-7BZWj4_EUhs_uk6O93cFON6ibPQQaMsQ4CJM0ZlokKoEMSmcmCgXH8s5MqRTSaK1VAehFSl6kSmdFJjpRYUQUp0YwKeKCPyBrbuzsI0JDaRMO0NAwJSPLY6kZfBSTKoyUgiWuRV4u__Jc10roOAujfJkR4XTnfrpb5EVjO6n0P_5qtbX0nLxeA8qcCQFgD1LErEWeN8MQvfhIRjo7nnubkHPktbXIw8rRmq_hCeAGQBYtIlZcsDFAZfDVEXd64hXCsxQLiOG2thtnvfLuX3nnu8Ik3x0efvJXm_9i_Iysdwf9Xt7bP3j3mNxkABAr_t4WWZtN5_YJALqZeurD9hf66UvS |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1BkYAL5RtDgUX0ApKjeNf2eo-oadRCWxBtUThZ--W2It1YsSMIJ34CB34hv4TZteMSiirBzcpOEns9s_vGfvMGoXUd9TOZKh3CVpuFMTE0zFJOQq4pUX0lWUZdofDuXrp1GL8eJaOWm-NqYRp9iO6Bm4sMv167ADelLn6LcvOlmvciV_17GV2JE545Rt_g_Zl6VMR8bznIMtIwZqTfqpM6Is_Zd5f3o3Mg8zxX8trMlmL-WYzHy3jWb0jD1abrauV1DB0P5VNvVsue-vqHyuN_X-tNdKOFqvhV41u30CVjb6PVRRsI3K4Kd9CPjbcftgc_v32PONam9twui932qDEclFMDY74VBXygjSmxbbjnFRZW4539g13sG_JgR8I_wiMwn4o5PjmFta7Cxh57lgL2rHpR1dg9O8bO5Rv1CyyNwU58286xGB9NpjB8ehcdDjcPNrbCttlDqCBDTMIozRKiWCpTyKAU13HEqCvv5FJmkEYrJQtAL0LQIpOKF5z140KzOMk0I4IlBb2HVuzEmgcIR8KkFKChJlLEhiZCEfgpImQUSwlLXIBeLG55rloldDcL43yREbnpzv10B-h5Z1s2-h9_tVpbeE7ergFVThgDsAcpIg_Qs24Yote9khHWTGbeJqLU8doCdL9xtO5vaAq4AZBFgNiSC3YGThl8ecSeHHuFcJ65AmI4rfXOWS88-5fe-S4wyTdH-x_90cN_MX6Krr4bDPOd7b03j9B1Aviwoe-toZV6OjOPAc_V8omP2l8_sEtW |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1V6QI2lDeGggbRDUhOMx7bYy-r0qogWhBtULqy5uU2wplYsSMIKz6BBV_Il3Bn_JBCUQU7K_fKmdhnPOc6555BaEeRUSJiqXxYahM_DDT1kzgN_FTRQI6kYAm1jcLHJ_HROHw7iSYbiHS9ME60L8V0aIrZ0EwvnbaynMndTie2C0VyQmxb-WYcAf0eoM3xyYe98-ZdSuyHzFkxuo6iEU3D1pLUqnf012o1JLZdeH0RusIsrwokbyxNyVdfeFGsk1i3Ch1uoY_d-BvxyefhshZD-e0Pa8f_-oG30a2Wk-K9JnQHbWhzF211-z3gdvrfQz_333968_rX9x8kxUrXTsRlsF0HFYaDcqEh5vacgA-U1iU2jci8wtwo_O707Bi7nXewVdtf4AmkL_gKT2fwUKuwNpdOjoCdfJ5XNbYvibEdcWNzgYXW2LpsmxXmxcV8AeHZfTQ-PDjbP_LbXR18CaVg5JM4iQLJYhFDqSRTFRJGbR9nKkQC9bKUIgeawjnNEyHTPGWjMFcsjBLFAs6inD5AAzM3-hHChOuYAgdUgeChphGXAZwq4IKEQsCzzEMvu9ucydby3F6FIutKHwuJzEHCQy_63LIx-vhr1naHlqyd7FUWMAasDmrB1EPP-zBMU_vfCzd6vnQ5hFIrYPPQwwZc_dfQGAgCUAgPsTXY9QnWAnw9AsBxVuAtVjy00wP02tG_cti9JiU7mJyeu6PH_3bOJ-hmALyvkeVto0G9WOqnwNNq8aydmb8BHgtBgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID%E2%80%9019+detection+based+on+pre%E2%80%90trained+deep+networks+and+LSTM+model+using+X%E2%80%90ray+images+enhanced+contrast+with+artificial+bee+colony+algorithm&rft.jtitle=Expert+systems&rft.au=Mehmet+Bilal+Er&rft.date=2023-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=40&rft.issue=3&rft_id=info:doi/10.1111%2Fexsy.13185&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |