COVID‐19 detection based on pre‐trained deep networks and LSTM model using X‐ray images enhanced contrast with artificial bee colony algorithm

Coronavirus (COVID‐19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sp...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 40; no. 3; pp. e13185 - n/a
Main Author Er, Mehmet Bilal
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
1468-0394
DOI10.1111/exsy.13185

Cover

Abstract Coronavirus (COVID‐19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID‐19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID‐19 testing. This study proposes the hybrid use of pre‐trained deep networks and the long short‐term memory (LSTM) for the classification of COVID‐19 from contrast‐enhanced chest X‐rays. In the proposed system, a transformation function is applied to X‐ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre‐trained deep network models and LSTM are preferred to extract features from the contrast‐enhanced chest X‐rays. At the final stage, COVID‐19, normal (healthy), and pneumonia chest X‐ray are classified using softmax. To evaluate the performance of the proposed method, the “COVID‐19 radiography” dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC‐based image enhancement, increased classification of 2.5% has been achieved against other state‐of‐the‐art models.
AbstractList Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.
Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.
Author Er, Mehmet Bilal
AuthorAffiliation 1 Department of Computer Engineering, Faculty of Engineering Harran University Şanlıurfa Turkey
AuthorAffiliation_xml – name: 1 Department of Computer Engineering, Faculty of Engineering Harran University Şanlıurfa Turkey
Author_xml – sequence: 1
  givenname: Mehmet Bilal
  orcidid: 0000-0002-2074-1776
  surname: Er
  fullname: Er, Mehmet Bilal
  email: bilal.er@harran.edu.tr
  organization: Harran University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36718212$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFDQ-ALLFBoCl2nMTOBgkNBSoN6qIFlZXlODczLh57sBOG7HgEFjwhT4JDyl-F6o0t3-9c3XvOAdpz3gFC9yk5ouk8hc9xOKKMiuIWmtG8FHPCqnwPzUhWlvOcZ2QfHcR4SQihnJd30D4rORUZzWbo2-L03cmL71--0go30IHujHe4VhEanB7bAKnWBWVc-mgAtthBt_PhQ8TKNXh5dv4Gb3wDFvfRuBW-SHhQAzYbtYKIwa2V00mqvUtdYod3pltjFTrTGm2UxTVAKlrvBqzsyodU3txFt1tlI9y7ug_R25fH54vX8-Xpq5PF8-Vc57ko5rQURaZ5WZeCF7pqcspZmYmiqmvBmNC6bomgSrFW1LpqK07ytuF5IRqeKV607BA9mfr2bquGnbJWbkOaPAySEjl6K0dv5U9vE_1sord9vYFGw7jRH4VXRv5bcWYtV_6TrAQXlI4NHl01CP5jD7GTGxM1WKsc-D7KjHPKWJZSSujDa-il74NLZowUS6tUZZWoB39P9HuUX_EmgEyADj7GAK3UplNjxGOk9v9bPr4mudESOsE7Y2G4gZTHF2fvJ80PdCHapA
CitedBy_id crossref_primary_10_1016_j_radmp_2024_12_003
crossref_primary_10_1016_j_bspc_2024_106814
crossref_primary_10_3390_app13074159
crossref_primary_10_1007_s11042_024_19264_y
crossref_primary_10_1007_s13369_024_09221_0
crossref_primary_10_1111_exsy_13799
crossref_primary_10_1007_s13369_024_09599_x
crossref_primary_10_1007_s42001_024_00356_6
crossref_primary_10_1007_s42452_024_05796_3
crossref_primary_10_1109_ACCESS_2024_3502292
crossref_primary_10_1016_j_bspc_2024_107136
Cites_doi 10.35741/issn.0258-2724.56.2.19
10.1016/j.compbiomed.2020.103792
10.1016/j.media.2020.101794
10.1109/ACCESS.2020.3005510
10.1016/j.eswa.2020.114054
10.1016/j.scitotenv.2020.138762
10.1016/j.asoc.2020.106859
10.1016/j.compbiomed.2021.104319
10.9781/ijimai.2021.04.001
10.1101/2020.02.14.20023028
10.1117/12.2010802
10.1016/j.inffus.2020.11.005
10.20944/preprints202003.0300.v1
10.1016/j.chaos.2020.110120
10.1016/j.media.2020.101913
10.1088/1757-899X/864/1/012080
10.1016/j.cmpb.2020.105608
10.1186/s12938-018-0544-y
10.3390/healthcare
10.1016/j.cmpb.2018.04.025
10.1016/j.asoc.2020.106885
10.1016/j.radi.2020.09.012
10.3390/ijerph18063056
10.1016/j.irbm.2020.05.003
10.1016/j.jinf.2020.03.051
10.1109/JSEN.2021.3062442
10.1007/s11760-015-0758-4
10.1007/s10489-020-01888-w
10.1016/j.chaos.2020.109944
10.1016/j.chaos.2020.110190
10.1016/j.asoc.2021.107160
10.1109/NABIC.2009.5393603
10.1162/neco.1997.9.8.1735
10.1007/s13755-020-00119-3
10.1016/j.imu.2021.100620
10.1101/2020.05.12.20099937
10.1016/j.asoc.2021.107675
10.1016/j.matpr.2021.05.553
10.1007/s13246-020-00865-4
10.1016/j.bspc.2019.101819
10.1007/s10489-020-01714-3
10.1016/j.ejrad.2020.109009
10.1109/ACCESS.2020.3010287
10.1109/ACCESS.2020.3016780
10.1007/s12559-021-09859-0
10.1016/j.mehy.2020.109761
10.1016/j.asoc.2020.106912
10.21533/pen.v9i1.1774
10.1016/j.bbe.2020.08.008
10.1007/s10044-021-00984-y
10.9781/ijimai.2021.04.002
10.1016/j.scs.2020.102589
10.1109/CVPR.2016.90
10.1016/j.cmpb.2020.105581
10.1016/j.imu.2020.100412
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/exsy.13185
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Er
EISSN 1468-0394
EndPage n/a
ExternalDocumentID oai:pubmedcentral.nih.gov:9878115
PMC9878115
36718212
10_1111_exsy_13185
EXSY13185
Genre article
Journal Article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
NPM
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4485-16852c76b6875c9d417362859bb8338ccbf081aa3f8bc9f9704fd7458d72a75f3
IEDL.DBID UNPAY
ISSN 0266-4720
1468-0394
IngestDate Sun Oct 26 03:48:05 EDT 2025
Tue Sep 30 17:16:14 EDT 2025
Fri Sep 05 11:48:11 EDT 2025
Fri Jul 25 22:41:08 EDT 2025
Mon Jul 21 06:07:55 EDT 2025
Wed Oct 01 02:56:04 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Wed Jan 22 16:24:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords LSTM
COVID‐19
artificial bee Colony algorithm
pre‐trained CNN
Language English
License 2022 John Wiley & Sons Ltd.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4485-16852c76b6875c9d417362859bb8338ccbf081aa3f8bc9f9704fd7458d72a75f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2074-1776
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9878115
PMID 36718212
PQID 2773970969
PQPubID 32130
PageCount 16
ParticipantIDs unpaywall_primary_10_1111_exsy_13185
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9878115
proquest_miscellaneous_2771332001
proquest_journals_2773970969
pubmed_primary_36718212
crossref_citationtrail_10_1111_exsy_13185
crossref_primary_10_1111_exsy_13185
wiley_primary_10_1111_exsy_13185_EXSY13185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Expert systems
PublicationTitleAlternate Expert Syst
PublicationYear 2023
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2021; 9
2021; 24
2021; 68
2021; 6
2021; 22
2018; 161
2020; 140
2020; 20
2020; 40
2021; 103
2020; 121
2020; 81
2020; 864
2020; 127
2020; 57
2016; 2016
2021; 164
2005
2020; 99
2015; 9
2020; 728
2021; 51
1997; 9
2020; 8
2016; 4
2021; 13
2009; 2009
2018; 17
2021; 98
2021; 56
2020; 31
2020; 196
2021
2020
2021; 18
2020; 27
2020; 138
2020; 23
2021; 111
2020; 43
2020; 65
2021; 132
2013
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Öztürk S. (e_1_2_8_37_1) 2016; 4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 103
  year: 2021
  article-title: DeepCoroNet: A deep LSTM approach for automated detection of COVID‐19 cases from chest X‐ray images
  publication-title: Applied Soft Computing
– volume: 140
  year: 2020
  article-title: A deep learning and grad‐CAM based color visualization approach for fast detection of COVID‐19 cases using chest X‐ray and CT‐scan images
  publication-title: Chaos, Solitons and Fractals
– volume: 111
  year: 2021
  article-title: An oppositional‐Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID‐19 diagnosis
  publication-title: Applied Soft Computing
– volume: 6
  year: 2021
  article-title: COVID‐19 mortality risk prediction using X‐ray images
  publication-title: International Journal of Interactive Multimedia and Artificial Intelligence
– year: 2005
– volume: 9
  start-page: 29
  year: 2021
  end-page: 36
  article-title: COVID‐19 detection based on deep learning and artificial bee colony
  publication-title: Periodicals of Engineering and Natural Sciences (PEN)
– volume: 164
  year: 2021
  article-title: Deep learning approaches for COVID‐19 detection based on chest X‐ray images
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 132665
  year: 2020
  end-page: 132676
  article-title: Can AI help in screening viral and COVID‐19 pneumonia?
  publication-title: IEEE Access
– volume: 65
  year: 2020
  article-title: Deep learning and medical image processing for coronavirus (COVID‐19) pandemic: A survey
  publication-title: Sustainable Cities and Society
– volume: 9
  start-page: 522
  year: 2021
  article-title: A novel method for COVID‐19 diagnosis using artificial intelligence in chest X‐ray images
  publication-title: Healthcare (Basel)
– volume: 56
  start-page: 235
  year: 2021
  end-page: 248
  article-title: Fast COVID‐19 detection of chest X‐ray images using single shot detection MobileNet convolutional neural networks
  publication-title: Journal of Southwest Jiaotong University.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Computation
– volume: 23
  year: 2020
  article-title: Deep transfer learning‐based COVID‐19 prediction using chest X‐rays
  publication-title: Sage Journal
– volume: 13
  start-page: 761
  year: 2021
  end-page: 770
  article-title: Analysis and prediction of COVID‐19 pandemic in Bangladesh by using ANFIS and LSTM network
  publication-title: Cognitive Computation
– volume: 65
  year: 2020
  article-title: Deep‐COVID: Predicting COVID‐19 from chest X‐ray images using deep transfer learning
  publication-title: Medical Image Analysis
– volume: 9
  start-page: 967
  year: 2015
  end-page: 990
  article-title: A survey on the applications of artificial bee colony in signal, image, and video processing
  publication-title: Signal Image Video Process
– volume: 43
  start-page: 87
  year: 2020
  end-page: 92
  article-title: Deep transfer learning based classification model for COVID‐19 disease
  publication-title: IRBM
– volume: 196
  year: 2020
  article-title: Explainable deep learning for pulmonary disease and coronavirus COVID‐19 detection from X‐rays
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 127
  year: 2020
  article-title: Chest CT findings of COVID‐19 pneumonia by duration of symptoms
  publication-title: European Journal of Radiology
– volume: 57
  year: 2020
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomedical Signal Processing and Control
– volume: 17
  start-page: 113
  year: 2018
  article-title: Computer‐aided detection in chest radiography based on artificial intelligence: A survey
  publication-title: Biomedical Engineering Online
– volume: 132
  year: 2021
  article-title: Exploring the effect of image enhancement techniques on COVID‐19 detection using chest X‐ray images
  publication-title: Computers in Biology and Medicine
– volume: 140
  year: 2020
  article-title: COVIDiagnosis‐net: Deep Bayes‐SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID‐19) from X‐ray images
  publication-title: Medical Hypotheses
– volume: 8
  start-page: 27
  year: 2020
  article-title: PDCOVIDNet: A parallel‐dilated convolutional neural network architecture for detecting COVID‐19 from chest X‐ray images
  publication-title: Health Information Science and Systems
– volume: 24
  year: 2021
  article-title: COV‐SNET: A deep learning model for X‐ray‐based COVID‐19 classification
  publication-title: Informatics in Medicine Unlocked
– volume: 161
  start-page: 173
  year: 2018
  end-page: 180
  article-title: Small lung nodules detection based on local variance analysis and probabilistic neural network
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 196
  year: 2020
  article-title: CoroNet: A deep neural network for detection and diagnosis of COVID‐19 from chest X‐ray images
  publication-title: Computer Methods and Programs in Biomedicine
– year: 2020
  article-title: Detection of coronavirus disease (COVID‐19) based on deep features
  publication-title: Preprints
– volume: 20
  year: 2020
  article-title: A combined deep CNN‐LSTM network for the detection of novel coronavirus (COVID‐19) using X‐ray images
  publication-title: Informatics in Medicine Unlocked
– year: 2021
  article-title: Overview of deep learning models for identification COVID‐19
  publication-title: Materials Today: Proceedings
– volume: 99
  year: 2020
  article-title: InstaCovNet‐19: A deep learning classification model for the detection of COVID‐19 patients using chest X‐ray
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 118869
  year: 2020
  end-page: 118883
  article-title: Weakly supervised deep learning for COVID‐19 infection detection and classification from CT images
  publication-title: IEEE Access
– volume: 68
  start-page: 131
  year: 2021
  end-page: 148
  article-title: COVID‐19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis
  publication-title: Information Fusion
– volume: 31
  year: 2020
  article-title: A deep learning algorithm using CT images to screen for Corona virus disease (COVID‐19)
  publication-title: medRxiv
– volume: 68
  year: 2021
  article-title: COVID‐AL: The diagnosis of COVID‐19 with deep active learning
  publication-title: Medical Image Analysis
– volume: 140
  year: 2020
  article-title: Comparison of deep learning approaches to predict COVID‐19 infection
  publication-title: Chaos, Solitons and Fractals
– volume: 51
  start-page: 1213
  year: 2021
  end-page: 1226
  article-title: COVIDetectioNet: COVID‐19 diagnosis system based on X‐ray images using features selected from pre‐learned deep features ensemble
  publication-title: Applied Intelligence
– volume: 6
  start-page: 1
  year: 2021
  article-title: Automated detection of COVID‐19 using chest X‐ray images and CT scans through multilayer‐spatial convolutional neural networks
  publication-title: International Journal of Interactive Multimedia and Artificial Intelligence
– volume: 27
  start-page: 743
  year: 2020
  end-page: 747
  article-title: Typical CT findings of COVID‐19 pneumonia in patients presenting with repetitive negative RT‐PCR
  publication-title: Radiography
– volume: 98
  year: 2021
  article-title: The ensemble deep learning model for novel COVID‐19 on CT images
  publication-title: Applied Soft Computing
– volume: 43
  start-page: 635
  year: 2020
  end-page: 640
  article-title: COVID‐19: Automatic detection from X‐ray images utilizing transfer learning with convolutional neural networks
  publication-title: Australasian Physical & Engineering Sciences in Medicine/Supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine.
– volume: 98
  year: 2021
  article-title: CNN‐based transfer learning–BiLSTM network: A novel approach for COVID‐19 infection detection
  publication-title: Applied Soft Computing
– volume: 40
  start-page: 1391
  year: 2020
  end-page: 1405
  article-title: A deep learning approach to detect COVID‐19 coronavirus with X‐ray images
  publication-title: Biocybernetics and Biomedical Engineering
– start-page: 1
  year: 2020
  end-page: 7
  article-title: Deep learning system to screen coronavirus disease 2019 pneumonia
  publication-title: Applied Intelligence
– volume: 121
  year: 2020
  article-title: Automated detection of COVID‐19 cases using deep neural networks with X‐ray images
  publication-title: Computers in Biology and Medicine
– volume: 864
  year: 2020
– volume: 2009
  start-page: 72
  year: 2009
  end-page: 77
  article-title: Gray‐level image enhancement by particle swarm optimization, in
  publication-title: World Congress on Nature & Biologically Inspired Computing (NaBIC)
– volume: 18
  start-page: 1
  year: 2021
  end-page: 14
  article-title: Role of hybrid deep neural networks (HDNNS), computed tomography, and chest x‐rays for the detection of COVID‐19
  publication-title: International Journal of Environmental Research and Public Health
– volume: 4
  start-page: 173
  year: 2016
  end-page: 183
  article-title: Yapay Arı Koloni Algoritması Kullanılarak Görüntü İyileştirme Yönteminin Geliştirilmesi
  publication-title: Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji.
– year: 2020
– volume: 728
  year: 2020
  article-title: Prediction for the spread of COVID‐19 in India and effectiveness of preventive measures
  publication-title: Science of The Total Environment
– volume: 2016
  start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition, in
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 8
  start-page: 149808
  year: 2020
  end-page: 149824
  article-title: COVID‐19 detection through transfer learning using multimodal imaging data
  publication-title: IEEE Access
– volume: 81
  start-page: e28
  year: 2020
  end-page: e32
  article-title: Serological immunochromatographic approach in diagnosis with SARS‐CoV‐2 infected COVID‐19 patients
  publication-title: The Journal of Infection
– volume: 22
  start-page: 1
  year: 2021
  end-page: 17438
  article-title: AVNC: Attention‐based VGG‐style network for COVID‐19 diagnosis by CBAM
  publication-title: IEEE Sensors Journal
– volume: 138
  year: 2020
  article-title: Application of deep learning for fast detection of COVID‐19 in X‐rays using nCOVnet
  publication-title: Chaos, Solitons and Fractals
– year: 2013
– ident: e_1_2_8_6_1
  doi: 10.35741/issn.0258-2724.56.2.19
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compbiomed.2020.103792
– ident: e_1_2_8_34_1
  doi: 10.1016/j.media.2020.101794
– ident: e_1_2_8_24_1
  doi: 10.1109/ACCESS.2020.3005510
– ident: e_1_2_8_27_1
  doi: 10.1016/j.eswa.2020.114054
– ident: e_1_2_8_49_1
  doi: 10.1016/j.scitotenv.2020.138762
– ident: e_1_2_8_19_1
  doi: 10.1016/j.asoc.2020.106859
– ident: e_1_2_8_46_1
  doi: 10.1016/j.compbiomed.2021.104319
– ident: e_1_2_8_43_1
  doi: 10.9781/ijimai.2021.04.001
– ident: e_1_2_8_44_1
– ident: e_1_2_8_52_1
  doi: 10.1101/2020.02.14.20023028
– ident: e_1_2_8_57_1
  doi: 10.1117/12.2010802
– ident: e_1_2_8_54_1
  doi: 10.1016/j.inffus.2020.11.005
– ident: e_1_2_8_48_1
  doi: 10.20944/preprints202003.0300.v1
– ident: e_1_2_8_3_1
  doi: 10.1016/j.chaos.2020.110120
– ident: e_1_2_8_56_1
  doi: 10.1016/j.media.2020.101913
– ident: e_1_2_8_58_1
  doi: 10.1088/1757-899X/864/1/012080
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cmpb.2020.105608
– ident: e_1_2_8_45_1
  doi: 10.1186/s12938-018-0544-y
– ident: e_1_2_8_4_1
  doi: 10.3390/healthcare
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cmpb.2018.04.025
– ident: e_1_2_8_59_1
  doi: 10.1016/j.asoc.2020.106885
– ident: e_1_2_8_9_1
  doi: 10.1016/j.radi.2020.09.012
– ident: e_1_2_8_25_1
  doi: 10.3390/ijerph18063056
– ident: e_1_2_8_42_1
  doi: 10.1016/j.irbm.2020.05.003
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jinf.2020.03.051
– ident: e_1_2_8_53_1
  doi: 10.1109/JSEN.2021.3062442
– ident: e_1_2_8_2_1
  doi: 10.1007/s11760-015-0758-4
– ident: e_1_2_8_50_1
  doi: 10.1007/s10489-020-01888-w
– ident: e_1_2_8_41_1
  doi: 10.1016/j.chaos.2020.109944
– ident: e_1_2_8_40_1
  doi: 10.1016/j.chaos.2020.110190
– ident: e_1_2_8_16_1
  doi: 10.1016/j.asoc.2021.107160
– ident: e_1_2_8_18_1
  doi: 10.1109/NABIC.2009.5393603
– ident: e_1_2_8_22_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_8_15_1
  doi: 10.1007/s13755-020-00119-3
– ident: e_1_2_8_21_1
  doi: 10.1016/j.imu.2021.100620
– ident: e_1_2_8_33_1
  doi: 10.1101/2020.05.12.20099937
– ident: e_1_2_8_29_1
  doi: 10.1016/j.asoc.2021.107675
– ident: e_1_2_8_35_1
  doi: 10.1016/j.matpr.2021.05.553
– ident: e_1_2_8_5_1
  doi: 10.1007/s13246-020-00865-4
– ident: e_1_2_8_12_1
  doi: 10.1016/j.bspc.2019.101819
– ident: e_1_2_8_11_1
  doi: 10.1007/s10489-020-01714-3
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ejrad.2020.109009
– ident: e_1_2_8_14_1
  doi: 10.1109/ACCESS.2020.3010287
– ident: e_1_2_8_23_1
  doi: 10.1109/ACCESS.2020.3016780
– ident: e_1_2_8_13_1
  doi: 10.1007/s12559-021-09859-0
– ident: e_1_2_8_51_1
  doi: 10.1016/j.mehy.2020.109761
– ident: e_1_2_8_7_1
  doi: 10.1016/j.asoc.2020.106912
– ident: e_1_2_8_30_1
– ident: e_1_2_8_47_1
  doi: 10.21533/pen.v9i1.1774
– ident: e_1_2_8_28_1
  doi: 10.1016/j.bbe.2020.08.008
– ident: e_1_2_8_36_1
  doi: 10.1007/s10044-021-00984-y
– volume: 4
  start-page: 173
  year: 2016
  ident: e_1_2_8_37_1
  article-title: Yapay Arı Koloni Algoritması Kullanılarak Görüntü İyileştirme Yönteminin Geliştirilmesi
  publication-title: Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji.
– ident: e_1_2_8_32_1
  doi: 10.9781/ijimai.2021.04.002
– ident: e_1_2_8_8_1
  doi: 10.1016/j.scs.2020.102589
– ident: e_1_2_8_20_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cmpb.2020.105581
– ident: e_1_2_8_26_1
  doi: 10.1016/j.imu.2020.100412
SSID ssj0001776
Score 2.34963
Snippet Coronavirus (COVID‐19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main...
Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13185
SubjectTerms artificial bee Colony algorithm
Casualties
COVID-19
Feature extraction
Image classification
Image contrast
Image enhancement
Infectious diseases
LSTM
Medical imaging
Model accuracy
Original
pre‐trained CNN
Search algorithms
Signs and symptoms
Swarm intelligence
Throats
Viral diseases
Viruses
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuBCKc_QgozoBaSs1nZiJxIXVFoVREGiLVoOKPIrbdWtd7XJCpYTP4EDv5Bfwth5lKWoEtyieLKbeGfG32S_-YzQliHDTHFtYlhqszihlsUZz2mcG0b1UCuRMd8ovP-W7x0lr0fpaAU973phGn2I_oWbj4yQr32AS1X9FuT2S7UYEN_8CwmYMB7qqfcX2lFEhJ3loMbgcSLosNUm9TSei0uXV6NLEPMyU_La3E3l4rMcj5fRbFiOdtfQp-5BGhbK2WBeq4H--ofG4_8-6U10o8Wp-EXjWOtoxbpbaK3bAwK3KeE2-rH97sOrlz-_fSc5NrYOxC6H_dpoMBxMZxbGwj4UcMJYO8WuIZ5XWDqD3xwc7uOwGw_2DPxjPALzmVzg03NIdBW27iRQFHCg1Muqxv7FMfb-3khfYGUt9srbboHl-Hgyg-HzO-hod-dwey9ud3qINZSHaUx4llItuOJQPuncJEQw39uZK5VBDa21KgG6SMnKTOm8zMUwKY1I0swIKkVasrto1U2cvY8wkZYzwIWGKplYlkpN4aOoVCRRCvJbhJ52v3ihWxl0PwvjoiuH_HQXYboj9KS3nTbiH3-12uwcp2gTQFVQIQDpQX2YR-hxPwyh6_-Pkc5O5sGGMOZJbRG61_hZ_zWMA2gAWBEhseSBvYGXBV8ecacnQR48z3z3MNzWVu-rV979s-B7V5gUO6ODj-Howb8Yb6DrFBBhQ9jbRKv1bG4fAoKr1aMQqb8ArgJHsQ
  priority: 102
  providerName: Wiley-Blackwell
Title COVID‐19 detection based on pre‐trained deep networks and LSTM model using X‐ray images enhanced contrast with artificial bee colony algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13185
https://www.ncbi.nlm.nih.gov/pubmed/36718212
https://www.proquest.com/docview/2773970969
https://www.proquest.com/docview/2771332001
https://pubmed.ncbi.nlm.nih.gov/PMC9878115
https://www.ncbi.nlm.nih.gov/pmc/articles/9878115
UnpaywallVersion submittedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1468-0394
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-4720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1V6QI2lDeGUg2iG5DsZmZsj72sSquCaEFtg9KVNS-3Ec4kykM0XfEJLPhCvoQ7YztSKKpgZ-VeORP7jOdc59wzCG1r0s1kqnQIS20WxtSwMEtzGuaaUdVVkmfMNQofHaeHvfhDP-mvIdL2wnjRvpKDyFbDyA4uvbZyPFQ7rU5sB4rkjLi28vU0AfrdQeu948-75_W7lDSMubdi9B1FXZbHjSWpU--Yq-kiIq5deHURusEsbwok78ztWCy-iapaJbF-FTrYQCft-GvxyddoPpORuv7D2vG_fuB9dK_hpHi3Dj1Aa8Y-RBvtfg-4mf6P0M-9T1_ev_v1_QfJsTYzL-Ky2K2DGsPBeGIg5vecgA-0MWNsa5H5FAur8cfTsyPsd97BTm1_gfuQPhELPBjCQ22Kjb30cgTs5fNiOsPuJTF2I65tLrA0BjuXbbvAoroYTSA8fIx6B_tne4dhs6tDqKAUTEKSZglVPJUplEoq1zHhzPVx5lJmUC8rJUugKUKwMpMqL3PejUvN4yTTnAqelOwJ6tiRNc8QJsKkDDigplLEhiVCUTgVFZLEUsKzLEBv2ttcqMby3F2FqmhLHweJwkMiQK-XuePa6OOvWZstWopmsk8LyjmwOqgF8wC9WoZhmrr_XoQ1o7nPIYw5AVuAntbgWn4NS4EgAIUIEF-B3TLBWYCvRgA43gq8wUqAtpcAvXX0bz12b0kp9vun5_7o-b-d8wW6S4H31bK8TdSZTebmJfC0mdyCCuWEbjXz8zemtkJs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1BOZQL5ZuUAovoBSRH8a7ttY-otEohKRJNUThZ--W2It1EcaISTvwEDvxCfgkza8clFFWCm5WdJM5mZvfN-s0bQrZN2ElVok0AW20aRMzyIE0yFmSGM93RSqQcC4X7B0n3KHo7jIc1NwdrYSp9iObADSPDr9cY4Hgg_VuU2y_loh1i9e91ciNKIFFBTPThQj0qFL63HGQZSRAJ1qnVSZHIc_He1f3oEsi8zJVcn7uJXJzL0WgVz_oNaW-j6rpaeh1D5KF8bs9nqq2__qHy-N-_9Ta5VUNV-rryrTvkmnV3ycayDQStV4V75MfO-4_7b35--x5m1NiZ53Y5itujoXAxmVoY860o4AVj7YS6inteUukM7R0O-tQ35KFIwj-mQzCfygU9PYO1rqTWnXiWAvWselnOKJ4dU3T5Sv2CKmspim-7BZWj4_EUhs_uk6O93cFON6ibPQQaMsQ4CJM0ZlokKoEMSmcmCgXH8s5MqRTSaK1VAehFSl6kSmdFJjpRYUQUp0YwKeKCPyBrbuzsI0JDaRMO0NAwJSPLY6kZfBSTKoyUgiWuRV4u__Jc10roOAujfJkR4XTnfrpb5EVjO6n0P_5qtbX0nLxeA8qcCQFgD1LErEWeN8MQvfhIRjo7nnubkHPktbXIw8rRmq_hCeAGQBYtIlZcsDFAZfDVEXd64hXCsxQLiOG2thtnvfLuX3nnu8Ik3x0efvJXm_9i_Iysdwf9Xt7bP3j3mNxkABAr_t4WWZtN5_YJALqZeurD9hf66UvS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1BkYAL5RtDgUX0ApKjeNf2eo-oadRCWxBtUThZ--W2It1YsSMIJ34CB34hv4TZteMSiirBzcpOEns9s_vGfvMGoXUd9TOZKh3CVpuFMTE0zFJOQq4pUX0lWUZdofDuXrp1GL8eJaOWm-NqYRp9iO6Bm4sMv167ADelLn6LcvOlmvciV_17GV2JE545Rt_g_Zl6VMR8bznIMtIwZqTfqpM6Is_Zd5f3o3Mg8zxX8trMlmL-WYzHy3jWb0jD1abrauV1DB0P5VNvVsue-vqHyuN_X-tNdKOFqvhV41u30CVjb6PVRRsI3K4Kd9CPjbcftgc_v32PONam9twui932qDEclFMDY74VBXygjSmxbbjnFRZW4539g13sG_JgR8I_wiMwn4o5PjmFta7Cxh57lgL2rHpR1dg9O8bO5Rv1CyyNwU58286xGB9NpjB8ehcdDjcPNrbCttlDqCBDTMIozRKiWCpTyKAU13HEqCvv5FJmkEYrJQtAL0LQIpOKF5z140KzOMk0I4IlBb2HVuzEmgcIR8KkFKChJlLEhiZCEfgpImQUSwlLXIBeLG55rloldDcL43yREbnpzv10B-h5Z1s2-h9_tVpbeE7ergFVThgDsAcpIg_Qs24Yote9khHWTGbeJqLU8doCdL9xtO5vaAq4AZBFgNiSC3YGThl8ecSeHHuFcJ65AmI4rfXOWS88-5fe-S4wyTdH-x_90cN_MX6Krr4bDPOd7b03j9B1Aviwoe-toZV6OjOPAc_V8omP2l8_sEtW
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1V6QI2lDeGggbRDUhOMx7bYy-r0qogWhBtULqy5uU2wplYsSMIKz6BBV_Il3Bn_JBCUQU7K_fKmdhnPOc6555BaEeRUSJiqXxYahM_DDT1kzgN_FTRQI6kYAm1jcLHJ_HROHw7iSYbiHS9ME60L8V0aIrZ0EwvnbaynMndTie2C0VyQmxb-WYcAf0eoM3xyYe98-ZdSuyHzFkxuo6iEU3D1pLUqnf012o1JLZdeH0RusIsrwokbyxNyVdfeFGsk1i3Ch1uoY_d-BvxyefhshZD-e0Pa8f_-oG30a2Wk-K9JnQHbWhzF211-z3gdvrfQz_333968_rX9x8kxUrXTsRlsF0HFYaDcqEh5vacgA-U1iU2jci8wtwo_O707Bi7nXewVdtf4AmkL_gKT2fwUKuwNpdOjoCdfJ5XNbYvibEdcWNzgYXW2LpsmxXmxcV8AeHZfTQ-PDjbP_LbXR18CaVg5JM4iQLJYhFDqSRTFRJGbR9nKkQC9bKUIgeawjnNEyHTPGWjMFcsjBLFAs6inD5AAzM3-hHChOuYAgdUgeChphGXAZwq4IKEQsCzzEMvu9ucydby3F6FIutKHwuJzEHCQy_63LIx-vhr1naHlqyd7FUWMAasDmrB1EPP-zBMU_vfCzd6vnQ5hFIrYPPQwwZc_dfQGAgCUAgPsTXY9QnWAnw9AsBxVuAtVjy00wP02tG_cti9JiU7mJyeu6PH_3bOJ-hmALyvkeVto0G9WOqnwNNq8aydmb8BHgtBgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID%E2%80%9019+detection+based+on+pre%E2%80%90trained+deep+networks+and+LSTM+model+using+X%E2%80%90ray+images+enhanced+contrast+with+artificial+bee+colony+algorithm&rft.jtitle=Expert+systems&rft.au=Mehmet+Bilal+Er&rft.date=2023-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=40&rft.issue=3&rft_id=info:doi/10.1111%2Fexsy.13185&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon