A roadmap to integrate astrocytes into Systems Neuroscience
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, be...
        Saved in:
      
    
          | Published in | Glia Vol. 68; no. 1; pp. 5 - 26 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.01.2020
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0894-1491 1098-1136 1098-1136  | 
| DOI | 10.1002/glia.23632 | 
Cover
| Abstract | Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.
Main Points
Astrocytes may use Ca2+ signals to perform canonical computations in complex behaviors on a time scale of sub-seconds to seconds.
Statistical tools from Systems Neuroscience could be used to unravel variables and algorithms encoded by astrocytic Ca2+. | 
    
|---|---|
| AbstractList | Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca
transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca
and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease. Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease. Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease. Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease. Main Points Astrocytes may use Ca2+ signals to perform canonical computations in complex behaviors on a time scale of sub-seconds to seconds. Statistical tools from Systems Neuroscience could be used to unravel variables and algorithms encoded by astrocytic Ca2+. Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of sub-seconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, are, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward towards novel approaches in the study of astrocytes in health and disease. Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca 2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca 2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.  | 
    
| Author | Perea, Gertrudis De Pittà, Maurizio Poskanzer, Kira E. Moreno‐Bote, Rubén Eraso‐Pichot, Abel Kastanenka, Ksenia V. Galea, Elena Masgrau, Roser  | 
    
| AuthorAffiliation | 4. BCAM Basque Center for Applied Mathematics, 48009 Bilbao, Spain 3. ICREA, 08010 Barcelona, Spain 8. Equally contributing authors 2. Department of Information and Communications Technologies, Center for Brain and Cognition and Universitat Pompeu Fabra, 08018 Barcelona, Spain 7. Department of Biochemistry & Biophysics, Neuroscience Graduate Program, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA 5. Instituto Cajal, CSIC, 28002 Madrid, Spain 6. Departament de Bioquímica, Institut de Neurociències i Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain 1. Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Massachusetts 02129, USA  | 
    
| AuthorAffiliation_xml | – name: 8. Equally contributing authors – name: 5. Instituto Cajal, CSIC, 28002 Madrid, Spain – name: 3. ICREA, 08010 Barcelona, Spain – name: 7. Department of Biochemistry & Biophysics, Neuroscience Graduate Program, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA – name: 1. Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Massachusetts 02129, USA – name: 6. Departament de Bioquímica, Institut de Neurociències i Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain – name: 2. Department of Information and Communications Technologies, Center for Brain and Cognition and Universitat Pompeu Fabra, 08018 Barcelona, Spain – name: 4. BCAM Basque Center for Applied Mathematics, 48009 Bilbao, Spain  | 
    
| Author_xml | – sequence: 1 givenname: Ksenia V. surname: Kastanenka fullname: Kastanenka, Ksenia V. email: kkastanenka@mgh.harvard.edu organization: Massachusetts General Hospital and Harvard Medical School – sequence: 2 givenname: Rubén surname: Moreno‐Bote fullname: Moreno‐Bote, Rubén organization: ICREA – sequence: 3 givenname: Maurizio surname: De Pittà fullname: De Pittà, Maurizio organization: BCAM Basque Center for Applied Mathematics – sequence: 4 givenname: Gertrudis orcidid: 0000-0001-5924-9175 surname: Perea fullname: Perea, Gertrudis organization: CSIC – sequence: 5 givenname: Abel surname: Eraso‐Pichot fullname: Eraso‐Pichot, Abel organization: Universitat Autònoma de Barcelona – sequence: 6 givenname: Roser orcidid: 0000-0002-6722-5939 surname: Masgrau fullname: Masgrau, Roser organization: Universitat Autònoma de Barcelona – sequence: 7 givenname: Kira E. surname: Poskanzer fullname: Poskanzer, Kira E. email: kira.poskanzer@ucsf.edu organization: University of California‐San Francisco – sequence: 8 givenname: Elena orcidid: 0000-0003-4537-9897 surname: Galea fullname: Galea, Elena email: elena.galea@uab.es organization: Universitat Autònoma de Barcelona  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31058383$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kV1rFTEQhoNU7Gn1xh8gC96IsjWT7FcoCIeitXDQC_U6ZLOTY8puckyylv337rr1q0ivQjLPO_POmxNy5LxDQp4CPQNK2et9b9UZ4xVnD8gGqGhyAF4dkQ1tRJFDIeCYnMR4TSnMl_oROeZAy4Y3fEPOt1nwqhvUIUs-sy7hPqiEmYopeD0ljMujzz5NMeEQsw84Bh-1RafxMXloVB_xye15Sr68e_v54n2--3h5dbHd5booGpabkgteGC2MqUB0jWZdxzpQbdmqFrRhc60uQZeCKlEZ1kBHjSqFaLHGsuL8lLxa-47uoKYb1ffyEOygwiSByiUCuUQgf0Yw029W-jC2A3YaXQrqj8IrK_-tOPtV7v13WTWc1fUy7sVtg-C_jRiTHGzU2PfKoR-jZIwz4GVRLLOe30Gv_RjcHMZsBrhoFnCmnv3t6LeVX78wAy9XQM_ZxoDm_v3oHVjbpJL1yza2_78EVsmN7XG6p7m83F1tV80P-cq4Kg | 
    
| CitedBy_id | crossref_primary_10_1016_j_chaos_2023_114223 crossref_primary_10_1038_s41593_024_01612_8 crossref_primary_10_1038_s41467_024_45989_3 crossref_primary_10_1051_medsci_2022104 crossref_primary_10_1002_glia_24246 crossref_primary_10_1002_glia_24168 crossref_primary_10_1016_j_heliyon_2024_e32546 crossref_primary_10_3389_fevo_2022_952992 crossref_primary_10_3389_fncel_2023_1220030 crossref_primary_10_3390_math11030561 crossref_primary_10_1073_pnas_2219150120 crossref_primary_10_1007_s11571_023_10002_y crossref_primary_10_1016_j_bbih_2022_100582 crossref_primary_10_1038_s41598_023_40402_3 crossref_primary_10_1002_glia_23780 crossref_primary_10_1002_glia_24112 crossref_primary_10_1109_TNNLS_2023_3335450 crossref_primary_10_3389_fncel_2021_645691 crossref_primary_10_1016_j_csbj_2022_07_052 crossref_primary_10_3390_biology12020155 crossref_primary_10_3389_fnagi_2020_00172 crossref_primary_10_1007_s00422_024_00994_z crossref_primary_10_1007_s00521_022_06936_9 crossref_primary_10_1177_17590914231184712 crossref_primary_10_3390_ijms21010266 crossref_primary_10_31083_j_jin2104112 crossref_primary_10_1162_neco_a_01399 crossref_primary_10_3389_fncom_2019_00092 crossref_primary_10_1371_journal_pcbi_1012186 crossref_primary_10_3390_cells12091253 crossref_primary_10_1016_j_neuropharm_2021_108678 crossref_primary_10_3390_biom11101467 crossref_primary_10_1002_adbi_201900264 crossref_primary_10_1088_1478_3975_ace8e6 crossref_primary_10_1038_s41593_021_00800_0 crossref_primary_10_1111_jne_12838 crossref_primary_10_3389_fnins_2020_00705 crossref_primary_10_1063_5_0146906 crossref_primary_10_1162_neco_a_01740 crossref_primary_10_3390_biology13080586 crossref_primary_10_1016_j_jconrel_2020_04_017 crossref_primary_10_3390_math10183275 crossref_primary_10_1002_glia_24178 crossref_primary_10_1523_ENEURO_0389_20_2021 crossref_primary_10_3389_fncel_2021_631485 crossref_primary_10_1007_s10827_022_00828_6 crossref_primary_10_1007_s12031_022_02006_w crossref_primary_10_1016_j_conb_2022_102558 crossref_primary_10_1371_journal_pcbi_1012683  | 
    
| Cites_doi | 10.1146/annurev.neuro.28.061604.135703 10.1016/j.cell.2018.05.002 10.1162/089976602760407955 10.1523/JNEUROSCI.1979-16.2016 10.1016/S1364-6613(99)01380-7 10.1016/j.plrev.2014.04.005 10.1093/scan/nsx060 10.1126/science.1156120 10.1038/nature04671 10.1038/nn.4649 10.1146/annurev-psych-010416-044216 10.1371/journal.pone.0019109 10.1126/science.1099745 10.1038/nature07926 10.1016/j.stem.2012.12.015 10.1038/nn.4201 10.1007/s12021-017-9341-1 10.7554/eLife.14472 10.1016/j.neuron.2018.03.050 10.1371/journal.pbio.1001259 10.1152/jn.01073.2009 10.1016/j.cell.2011.07.022 10.1111/ejn.13074 10.1098/rstb.2012.0460 10.1093/cercor/bhp265 10.1073/pnas.0509030102 10.1038/s41467-018-04457-5 10.1016/j.tics.2015.01.002 10.1016/j.neuron.2011.06.004 10.1073/pnas.1012656107 10.1126/science.aaa1934 10.1016/j.cell.2017.05.011 10.1038/nn1525 10.1523/JNEUROSCI.22-01-00183.2002 10.1038/nn.2163 10.1016/j.tics.2010.09.001 10.1073/pnas.1510583112 10.1126/science.1150769 10.1111/jnc.13580 10.1023/A:1008925309027 10.1073/pnas.1606479113 10.1073/pnas.93.23.13339 10.3389/fncom.2017.00048 10.1523/JNEUROSCI.2080-16.2016 10.1016/S0166-2236(96)10075-8 10.1162/neco.2007.19.1.1 10.1016/j.cell.2015.09.029 10.1073/pnas.1711114115 10.1016/j.tics.2009.04.005 10.7554/eLife.32237 10.1038/nn.4237 10.1016/j.neuron.2018.11.002 10.1523/JNEUROSCI.1419-07.2007 10.1523/JNEUROSCI.6341-10.2011 10.1016/j.molmed.2017.04.005 10.1046/j.1471-4159.1997.69052132.x 10.1016/j.conb.2017.02.007 10.1016/j.neuron.2013.12.026 10.1073/pnas.1117807108 10.1523/JNEUROSCI.2591-14.2014 10.3389/fncom.2011.00025 10.1002/glia.23330 10.3389/fncir.2013.00201 10.1016/j.neuron.2017.11.009 10.1016/j.conb.2015.12.008 10.1016/j.neuron.2016.01.040 10.1038/nrn2573 10.1016/j.conb.2018.11.005 10.1126/science.1167093 10.1038/nn.3000 10.3389/neuro.11.037.2009 10.1002/glia.23073 10.1073/pnas.1705120114 10.1146/annurev-physiol-021317-121125 10.1038/ncomms4262 10.1016/S0079-6123(05)50004-9 10.1016/S0896-6273(01)00251-3 10.1523/JNEUROSCI.19-21-09587.1999 10.1371/journal.pcbi.1004464 10.1073/pnas.1213458109 10.1016/j.conb.2018.04.007 10.3389/fnins.2014.00161 10.1016/j.cub.2017.06.028 10.1038/nrn.2016.182 10.1016/j.cub.2014.05.049 10.1098/rstb.2014.0170 10.1371/journal.pbio.1002147 10.1038/nn.3220 10.1523/JNEUROSCI.0017-17.2017 10.1038/nn.3776 10.1038/nn.4244 10.3389/fnhum.2018.00018 10.1109/MCE.2016.2614423 10.1523/JNEUROSCI.4707-08.2009 10.1162/neco.1997.9.8.1735 10.1093/brain/121.6.1013 10.1038/ncomms14823 10.1016/j.cub.2018.07.045 10.3389/fncir.2017.00108 10.1038/nature06105 10.1097/00001756-200205070-00030 10.1002/cne.23458 10.1016/0896-6273(95)90304-6 10.1016/0306-4522(88)90338-7 10.1097/WAD.0000000000000144 10.1016/j.neuron.2012.09.012 10.1101/pdb.top89 10.1073/pnas.1520759113 10.3390/diseases6020042 10.1177/2041669516673384 10.1038/nn.4582 10.1007/978-0-387-45528-0 10.1016/j.neuron.2014.02.041 10.1038/nnano.2016.268 10.1016/j.conb.2017.07.008 10.1038/s41593-018-0325-8 10.1126/science.aai8185 10.1016/j.cub.2014.05.042 10.1038/nrn2578 10.1016/j.conb.2011.10.001 10.1523/JNEUROSCI.5289-11.2011 10.1073/pnas.94.24.12740 10.31887/DCNS.2013.15.3/osporns 10.1073/pnas.0906419106 10.1523/JNEUROSCI.3965-04.2005 10.1126/science.aaa7945 10.1146/annurev-neuro-072116-031538 10.1016/j.neuron.2018.01.008 10.1002/glia.22964 10.1088/0954-898X/7/2/004 10.1109/CVPR.2015.7298761 10.1038/nn.3906 10.1016/j.neuron.2015.11.037 10.1016/j.neuron.2009.01.002 10.1146/annurev-neuro-062111-150509 10.1038/nn.3862 10.1016/j.neuron.2014.04.038 10.1038/nn.4091 10.1016/j.neuron.2008.11.024 10.1016/j.neuron.2018.07.003 10.1038/nrn2201 10.1126/science.aan2475 10.1016/S0959-4388(00)00237-3 10.1016/j.neuron.2015.03.035 10.3389/fnsyn.2017.00002 10.1016/j.neuron.2017.06.029 10.3389/fncom.2018.00014 10.1038/nature03010 10.1016/j.tins.2015.07.006 10.1073/pnas.1936192100 10.1016/j.neuron.2015.07.008 10.7554/eLife.05793 10.1038/nrn3962 10.1016/j.conb.2017.08.015 10.1016/j.cbpa.2017.04.005 10.7554/eLife.18716 10.1002/glia.23205 10.1016/j.neuron.2017.05.016 10.1016/j.neuron.2010.09.023 10.1016/j.ceca.2013.09.001 10.1016/j.neuron.2016.12.034 10.1016/j.neuron.2009.06.014 10.1016/j.neuron.2015.09.043 10.1016/j.neuroimage.2016.11.006 10.1038/ncomms4284 10.1371/journal.pcbi.1000209 10.1016/j.celrep.2015.04.002 10.1103/PhysRevE.77.030903 10.1007/978-3-030-00817-8_5 10.1038/nrneurol.2017.105 10.1038/nn.4001 10.7554/eLife.20362 10.1186/s40478-017-0411-2 10.1016/j.ceca.2015.06.008 10.1007/s00401-015-1392-5 10.1038/nmeth.4230 10.1093/cercor/bhg097 10.1111/ene.12883 10.1016/j.neulet.2018.06.024 10.1371/journal.pone.0170275 10.1016/j.neuron.2018.03.003 10.1016/j.neuron.2014.02.007 10.1016/j.ins.2016.08.055 10.1016/j.neuron.2016.05.039 10.1155/2012/476324 10.1126/science.1190721 10.1126/science.3045969 10.1016/S0079-6123(03)45015-2 10.1152/jn.1996.75.5.1970 10.1126/science.273.5283.1868 10.1152/jn.01113.2015 10.1017/S135561771200001X 10.1016/j.tics.2015.04.006 10.1016/j.cell.2011.02.018 10.1146/annurev-neuro-062111-150455 10.3389/fpsyg.2017.00244 10.1016/j.neuron.2017.05.015 10.1038/nn1703  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc.  | 
    
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/glia.23632 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| EISSN | 1098-1136 | 
    
| EndPage | 26 | 
    
| ExternalDocumentID | 10.1002/glia.23632 PMC6832773 31058383 10_1002_glia_23632 GLIA23632  | 
    
| Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: Ministerio de Economia y Competitividad (MINECO, Spain) funderid: BFU2016‐75107‐P; BFU2016‐79735‐P; BFU2017‐85936‐P; FLAGERA‐PCIN‐2015‐162‐C02‐02 – fundername: Ministerio de Educación, Cultura y Deporte (Spain) funderid: FPU13/05377 – fundername: Eusko Jaurlaritza – fundername: Fundació La Caixa (Spain) – fundername: Howard Hughes Medical Institute (HHMI, USA) funderid: 55008742 – fundername: BCAM Severo Ochoa funderid: SEV‐2017‐0718 – fundername: National Science Foundation (NSF, USA) funderid: 1604544 – fundername: National Institutes of Health (NIH, USA) funderid: R01NS099254 – fundername: Agència de Gestio d'Ajuts Universitaris i de Recerca (Spain) funderid: 2017 SGR547 – fundername: NIA NIH HHS grantid: RF1 AG061774 – fundername: NINDS NIH HHS grantid: R01 NS099254 – fundername: NIA NIH HHS grantid: R01 AG054598 – fundername: NIA NIH HHS grantid: R01 AG026240  | 
    
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4482-f53934fc9ff619d8c2dd2d1ab5bab1cf24fc751c590a96f281d0fa599be7e5633 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0894-1491 1098-1136  | 
    
| IngestDate | Sun Oct 26 04:11:33 EDT 2025 Tue Sep 30 16:52:11 EDT 2025 Fri Jul 11 08:39:16 EDT 2025 Tue Oct 07 06:31:06 EDT 2025 Mon Jul 21 05:56:47 EDT 2025 Thu Apr 24 22:55:47 EDT 2025 Wed Oct 01 02:57:50 EDT 2025 Wed Jan 22 16:37:39 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | dimensionality reduction astrocytes predictive coding decoding energy-efficient coding  | 
    
| Language | English | 
    
| License | 2019 Wiley Periodicals, Inc. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4482-f53934fc9ff619d8c2dd2d1ab5bab1cf24fc751c590a96f281d0fa599be7e5633 | 
    
| Notes | Funding information Agència de Gestio d'Ajuts Universitaris i de Recerca (Spain), Grant/Award Number: 2017 SGR547; BCAM Severo Ochoa, Grant/Award Number: SEV‐2017‐0718; Eusko Jaurlaritza; Fundació La Caixa (Spain); Howard Hughes Medical Institute (HHMI, USA), Grant/Award Number: 55008742; Ministerio de Economia y Competitividad (MINECO, Spain), Grant/Award Numbers: BFU2016‐75107‐P, BFU2016‐79735‐P, BFU2017‐85936‐P, FLAGERA‐PCIN‐2015‐162‐C02‐02; Ministerio de Educación, Cultura y Deporte (Spain), Grant/Award Number: FPU13/05377; National Institutes of Health (NIH, USA), Grant/Award Number: R01NS099254; National Science Foundation (NSF, USA), Grant/Award Number: 1604544 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23  | 
    
| ORCID | 0000-0003-4537-9897 0000-0002-6722-5939 0000-0001-5924-9175  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/glia.23632 | 
    
| PMID | 31058383 | 
    
| PQID | 2313982135 | 
    
| PQPubID | 996331 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_glia_23632 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6832773 proquest_miscellaneous_2232135442 proquest_journals_2313982135 pubmed_primary_31058383 crossref_primary_10_1002_glia_23632 crossref_citationtrail_10_1002_glia_23632 wiley_primary_10_1002_glia_23632_GLIA23632  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2020 | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken  | 
    
| PublicationTitle | Glia | 
    
| PublicationTitleAlternate | Glia | 
    
| PublicationYear | 2020 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2002; 14 2010; 14 2010; 107 2002; 13 2010; 104 1976 2016; 30 2014; 24 2012; 18 2019; 689 2012; 15 2013; 7 2016; 37 1997; 9 2016; 36 2012; 10 1996; 75 2018; 7 2016; 139 Suppl 2 2018; 174 2018; 6 2014; 369 2015; 370 2018; 9 2009; 13 2010; 20 2009; 10 2013; 54 2019; 22 2005; 102 2015; 86 2011; 71 2015; 88 2015; 87 2007; 8 2016; 43 2017; 160 2006; 440 2014; 17 2017; 169 2012; 22 2018; 38 2014; 11 2014; 522 2004; 145 2007; 19 2018; 28 2015; 58 2009; 63 2007; 449 2010; 329 2010; 2010 2016; 19 2009; 61 1997; 20 2017; 65 2017; 68 1996; 93 2016; 91 2015; 129 2001; 29 2011; 6 2004; 304 2011; 5 2016; 14 2019; 101 2012; 109 2009; 458 2004; 431 2016; 5 2011; 146 2016; 7 2005; 8 2015; 112 2018; 115 1988; 24 2018; 12 2018; 99 2018; 98 2018; 97 2014; 34 2018; 16 2003; 100 2011; 144 2016; 23 2009; 106 2017; 40 2017; 5 2017; 6 2017; 8 2012; 2012 2015; 38 2015; 347 2017; 43 2017; 46 2000; 8 2003; 13 2017; ECO.01 2018; 80 2008; 77 2015; 349 2011; 15 2008; 4 2005; 28 2017; 356 2017; 114 2017; 357 2017; 9 2005; 25 2014; 5 2013; 15 1997; 94 2010; 68 2017; 37 1999; 19 2017; 39 2013; 12 2008; 319 2016; 113 2016; 116 2001; 11 1998; 121 2014; 8 2009; 324 2016; 89 1996; 7 2007; 27 2015; 13 2015; 163 2017; 20 2005; 150 2015; 16 2015; 19 2015; 4 2015; 18 1995; 14 2017; 27 1997; 69 2015; 11 2006; 9 2017; 23 2011; 31 2007 2006 2017; 29 1999; 3 1988; 241 2008; 11 2018; 66 2008; 320 2014; 82 2012; 76 2009; 29 2017; 95 2017; 94 2017; 96 2014; 81 2013; 36 2011; 108 2017; 93 2017; 14 2017; 11 2017; 13 2017; 12 2002; 22 2019 2016; 64 2016 2015 2017; 18 2018; 50 1996; 273 2009; 3 2018; 55 2016; 372 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 Kastanenka K. V. (e_1_2_10_80_1) 2017; 01 e_1_2_10_51_1 e_1_2_10_147_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_200_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_91_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_201_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 Cunningham J. P. (e_1_2_10_41_1) 2015; 16 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 Pachitariu M. (e_1_2_10_128_1) 2016 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 Marr D. (e_1_2_10_107_1) 1976 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 Fornito A. (e_1_2_10_56_1) 2016 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_154_1 e_1_2_10_203_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 Kastanenka K. V. (e_1_2_10_78_1) 2016 e_1_2_10_204_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 Capone C. (e_1_2_10_32_1) 2017; 29 e_1_2_10_108_1 e_1_2_10_157_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1  | 
    
| References_xml | – volume: 17 start-page: 1661 issue: 12 year: 2014 end-page: 1663 article-title: A hierarchy of intrinsic timescales across primate cortex publication-title: Nature Neuroscience – volume: 38 start-page: 535 issue: 9 year: 2015 end-page: 549 article-title: Do stars govern our actions? Astrocyte involvement in rodent behavior publication-title: Trends in Neurosciences – volume: 77 start-page: 030903 issue: 3 Pt 1 year: 2008 article-title: Coexistence of amplitude and frequency modulations in intracellular calcium dynamics publication-title: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics – volume: 61 start-page: 168 issue: 2 year: 2009 end-page: 185 article-title: The normalization model of attention publication-title: Neuron – volume: 7 start-page: 204166951667338 issue: 5 year: 2016 article-title: The time‐course of ultrarapid categorization: The influence of scene congruency and top‐down processing publication-title: Iperception – volume: 28 start-page: 2889 issue: 18 year: 2018 end-page: 2899 e2883 article-title: Encoding of multiple reward‐related computations in transient and sustained high‐frequency activity in human OFC publication-title: Current Biology – volume: 370 start-page: 20140170 issue: 1668 year: 2015 article-title: The brain timewise: How timing shapes and supports brain function publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – start-page: 115 year: 2019 end-page: 150 – volume: 58 start-page: 307 issue: 3 year: 2015 end-page: 316 article-title: Na(+)‐Ca(2)(+) exchanger mediates ChR2‐induced [Ca(2)(+)]i elevation in astrocytes publication-title: Cell Calcium – volume: 61 start-page: 213 issue: 2 year: 2009 end-page: 219 article-title: Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss publication-title: Neuron – volume: 24 start-page: 1542 issue: 13 year: 2014 end-page: 1547 article-title: Dynamics of neural population responses in prefrontal cortex indicate changes of mind on single trials publication-title: Current Biology – volume: 4 start-page: e1000209 issue: 11 year: 2008 article-title: A hierarchy of time‐scales and the brain publication-title: PLoS Computational Biology – volume: 146 start-page: 785 issue: 5 year: 2011 end-page: 798 article-title: Astrocytes are endogenous regulators of basal transmission at central synapses publication-title: Cell – volume: 18 start-page: 1213 issue: 9 year: 2015 end-page: 1225 article-title: Optogenetics: 10 years of microbial opsins in neuroscience publication-title: Nature Neuroscience – volume: 8 start-page: 700 issue: 9 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Reviews. Neuroscience – volume: 11 start-page: 108 year: 2017 article-title: Neuromodulatory systems and their interactions: A review of models, theories, and experiments publication-title: Frontiers in Neural Circuits – volume: 114 start-page: 12827 issue: 48 year: 2017 end-page: 12832 article-title: Brain network dynamics are hierarchically organized in time publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Computation – volume: 24 start-page: 1531 issue: 13 year: 2014 end-page: 1535 article-title: Shape perception simultaneously up‐ and downregulates neural activity in the primary visual cortex publication-title: Current Biology – volume: 320 start-page: 1638 issue: 5883 year: 2008 end-page: 1643 article-title: Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex publication-title: Science – volume: 8 start-page: 1263 issue: 9 year: 2005 end-page: 1268 article-title: Millisecond‐timescale, genetically targeted optical control of neural activity publication-title: Nature Neuroscience – volume: 69 start-page: 2132 issue: 5 year: 1997 end-page: 2137 article-title: Glutamate uptake stimulates Na+,K+‐ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain publication-title: Journal of Neurochemistry – volume: ECO.01 start-page: 27 year: 2017 end-page: 29 article-title: Optogenetics shed light on Alzheimer's disease publication-title: EC Neurology – volume: 13 start-page: 293 issue: 7 year: 2009 end-page: 301 article-title: The free‐energy principle: A rough guide to the brain? publication-title: Trends in Cognitive Sciences – volume: 96 start-page: 1204 issue: 5 year: 2017 article-title: A sensorimotor circuit in mouse cortex for visual flow predictions publication-title: Neuron – year: 2007 – volume: 3 start-page: 444 issue: 11 year: 1999 end-page: 444 article-title: Biophysics of computation: Information processing in single neurons publication-title: Trends in Cognitive Sciences – volume: 169 start-page: 1013 issue: 6 year: 2017 end-page: 1028 e1014 article-title: The code for facial identity in the primate brain publication-title: Cell – volume: 689 start-page: 26 year: 2019 end-page: 32 article-title: Multiplexed calcium imaging of single‐synapse activity and astroglial responses in the intact brain publication-title: Neuroscience Letters – volume: 106 start-page: 15037 issue: 35 year: 2009 end-page: 15042 article-title: Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 182 issue: 2 year: 2016 end-page: 189 article-title: Astrocyte calcium signaling: The third wave publication-title: Nature Neuroscience – volume: 55 start-page: 22 year: 2018 end-page: 31 article-title: Computational processing of neural recordings from calcium imaging data publication-title: Current Opinion in Neurobiology – volume: 5 start-page: e14472 year: 2016 article-title: A large field of view two‐photon mesoscope with subcellular resolution for in vivo imaging publication-title: eLife – volume: 2012 start-page: 1 year: 2012 end-page: 10 article-title: Computational models of neuron‐astrocyte interactions Lead to improved efficacy in the performance of neural networks publication-title: Computational and Mathematical Methods in Medicine – volume: 15 start-page: 247 issue: 3 year: 2013 end-page: 262 article-title: Structure and function of complex brain networks publication-title: Dialogues in Clinical Neuroscience – volume: 12 start-page: 342 issue: 3 year: 2013 end-page: 353 article-title: Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice publication-title: Cell Stem Cell – volume: 5 start-page: 3262 year: 2014 article-title: Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo publication-title: Nature Communications – volume: 34 start-page: 13139 issue: 39 year: 2014 end-page: 13150 article-title: Astrocytic Gq‐GPCR‐linked IP3R‐dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo publication-title: The Journal of Neuroscience – volume: 7 start-page: 201 year: 2013 article-title: Inference of neuronal network spike dynamics and topology from calcium imaging data publication-title: Frontiers in Neural Circuits – volume: 18 start-page: 210 issue: 2 year: 2015 end-page: 218 article-title: Calcium dynamics in astrocyte processes during neurovascular coupling publication-title: Nature Neuroscience – volume: 11 start-page: 1004 issue: 9 year: 2008 end-page: 1006 article-title: Neural repetition suppression reflects fulfilled perceptual expectations publication-title: Nature Neuroscience – volume: 107 start-page: 16976 issue: 39 year: 2010 end-page: 16981 article-title: Millisecond encoding precision of auditory cortex neurons publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: e1001259 issue: 2 year: 2012 article-title: Astrocytes mediate in vivo cholinergic‐induced synaptic plasticity publication-title: PLoS Biology – volume: 64 start-page: 2263 issue: 12 year: 2016 end-page: 2273 article-title: Activation of hypothalamic astrocytes suppresses feeding without altering emotional states publication-title: Glia – volume: 458 start-page: 1025 issue: 7241 year: 2009 end-page: 1029 article-title: Temporally precise in vivo control of intracellular signalling publication-title: Nature – volume: 11 start-page: 798 issue: 5 year: 2015 end-page: 807 article-title: Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors publication-title: Cell Reports – start-page: 061507 year: 2016 article-title: Suite2p: Beyond 10,000 neurons with standard two‐photon microscopy publication-title: bioRxiv – volume: 65 start-page: 1944 issue: 12 year: 2017 end-page: 1960 article-title: Astrocytic signaling supports hippocampal‐prefrontal theta synchronization and cognitive function publication-title: Glia – volume: 24 start-page: 367 issue: 2 year: 1988 end-page: 378 article-title: Noradrenaline‐ and vasoactive intestinal peptide‐containing neuronal systems in neocortex: Functional convergence with contrasting morphology publication-title: Neuroscience – volume: 144 start-page: 810 issue: 5 year: 2011 end-page: 823 article-title: Astrocyte‐neuron lactate transport is required for long‐term memory formation publication-title: Cell – volume: 6 start-page: 42 issue: 2 year: 2018 article-title: Viral vectors in gene therapy publication-title: Diseases – volume: 19 start-page: 162 issue: 3 year: 2015 end-page: 172 article-title: Neural population coding: Combining insights from microscopic and mass signals publication-title: Trends in Cognitive Sciences – volume: 29 start-page: 1 year: 2017 end-page: 17 article-title: Slow waves in cortical slices: How spontaneous activity is shaped by laminar structure publication-title: Cerebral Cortex – volume: 349 start-page: 730 issue: 6249 year: 2015 end-page: 734 article-title: Circuit‐specific signaling in astrocyte‐neuron networks in basal ganglia pathways publication-title: Science – volume: 100 start-page: 13940 issue: 24 year: 2003 end-page: 13945 article-title: Channelrhodopsin‐2, a directly light‐gated cation‐selective membrane channel publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: e1002147 issue: 5 year: 2015 article-title: Understanding brains: Details, intuition, and big data publication-title: PLoS Biology – volume: 12 start-page: 18 year: 2018 article-title: Sleep‐dependent memory consolidation and incremental sentence comprehension: Computational dependencies during language learning as revealed by neuronal oscillations publication-title: Frontiers in Human Neuroscience – volume: 102 start-page: 17816 issue: 49 year: 2005 end-page: 17821 article-title: Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 2035 issue: 1 year: 2018 article-title: Deep 2‐photon imaging and artifact‐free optogenetics through transparent graphene microelectrode arrays publication-title: Nature Communications – volume: 160 start-page: 73 year: 2017 end-page: 83 article-title: Multi‐scale brain networks publication-title: NeuroImage – volume: 22 start-page: 154 issue: 2 year: 2019 end-page: 166 article-title: Astrocyte function from information processing to cognition and cognitive impairment publication-title: Nature Neuroscience – volume: 2010 issue: 11 year: 2010 article-title: Array tomography: high‐resolution three‐dimensional immunofluorescence publication-title: Cold Spring Harbor Protocols – volume: 14 start-page: 477 issue: 3 year: 1995 end-page: 485 article-title: Cellular basis of working memory publication-title: Neuron – year: 2015 – volume: 273 start-page: 1868 issue: 5283 year: 1996 end-page: 1871 article-title: Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses publication-title: Science – volume: 29 start-page: 3276 issue: 10 year: 2009 end-page: 3287 article-title: Uniquely hominid features of adult human astrocytes publication-title: Journal of Neuroscience – volume: 81 start-page: 888 issue: 4 year: 2014 end-page: 900 article-title: A local glutamate‐glutamine cycle sustains synaptic excitatory transmitter release publication-title: Neuron – volume: 94 start-page: 993 issue: 5 year: 2017 end-page: 1001 article-title: Shaping the default activity pattern of the cortical network publication-title: Neuron – volume: 22 start-page: 11 issue: 1 year: 2012 end-page: 17 article-title: Towards reliable spike‐train recordings from thousands of neurons with multielectrodes publication-title: Current Opinion in Neurobiology – volume: 14 start-page: 355 year: 2016 end-page: 376 – volume: 17 start-page: 1500 issue: 11 year: 2014 end-page: 1509 article-title: Dimensionality reduction for large‐scale neural recordings publication-title: Nature Neuroscience – volume: 108 start-page: 20754 issue: 51 year: 2011 end-page: 20759 article-title: Evidence for a hierarchy of predictions and prediction errors in human cortex publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 start-page: 8 issue: 1 year: 2017 article-title: Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease publication-title: Acta Neuropathologica Communications – volume: 15 start-page: 1498 issue: 11 year: 2012 end-page: 1505 article-title: Slow dynamics and high variability in balanced cortical networks with clustered connections publication-title: Nature Neuroscience – volume: 22 start-page: 183 issue: 1 year: 2002 end-page: 192 article-title: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains publication-title: The Journal of Neuroscience – volume: 115 start-page: 186 issue: 1 year: 2018 end-page: 191 article-title: Toward a unified theory of efficient, predictive, and sparse coding publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 18 start-page: 490 issue: 3 year: 2012 end-page: 500 article-title: Concurrent impairments in sleep and memory in amnestic mild cognitive impairment publication-title: Journal of the International Neuropsychological Society – volume: 50 start-page: 232 year: 2018 end-page: 241 article-title: Neural data science: Accelerating the experiment‐analysis‐theory cycle in large‐scale neuroscience publication-title: Current Opinion in Neurobiology – volume: 241 start-page: 1299 issue: 4871 year: 1988 end-page: 1306 article-title: Computational neuroscience publication-title: Science – volume: 11 start-page: 329 issue: 3 year: 2014 end-page: 364 article-title: Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition publication-title: Physics of Life Reviews – volume: 36 start-page: 429 year: 2013 end-page: 449 article-title: Electrical compartmentalization in dendritic spines publication-title: Annual Review of Neuroscience – volume: 18 start-page: 708 issue: 5 year: 2015 end-page: 717 article-title: Ca(2+) signaling in astrocytes from Ip3r2(−/−) mice in brain slices and during startle responses in vivo publication-title: Nature Neuroscience – volume: 109 start-page: 20720 issue: 50 year: 2012 end-page: 20725 article-title: Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 139 Suppl 2 start-page: 179 year: 2016 end-page: 199 article-title: Neural plasticity and behavior—Sixty years of conceptual advances publication-title: Journal of Neurochemistry – volume: 89 start-page: 285 issue: 2 year: 2016 end-page: 299 article-title: Simultaneous Denoising, deconvolution, and Demixing of calcium imaging data publication-title: Neuron – volume: 347 start-page: 1138 issue: 6226 year: 2015 end-page: 1142 article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq publication-title: Science – volume: 46 start-page: 241 year: 2017 end-page: 247 article-title: The many worlds hypothesis of dopamine prediction error: Implications of a parallel circuit architecture in the basal ganglia publication-title: Current Opinion in Neurobiology – volume: 20 start-page: 1946 issue: 8 year: 2010 end-page: 1954 article-title: Coding and binding of color and form in visual cortex publication-title: Cerebral Cortex – volume: 37 start-page: 44 year: 2016 end-page: 52 article-title: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance publication-title: Current Opinion in Neurobiology – volume: 19 start-page: 394 issue: 3 year: 2016 end-page: 403 article-title: Computational principles of memory publication-title: Nature Neuroscience – volume: 40 start-page: 581 year: 2017 end-page: 602 article-title: Replay comes of age publication-title: Annual Review of Neuroscience – volume: 98 start-page: 726 issue: 4 year: 2018 end-page: 735.e724 article-title: Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons publication-title: Neuron – volume: 104 start-page: 3691 issue: 6 year: 2010 end-page: 3704 article-title: Fast nonnegative deconvolution for spike train inference from population calcium imaging publication-title: Journal of Neurophysiology – volume: 64 start-page: 1611 issue: 10 year: 2016 end-page: 1627 article-title: Principles of sodium homeostasis and sodium signalling in astroglia publication-title: Glia – volume: 99 start-page: 609 year: 2018 end-page: 623.e29 article-title: Linking connectivity, dynamics, and computations in low‐rank recurrent neural networks publication-title: Neuron – volume: 93 start-page: 587 issue: 3 year: 2017 end-page: 605.e587 article-title: Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes publication-title: Neuron – volume: 97 start-page: 769 issue: 4 year: 2018 end-page: 785 article-title: Neuromodulation of attention publication-title: Neuron – volume: 11 start-page: e1004464 issue: 10 year: 2015 article-title: Efficient "shotgun" inference of neural connectivity from highly sub‐sampled activity data publication-title: PLoS Computational Biology – volume: 27 start-page: 6473 issue: 24 year: 2007 end-page: 6477 article-title: Synaptic islands defined by the territory of a single astrocyte publication-title: The Journal of Neuroscience – volume: 19 start-page: 304 issue: 6 year: 2015 end-page: 313 article-title: Hierarchical process memory: Memory as an integral component of information processing publication-title: Trends in Cognitive Sciences – volume: 19 start-page: 1 issue: 1 year: 2007 end-page: 46 article-title: Mean‐driven and fluctuation‐driven persistent activity in recurrent networks publication-title: Neural Computation – volume: 5 start-page: e18716 year: 2016 article-title: Direct modulation of GFAP‐expressing glia in the arcuate nucleus bi‐directionally regulates feeding publication-title: eLife – volume: 174 start-page: 59 year: 2018 end-page: 71.e14 article-title: Astrocytic activation generates de novo neuronal potentiation and memory enhancement publication-title: Cell – volume: 129 start-page: 527 issue: 4 year: 2015 end-page: 540 article-title: Nucleus basalis of Meynert revisited: Anatomy, history and differential involvement in Alzheimer's and Parkinson's disease publication-title: Acta Neuropathologica – volume: 19 start-page: 356 issue: 3 year: 2016 end-page: 365 article-title: Using goal‐driven deep learning models to understand sensory cortex publication-title: Nature Neuroscience – volume: 357 start-page: 503 issue: 6350 year: 2017 end-page: 507 article-title: Chemogenetics revealed: DREADD occupancy and activation via converted clozapine publication-title: Science – volume: 38 start-page: 14 issue: 1 year: 2018 end-page: 25 article-title: Gliotransmission: Beyond black‐and‐white publication-title: The Journal of Neuroscience – volume: 4 year: 2015 article-title: Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation publication-title: Elife – volume: 522 start-page: 225 issue: 1 year: 2014 end-page: 259 article-title: Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex publication-title: The Journal of Comparative Neurology – volume: 14 start-page: 349 issue: 4 year: 2017 end-page: 359 article-title: In vivo imaging of neural activity publication-title: Nature Methods – volume: 369 start-page: 20120460 issue: 1637 year: 2014 article-title: Timing as an intrinsic property of neural networks: Evidence from in vivo and in vitro experiments publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 36 start-page: 12549 issue: 50 year: 2016 end-page: 12558 article-title: Immunotherapy with Aducanumab restores calcium homeostasis in Tg2576 mice publication-title: The Journal of Neuroscience – volume: 63 start-page: 27 issue: 1 year: 2009 end-page: 39 article-title: Remote control of neuronal activity in transgenic mice expressing evolved G protein‐coupled receptors publication-title: Neuron – volume: 7 start-page: 251 issue: 2 year: 1996 end-page: 259 article-title: Intraneuronal information processing, directional selectivity and memory for spatio‐temporal sequences publication-title: Network: Computation in Neural Systems – volume: 36 start-page: 337 year: 2013 end-page: 359 article-title: Cortical control of arm movements: A dynamical systems perspective publication-title: Annual Review of Neuroscience – volume: 54 start-page: 387 issue: 6 year: 2013 end-page: 394 article-title: alpha1‐adrenergic receptors mediate coordinated Ca signaling of cortical astrocytes in awake, behaving mice publication-title: Cell Calcium – volume: 101 start-page: 21 issue: 1 year: 2019 end-page: 31 e5 article-title: High‐density, long‐lasting, and multi‐region electrophysiological recordings using polymer electrode arrays publication-title: Neuron – volume: 20 start-page: 125 issue: 3 year: 1997 end-page: 131 article-title: Action potential initiation and backpropagation in neurons of the mammalian CNS publication-title: Trends in Neurosciences – volume: 82 start-page: 413 issue: 2 year: 2014 end-page: 429 article-title: Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway publication-title: Neuron – volume: 94 start-page: 969 issue: 5 year: 2017 end-page: 977 article-title: The brain as an efficient and robust adaptive learner publication-title: Neuron – volume: 43 start-page: 1298 issue: 10 year: 2016 end-page: 1306 article-title: Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice publication-title: The European Journal of Neuroscience – volume: 18 start-page: 131 issue: 3 year: 2017 end-page: 146 article-title: Micro‐connectomics: Probing the organization of neuronal networks at the cellular scale publication-title: Nature Reviews Neuroscience – volume: 23 start-page: 18 issue: Suppl 1 year: 2016 end-page: 27 article-title: Disease‐modifying treatments for multiple sclerosis—A review of approved medications publication-title: European Journal of Neurology – volume: 10 start-page: 211 issue: 3 year: 2009 end-page: 223 article-title: The locus coeruleus and noradrenergic modulation of cognition publication-title: Nature Reviews. Neuroscience – volume: 449 start-page: 92 issue: 7158 year: 2007 end-page: 95 article-title: Temporal precision in the neural code and the timescales of natural vision publication-title: Nature – volume: 25 start-page: 2192 issue: 9 year: 2005 end-page: 2203 article-title: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes publication-title: The Journal of Neuroscience – volume: 39 start-page: 1 year: 2017 end-page: 10 article-title: Voltage imaging with genetically encoded indicators publication-title: Current Opinion in Chemical Biology – volume: 13 start-page: 885 issue: 6 year: 2002 end-page: 890 article-title: Orbitofrontal lesions in rats impair reversal but not acquisition of go, no‐go odor discriminations publication-title: Neuroreport – volume: 71 start-page: 9 issue: 1 year: 2011 end-page: 34 article-title: Optogenetics in neural systems publication-title: Neuron – volume: 113 start-page: E2675 issue: 19 year: 2016 end-page: E2684 article-title: Astrocytes regulate cortical state switching in vivo publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 91 start-page: 221 issue: 2 year: 2016 end-page: 259 article-title: Analysis of neuronal spike trains, deconstructed publication-title: Neuron – year: 2016 – volume: 68 start-page: 73 year: 2017 end-page: 100 article-title: Learning, reward, and decision making publication-title: Annual Review of Psychology – volume: 304 start-page: 1926 issue: 5679 year: 2004 end-page: 1929 article-title: Neuronal oscillations in cortical networks publication-title: Science – volume: 14 start-page: 2531 issue: 11 year: 2002 end-page: 2560 article-title: Real‐time computing without stable states: A new framework for neural computation based on perturbations publication-title: Neural Computation – volume: 89 start-page: 683 issue: 4 year: 2016 end-page: 694 article-title: DREADDs for neuroscientists publication-title: Neuron – volume: 372 start-page: 380 year: 2016 end-page: 391 article-title: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes‐like control publication-title: Information Sciences – volume: 8 start-page: 244 year: 2017 article-title: The dopamine prediction error: Contributions to associative models of reward learning publication-title: Frontiers in Psychology – volume: 16 start-page: 487 issue: 8 year: 2015 end-page: 497 article-title: From the neuron doctrine to neural networks publication-title: Nature Reviews. Neuroscience – volume: 6 start-page: 24 issue: 3 year: 2017 end-page: 33 article-title: Human‐robot interaction and Neuroprosthetics: A review of new technologies publication-title: IEEE Consumer Electronics Magazine – volume: 13 start-page: 548 issue: 9 year: 2017 end-page: 554 article-title: Insights into the mechanisms of deep brain stimulation publication-title: Nature Reviews. Neurology – volume: 8 start-page: 14823 year: 2017 article-title: Lateral orbitofrontal cortex anticipates choices and integrates prior with current information publication-title: Nature Communications – volume: 20 start-page: 1114 issue: 8 year: 2017 end-page: 1121 article-title: Active dendritic integration as a mechanism for robust and precise grid cell firing publication-title: Nature Neuroscience – volume: 23 start-page: 486 issue: 6 year: 2017 end-page: 500 article-title: Should we stop saying 'Glia' and 'Neuroinflammation'? publication-title: Trends in Molecular Medicine – volume: 46 start-page: 48 year: 2017 end-page: 57 article-title: What can neuronal populations tell us about cognition? publication-title: Current Opinion in Neurobiology – volume: 28 start-page: 503 year: 2005 end-page: 532 article-title: Dendritic computation publication-title: Annual Review of Neuroscience – volume: 11 start-page: 475 issue: 4 year: 2001 end-page: 480 article-title: Energy as a constraint on the coding and processing of sensory information publication-title: Current Opinion in Neurobiology – volume: 6 start-page: e19109 issue: 4 year: 2011 article-title: Artificial astrocytes improve neural network performance publication-title: PLoS One – volume: 12 start-page: 14 year: 2018 article-title: Computational models for calcium‐mediated astrocyte functions publication-title: Frontiers in Computational Neuroscience – volume: 19 start-page: 9587 issue: 21 year: 1999 end-page: 9603 article-title: Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory publication-title: The Journal of Neuroscience – volume: 43 start-page: 156 year: 2017 end-page: 165 article-title: Synaptic patterning and the timescales of cortical dynamics publication-title: Current Opinion in Neurobiology – volume: 94 start-page: 12740 issue: 24 year: 1997 end-page: 12741 article-title: Neural codes: Firing rates and beyond publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 66 start-page: 1724 year: 2018 end-page: 1735 article-title: GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes publication-title: Glia – volume: 95 start-page: 531 issue: 3 year: 2017 end-page: 549 e539 article-title: Neural circuit‐specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence publication-title: Neuron – volume: 16 start-page: 2859 year: 2015 end-page: 2900 article-title: Linear dimensionality reduction: Survey, insights, and generalizations publication-title: Journal of Machine Learning Research – volume: 81 start-page: 728 issue: 4 year: 2014 end-page: 739 article-title: Gliotransmitters travel in time and space publication-title: Neuron – volume: 98 start-page: 49 issue: 1 year: 2018 article-title: An optical neuron‐astrocyte proximity assay at synaptic distance scales publication-title: Neuron – volume: 356 start-page: eaai8185 issue: 6339 year: 2017 article-title: Three‐dimensional ca(2+) imaging advances understanding of astrocyte biology publication-title: Science – volume: 13 start-page: 1257 issue: 11 year: 2003 end-page: 1269 article-title: A role for neural integrators in perceptual decision making publication-title: Cerebral Cortex – volume: 163 start-page: 456 issue: 2 year: 2015 end-page: 492 article-title: Reconstruction and simulation of neocortical microcircuitry publication-title: Cell – volume: 88 start-page: 277 issue: 2 year: 2015 end-page: 288 article-title: Time‐resolved imaging reveals heterogeneous landscapes of Nanomolar ca(2+) in neurons and Astroglia publication-title: Neuron – volume: 10 start-page: 173 issue: 3 year: 2009 end-page: 185 article-title: Extracting information from neuronal populations: Information theory and decoding approaches publication-title: Nature Reviews. Neuroscience – volume: 329 start-page: 571 issue: 5991 year: 2010 end-page: 575 article-title: Astrocytes control breathing through pH‐dependent release of ATP publication-title: Science – volume: 5 start-page: 3284 year: 2014 article-title: Lactate‐mediated glia‐neuronal signalling in the mammalian brain publication-title: Nature Communications – volume: 27 start-page: 2137 issue: 14 year: 2017 end-page: 2147 e2133 article-title: Electron microscopic reconstruction of functionally identified cells in a neural integrator publication-title: Current Biology – volume: 87 start-page: 716 issue: 4 year: 2015 end-page: 732 article-title: Translational perspectives for computational neuroimaging publication-title: Neuron – volume: 121 start-page: 1013 issue: Pt 6 year: 1998 end-page: 1052 article-title: From sensation to cognition publication-title: Brain – volume: 11 start-page: 48 year: 2017 article-title: Cliques of neurons bound into cavities provide a missing link between structure and function publication-title: Frontiers in Computational Neuroscience – volume: 86 start-page: 883 issue: 4 year: 2015 end-page: 901 article-title: A cellular perspective on brain energy metabolism and functional imaging publication-title: Neuron – volume: 14 start-page: 506 issue: 11 year: 2010 end-page: 515 article-title: The functional role of cross‐frequency coupling publication-title: Trends in Cognitive Sciences – volume: 68 start-page: 362 issue: 3 year: 2010 end-page: 385 article-title: Neural syntax: Cell assemblies, synapsembles, and readers publication-title: Neuron – volume: 29 start-page: 769 issue: 3 year: 2001 end-page: 777 article-title: The role of spike timing in the coding of stimulus location in rat somatosensory cortex publication-title: Neuron – volume: 9 start-page: 816 issue: 6 year: 2006 end-page: 823 article-title: Astrocytic Ca signaling evoked by sensory stimulation in vivo publication-title: Nature Neuroscience – volume: 75 start-page: 1970 issue: 5 year: 1996 end-page: 1981 article-title: Orbitofrontal cortex neurons: Role in olfactory and visual association learning publication-title: Journal of Neurophysiology – year: 1976 – volume: 150 start-page: 45 year: 2005 end-page: 53 article-title: Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience publication-title: Progress in Brain Research – volume: 431 start-page: 796 issue: 7010 year: 2004 end-page: 803 article-title: Synaptic computation publication-title: Nature – volume: 12 start-page: e0170275 issue: 1 year: 2017 article-title: Optogenetic restoration of disrupted slow oscillations halts amyloid deposition and restores calcium homeostasis in an animal model of Alzheimer's disease publication-title: PLoS One – volume: 15 start-page: 70 issue: 1 year: 2011 end-page: 80 article-title: TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT‐3 publication-title: Nature Neuroscience – volume: 93 start-page: 13339 issue: 23 year: 1996 end-page: 13344 article-title: How the brain keeps the eyes still publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 80 start-page: 143 year: 2018 end-page: 157 article-title: Dynamism of an astrocyte in vivo: Perspectives on identity and function publication-title: Annual Review of Physiology – volume: 5 start-page: 25 year: 2011 article-title: Dynamics of networks of excitatory and inhibitory neurons in response to time‐dependent inputs publication-title: Frontiers in Computational Neuroscience – volume: 30 start-page: 1 issue: 1 year: 2016 end-page: 7 article-title: Amyloid PET screening for enrichment of early‐stage Alzheimer disease clinical trials: Experience in a phase 1b clinical trial publication-title: Alzheimer Disease and Associated Disorders – volume: 31 start-page: 8905 issue: 24 year: 2011 end-page: 8919 article-title: Astrocytes display complex and localized calcium responses to single‐neuron stimulation in the hippocampus publication-title: The Journal of Neuroscience – volume: 145 start-page: 207 year: 2004 end-page: 231 article-title: High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation publication-title: Progress in Brain Research – volume: 76 start-page: 209 issue: 1 year: 2012 end-page: 222 article-title: Neuromodulation of brain states publication-title: Neuron – volume: 5 start-page: e20362 year: 2016 article-title: Activity‐dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte‐neuron networks publication-title: eLife – volume: 3 start-page: 37 year: 2009 article-title: Hierarchical modularity in human brain functional networks publication-title: Frontiers in Neuroinformatics – volume: 319 start-page: 1543 issue: 5869 year: 2008 end-page: 1546 article-title: Synaptic theory of working memory publication-title: Science – volume: 7 start-page: e32237 year: 2018 article-title: Neuronal activity determines distinct gliotransmitter release from a single astrocyte publication-title: eLife – volume: 324 start-page: 354 issue: 5925 year: 2009 end-page: 359 article-title: Optical deconstruction of parkinsonian neural circuitry publication-title: Science – volume: 31 start-page: 18155 issue: 49 year: 2011 end-page: 18165 article-title: Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo publication-title: The Journal of Neuroscience – volume: 16 start-page: 3 issue: 1 year: 2018 end-page: 13 article-title: A topological representation of branching neuronal morphologies publication-title: Neuroinformatics – volume: 82 start-page: 1263 issue: 6 year: 2014 end-page: 1270 article-title: Norepinephrine controls astroglial responsiveness to local circuit activity publication-title: Neuron – volume: 37 start-page: 1708 issue: 7 year: 2017 end-page: 1720 article-title: Dopamine modulates adaptive prediction error coding in the human midbrain and striatum publication-title: The Journal of Neuroscience – year: 2006 – volume: 113 start-page: 13492 issue: 47 year: 2016 end-page: 13497 article-title: Temporal coding of reward‐guided choice in the posterior parietal cortex publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 112 start-page: 9158 issue: 30 year: 2015 end-page: 9165 article-title: A computational perspective on autism publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 183 issue: 3 year: 2000 end-page: 208 article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons publication-title: Journal of Computational Neuroscience – volume: 116 start-page: 724 issue: 2 year: 2016 end-page: 741 article-title: Neural and neurochemical basis of reinforcement‐guided decision making publication-title: Journal of Neurophysiology – volume: 9 start-page: 2 year: 2017 article-title: Modulation of synaptic plasticity in the cortex needs to understand all the players publication-title: Frontiers in Synaptic Neuroscience – volume: 8 start-page: 161 year: 2014 article-title: Neural mechanisms of auditory categorization: From across brain areas to within local microcircuits publication-title: Frontiers in Neuroscience – volume: 12 start-page: 335 issue: 4 year: 2017 end-page: 342 article-title: Targeted intracellular voltage recordings from dendritic spines using quantum‐dot‐coated nanopipettes publication-title: Nature Nanotechnology – volume: 440 start-page: 1054 issue: 7087 year: 2006 end-page: 1059 article-title: Synaptic scaling mediated by glial TNF‐alpha publication-title: Nature – volume: 20 start-page: 1540 issue: 11 year: 2017 end-page: 1548 article-title: Synapse‐specific astrocyte gating of amygdala‐related behavior publication-title: Nature Neuroscience – volume: 12 start-page: 1833 issue: 11 year: 2017 article-title: The theory of constructed emotion: An active inference account of interoception and categorization publication-title: Social Cognitive and Affective Neuroscience – ident: e_1_2_10_97_1 doi: 10.1146/annurev.neuro.28.061604.135703 – ident: e_1_2_10_3_1 doi: 10.1016/j.cell.2018.05.002 – volume: 16 start-page: 2859 year: 2015 ident: e_1_2_10_41_1 article-title: Linear dimensionality reduction: Survey, insights, and generalizations publication-title: Journal of Machine Learning Research – ident: e_1_2_10_100_1 doi: 10.1162/089976602760407955 – ident: e_1_2_10_48_1 doi: 10.1523/JNEUROSCI.1979-16.2016 – ident: e_1_2_10_47_1 doi: 10.1016/S1364-6613(99)01380-7 – ident: e_1_2_10_55_1 doi: 10.1016/j.plrev.2014.04.005 – ident: e_1_2_10_16_1 doi: 10.1093/scan/nsx060 – ident: e_1_2_10_162_1 doi: 10.1126/science.1156120 – ident: e_1_2_10_174_1 doi: 10.1038/nature04671 – ident: e_1_2_10_108_1 doi: 10.1038/nn.4649 – ident: e_1_2_10_125_1 doi: 10.1146/annurev-psych-010416-044216 – ident: e_1_2_10_140_1 doi: 10.1371/journal.pone.0019109 – ident: e_1_2_10_29_1 doi: 10.1126/science.1099745 – ident: e_1_2_10_5_1 doi: 10.1038/nature07926 – ident: e_1_2_10_69_1 doi: 10.1016/j.stem.2012.12.015 – ident: e_1_2_10_17_1 doi: 10.1038/nn.4201 – ident: e_1_2_10_77_1 doi: 10.1007/s12021-017-9341-1 – ident: e_1_2_10_169_1 doi: 10.7554/eLife.14472 – ident: e_1_2_10_176_1 doi: 10.1016/j.neuron.2018.03.050 – ident: e_1_2_10_121_1 doi: 10.1371/journal.pbio.1001259 – ident: e_1_2_10_193_1 doi: 10.1152/jn.01073.2009 – ident: e_1_2_10_129_1 doi: 10.1016/j.cell.2011.07.022 – ident: e_1_2_10_135_1 doi: 10.1111/ejn.13074 – ident: e_1_2_10_62_1 doi: 10.1098/rstb.2012.0460 – ident: e_1_2_10_166_1 doi: 10.1093/cercor/bhp265 – ident: e_1_2_10_94_1 doi: 10.1073/pnas.0509030102 – ident: e_1_2_10_187_1 doi: 10.1038/s41467-018-04457-5 – ident: e_1_2_10_131_1 doi: 10.1016/j.tics.2015.01.002 – ident: e_1_2_10_203_1 doi: 10.1016/j.neuron.2011.06.004 – ident: e_1_2_10_82_1 doi: 10.1073/pnas.1012656107 – ident: e_1_2_10_206_1 doi: 10.1126/science.aaa1934 – ident: e_1_2_10_35_1 doi: 10.1016/j.cell.2017.05.011 – ident: e_1_2_10_24_1 doi: 10.1038/nn1525 – ident: e_1_2_10_26_1 doi: 10.1523/JNEUROSCI.22-01-00183.2002 – ident: e_1_2_10_179_1 doi: 10.1038/nn.2163 – ident: e_1_2_10_31_1 doi: 10.1016/j.tics.2010.09.001 – ident: e_1_2_10_150_1 doi: 10.1073/pnas.1510583112 – ident: e_1_2_10_117_1 doi: 10.1126/science.1150769 – ident: e_1_2_10_181_1 doi: 10.1111/jnc.13580 – ident: e_1_2_10_25_1 doi: 10.1023/A:1008925309027 – volume-title: From understanding computation to understanding neural circuitry year: 1976 ident: e_1_2_10_107_1 – ident: e_1_2_10_74_1 doi: 10.1073/pnas.1606479113 – ident: e_1_2_10_164_1 doi: 10.1073/pnas.93.23.13339 – ident: e_1_2_10_144_1 doi: 10.3389/fncom.2017.00048 – ident: e_1_2_10_79_1 doi: 10.1523/JNEUROSCI.2080-16.2016 – ident: e_1_2_10_178_1 doi: 10.1016/S0166-2236(96)10075-8 – ident: e_1_2_10_145_1 doi: 10.1162/neco.2007.19.1.1 – ident: e_1_2_10_106_1 doi: 10.1016/j.cell.2015.09.029 – ident: e_1_2_10_34_1 doi: 10.1073/pnas.1711114115 – ident: e_1_2_10_59_1 doi: 10.1016/j.tics.2009.04.005 – ident: e_1_2_10_39_1 doi: 10.7554/eLife.32237 – ident: e_1_2_10_36_1 doi: 10.1038/nn.4237 – ident: e_1_2_10_38_1 doi: 10.1016/j.neuron.2018.11.002 – ident: e_1_2_10_67_1 doi: 10.1523/JNEUROSCI.1419-07.2007 – start-page: 061507 year: 2016 ident: e_1_2_10_128_1 article-title: Suite2p: Beyond 10,000 neurons with standard two‐photon microscopy publication-title: bioRxiv – ident: e_1_2_10_18_1 doi: 10.1523/JNEUROSCI.6341-10.2011 – ident: e_1_2_10_110_1 doi: 10.1016/j.molmed.2017.04.005 – ident: e_1_2_10_134_1 doi: 10.1046/j.1471-4159.1997.69052132.x – ident: e_1_2_10_51_1 doi: 10.1016/j.conb.2017.02.007 – volume-title: Fundamentals of brain network analysis year: 2016 ident: e_1_2_10_56_1 – ident: e_1_2_10_185_1 doi: 10.1016/j.neuron.2013.12.026 – ident: e_1_2_10_194_1 doi: 10.1073/pnas.1117807108 – ident: e_1_2_10_23_1 doi: 10.1523/JNEUROSCI.2591-14.2014 – ident: e_1_2_10_91_1 doi: 10.3389/fncom.2011.00025 – volume: 01 start-page: 27 year: 2017 ident: e_1_2_10_80_1 article-title: Optogenetics shed light on Alzheimer's disease publication-title: EC Neurology – ident: e_1_2_10_53_1 doi: 10.1002/glia.23330 – ident: e_1_2_10_99_1 doi: 10.3389/fncir.2013.00201 – ident: e_1_2_10_93_1 doi: 10.1016/j.neuron.2017.11.009 – ident: e_1_2_10_61_1 doi: 10.1016/j.conb.2015.12.008 – ident: e_1_2_10_151_1 doi: 10.1016/j.neuron.2016.01.040 – ident: e_1_2_10_155_1 doi: 10.1038/nrn2573 – ident: e_1_2_10_177_1 doi: 10.1016/j.conb.2018.11.005 – ident: e_1_2_10_66_1 doi: 10.1126/science.1167093 – ident: e_1_2_10_168_1 doi: 10.1038/nn.3000 – ident: e_1_2_10_115_1 doi: 10.3389/neuro.11.037.2009 – ident: e_1_2_10_182_1 doi: 10.1002/glia.23073 – ident: e_1_2_10_191_1 doi: 10.1073/pnas.1705120114 – ident: e_1_2_10_141_1 doi: 10.1146/annurev-physiol-021317-121125 – ident: e_1_2_10_138_1 doi: 10.1038/ncomms4262 – ident: e_1_2_10_14_1 doi: 10.1016/S0079-6123(05)50004-9 – ident: e_1_2_10_132_1 doi: 10.1016/S0896-6273(01)00251-3 – ident: e_1_2_10_196_1 doi: 10.1523/JNEUROSCI.19-21-09587.1999 – ident: e_1_2_10_171_1 doi: 10.1371/journal.pcbi.1004464 – ident: e_1_2_10_157_1 doi: 10.1073/pnas.1213458109 – ident: e_1_2_10_130_1 doi: 10.1016/j.conb.2018.04.007 – ident: e_1_2_10_189_1 doi: 10.3389/fnins.2014.00161 – ident: e_1_2_10_192_1 doi: 10.1016/j.cub.2017.06.028 – ident: e_1_2_10_161_1 doi: 10.1038/nrn.2016.182 – ident: e_1_2_10_85_1 doi: 10.1016/j.cub.2014.05.049 – ident: e_1_2_10_70_1 doi: 10.1098/rstb.2014.0170 – ident: e_1_2_10_104_1 doi: 10.1371/journal.pbio.1002147 – ident: e_1_2_10_95_1 doi: 10.1038/nn.3220 – ident: e_1_2_10_158_1 doi: 10.1523/JNEUROSCI.0017-17.2017 – ident: e_1_2_10_42_1 doi: 10.1038/nn.3776 – ident: e_1_2_10_199_1 doi: 10.1038/nn.4244 – ident: e_1_2_10_40_1 doi: 10.3389/fnhum.2018.00018 – ident: e_1_2_10_30_1 doi: 10.1109/MCE.2016.2614423 – ident: e_1_2_10_123_1 doi: 10.1523/JNEUROSCI.4707-08.2009 – ident: e_1_2_10_75_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_10_113_1 doi: 10.1093/brain/121.6.1013 – ident: e_1_2_10_122_1 doi: 10.1038/ncomms14823 – ident: e_1_2_10_152_1 doi: 10.1016/j.cub.2018.07.045 – ident: e_1_2_10_13_1 doi: 10.3389/fncir.2017.00108 – ident: e_1_2_10_27_1 doi: 10.1038/nature06105 – ident: e_1_2_10_160_1 doi: 10.1097/00001756-200205070-00030 – ident: e_1_2_10_105_1 doi: 10.1002/cne.23458 – ident: e_1_2_10_63_1 doi: 10.1016/0896-6273(95)90304-6 – ident: e_1_2_10_102_1 doi: 10.1016/0306-4522(88)90338-7 – ident: e_1_2_10_165_1 doi: 10.1097/WAD.0000000000000144 – ident: e_1_2_10_92_1 doi: 10.1016/j.neuron.2012.09.012 – ident: e_1_2_10_116_1 doi: 10.1101/pdb.top89 – ident: e_1_2_10_142_1 doi: 10.1073/pnas.1520759113 – volume: 29 start-page: 1 year: 2017 ident: e_1_2_10_32_1 article-title: Slow waves in cortical slices: How spontaneous activity is shaped by laminar structure publication-title: Cerebral Cortex – ident: e_1_2_10_98_1 doi: 10.3390/diseases6020042 – ident: e_1_2_10_190_1 doi: 10.1177/2041669516673384 – ident: e_1_2_10_159_1 doi: 10.1038/nn.4582 – ident: e_1_2_10_22_1 doi: 10.1007/978-0-387-45528-0 – ident: e_1_2_10_73_1 doi: 10.1016/j.neuron.2014.02.041 – ident: e_1_2_10_76_1 doi: 10.1038/nnano.2016.268 – ident: e_1_2_10_9_1 doi: 10.1016/j.conb.2017.07.008 – ident: e_1_2_10_154_1 doi: 10.1038/s41593-018-0325-8 – ident: e_1_2_10_21_1 doi: 10.1126/science.aai8185 – ident: e_1_2_10_87_1 doi: 10.1016/j.cub.2014.05.042 – ident: e_1_2_10_143_1 doi: 10.1038/nrn2578 – ident: e_1_2_10_52_1 doi: 10.1016/j.conb.2011.10.001 – ident: e_1_2_10_183_1 doi: 10.1523/JNEUROSCI.5289-11.2011 – ident: e_1_2_10_60_1 doi: 10.1073/pnas.94.24.12740 – ident: e_1_2_10_172_1 doi: 10.31887/DCNS.2013.15.3/osporns – ident: e_1_2_10_54_1 doi: 10.1073/pnas.0906419106 – ident: e_1_2_10_136_1 doi: 10.1523/JNEUROSCI.3965-04.2005 – ident: e_1_2_10_109_1 doi: 10.1126/science.aaa7945 – ident: e_1_2_10_57_1 doi: 10.1146/annurev-neuro-072116-031538 – ident: e_1_2_10_186_1 doi: 10.1016/j.neuron.2018.01.008 – ident: e_1_2_10_149_1 doi: 10.1002/glia.22964 – ident: e_1_2_10_15_1 doi: 10.1088/0954-898X/7/2/004 – ident: e_1_2_10_50_1 doi: 10.1109/CVPR.2015.7298761 – ident: e_1_2_10_127_1 doi: 10.1038/nn.3906 – ident: e_1_2_10_139_1 doi: 10.1016/j.neuron.2015.11.037 – ident: e_1_2_10_147_1 doi: 10.1016/j.neuron.2009.01.002 – ident: e_1_2_10_167_1 doi: 10.1146/annurev-neuro-062111-150509 – ident: e_1_2_10_118_1 doi: 10.1038/nn.3862 – ident: e_1_2_10_133_1 doi: 10.1016/j.neuron.2014.04.038 – ident: e_1_2_10_44_1 doi: 10.1038/nn.4091 – ident: e_1_2_10_68_1 doi: 10.1016/j.neuron.2008.11.024 – ident: e_1_2_10_111_1 doi: 10.1016/j.neuron.2018.07.003 – ident: e_1_2_10_58_1 doi: 10.1038/nrn2201 – ident: e_1_2_10_64_1 doi: 10.1126/science.aan2475 – ident: e_1_2_10_90_1 doi: 10.1016/S0959-4388(00)00237-3 – ident: e_1_2_10_101_1 doi: 10.1016/j.neuron.2015.03.035 – ident: e_1_2_10_114_1 doi: 10.3389/fnsyn.2017.00002 – ident: e_1_2_10_33_1 doi: 10.1016/j.neuron.2017.06.029 – ident: e_1_2_10_103_1 doi: 10.3389/fncom.2018.00014 – ident: e_1_2_10_2_1 doi: 10.1038/nature03010 – ident: e_1_2_10_126_1 doi: 10.1016/j.tins.2015.07.006 – ident: e_1_2_10_119_1 doi: 10.1073/pnas.1936192100 – ident: e_1_2_10_175_1 doi: 10.1016/j.neuron.2015.07.008 – ident: e_1_2_10_88_1 doi: 10.7554/eLife.05793 – ident: e_1_2_10_205_1 doi: 10.1038/nrn3962 – ident: e_1_2_10_89_1 doi: 10.1016/j.conb.2017.08.015 – ident: e_1_2_10_198_1 doi: 10.1016/j.cbpa.2017.04.005 – ident: e_1_2_10_37_1 doi: 10.7554/eLife.18716 – ident: e_1_2_10_156_1 doi: 10.1002/glia.23205 – ident: e_1_2_10_45_1 doi: 10.1016/j.neuron.2017.05.016 – ident: e_1_2_10_28_1 doi: 10.1016/j.neuron.2010.09.023 – ident: e_1_2_10_49_1 doi: 10.1016/j.ceca.2013.09.001 – ident: e_1_2_10_4_1 doi: 10.1016/j.neuron.2016.12.034 – ident: e_1_2_10_6_1 doi: 10.1016/j.neuron.2009.06.014 – ident: e_1_2_10_207_1 doi: 10.1016/j.neuron.2015.09.043 – ident: e_1_2_10_19_1 doi: 10.1016/j.neuroimage.2016.11.006 – start-page: 355 volume-title: Optical probes in biology year: 2016 ident: e_1_2_10_78_1 – ident: e_1_2_10_184_1 doi: 10.1038/ncomms4284 – ident: e_1_2_10_20_1 – ident: e_1_2_10_86_1 doi: 10.1371/journal.pcbi.1000209 – ident: e_1_2_10_201_1 doi: 10.1016/j.celrep.2015.04.002 – ident: e_1_2_10_43_1 doi: 10.1103/PhysRevE.77.030903 – ident: e_1_2_10_46_1 doi: 10.1007/978-3-030-00817-8_5 – ident: e_1_2_10_12_1 doi: 10.1038/nrneurol.2017.105 – ident: e_1_2_10_173_1 doi: 10.1038/nn.4001 – ident: e_1_2_10_137_1 doi: 10.7554/eLife.20362 – ident: e_1_2_10_83_1 doi: 10.1186/s40478-017-0411-2 – ident: e_1_2_10_200_1 doi: 10.1016/j.ceca.2015.06.008 – ident: e_1_2_10_96_1 doi: 10.1007/s00401-015-1392-5 – ident: e_1_2_10_202_1 doi: 10.1038/nmeth.4230 – ident: e_1_2_10_112_1 doi: 10.1093/cercor/bhg097 – ident: e_1_2_10_188_1 doi: 10.1111/ene.12883 – ident: e_1_2_10_146_1 doi: 10.1016/j.neulet.2018.06.024 – ident: e_1_2_10_81_1 doi: 10.1371/journal.pone.0170275 – ident: e_1_2_10_124_1 doi: 10.1016/j.neuron.2018.03.003 – ident: e_1_2_10_10_1 doi: 10.1016/j.neuron.2014.02.007 – ident: e_1_2_10_170_1 doi: 10.1016/j.ins.2016.08.055 – ident: e_1_2_10_7_1 doi: 10.1016/j.neuron.2016.05.039 – ident: e_1_2_10_8_1 doi: 10.1155/2012/476324 – ident: e_1_2_10_65_1 doi: 10.1126/science.1190721 – ident: e_1_2_10_163_1 doi: 10.1126/science.3045969 – ident: e_1_2_10_71_1 doi: 10.1016/S0079-6123(03)45015-2 – ident: e_1_2_10_148_1 doi: 10.1152/jn.1996.75.5.1970 – ident: e_1_2_10_11_1 doi: 10.1126/science.273.5283.1868 – ident: e_1_2_10_84_1 doi: 10.1152/jn.01113.2015 – ident: e_1_2_10_197_1 doi: 10.1017/S135561771200001X – ident: e_1_2_10_72_1 doi: 10.1016/j.tics.2015.04.006 – ident: e_1_2_10_180_1 doi: 10.1016/j.cell.2011.02.018 – ident: e_1_2_10_204_1 doi: 10.1146/annurev-neuro-062111-150455 – ident: e_1_2_10_120_1 doi: 10.3389/fpsyg.2017.00244 – ident: e_1_2_10_153_1 doi: 10.1016/j.neuron.2017.05.015 – ident: e_1_2_10_195_1 doi: 10.1038/nn1703  | 
    
| SSID | ssj0011497 | 
    
| Score | 2.5289173 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits,... Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits,...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 5 | 
    
| SubjectTerms | Algorithms Animals Astrocytes Astrocytes - chemistry Astrocytes - physiology Brain Brain - cytology Brain - physiology Brain Chemistry - physiology Calcium Calcium ions Circuits Coding Computational neuroscience Decoding dimensionality reduction energy‐efficient coding Exploration Humans Information processing Learning algorithms Machine learning Nervous system Neural networks Neuromodulation Neurons - chemistry Neurons - physiology Neurosciences Neurosciences - methods Neurosciences - trends Optogenetics - methods Population studies predictive coding Reflexes Sensory integration Statistical analysis Systems Biology - methods Systems Biology - trends  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQF7i0PPpYoMioqFIrZUn8iNdqLytUSquWQ1UkLlVkO3aLWJIVmxVafn3HTtarhQqpPcXKjJPYnvF8fuQzQocCYpIwTiYmcyJhgvFEKasTbUBCWJnacFrDt7P89Jx9ueAXK-jD_F-Ylh8iTrh5zwj9tXdwpSdHC9LQX6NL1Sc0p74DzuDqEdH3yB0FOF-2NJ-SJZDOIjcpOVpkXY5GDyDmw52Sa9NqrGa3ajRaRrMhHJ08RT_nBWl3oVz1p43um7t7HI__W9IN9KTDqXjYGtYmWrHVFtoeVjBGv57hNzjsHA1T8tvo_RDf1Kq8VmPc1DgSUGA1aSA8zgDM-ps17tjR8dmCQ9M-Q-cnH38cnybdoQyJgZEcSRynkjJnpHMw9ioHhpQlKTOluVY6M46ATPDMcJkqmTsCeDh1ikuprYB2p_Q5Wq3qyr5EuNQacghu5UCxPFUDWgqAN1oyGIMZmfbQ23njFKZjLPcHZ4yKlmuZFL5milAzPfQ66o5bno6_au3N27jofHUCEkDBA5JR3kMHUQxe5pdOVGXrKegA8AQFxuARL1qTiK8BgOzXnmkPiSVjiQqewXtZUl3-DkzeOfSnQkDOw2hWj379u2Amj6gUn75-HobUzr8o76J14ucRwtTSHlptbqb2FYCtRu8Hp_oDTDgmLg priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | A roadmap to integrate astrocytes into Systems Neuroscience | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23632 https://www.ncbi.nlm.nih.gov/pubmed/31058383 https://www.proquest.com/docview/2313982135 https://www.proquest.com/docview/2232135442 https://pubmed.ncbi.nlm.nih.gov/PMC6832773 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/glia.23632  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 68 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0894-1491 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1136 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011497 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wAvDBgfhTEZMSGBlJL4I67FU4QYA0GFEJXGU-TPbVqXVFsq1P31OztpWBmakHiLcucktu_s352dnxHaFTAnCeNlYjIvEiYYT5RyOtEGJITZ1MXTGr5O8v0p-3zAD678xd_yQ_QJt-AZcbwODj63vh3nu9V98vZwdqxGhOYUBuGNnAMaH6CN6eRb8TOCR8kSCABizBVoM8PxJT1D6dXC63PSNaB5fb_k7UU1V8tfajZbx7RxUtrbRGpVnXYvyslo0eiRufiD6fF_6nsP3e0QKy5aE7uPbrnqAdoqKojWT5f4FY57SGNyfgu9K_BZreypmuOmxj0VBVbnDUyUS4C14WaNO550PPnNpukeounehx_v95PueIbEQExHEs-ppMwb6T1EYXZsiLXEZkpzrXRmPAGZ4JnhMlUy9wSQceoVl1I7ARZA6SM0qOrKPUHYag0lBHdyrFieqjG1AoCOlgyiMSPTIXq96qDSdNzl4QiNWdmyLpMytEwZW2aIXva685ax469a26t-LjuvPQcJ4OExySgfohe9GPwtLKKoytUL0AEICgqMwSMet2bRvwagcliFpkMk1gymVwhc3uuS6vgocnrnMLIKASV3e9O68evfRFO5QaX8-OVTEa-e_tszn6E7JOQSYnppGw2as4V7DoCr0TsQanwnO51nXQLYmCtS | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQeBgvwBiwwhhGTEggpUv8EdfaUzUxOuj6gDZpb5Ht2DDRJdWaCpW_nrOTuSpDk-DNyp3zYd_Zvzs7PyO0L2BOEsbJxGROJEwwnihldaINSAgrUxtOazid5KNz9vmCX3R7c_y_MC0_REy4ec8I47V3cJ-QPlixhn6bXqo-oTmFEfg-yyFQ8Zjoa2SPAqQvW6JPyRIoZ5GdlBys6q7PR7dA5u29kpuLaqaWP9V0uo5nw4R0_Kg9dXUeeAz9PpQf_UWj--bXHyyP__2tj9HDDqriYWtbW-ierZ6g7WEFYfrVEr_DYfNoyMpvo8Mhvq5VeaVmuKlx5KDAat7ADLkEPOsv1rgjSMeTFY2mfYrOjz-eHY2S7lyGxEAwRxLHqaTMGekchF_lwJCyJGWmNNdKZ8YRkAmeGS5TJXNHABKnTnEptRXQ9ZQ-QxtVXdkdhEutoYbgVg4Uy1M1oKUAhKMlgzDMyLSH3t_0TmE60nJ_dsa0aOmWSeFbpggt00Nvo-6sper4q9buTScXnbvOQQJAeEAyynvoTRSDo_nVE1XZegE6gD1BgTG4xfPWJuJjACP75WfaQ2LNWqKCJ_Fel1SX3wOZdw5DqhBQcz_a1Z1v_yHYyR0qxafxyTCUXvyL8mu0OTo7HRfjk8mXl-gB8WmFkGnaRRvN9cK-AuzV6L3gYb8BoG0qTw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQkYAXrnIsFDCiQgIp28RHHIunFWVpoawQolLfIp-06jZZdbNCy69n7KRZLUWV4M3KjHPYM_Y39uQzQtsC5iRhvExM5kXCBOOJUk4n2oCEMJu6eFrDl0m-d8g-HfGjLjcn_AvT8kP0C27BM-J4HRzczazfWbGG_pieqCGhOYUR-DrjsggZfbvfevYoQPqyJfqULIFy1rOTkp1V3fX56BLIvJwreXNRzdTyp5pO1_FsnJDGd9pTV-eRxzDkoZwOF40eml9_sDz-97feRbc7qIpHrW3dQ9dcdR9tjioI08-W-DWOyaNxVX4TvRvh81rZMzXDTY17Dgqs5g3MkEvAs-FijTuCdDxZ0Wi6B-hw_OH7-72kO5chMRDMkcRzKinzRnoP4ZctDLGW2ExprpXOjCcgEzwzXKZK5p4AJE694lJqJ6DrKX2INqq6co8RtlpDDcGdLBTLU1VQKwDhaMkgDDMyHaA3F71Tmo60PJydMS1bumVShpYpY8sM0Kted9ZSdfxVa-uik8vOXecgASBckIzyAXrZi8HRwu6Jqly9AB3AnqDAGNziUWsT_WMAI4ftZzpAYs1aeoVA4r0uqU6OI5l3DkOqEFBzu7erK9_-bbSTK1TKjwf7o1h68i_KL9CNr7vj8mB_8vkpukXCqkJcaNpCG835wj0D6NXo59HBfgMRUinT | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq7aFceJXHQkGuqJCKlCXxI16LU4ToA8GKAyuVU-QnVGyTVZsVWn49YycburSqkHqLMuMktmfsb8bOZ4T2BMxJwniZmMyLhAnGE6WcTrQBCWE2dfG0hs-T_GjKPp7wk0t_8bf8EH3CLXhGHK-Dg8-tb8f5bnWfvP0-O1UjQnMKg_BmzgGND9DmdPKl-BbBo2QJBAAx5gq0meH4kp6h9HLh9TnpCtC8ul9ya1HN1fKXms3WMW2clA7uIbWqTrsX5edo0eiR-f0P0-Nt6nsf3e0QKy5aE3uANlz1EG0XFUTrZ0v8Gsc9pDE5v43eFfi8VvZMzXFT456KAquLBibKJcDacLPGHU86nvxl03SP0PTgw9f3R0l3PENiIKYjiedUUuaN9B6iMDs2xFpiM6W5VjoznoBM8MxwmSqZewLIOPWKS6mdAAug9DEaVHXlniJstYYSgjs5VixP1ZhaAUBHSwbRmJHpEO2vOqg0HXd5OEJjVrasy6QMLVPGlhmiV73uvGXsuFZrZ9XPZee1FyABPDwmGeVDtNuLwd_CIoqqXL0AHYCgoMAYPOJJaxb9awAqh1VoOkRizWB6hcDlvS6pTn9ETu8cRlYhoOReb1o3fv2baCo3qJSHn46LePXs_575HN0hIZcQ00s7aNCcL9wLAFyNftn51B_aiSpp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+roadmap+to+integrate+astrocytes+into+Systems+Neuroscience&rft.jtitle=Glia&rft.au=Kastanenka%2C+Ksenia+V&rft.au=Moreno-Bote%2C+Rub%C3%A9n&rft.au=De+Pitt%C3%A0%2C+Maurizio&rft.au=Perea%2C+Gertrudis&rft.date=2020-01-01&rft.issn=1098-1136&rft.eissn=1098-1136&rft.volume=68&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1002%2Fglia.23632&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |