A roadmap to integrate astrocytes into Systems Neuroscience

Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, be...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 68; no. 1; pp. 5 - 26
Main Authors Kastanenka, Ksenia V., Moreno‐Bote, Rubén, De Pittà, Maurizio, Perea, Gertrudis, Eraso‐Pichot, Abel, Masgrau, Roser, Poskanzer, Kira E., Galea, Elena
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0894-1491
1098-1136
1098-1136
DOI10.1002/glia.23632

Cover

Abstract Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease. Main Points Astrocytes may use Ca2+ signals to perform canonical computations in complex behaviors on a time scale of sub-seconds to seconds. Statistical tools from Systems Neuroscience could be used to unravel variables and algorithms encoded by astrocytic Ca2+.
AbstractList Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease. Main Points Astrocytes may use Ca2+ signals to perform canonical computations in complex behaviors on a time scale of sub-seconds to seconds. Statistical tools from Systems Neuroscience could be used to unravel variables and algorithms encoded by astrocytic Ca2+.
Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of sub-seconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, are, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward towards novel approaches in the study of astrocytes in health and disease.
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well‐documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub‐serve coding and higher‐brain functions. First, we reviewed Systems‐like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca 2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte–neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy‐efficient coding. Clarifying the relationship between astrocytic Ca 2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.
Author Perea, Gertrudis
De Pittà, Maurizio
Poskanzer, Kira E.
Moreno‐Bote, Rubén
Eraso‐Pichot, Abel
Kastanenka, Ksenia V.
Galea, Elena
Masgrau, Roser
AuthorAffiliation 4. BCAM Basque Center for Applied Mathematics, 48009 Bilbao, Spain
3. ICREA, 08010 Barcelona, Spain
8. Equally contributing authors
2. Department of Information and Communications Technologies, Center for Brain and Cognition and Universitat Pompeu Fabra, 08018 Barcelona, Spain
7. Department of Biochemistry & Biophysics, Neuroscience Graduate Program, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
5. Instituto Cajal, CSIC, 28002 Madrid, Spain
6. Departament de Bioquímica, Institut de Neurociències i Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
1. Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Massachusetts 02129, USA
AuthorAffiliation_xml – name: 8. Equally contributing authors
– name: 5. Instituto Cajal, CSIC, 28002 Madrid, Spain
– name: 3. ICREA, 08010 Barcelona, Spain
– name: 7. Department of Biochemistry & Biophysics, Neuroscience Graduate Program, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
– name: 1. Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Massachusetts 02129, USA
– name: 6. Departament de Bioquímica, Institut de Neurociències i Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
– name: 2. Department of Information and Communications Technologies, Center for Brain and Cognition and Universitat Pompeu Fabra, 08018 Barcelona, Spain
– name: 4. BCAM Basque Center for Applied Mathematics, 48009 Bilbao, Spain
Author_xml – sequence: 1
  givenname: Ksenia V.
  surname: Kastanenka
  fullname: Kastanenka, Ksenia V.
  email: kkastanenka@mgh.harvard.edu
  organization: Massachusetts General Hospital and Harvard Medical School
– sequence: 2
  givenname: Rubén
  surname: Moreno‐Bote
  fullname: Moreno‐Bote, Rubén
  organization: ICREA
– sequence: 3
  givenname: Maurizio
  surname: De Pittà
  fullname: De Pittà, Maurizio
  organization: BCAM Basque Center for Applied Mathematics
– sequence: 4
  givenname: Gertrudis
  orcidid: 0000-0001-5924-9175
  surname: Perea
  fullname: Perea, Gertrudis
  organization: CSIC
– sequence: 5
  givenname: Abel
  surname: Eraso‐Pichot
  fullname: Eraso‐Pichot, Abel
  organization: Universitat Autònoma de Barcelona
– sequence: 6
  givenname: Roser
  orcidid: 0000-0002-6722-5939
  surname: Masgrau
  fullname: Masgrau, Roser
  organization: Universitat Autònoma de Barcelona
– sequence: 7
  givenname: Kira E.
  surname: Poskanzer
  fullname: Poskanzer, Kira E.
  email: kira.poskanzer@ucsf.edu
  organization: University of California‐San Francisco
– sequence: 8
  givenname: Elena
  orcidid: 0000-0003-4537-9897
  surname: Galea
  fullname: Galea, Elena
  email: elena.galea@uab.es
  organization: Universitat Autònoma de Barcelona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31058383$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFTEQhoNU7Gn1xh8gC96IsjWT7FcoCIeitXDQC_U6ZLOTY8puckyylv337rr1q0ivQjLPO_POmxNy5LxDQp4CPQNK2et9b9UZ4xVnD8gGqGhyAF4dkQ1tRJFDIeCYnMR4TSnMl_oROeZAy4Y3fEPOt1nwqhvUIUs-sy7hPqiEmYopeD0ljMujzz5NMeEQsw84Bh-1RafxMXloVB_xye15Sr68e_v54n2--3h5dbHd5booGpabkgteGC2MqUB0jWZdxzpQbdmqFrRhc60uQZeCKlEZ1kBHjSqFaLHGsuL8lLxa-47uoKYb1ffyEOygwiSByiUCuUQgf0Yw029W-jC2A3YaXQrqj8IrK_-tOPtV7v13WTWc1fUy7sVtg-C_jRiTHGzU2PfKoR-jZIwz4GVRLLOe30Gv_RjcHMZsBrhoFnCmnv3t6LeVX78wAy9XQM_ZxoDm_v3oHVjbpJL1yza2_78EVsmN7XG6p7m83F1tV80P-cq4Kg
CitedBy_id crossref_primary_10_1016_j_chaos_2023_114223
crossref_primary_10_1038_s41593_024_01612_8
crossref_primary_10_1038_s41467_024_45989_3
crossref_primary_10_1051_medsci_2022104
crossref_primary_10_1002_glia_24246
crossref_primary_10_1002_glia_24168
crossref_primary_10_1016_j_heliyon_2024_e32546
crossref_primary_10_3389_fevo_2022_952992
crossref_primary_10_3389_fncel_2023_1220030
crossref_primary_10_3390_math11030561
crossref_primary_10_1073_pnas_2219150120
crossref_primary_10_1007_s11571_023_10002_y
crossref_primary_10_1016_j_bbih_2022_100582
crossref_primary_10_1038_s41598_023_40402_3
crossref_primary_10_1002_glia_23780
crossref_primary_10_1002_glia_24112
crossref_primary_10_1109_TNNLS_2023_3335450
crossref_primary_10_3389_fncel_2021_645691
crossref_primary_10_1016_j_csbj_2022_07_052
crossref_primary_10_3390_biology12020155
crossref_primary_10_3389_fnagi_2020_00172
crossref_primary_10_1007_s00422_024_00994_z
crossref_primary_10_1007_s00521_022_06936_9
crossref_primary_10_1177_17590914231184712
crossref_primary_10_3390_ijms21010266
crossref_primary_10_31083_j_jin2104112
crossref_primary_10_1162_neco_a_01399
crossref_primary_10_3389_fncom_2019_00092
crossref_primary_10_1371_journal_pcbi_1012186
crossref_primary_10_3390_cells12091253
crossref_primary_10_1016_j_neuropharm_2021_108678
crossref_primary_10_3390_biom11101467
crossref_primary_10_1002_adbi_201900264
crossref_primary_10_1088_1478_3975_ace8e6
crossref_primary_10_1038_s41593_021_00800_0
crossref_primary_10_1111_jne_12838
crossref_primary_10_3389_fnins_2020_00705
crossref_primary_10_1063_5_0146906
crossref_primary_10_1162_neco_a_01740
crossref_primary_10_3390_biology13080586
crossref_primary_10_1016_j_jconrel_2020_04_017
crossref_primary_10_3390_math10183275
crossref_primary_10_1002_glia_24178
crossref_primary_10_1523_ENEURO_0389_20_2021
crossref_primary_10_3389_fncel_2021_631485
crossref_primary_10_1007_s10827_022_00828_6
crossref_primary_10_1007_s12031_022_02006_w
crossref_primary_10_1016_j_conb_2022_102558
crossref_primary_10_1371_journal_pcbi_1012683
Cites_doi 10.1146/annurev.neuro.28.061604.135703
10.1016/j.cell.2018.05.002
10.1162/089976602760407955
10.1523/JNEUROSCI.1979-16.2016
10.1016/S1364-6613(99)01380-7
10.1016/j.plrev.2014.04.005
10.1093/scan/nsx060
10.1126/science.1156120
10.1038/nature04671
10.1038/nn.4649
10.1146/annurev-psych-010416-044216
10.1371/journal.pone.0019109
10.1126/science.1099745
10.1038/nature07926
10.1016/j.stem.2012.12.015
10.1038/nn.4201
10.1007/s12021-017-9341-1
10.7554/eLife.14472
10.1016/j.neuron.2018.03.050
10.1371/journal.pbio.1001259
10.1152/jn.01073.2009
10.1016/j.cell.2011.07.022
10.1111/ejn.13074
10.1098/rstb.2012.0460
10.1093/cercor/bhp265
10.1073/pnas.0509030102
10.1038/s41467-018-04457-5
10.1016/j.tics.2015.01.002
10.1016/j.neuron.2011.06.004
10.1073/pnas.1012656107
10.1126/science.aaa1934
10.1016/j.cell.2017.05.011
10.1038/nn1525
10.1523/JNEUROSCI.22-01-00183.2002
10.1038/nn.2163
10.1016/j.tics.2010.09.001
10.1073/pnas.1510583112
10.1126/science.1150769
10.1111/jnc.13580
10.1023/A:1008925309027
10.1073/pnas.1606479113
10.1073/pnas.93.23.13339
10.3389/fncom.2017.00048
10.1523/JNEUROSCI.2080-16.2016
10.1016/S0166-2236(96)10075-8
10.1162/neco.2007.19.1.1
10.1016/j.cell.2015.09.029
10.1073/pnas.1711114115
10.1016/j.tics.2009.04.005
10.7554/eLife.32237
10.1038/nn.4237
10.1016/j.neuron.2018.11.002
10.1523/JNEUROSCI.1419-07.2007
10.1523/JNEUROSCI.6341-10.2011
10.1016/j.molmed.2017.04.005
10.1046/j.1471-4159.1997.69052132.x
10.1016/j.conb.2017.02.007
10.1016/j.neuron.2013.12.026
10.1073/pnas.1117807108
10.1523/JNEUROSCI.2591-14.2014
10.3389/fncom.2011.00025
10.1002/glia.23330
10.3389/fncir.2013.00201
10.1016/j.neuron.2017.11.009
10.1016/j.conb.2015.12.008
10.1016/j.neuron.2016.01.040
10.1038/nrn2573
10.1016/j.conb.2018.11.005
10.1126/science.1167093
10.1038/nn.3000
10.3389/neuro.11.037.2009
10.1002/glia.23073
10.1073/pnas.1705120114
10.1146/annurev-physiol-021317-121125
10.1038/ncomms4262
10.1016/S0079-6123(05)50004-9
10.1016/S0896-6273(01)00251-3
10.1523/JNEUROSCI.19-21-09587.1999
10.1371/journal.pcbi.1004464
10.1073/pnas.1213458109
10.1016/j.conb.2018.04.007
10.3389/fnins.2014.00161
10.1016/j.cub.2017.06.028
10.1038/nrn.2016.182
10.1016/j.cub.2014.05.049
10.1098/rstb.2014.0170
10.1371/journal.pbio.1002147
10.1038/nn.3220
10.1523/JNEUROSCI.0017-17.2017
10.1038/nn.3776
10.1038/nn.4244
10.3389/fnhum.2018.00018
10.1109/MCE.2016.2614423
10.1523/JNEUROSCI.4707-08.2009
10.1162/neco.1997.9.8.1735
10.1093/brain/121.6.1013
10.1038/ncomms14823
10.1016/j.cub.2018.07.045
10.3389/fncir.2017.00108
10.1038/nature06105
10.1097/00001756-200205070-00030
10.1002/cne.23458
10.1016/0896-6273(95)90304-6
10.1016/0306-4522(88)90338-7
10.1097/WAD.0000000000000144
10.1016/j.neuron.2012.09.012
10.1101/pdb.top89
10.1073/pnas.1520759113
10.3390/diseases6020042
10.1177/2041669516673384
10.1038/nn.4582
10.1007/978-0-387-45528-0
10.1016/j.neuron.2014.02.041
10.1038/nnano.2016.268
10.1016/j.conb.2017.07.008
10.1038/s41593-018-0325-8
10.1126/science.aai8185
10.1016/j.cub.2014.05.042
10.1038/nrn2578
10.1016/j.conb.2011.10.001
10.1523/JNEUROSCI.5289-11.2011
10.1073/pnas.94.24.12740
10.31887/DCNS.2013.15.3/osporns
10.1073/pnas.0906419106
10.1523/JNEUROSCI.3965-04.2005
10.1126/science.aaa7945
10.1146/annurev-neuro-072116-031538
10.1016/j.neuron.2018.01.008
10.1002/glia.22964
10.1088/0954-898X/7/2/004
10.1109/CVPR.2015.7298761
10.1038/nn.3906
10.1016/j.neuron.2015.11.037
10.1016/j.neuron.2009.01.002
10.1146/annurev-neuro-062111-150509
10.1038/nn.3862
10.1016/j.neuron.2014.04.038
10.1038/nn.4091
10.1016/j.neuron.2008.11.024
10.1016/j.neuron.2018.07.003
10.1038/nrn2201
10.1126/science.aan2475
10.1016/S0959-4388(00)00237-3
10.1016/j.neuron.2015.03.035
10.3389/fnsyn.2017.00002
10.1016/j.neuron.2017.06.029
10.3389/fncom.2018.00014
10.1038/nature03010
10.1016/j.tins.2015.07.006
10.1073/pnas.1936192100
10.1016/j.neuron.2015.07.008
10.7554/eLife.05793
10.1038/nrn3962
10.1016/j.conb.2017.08.015
10.1016/j.cbpa.2017.04.005
10.7554/eLife.18716
10.1002/glia.23205
10.1016/j.neuron.2017.05.016
10.1016/j.neuron.2010.09.023
10.1016/j.ceca.2013.09.001
10.1016/j.neuron.2016.12.034
10.1016/j.neuron.2009.06.014
10.1016/j.neuron.2015.09.043
10.1016/j.neuroimage.2016.11.006
10.1038/ncomms4284
10.1371/journal.pcbi.1000209
10.1016/j.celrep.2015.04.002
10.1103/PhysRevE.77.030903
10.1007/978-3-030-00817-8_5
10.1038/nrneurol.2017.105
10.1038/nn.4001
10.7554/eLife.20362
10.1186/s40478-017-0411-2
10.1016/j.ceca.2015.06.008
10.1007/s00401-015-1392-5
10.1038/nmeth.4230
10.1093/cercor/bhg097
10.1111/ene.12883
10.1016/j.neulet.2018.06.024
10.1371/journal.pone.0170275
10.1016/j.neuron.2018.03.003
10.1016/j.neuron.2014.02.007
10.1016/j.ins.2016.08.055
10.1016/j.neuron.2016.05.039
10.1155/2012/476324
10.1126/science.1190721
10.1126/science.3045969
10.1016/S0079-6123(03)45015-2
10.1152/jn.1996.75.5.1970
10.1126/science.273.5283.1868
10.1152/jn.01113.2015
10.1017/S135561771200001X
10.1016/j.tics.2015.04.006
10.1016/j.cell.2011.02.018
10.1146/annurev-neuro-062111-150455
10.3389/fpsyg.2017.00244
10.1016/j.neuron.2017.05.015
10.1038/nn1703
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/glia.23632
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 26
ExternalDocumentID 10.1002/glia.23632
PMC6832773
31058383
10_1002_glia_23632
GLIA23632
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Ministerio de Economia y Competitividad (MINECO, Spain)
  funderid: BFU2016‐75107‐P; BFU2016‐79735‐P; BFU2017‐85936‐P; FLAGERA‐PCIN‐2015‐162‐C02‐02
– fundername: Ministerio de Educación, Cultura y Deporte (Spain)
  funderid: FPU13/05377
– fundername: Eusko Jaurlaritza
– fundername: Fundació La Caixa (Spain)
– fundername: Howard Hughes Medical Institute (HHMI, USA)
  funderid: 55008742
– fundername: BCAM Severo Ochoa
  funderid: SEV‐2017‐0718
– fundername: National Science Foundation (NSF, USA)
  funderid: 1604544
– fundername: National Institutes of Health (NIH, USA)
  funderid: R01NS099254
– fundername: Agència de Gestio d'Ajuts Universitaris i de Recerca (Spain)
  funderid: 2017 SGR547
– fundername: NIA NIH HHS
  grantid: RF1 AG061774
– fundername: NINDS NIH HHS
  grantid: R01 NS099254
– fundername: NIA NIH HHS
  grantid: R01 AG054598
– fundername: NIA NIH HHS
  grantid: R01 AG026240
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4482-f53934fc9ff619d8c2dd2d1ab5bab1cf24fc751c590a96f281d0fa599be7e5633
IEDL.DBID UNPAY
ISSN 0894-1491
1098-1136
IngestDate Sun Oct 26 04:11:33 EDT 2025
Tue Sep 30 16:52:11 EDT 2025
Fri Jul 11 08:39:16 EDT 2025
Tue Oct 07 06:31:06 EDT 2025
Mon Jul 21 05:56:47 EDT 2025
Thu Apr 24 22:55:47 EDT 2025
Wed Oct 01 02:57:50 EDT 2025
Wed Jan 22 16:37:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dimensionality reduction
astrocytes
predictive coding
decoding
energy-efficient coding
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4482-f53934fc9ff619d8c2dd2d1ab5bab1cf24fc751c590a96f281d0fa599be7e5633
Notes Funding information
Agència de Gestio d'Ajuts Universitaris i de Recerca (Spain), Grant/Award Number: 2017 SGR547; BCAM Severo Ochoa, Grant/Award Number: SEV‐2017‐0718; Eusko Jaurlaritza; Fundació La Caixa (Spain); Howard Hughes Medical Institute (HHMI, USA), Grant/Award Number: 55008742; Ministerio de Economia y Competitividad (MINECO, Spain), Grant/Award Numbers: BFU2016‐75107‐P, BFU2016‐79735‐P, BFU2017‐85936‐P, FLAGERA‐PCIN‐2015‐162‐C02‐02; Ministerio de Educación, Cultura y Deporte (Spain), Grant/Award Number: FPU13/05377; National Institutes of Health (NIH, USA), Grant/Award Number: R01NS099254; National Science Foundation (NSF, USA), Grant/Award Number: 1604544
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4537-9897
0000-0002-6722-5939
0000-0001-5924-9175
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/glia.23632
PMID 31058383
PQID 2313982135
PQPubID 996331
PageCount 22
ParticipantIDs unpaywall_primary_10_1002_glia_23632
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6832773
proquest_miscellaneous_2232135442
proquest_journals_2313982135
pubmed_primary_31058383
crossref_primary_10_1002_glia_23632
crossref_citationtrail_10_1002_glia_23632
wiley_primary_10_1002_glia_23632_GLIA23632
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 14
2010; 14
2010; 107
2002; 13
2010; 104
1976
2016; 30
2014; 24
2012; 18
2019; 689
2012; 15
2013; 7
2016; 37
1997; 9
2016; 36
2012; 10
1996; 75
2018; 7
2016; 139 Suppl 2
2018; 174
2018; 6
2014; 369
2015; 370
2018; 9
2009; 13
2010; 20
2009; 10
2013; 54
2019; 22
2005; 102
2015; 86
2011; 71
2015; 88
2015; 87
2007; 8
2016; 43
2017; 160
2006; 440
2014; 17
2017; 169
2012; 22
2018; 38
2014; 11
2014; 522
2004; 145
2007; 19
2018; 28
2015; 58
2009; 63
2007; 449
2010; 329
2010; 2010
2016; 19
2009; 61
1997; 20
2017; 65
2017; 68
1996; 93
2016; 91
2015; 129
2001; 29
2011; 6
2004; 304
2011; 5
2016; 14
2019; 101
2012; 109
2009; 458
2004; 431
2016; 5
2011; 146
2016; 7
2005; 8
2015; 112
2018; 115
1988; 24
2018; 12
2018; 99
2018; 98
2018; 97
2014; 34
2018; 16
2003; 100
2011; 144
2016; 23
2009; 106
2017; 40
2017; 5
2017; 6
2017; 8
2012; 2012
2015; 38
2015; 347
2017; 43
2017; 46
2000; 8
2003; 13
2017; ECO.01
2018; 80
2008; 77
2015; 349
2011; 15
2008; 4
2005; 28
2017; 356
2017; 114
2017; 357
2017; 9
2005; 25
2014; 5
2013; 15
1997; 94
2010; 68
2017; 37
1999; 19
2017; 39
2013; 12
2008; 319
2016; 113
2016; 116
2001; 11
1998; 121
2014; 8
2009; 324
2016; 89
1996; 7
2007; 27
2015; 13
2015; 163
2017; 20
2005; 150
2015; 16
2015; 19
2015; 4
2015; 18
1995; 14
2017; 27
1997; 69
2015; 11
2006; 9
2017; 23
2011; 31
2007
2006
2017; 29
1999; 3
1988; 241
2008; 11
2018; 66
2008; 320
2014; 82
2012; 76
2009; 29
2017; 95
2017; 94
2017; 96
2014; 81
2013; 36
2011; 108
2017; 93
2017; 14
2017; 11
2017; 13
2017; 12
2002; 22
2019
2016; 64
2016
2015
2017; 18
2018; 50
1996; 273
2009; 3
2018; 55
2016; 372
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
Kastanenka K. V. (e_1_2_10_80_1) 2017; 01
e_1_2_10_51_1
e_1_2_10_147_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_200_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_91_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_201_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
Cunningham J. P. (e_1_2_10_41_1) 2015; 16
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
Pachitariu M. (e_1_2_10_128_1) 2016
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
Marr D. (e_1_2_10_107_1) 1976
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
Fornito A. (e_1_2_10_56_1) 2016
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_154_1
e_1_2_10_203_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
Kastanenka K. V. (e_1_2_10_78_1) 2016
e_1_2_10_204_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
Capone C. (e_1_2_10_32_1) 2017; 29
e_1_2_10_108_1
e_1_2_10_157_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 17
  start-page: 1661
  issue: 12
  year: 2014
  end-page: 1663
  article-title: A hierarchy of intrinsic timescales across primate cortex
  publication-title: Nature Neuroscience
– volume: 38
  start-page: 535
  issue: 9
  year: 2015
  end-page: 549
  article-title: Do stars govern our actions? Astrocyte involvement in rodent behavior
  publication-title: Trends in Neurosciences
– volume: 77
  start-page: 030903
  issue: 3 Pt 1
  year: 2008
  article-title: Coexistence of amplitude and frequency modulations in intracellular calcium dynamics
  publication-title: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
– volume: 61
  start-page: 168
  issue: 2
  year: 2009
  end-page: 185
  article-title: The normalization model of attention
  publication-title: Neuron
– volume: 7
  start-page: 204166951667338
  issue: 5
  year: 2016
  article-title: The time‐course of ultrarapid categorization: The influence of scene congruency and top‐down processing
  publication-title: Iperception
– volume: 28
  start-page: 2889
  issue: 18
  year: 2018
  end-page: 2899 e2883
  article-title: Encoding of multiple reward‐related computations in transient and sustained high‐frequency activity in human OFC
  publication-title: Current Biology
– volume: 370
  start-page: 20140170
  issue: 1668
  year: 2015
  article-title: The brain timewise: How timing shapes and supports brain function
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– start-page: 115
  year: 2019
  end-page: 150
– volume: 58
  start-page: 307
  issue: 3
  year: 2015
  end-page: 316
  article-title: Na(+)‐Ca(2)(+) exchanger mediates ChR2‐induced [Ca(2)(+)]i elevation in astrocytes
  publication-title: Cell Calcium
– volume: 61
  start-page: 213
  issue: 2
  year: 2009
  end-page: 219
  article-title: Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss
  publication-title: Neuron
– volume: 24
  start-page: 1542
  issue: 13
  year: 2014
  end-page: 1547
  article-title: Dynamics of neural population responses in prefrontal cortex indicate changes of mind on single trials
  publication-title: Current Biology
– volume: 4
  start-page: e1000209
  issue: 11
  year: 2008
  article-title: A hierarchy of time‐scales and the brain
  publication-title: PLoS Computational Biology
– volume: 146
  start-page: 785
  issue: 5
  year: 2011
  end-page: 798
  article-title: Astrocytes are endogenous regulators of basal transmission at central synapses
  publication-title: Cell
– volume: 18
  start-page: 1213
  issue: 9
  year: 2015
  end-page: 1225
  article-title: Optogenetics: 10 years of microbial opsins in neuroscience
  publication-title: Nature Neuroscience
– volume: 8
  start-page: 700
  issue: 9
  year: 2007
  end-page: 711
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nature Reviews. Neuroscience
– volume: 11
  start-page: 108
  year: 2017
  article-title: Neuromodulatory systems and their interactions: A review of models, theories, and experiments
  publication-title: Frontiers in Neural Circuits
– volume: 114
  start-page: 12827
  issue: 48
  year: 2017
  end-page: 12832
  article-title: Brain network dynamics are hierarchically organized in time
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Computation
– volume: 24
  start-page: 1531
  issue: 13
  year: 2014
  end-page: 1535
  article-title: Shape perception simultaneously up‐ and downregulates neural activity in the primary visual cortex
  publication-title: Current Biology
– volume: 320
  start-page: 1638
  issue: 5883
  year: 2008
  end-page: 1643
  article-title: Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex
  publication-title: Science
– volume: 8
  start-page: 1263
  issue: 9
  year: 2005
  end-page: 1268
  article-title: Millisecond‐timescale, genetically targeted optical control of neural activity
  publication-title: Nature Neuroscience
– volume: 69
  start-page: 2132
  issue: 5
  year: 1997
  end-page: 2137
  article-title: Glutamate uptake stimulates Na+,K+‐ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain
  publication-title: Journal of Neurochemistry
– volume: ECO.01
  start-page: 27
  year: 2017
  end-page: 29
  article-title: Optogenetics shed light on Alzheimer's disease
  publication-title: EC Neurology
– volume: 13
  start-page: 293
  issue: 7
  year: 2009
  end-page: 301
  article-title: The free‐energy principle: A rough guide to the brain?
  publication-title: Trends in Cognitive Sciences
– volume: 96
  start-page: 1204
  issue: 5
  year: 2017
  article-title: A sensorimotor circuit in mouse cortex for visual flow predictions
  publication-title: Neuron
– year: 2007
– volume: 3
  start-page: 444
  issue: 11
  year: 1999
  end-page: 444
  article-title: Biophysics of computation: Information processing in single neurons
  publication-title: Trends in Cognitive Sciences
– volume: 169
  start-page: 1013
  issue: 6
  year: 2017
  end-page: 1028 e1014
  article-title: The code for facial identity in the primate brain
  publication-title: Cell
– volume: 689
  start-page: 26
  year: 2019
  end-page: 32
  article-title: Multiplexed calcium imaging of single‐synapse activity and astroglial responses in the intact brain
  publication-title: Neuroscience Letters
– volume: 106
  start-page: 15037
  issue: 35
  year: 2009
  end-page: 15042
  article-title: Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 182
  issue: 2
  year: 2016
  end-page: 189
  article-title: Astrocyte calcium signaling: The third wave
  publication-title: Nature Neuroscience
– volume: 55
  start-page: 22
  year: 2018
  end-page: 31
  article-title: Computational processing of neural recordings from calcium imaging data
  publication-title: Current Opinion in Neurobiology
– volume: 5
  start-page: e14472
  year: 2016
  article-title: A large field of view two‐photon mesoscope with subcellular resolution for in vivo imaging
  publication-title: eLife
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Computational models of neuron‐astrocyte interactions Lead to improved efficacy in the performance of neural networks
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 15
  start-page: 247
  issue: 3
  year: 2013
  end-page: 262
  article-title: Structure and function of complex brain networks
  publication-title: Dialogues in Clinical Neuroscience
– volume: 12
  start-page: 342
  issue: 3
  year: 2013
  end-page: 353
  article-title: Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice
  publication-title: Cell Stem Cell
– volume: 5
  start-page: 3262
  year: 2014
  article-title: Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo
  publication-title: Nature Communications
– volume: 34
  start-page: 13139
  issue: 39
  year: 2014
  end-page: 13150
  article-title: Astrocytic Gq‐GPCR‐linked IP3R‐dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo
  publication-title: The Journal of Neuroscience
– volume: 7
  start-page: 201
  year: 2013
  article-title: Inference of neuronal network spike dynamics and topology from calcium imaging data
  publication-title: Frontiers in Neural Circuits
– volume: 18
  start-page: 210
  issue: 2
  year: 2015
  end-page: 218
  article-title: Calcium dynamics in astrocyte processes during neurovascular coupling
  publication-title: Nature Neuroscience
– volume: 11
  start-page: 1004
  issue: 9
  year: 2008
  end-page: 1006
  article-title: Neural repetition suppression reflects fulfilled perceptual expectations
  publication-title: Nature Neuroscience
– volume: 107
  start-page: 16976
  issue: 39
  year: 2010
  end-page: 16981
  article-title: Millisecond encoding precision of auditory cortex neurons
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: e1001259
  issue: 2
  year: 2012
  article-title: Astrocytes mediate in vivo cholinergic‐induced synaptic plasticity
  publication-title: PLoS Biology
– volume: 64
  start-page: 2263
  issue: 12
  year: 2016
  end-page: 2273
  article-title: Activation of hypothalamic astrocytes suppresses feeding without altering emotional states
  publication-title: Glia
– volume: 458
  start-page: 1025
  issue: 7241
  year: 2009
  end-page: 1029
  article-title: Temporally precise in vivo control of intracellular signalling
  publication-title: Nature
– volume: 11
  start-page: 798
  issue: 5
  year: 2015
  end-page: 807
  article-title: Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors
  publication-title: Cell Reports
– start-page: 061507
  year: 2016
  article-title: Suite2p: Beyond 10,000 neurons with standard two‐photon microscopy
  publication-title: bioRxiv
– volume: 65
  start-page: 1944
  issue: 12
  year: 2017
  end-page: 1960
  article-title: Astrocytic signaling supports hippocampal‐prefrontal theta synchronization and cognitive function
  publication-title: Glia
– volume: 24
  start-page: 367
  issue: 2
  year: 1988
  end-page: 378
  article-title: Noradrenaline‐ and vasoactive intestinal peptide‐containing neuronal systems in neocortex: Functional convergence with contrasting morphology
  publication-title: Neuroscience
– volume: 144
  start-page: 810
  issue: 5
  year: 2011
  end-page: 823
  article-title: Astrocyte‐neuron lactate transport is required for long‐term memory formation
  publication-title: Cell
– volume: 6
  start-page: 42
  issue: 2
  year: 2018
  article-title: Viral vectors in gene therapy
  publication-title: Diseases
– volume: 19
  start-page: 162
  issue: 3
  year: 2015
  end-page: 172
  article-title: Neural population coding: Combining insights from microscopic and mass signals
  publication-title: Trends in Cognitive Sciences
– volume: 29
  start-page: 1
  year: 2017
  end-page: 17
  article-title: Slow waves in cortical slices: How spontaneous activity is shaped by laminar structure
  publication-title: Cerebral Cortex
– volume: 349
  start-page: 730
  issue: 6249
  year: 2015
  end-page: 734
  article-title: Circuit‐specific signaling in astrocyte‐neuron networks in basal ganglia pathways
  publication-title: Science
– volume: 100
  start-page: 13940
  issue: 24
  year: 2003
  end-page: 13945
  article-title: Channelrhodopsin‐2, a directly light‐gated cation‐selective membrane channel
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: e1002147
  issue: 5
  year: 2015
  article-title: Understanding brains: Details, intuition, and big data
  publication-title: PLoS Biology
– volume: 12
  start-page: 18
  year: 2018
  article-title: Sleep‐dependent memory consolidation and incremental sentence comprehension: Computational dependencies during language learning as revealed by neuronal oscillations
  publication-title: Frontiers in Human Neuroscience
– volume: 102
  start-page: 17816
  issue: 49
  year: 2005
  end-page: 17821
  article-title: Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 2035
  issue: 1
  year: 2018
  article-title: Deep 2‐photon imaging and artifact‐free optogenetics through transparent graphene microelectrode arrays
  publication-title: Nature Communications
– volume: 160
  start-page: 73
  year: 2017
  end-page: 83
  article-title: Multi‐scale brain networks
  publication-title: NeuroImage
– volume: 22
  start-page: 154
  issue: 2
  year: 2019
  end-page: 166
  article-title: Astrocyte function from information processing to cognition and cognitive impairment
  publication-title: Nature Neuroscience
– volume: 2010
  issue: 11
  year: 2010
  article-title: Array tomography: high‐resolution three‐dimensional immunofluorescence
  publication-title: Cold Spring Harbor Protocols
– volume: 14
  start-page: 477
  issue: 3
  year: 1995
  end-page: 485
  article-title: Cellular basis of working memory
  publication-title: Neuron
– year: 2015
– volume: 273
  start-page: 1868
  issue: 5283
  year: 1996
  end-page: 1871
  article-title: Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses
  publication-title: Science
– volume: 29
  start-page: 3276
  issue: 10
  year: 2009
  end-page: 3287
  article-title: Uniquely hominid features of adult human astrocytes
  publication-title: Journal of Neuroscience
– volume: 81
  start-page: 888
  issue: 4
  year: 2014
  end-page: 900
  article-title: A local glutamate‐glutamine cycle sustains synaptic excitatory transmitter release
  publication-title: Neuron
– volume: 94
  start-page: 993
  issue: 5
  year: 2017
  end-page: 1001
  article-title: Shaping the default activity pattern of the cortical network
  publication-title: Neuron
– volume: 22
  start-page: 11
  issue: 1
  year: 2012
  end-page: 17
  article-title: Towards reliable spike‐train recordings from thousands of neurons with multielectrodes
  publication-title: Current Opinion in Neurobiology
– volume: 14
  start-page: 355
  year: 2016
  end-page: 376
– volume: 17
  start-page: 1500
  issue: 11
  year: 2014
  end-page: 1509
  article-title: Dimensionality reduction for large‐scale neural recordings
  publication-title: Nature Neuroscience
– volume: 108
  start-page: 20754
  issue: 51
  year: 2011
  end-page: 20759
  article-title: Evidence for a hierarchy of predictions and prediction errors in human cortex
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 8
  issue: 1
  year: 2017
  article-title: Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease
  publication-title: Acta Neuropathologica Communications
– volume: 15
  start-page: 1498
  issue: 11
  year: 2012
  end-page: 1505
  article-title: Slow dynamics and high variability in balanced cortical networks with clustered connections
  publication-title: Nature Neuroscience
– volume: 22
  start-page: 183
  issue: 1
  year: 2002
  end-page: 192
  article-title: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains
  publication-title: The Journal of Neuroscience
– volume: 115
  start-page: 186
  issue: 1
  year: 2018
  end-page: 191
  article-title: Toward a unified theory of efficient, predictive, and sparse coding
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 490
  issue: 3
  year: 2012
  end-page: 500
  article-title: Concurrent impairments in sleep and memory in amnestic mild cognitive impairment
  publication-title: Journal of the International Neuropsychological Society
– volume: 50
  start-page: 232
  year: 2018
  end-page: 241
  article-title: Neural data science: Accelerating the experiment‐analysis‐theory cycle in large‐scale neuroscience
  publication-title: Current Opinion in Neurobiology
– volume: 241
  start-page: 1299
  issue: 4871
  year: 1988
  end-page: 1306
  article-title: Computational neuroscience
  publication-title: Science
– volume: 11
  start-page: 329
  issue: 3
  year: 2014
  end-page: 364
  article-title: Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition
  publication-title: Physics of Life Reviews
– volume: 36
  start-page: 429
  year: 2013
  end-page: 449
  article-title: Electrical compartmentalization in dendritic spines
  publication-title: Annual Review of Neuroscience
– volume: 18
  start-page: 708
  issue: 5
  year: 2015
  end-page: 717
  article-title: Ca(2+) signaling in astrocytes from Ip3r2(−/−) mice in brain slices and during startle responses in vivo
  publication-title: Nature Neuroscience
– volume: 109
  start-page: 20720
  issue: 50
  year: 2012
  end-page: 20725
  article-title: Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 139 Suppl 2
  start-page: 179
  year: 2016
  end-page: 199
  article-title: Neural plasticity and behavior—Sixty years of conceptual advances
  publication-title: Journal of Neurochemistry
– volume: 89
  start-page: 285
  issue: 2
  year: 2016
  end-page: 299
  article-title: Simultaneous Denoising, deconvolution, and Demixing of calcium imaging data
  publication-title: Neuron
– volume: 347
  start-page: 1138
  issue: 6226
  year: 2015
  end-page: 1142
  article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq
  publication-title: Science
– volume: 46
  start-page: 241
  year: 2017
  end-page: 247
  article-title: The many worlds hypothesis of dopamine prediction error: Implications of a parallel circuit architecture in the basal ganglia
  publication-title: Current Opinion in Neurobiology
– volume: 20
  start-page: 1946
  issue: 8
  year: 2010
  end-page: 1954
  article-title: Coding and binding of color and form in visual cortex
  publication-title: Cerebral Cortex
– volume: 37
  start-page: 44
  year: 2016
  end-page: 52
  article-title: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance
  publication-title: Current Opinion in Neurobiology
– volume: 19
  start-page: 394
  issue: 3
  year: 2016
  end-page: 403
  article-title: Computational principles of memory
  publication-title: Nature Neuroscience
– volume: 40
  start-page: 581
  year: 2017
  end-page: 602
  article-title: Replay comes of age
  publication-title: Annual Review of Neuroscience
– volume: 98
  start-page: 726
  issue: 4
  year: 2018
  end-page: 735.e724
  article-title: Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons
  publication-title: Neuron
– volume: 104
  start-page: 3691
  issue: 6
  year: 2010
  end-page: 3704
  article-title: Fast nonnegative deconvolution for spike train inference from population calcium imaging
  publication-title: Journal of Neurophysiology
– volume: 64
  start-page: 1611
  issue: 10
  year: 2016
  end-page: 1627
  article-title: Principles of sodium homeostasis and sodium signalling in astroglia
  publication-title: Glia
– volume: 99
  start-page: 609
  year: 2018
  end-page: 623.e29
  article-title: Linking connectivity, dynamics, and computations in low‐rank recurrent neural networks
  publication-title: Neuron
– volume: 93
  start-page: 587
  issue: 3
  year: 2017
  end-page: 605.e587
  article-title: Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes
  publication-title: Neuron
– volume: 97
  start-page: 769
  issue: 4
  year: 2018
  end-page: 785
  article-title: Neuromodulation of attention
  publication-title: Neuron
– volume: 11
  start-page: e1004464
  issue: 10
  year: 2015
  article-title: Efficient "shotgun" inference of neural connectivity from highly sub‐sampled activity data
  publication-title: PLoS Computational Biology
– volume: 27
  start-page: 6473
  issue: 24
  year: 2007
  end-page: 6477
  article-title: Synaptic islands defined by the territory of a single astrocyte
  publication-title: The Journal of Neuroscience
– volume: 19
  start-page: 304
  issue: 6
  year: 2015
  end-page: 313
  article-title: Hierarchical process memory: Memory as an integral component of information processing
  publication-title: Trends in Cognitive Sciences
– volume: 19
  start-page: 1
  issue: 1
  year: 2007
  end-page: 46
  article-title: Mean‐driven and fluctuation‐driven persistent activity in recurrent networks
  publication-title: Neural Computation
– volume: 5
  start-page: e18716
  year: 2016
  article-title: Direct modulation of GFAP‐expressing glia in the arcuate nucleus bi‐directionally regulates feeding
  publication-title: eLife
– volume: 174
  start-page: 59
  year: 2018
  end-page: 71.e14
  article-title: Astrocytic activation generates de novo neuronal potentiation and memory enhancement
  publication-title: Cell
– volume: 129
  start-page: 527
  issue: 4
  year: 2015
  end-page: 540
  article-title: Nucleus basalis of Meynert revisited: Anatomy, history and differential involvement in Alzheimer's and Parkinson's disease
  publication-title: Acta Neuropathologica
– volume: 19
  start-page: 356
  issue: 3
  year: 2016
  end-page: 365
  article-title: Using goal‐driven deep learning models to understand sensory cortex
  publication-title: Nature Neuroscience
– volume: 357
  start-page: 503
  issue: 6350
  year: 2017
  end-page: 507
  article-title: Chemogenetics revealed: DREADD occupancy and activation via converted clozapine
  publication-title: Science
– volume: 38
  start-page: 14
  issue: 1
  year: 2018
  end-page: 25
  article-title: Gliotransmission: Beyond black‐and‐white
  publication-title: The Journal of Neuroscience
– volume: 4
  year: 2015
  article-title: Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation
  publication-title: Elife
– volume: 522
  start-page: 225
  issue: 1
  year: 2014
  end-page: 259
  article-title: Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex
  publication-title: The Journal of Comparative Neurology
– volume: 14
  start-page: 349
  issue: 4
  year: 2017
  end-page: 359
  article-title: In vivo imaging of neural activity
  publication-title: Nature Methods
– volume: 369
  start-page: 20120460
  issue: 1637
  year: 2014
  article-title: Timing as an intrinsic property of neural networks: Evidence from in vivo and in vitro experiments
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 36
  start-page: 12549
  issue: 50
  year: 2016
  end-page: 12558
  article-title: Immunotherapy with Aducanumab restores calcium homeostasis in Tg2576 mice
  publication-title: The Journal of Neuroscience
– volume: 63
  start-page: 27
  issue: 1
  year: 2009
  end-page: 39
  article-title: Remote control of neuronal activity in transgenic mice expressing evolved G protein‐coupled receptors
  publication-title: Neuron
– volume: 7
  start-page: 251
  issue: 2
  year: 1996
  end-page: 259
  article-title: Intraneuronal information processing, directional selectivity and memory for spatio‐temporal sequences
  publication-title: Network: Computation in Neural Systems
– volume: 36
  start-page: 337
  year: 2013
  end-page: 359
  article-title: Cortical control of arm movements: A dynamical systems perspective
  publication-title: Annual Review of Neuroscience
– volume: 54
  start-page: 387
  issue: 6
  year: 2013
  end-page: 394
  article-title: alpha1‐adrenergic receptors mediate coordinated Ca signaling of cortical astrocytes in awake, behaving mice
  publication-title: Cell Calcium
– volume: 101
  start-page: 21
  issue: 1
  year: 2019
  end-page: 31 e5
  article-title: High‐density, long‐lasting, and multi‐region electrophysiological recordings using polymer electrode arrays
  publication-title: Neuron
– volume: 20
  start-page: 125
  issue: 3
  year: 1997
  end-page: 131
  article-title: Action potential initiation and backpropagation in neurons of the mammalian CNS
  publication-title: Trends in Neurosciences
– volume: 82
  start-page: 413
  issue: 2
  year: 2014
  end-page: 429
  article-title: Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway
  publication-title: Neuron
– volume: 94
  start-page: 969
  issue: 5
  year: 2017
  end-page: 977
  article-title: The brain as an efficient and robust adaptive learner
  publication-title: Neuron
– volume: 43
  start-page: 1298
  issue: 10
  year: 2016
  end-page: 1306
  article-title: Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice
  publication-title: The European Journal of Neuroscience
– volume: 18
  start-page: 131
  issue: 3
  year: 2017
  end-page: 146
  article-title: Micro‐connectomics: Probing the organization of neuronal networks at the cellular scale
  publication-title: Nature Reviews Neuroscience
– volume: 23
  start-page: 18
  issue: Suppl 1
  year: 2016
  end-page: 27
  article-title: Disease‐modifying treatments for multiple sclerosis—A review of approved medications
  publication-title: European Journal of Neurology
– volume: 10
  start-page: 211
  issue: 3
  year: 2009
  end-page: 223
  article-title: The locus coeruleus and noradrenergic modulation of cognition
  publication-title: Nature Reviews. Neuroscience
– volume: 449
  start-page: 92
  issue: 7158
  year: 2007
  end-page: 95
  article-title: Temporal precision in the neural code and the timescales of natural vision
  publication-title: Nature
– volume: 25
  start-page: 2192
  issue: 9
  year: 2005
  end-page: 2203
  article-title: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes
  publication-title: The Journal of Neuroscience
– volume: 39
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Voltage imaging with genetically encoded indicators
  publication-title: Current Opinion in Chemical Biology
– volume: 13
  start-page: 885
  issue: 6
  year: 2002
  end-page: 890
  article-title: Orbitofrontal lesions in rats impair reversal but not acquisition of go, no‐go odor discriminations
  publication-title: Neuroreport
– volume: 71
  start-page: 9
  issue: 1
  year: 2011
  end-page: 34
  article-title: Optogenetics in neural systems
  publication-title: Neuron
– volume: 113
  start-page: E2675
  issue: 19
  year: 2016
  end-page: E2684
  article-title: Astrocytes regulate cortical state switching in vivo
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 91
  start-page: 221
  issue: 2
  year: 2016
  end-page: 259
  article-title: Analysis of neuronal spike trains, deconstructed
  publication-title: Neuron
– year: 2016
– volume: 68
  start-page: 73
  year: 2017
  end-page: 100
  article-title: Learning, reward, and decision making
  publication-title: Annual Review of Psychology
– volume: 304
  start-page: 1926
  issue: 5679
  year: 2004
  end-page: 1929
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  end-page: 2560
  article-title: Real‐time computing without stable states: A new framework for neural computation based on perturbations
  publication-title: Neural Computation
– volume: 89
  start-page: 683
  issue: 4
  year: 2016
  end-page: 694
  article-title: DREADDs for neuroscientists
  publication-title: Neuron
– volume: 372
  start-page: 380
  year: 2016
  end-page: 391
  article-title: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes‐like control
  publication-title: Information Sciences
– volume: 8
  start-page: 244
  year: 2017
  article-title: The dopamine prediction error: Contributions to associative models of reward learning
  publication-title: Frontiers in Psychology
– volume: 16
  start-page: 487
  issue: 8
  year: 2015
  end-page: 497
  article-title: From the neuron doctrine to neural networks
  publication-title: Nature Reviews. Neuroscience
– volume: 6
  start-page: 24
  issue: 3
  year: 2017
  end-page: 33
  article-title: Human‐robot interaction and Neuroprosthetics: A review of new technologies
  publication-title: IEEE Consumer Electronics Magazine
– volume: 13
  start-page: 548
  issue: 9
  year: 2017
  end-page: 554
  article-title: Insights into the mechanisms of deep brain stimulation
  publication-title: Nature Reviews. Neurology
– volume: 8
  start-page: 14823
  year: 2017
  article-title: Lateral orbitofrontal cortex anticipates choices and integrates prior with current information
  publication-title: Nature Communications
– volume: 20
  start-page: 1114
  issue: 8
  year: 2017
  end-page: 1121
  article-title: Active dendritic integration as a mechanism for robust and precise grid cell firing
  publication-title: Nature Neuroscience
– volume: 23
  start-page: 486
  issue: 6
  year: 2017
  end-page: 500
  article-title: Should we stop saying 'Glia' and 'Neuroinflammation'?
  publication-title: Trends in Molecular Medicine
– volume: 46
  start-page: 48
  year: 2017
  end-page: 57
  article-title: What can neuronal populations tell us about cognition?
  publication-title: Current Opinion in Neurobiology
– volume: 28
  start-page: 503
  year: 2005
  end-page: 532
  article-title: Dendritic computation
  publication-title: Annual Review of Neuroscience
– volume: 11
  start-page: 475
  issue: 4
  year: 2001
  end-page: 480
  article-title: Energy as a constraint on the coding and processing of sensory information
  publication-title: Current Opinion in Neurobiology
– volume: 6
  start-page: e19109
  issue: 4
  year: 2011
  article-title: Artificial astrocytes improve neural network performance
  publication-title: PLoS One
– volume: 12
  start-page: 14
  year: 2018
  article-title: Computational models for calcium‐mediated astrocyte functions
  publication-title: Frontiers in Computational Neuroscience
– volume: 19
  start-page: 9587
  issue: 21
  year: 1999
  end-page: 9603
  article-title: Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory
  publication-title: The Journal of Neuroscience
– volume: 43
  start-page: 156
  year: 2017
  end-page: 165
  article-title: Synaptic patterning and the timescales of cortical dynamics
  publication-title: Current Opinion in Neurobiology
– volume: 94
  start-page: 12740
  issue: 24
  year: 1997
  end-page: 12741
  article-title: Neural codes: Firing rates and beyond
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 66
  start-page: 1724
  year: 2018
  end-page: 1735
  article-title: GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes
  publication-title: Glia
– volume: 95
  start-page: 531
  issue: 3
  year: 2017
  end-page: 549 e539
  article-title: Neural circuit‐specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence
  publication-title: Neuron
– volume: 16
  start-page: 2859
  year: 2015
  end-page: 2900
  article-title: Linear dimensionality reduction: Survey, insights, and generalizations
  publication-title: Journal of Machine Learning Research
– volume: 81
  start-page: 728
  issue: 4
  year: 2014
  end-page: 739
  article-title: Gliotransmitters travel in time and space
  publication-title: Neuron
– volume: 98
  start-page: 49
  issue: 1
  year: 2018
  article-title: An optical neuron‐astrocyte proximity assay at synaptic distance scales
  publication-title: Neuron
– volume: 356
  start-page: eaai8185
  issue: 6339
  year: 2017
  article-title: Three‐dimensional ca(2+) imaging advances understanding of astrocyte biology
  publication-title: Science
– volume: 13
  start-page: 1257
  issue: 11
  year: 2003
  end-page: 1269
  article-title: A role for neural integrators in perceptual decision making
  publication-title: Cerebral Cortex
– volume: 163
  start-page: 456
  issue: 2
  year: 2015
  end-page: 492
  article-title: Reconstruction and simulation of neocortical microcircuitry
  publication-title: Cell
– volume: 88
  start-page: 277
  issue: 2
  year: 2015
  end-page: 288
  article-title: Time‐resolved imaging reveals heterogeneous landscapes of Nanomolar ca(2+) in neurons and Astroglia
  publication-title: Neuron
– volume: 10
  start-page: 173
  issue: 3
  year: 2009
  end-page: 185
  article-title: Extracting information from neuronal populations: Information theory and decoding approaches
  publication-title: Nature Reviews. Neuroscience
– volume: 329
  start-page: 571
  issue: 5991
  year: 2010
  end-page: 575
  article-title: Astrocytes control breathing through pH‐dependent release of ATP
  publication-title: Science
– volume: 5
  start-page: 3284
  year: 2014
  article-title: Lactate‐mediated glia‐neuronal signalling in the mammalian brain
  publication-title: Nature Communications
– volume: 27
  start-page: 2137
  issue: 14
  year: 2017
  end-page: 2147 e2133
  article-title: Electron microscopic reconstruction of functionally identified cells in a neural integrator
  publication-title: Current Biology
– volume: 87
  start-page: 716
  issue: 4
  year: 2015
  end-page: 732
  article-title: Translational perspectives for computational neuroimaging
  publication-title: Neuron
– volume: 121
  start-page: 1013
  issue: Pt 6
  year: 1998
  end-page: 1052
  article-title: From sensation to cognition
  publication-title: Brain
– volume: 11
  start-page: 48
  year: 2017
  article-title: Cliques of neurons bound into cavities provide a missing link between structure and function
  publication-title: Frontiers in Computational Neuroscience
– volume: 86
  start-page: 883
  issue: 4
  year: 2015
  end-page: 901
  article-title: A cellular perspective on brain energy metabolism and functional imaging
  publication-title: Neuron
– volume: 14
  start-page: 506
  issue: 11
  year: 2010
  end-page: 515
  article-title: The functional role of cross‐frequency coupling
  publication-title: Trends in Cognitive Sciences
– volume: 68
  start-page: 362
  issue: 3
  year: 2010
  end-page: 385
  article-title: Neural syntax: Cell assemblies, synapsembles, and readers
  publication-title: Neuron
– volume: 29
  start-page: 769
  issue: 3
  year: 2001
  end-page: 777
  article-title: The role of spike timing in the coding of stimulus location in rat somatosensory cortex
  publication-title: Neuron
– volume: 9
  start-page: 816
  issue: 6
  year: 2006
  end-page: 823
  article-title: Astrocytic Ca signaling evoked by sensory stimulation in vivo
  publication-title: Nature Neuroscience
– volume: 75
  start-page: 1970
  issue: 5
  year: 1996
  end-page: 1981
  article-title: Orbitofrontal cortex neurons: Role in olfactory and visual association learning
  publication-title: Journal of Neurophysiology
– year: 1976
– volume: 150
  start-page: 45
  year: 2005
  end-page: 53
  article-title: Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience
  publication-title: Progress in Brain Research
– volume: 431
  start-page: 796
  issue: 7010
  year: 2004
  end-page: 803
  article-title: Synaptic computation
  publication-title: Nature
– volume: 12
  start-page: e0170275
  issue: 1
  year: 2017
  article-title: Optogenetic restoration of disrupted slow oscillations halts amyloid deposition and restores calcium homeostasis in an animal model of Alzheimer's disease
  publication-title: PLoS One
– volume: 15
  start-page: 70
  issue: 1
  year: 2011
  end-page: 80
  article-title: TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT‐3
  publication-title: Nature Neuroscience
– volume: 93
  start-page: 13339
  issue: 23
  year: 1996
  end-page: 13344
  article-title: How the brain keeps the eyes still
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 80
  start-page: 143
  year: 2018
  end-page: 157
  article-title: Dynamism of an astrocyte in vivo: Perspectives on identity and function
  publication-title: Annual Review of Physiology
– volume: 5
  start-page: 25
  year: 2011
  article-title: Dynamics of networks of excitatory and inhibitory neurons in response to time‐dependent inputs
  publication-title: Frontiers in Computational Neuroscience
– volume: 30
  start-page: 1
  issue: 1
  year: 2016
  end-page: 7
  article-title: Amyloid PET screening for enrichment of early‐stage Alzheimer disease clinical trials: Experience in a phase 1b clinical trial
  publication-title: Alzheimer Disease and Associated Disorders
– volume: 31
  start-page: 8905
  issue: 24
  year: 2011
  end-page: 8919
  article-title: Astrocytes display complex and localized calcium responses to single‐neuron stimulation in the hippocampus
  publication-title: The Journal of Neuroscience
– volume: 145
  start-page: 207
  year: 2004
  end-page: 231
  article-title: High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation
  publication-title: Progress in Brain Research
– volume: 76
  start-page: 209
  issue: 1
  year: 2012
  end-page: 222
  article-title: Neuromodulation of brain states
  publication-title: Neuron
– volume: 5
  start-page: e20362
  year: 2016
  article-title: Activity‐dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte‐neuron networks
  publication-title: eLife
– volume: 3
  start-page: 37
  year: 2009
  article-title: Hierarchical modularity in human brain functional networks
  publication-title: Frontiers in Neuroinformatics
– volume: 319
  start-page: 1543
  issue: 5869
  year: 2008
  end-page: 1546
  article-title: Synaptic theory of working memory
  publication-title: Science
– volume: 7
  start-page: e32237
  year: 2018
  article-title: Neuronal activity determines distinct gliotransmitter release from a single astrocyte
  publication-title: eLife
– volume: 324
  start-page: 354
  issue: 5925
  year: 2009
  end-page: 359
  article-title: Optical deconstruction of parkinsonian neural circuitry
  publication-title: Science
– volume: 31
  start-page: 18155
  issue: 49
  year: 2011
  end-page: 18165
  article-title: Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo
  publication-title: The Journal of Neuroscience
– volume: 16
  start-page: 3
  issue: 1
  year: 2018
  end-page: 13
  article-title: A topological representation of branching neuronal morphologies
  publication-title: Neuroinformatics
– volume: 82
  start-page: 1263
  issue: 6
  year: 2014
  end-page: 1270
  article-title: Norepinephrine controls astroglial responsiveness to local circuit activity
  publication-title: Neuron
– volume: 37
  start-page: 1708
  issue: 7
  year: 2017
  end-page: 1720
  article-title: Dopamine modulates adaptive prediction error coding in the human midbrain and striatum
  publication-title: The Journal of Neuroscience
– year: 2006
– volume: 113
  start-page: 13492
  issue: 47
  year: 2016
  end-page: 13497
  article-title: Temporal coding of reward‐guided choice in the posterior parietal cortex
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 112
  start-page: 9158
  issue: 30
  year: 2015
  end-page: 9165
  article-title: A computational perspective on autism
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 183
  issue: 3
  year: 2000
  end-page: 208
  article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
  publication-title: Journal of Computational Neuroscience
– volume: 116
  start-page: 724
  issue: 2
  year: 2016
  end-page: 741
  article-title: Neural and neurochemical basis of reinforcement‐guided decision making
  publication-title: Journal of Neurophysiology
– volume: 9
  start-page: 2
  year: 2017
  article-title: Modulation of synaptic plasticity in the cortex needs to understand all the players
  publication-title: Frontiers in Synaptic Neuroscience
– volume: 8
  start-page: 161
  year: 2014
  article-title: Neural mechanisms of auditory categorization: From across brain areas to within local microcircuits
  publication-title: Frontiers in Neuroscience
– volume: 12
  start-page: 335
  issue: 4
  year: 2017
  end-page: 342
  article-title: Targeted intracellular voltage recordings from dendritic spines using quantum‐dot‐coated nanopipettes
  publication-title: Nature Nanotechnology
– volume: 440
  start-page: 1054
  issue: 7087
  year: 2006
  end-page: 1059
  article-title: Synaptic scaling mediated by glial TNF‐alpha
  publication-title: Nature
– volume: 20
  start-page: 1540
  issue: 11
  year: 2017
  end-page: 1548
  article-title: Synapse‐specific astrocyte gating of amygdala‐related behavior
  publication-title: Nature Neuroscience
– volume: 12
  start-page: 1833
  issue: 11
  year: 2017
  article-title: The theory of constructed emotion: An active inference account of interoception and categorization
  publication-title: Social Cognitive and Affective Neuroscience
– ident: e_1_2_10_97_1
  doi: 10.1146/annurev.neuro.28.061604.135703
– ident: e_1_2_10_3_1
  doi: 10.1016/j.cell.2018.05.002
– volume: 16
  start-page: 2859
  year: 2015
  ident: e_1_2_10_41_1
  article-title: Linear dimensionality reduction: Survey, insights, and generalizations
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_10_100_1
  doi: 10.1162/089976602760407955
– ident: e_1_2_10_48_1
  doi: 10.1523/JNEUROSCI.1979-16.2016
– ident: e_1_2_10_47_1
  doi: 10.1016/S1364-6613(99)01380-7
– ident: e_1_2_10_55_1
  doi: 10.1016/j.plrev.2014.04.005
– ident: e_1_2_10_16_1
  doi: 10.1093/scan/nsx060
– ident: e_1_2_10_162_1
  doi: 10.1126/science.1156120
– ident: e_1_2_10_174_1
  doi: 10.1038/nature04671
– ident: e_1_2_10_108_1
  doi: 10.1038/nn.4649
– ident: e_1_2_10_125_1
  doi: 10.1146/annurev-psych-010416-044216
– ident: e_1_2_10_140_1
  doi: 10.1371/journal.pone.0019109
– ident: e_1_2_10_29_1
  doi: 10.1126/science.1099745
– ident: e_1_2_10_5_1
  doi: 10.1038/nature07926
– ident: e_1_2_10_69_1
  doi: 10.1016/j.stem.2012.12.015
– ident: e_1_2_10_17_1
  doi: 10.1038/nn.4201
– ident: e_1_2_10_77_1
  doi: 10.1007/s12021-017-9341-1
– ident: e_1_2_10_169_1
  doi: 10.7554/eLife.14472
– ident: e_1_2_10_176_1
  doi: 10.1016/j.neuron.2018.03.050
– ident: e_1_2_10_121_1
  doi: 10.1371/journal.pbio.1001259
– ident: e_1_2_10_193_1
  doi: 10.1152/jn.01073.2009
– ident: e_1_2_10_129_1
  doi: 10.1016/j.cell.2011.07.022
– ident: e_1_2_10_135_1
  doi: 10.1111/ejn.13074
– ident: e_1_2_10_62_1
  doi: 10.1098/rstb.2012.0460
– ident: e_1_2_10_166_1
  doi: 10.1093/cercor/bhp265
– ident: e_1_2_10_94_1
  doi: 10.1073/pnas.0509030102
– ident: e_1_2_10_187_1
  doi: 10.1038/s41467-018-04457-5
– ident: e_1_2_10_131_1
  doi: 10.1016/j.tics.2015.01.002
– ident: e_1_2_10_203_1
  doi: 10.1016/j.neuron.2011.06.004
– ident: e_1_2_10_82_1
  doi: 10.1073/pnas.1012656107
– ident: e_1_2_10_206_1
  doi: 10.1126/science.aaa1934
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cell.2017.05.011
– ident: e_1_2_10_24_1
  doi: 10.1038/nn1525
– ident: e_1_2_10_26_1
  doi: 10.1523/JNEUROSCI.22-01-00183.2002
– ident: e_1_2_10_179_1
  doi: 10.1038/nn.2163
– ident: e_1_2_10_31_1
  doi: 10.1016/j.tics.2010.09.001
– ident: e_1_2_10_150_1
  doi: 10.1073/pnas.1510583112
– ident: e_1_2_10_117_1
  doi: 10.1126/science.1150769
– ident: e_1_2_10_181_1
  doi: 10.1111/jnc.13580
– ident: e_1_2_10_25_1
  doi: 10.1023/A:1008925309027
– volume-title: From understanding computation to understanding neural circuitry
  year: 1976
  ident: e_1_2_10_107_1
– ident: e_1_2_10_74_1
  doi: 10.1073/pnas.1606479113
– ident: e_1_2_10_164_1
  doi: 10.1073/pnas.93.23.13339
– ident: e_1_2_10_144_1
  doi: 10.3389/fncom.2017.00048
– ident: e_1_2_10_79_1
  doi: 10.1523/JNEUROSCI.2080-16.2016
– ident: e_1_2_10_178_1
  doi: 10.1016/S0166-2236(96)10075-8
– ident: e_1_2_10_145_1
  doi: 10.1162/neco.2007.19.1.1
– ident: e_1_2_10_106_1
  doi: 10.1016/j.cell.2015.09.029
– ident: e_1_2_10_34_1
  doi: 10.1073/pnas.1711114115
– ident: e_1_2_10_59_1
  doi: 10.1016/j.tics.2009.04.005
– ident: e_1_2_10_39_1
  doi: 10.7554/eLife.32237
– ident: e_1_2_10_36_1
  doi: 10.1038/nn.4237
– ident: e_1_2_10_38_1
  doi: 10.1016/j.neuron.2018.11.002
– ident: e_1_2_10_67_1
  doi: 10.1523/JNEUROSCI.1419-07.2007
– start-page: 061507
  year: 2016
  ident: e_1_2_10_128_1
  article-title: Suite2p: Beyond 10,000 neurons with standard two‐photon microscopy
  publication-title: bioRxiv
– ident: e_1_2_10_18_1
  doi: 10.1523/JNEUROSCI.6341-10.2011
– ident: e_1_2_10_110_1
  doi: 10.1016/j.molmed.2017.04.005
– ident: e_1_2_10_134_1
  doi: 10.1046/j.1471-4159.1997.69052132.x
– ident: e_1_2_10_51_1
  doi: 10.1016/j.conb.2017.02.007
– volume-title: Fundamentals of brain network analysis
  year: 2016
  ident: e_1_2_10_56_1
– ident: e_1_2_10_185_1
  doi: 10.1016/j.neuron.2013.12.026
– ident: e_1_2_10_194_1
  doi: 10.1073/pnas.1117807108
– ident: e_1_2_10_23_1
  doi: 10.1523/JNEUROSCI.2591-14.2014
– ident: e_1_2_10_91_1
  doi: 10.3389/fncom.2011.00025
– volume: 01
  start-page: 27
  year: 2017
  ident: e_1_2_10_80_1
  article-title: Optogenetics shed light on Alzheimer's disease
  publication-title: EC Neurology
– ident: e_1_2_10_53_1
  doi: 10.1002/glia.23330
– ident: e_1_2_10_99_1
  doi: 10.3389/fncir.2013.00201
– ident: e_1_2_10_93_1
  doi: 10.1016/j.neuron.2017.11.009
– ident: e_1_2_10_61_1
  doi: 10.1016/j.conb.2015.12.008
– ident: e_1_2_10_151_1
  doi: 10.1016/j.neuron.2016.01.040
– ident: e_1_2_10_155_1
  doi: 10.1038/nrn2573
– ident: e_1_2_10_177_1
  doi: 10.1016/j.conb.2018.11.005
– ident: e_1_2_10_66_1
  doi: 10.1126/science.1167093
– ident: e_1_2_10_168_1
  doi: 10.1038/nn.3000
– ident: e_1_2_10_115_1
  doi: 10.3389/neuro.11.037.2009
– ident: e_1_2_10_182_1
  doi: 10.1002/glia.23073
– ident: e_1_2_10_191_1
  doi: 10.1073/pnas.1705120114
– ident: e_1_2_10_141_1
  doi: 10.1146/annurev-physiol-021317-121125
– ident: e_1_2_10_138_1
  doi: 10.1038/ncomms4262
– ident: e_1_2_10_14_1
  doi: 10.1016/S0079-6123(05)50004-9
– ident: e_1_2_10_132_1
  doi: 10.1016/S0896-6273(01)00251-3
– ident: e_1_2_10_196_1
  doi: 10.1523/JNEUROSCI.19-21-09587.1999
– ident: e_1_2_10_171_1
  doi: 10.1371/journal.pcbi.1004464
– ident: e_1_2_10_157_1
  doi: 10.1073/pnas.1213458109
– ident: e_1_2_10_130_1
  doi: 10.1016/j.conb.2018.04.007
– ident: e_1_2_10_189_1
  doi: 10.3389/fnins.2014.00161
– ident: e_1_2_10_192_1
  doi: 10.1016/j.cub.2017.06.028
– ident: e_1_2_10_161_1
  doi: 10.1038/nrn.2016.182
– ident: e_1_2_10_85_1
  doi: 10.1016/j.cub.2014.05.049
– ident: e_1_2_10_70_1
  doi: 10.1098/rstb.2014.0170
– ident: e_1_2_10_104_1
  doi: 10.1371/journal.pbio.1002147
– ident: e_1_2_10_95_1
  doi: 10.1038/nn.3220
– ident: e_1_2_10_158_1
  doi: 10.1523/JNEUROSCI.0017-17.2017
– ident: e_1_2_10_42_1
  doi: 10.1038/nn.3776
– ident: e_1_2_10_199_1
  doi: 10.1038/nn.4244
– ident: e_1_2_10_40_1
  doi: 10.3389/fnhum.2018.00018
– ident: e_1_2_10_30_1
  doi: 10.1109/MCE.2016.2614423
– ident: e_1_2_10_123_1
  doi: 10.1523/JNEUROSCI.4707-08.2009
– ident: e_1_2_10_75_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_10_113_1
  doi: 10.1093/brain/121.6.1013
– ident: e_1_2_10_122_1
  doi: 10.1038/ncomms14823
– ident: e_1_2_10_152_1
  doi: 10.1016/j.cub.2018.07.045
– ident: e_1_2_10_13_1
  doi: 10.3389/fncir.2017.00108
– ident: e_1_2_10_27_1
  doi: 10.1038/nature06105
– ident: e_1_2_10_160_1
  doi: 10.1097/00001756-200205070-00030
– ident: e_1_2_10_105_1
  doi: 10.1002/cne.23458
– ident: e_1_2_10_63_1
  doi: 10.1016/0896-6273(95)90304-6
– ident: e_1_2_10_102_1
  doi: 10.1016/0306-4522(88)90338-7
– ident: e_1_2_10_165_1
  doi: 10.1097/WAD.0000000000000144
– ident: e_1_2_10_92_1
  doi: 10.1016/j.neuron.2012.09.012
– ident: e_1_2_10_116_1
  doi: 10.1101/pdb.top89
– ident: e_1_2_10_142_1
  doi: 10.1073/pnas.1520759113
– volume: 29
  start-page: 1
  year: 2017
  ident: e_1_2_10_32_1
  article-title: Slow waves in cortical slices: How spontaneous activity is shaped by laminar structure
  publication-title: Cerebral Cortex
– ident: e_1_2_10_98_1
  doi: 10.3390/diseases6020042
– ident: e_1_2_10_190_1
  doi: 10.1177/2041669516673384
– ident: e_1_2_10_159_1
  doi: 10.1038/nn.4582
– ident: e_1_2_10_22_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_10_73_1
  doi: 10.1016/j.neuron.2014.02.041
– ident: e_1_2_10_76_1
  doi: 10.1038/nnano.2016.268
– ident: e_1_2_10_9_1
  doi: 10.1016/j.conb.2017.07.008
– ident: e_1_2_10_154_1
  doi: 10.1038/s41593-018-0325-8
– ident: e_1_2_10_21_1
  doi: 10.1126/science.aai8185
– ident: e_1_2_10_87_1
  doi: 10.1016/j.cub.2014.05.042
– ident: e_1_2_10_143_1
  doi: 10.1038/nrn2578
– ident: e_1_2_10_52_1
  doi: 10.1016/j.conb.2011.10.001
– ident: e_1_2_10_183_1
  doi: 10.1523/JNEUROSCI.5289-11.2011
– ident: e_1_2_10_60_1
  doi: 10.1073/pnas.94.24.12740
– ident: e_1_2_10_172_1
  doi: 10.31887/DCNS.2013.15.3/osporns
– ident: e_1_2_10_54_1
  doi: 10.1073/pnas.0906419106
– ident: e_1_2_10_136_1
  doi: 10.1523/JNEUROSCI.3965-04.2005
– ident: e_1_2_10_109_1
  doi: 10.1126/science.aaa7945
– ident: e_1_2_10_57_1
  doi: 10.1146/annurev-neuro-072116-031538
– ident: e_1_2_10_186_1
  doi: 10.1016/j.neuron.2018.01.008
– ident: e_1_2_10_149_1
  doi: 10.1002/glia.22964
– ident: e_1_2_10_15_1
  doi: 10.1088/0954-898X/7/2/004
– ident: e_1_2_10_50_1
  doi: 10.1109/CVPR.2015.7298761
– ident: e_1_2_10_127_1
  doi: 10.1038/nn.3906
– ident: e_1_2_10_139_1
  doi: 10.1016/j.neuron.2015.11.037
– ident: e_1_2_10_147_1
  doi: 10.1016/j.neuron.2009.01.002
– ident: e_1_2_10_167_1
  doi: 10.1146/annurev-neuro-062111-150509
– ident: e_1_2_10_118_1
  doi: 10.1038/nn.3862
– ident: e_1_2_10_133_1
  doi: 10.1016/j.neuron.2014.04.038
– ident: e_1_2_10_44_1
  doi: 10.1038/nn.4091
– ident: e_1_2_10_68_1
  doi: 10.1016/j.neuron.2008.11.024
– ident: e_1_2_10_111_1
  doi: 10.1016/j.neuron.2018.07.003
– ident: e_1_2_10_58_1
  doi: 10.1038/nrn2201
– ident: e_1_2_10_64_1
  doi: 10.1126/science.aan2475
– ident: e_1_2_10_90_1
  doi: 10.1016/S0959-4388(00)00237-3
– ident: e_1_2_10_101_1
  doi: 10.1016/j.neuron.2015.03.035
– ident: e_1_2_10_114_1
  doi: 10.3389/fnsyn.2017.00002
– ident: e_1_2_10_33_1
  doi: 10.1016/j.neuron.2017.06.029
– ident: e_1_2_10_103_1
  doi: 10.3389/fncom.2018.00014
– ident: e_1_2_10_2_1
  doi: 10.1038/nature03010
– ident: e_1_2_10_126_1
  doi: 10.1016/j.tins.2015.07.006
– ident: e_1_2_10_119_1
  doi: 10.1073/pnas.1936192100
– ident: e_1_2_10_175_1
  doi: 10.1016/j.neuron.2015.07.008
– ident: e_1_2_10_88_1
  doi: 10.7554/eLife.05793
– ident: e_1_2_10_205_1
  doi: 10.1038/nrn3962
– ident: e_1_2_10_89_1
  doi: 10.1016/j.conb.2017.08.015
– ident: e_1_2_10_198_1
  doi: 10.1016/j.cbpa.2017.04.005
– ident: e_1_2_10_37_1
  doi: 10.7554/eLife.18716
– ident: e_1_2_10_156_1
  doi: 10.1002/glia.23205
– ident: e_1_2_10_45_1
  doi: 10.1016/j.neuron.2017.05.016
– ident: e_1_2_10_28_1
  doi: 10.1016/j.neuron.2010.09.023
– ident: e_1_2_10_49_1
  doi: 10.1016/j.ceca.2013.09.001
– ident: e_1_2_10_4_1
  doi: 10.1016/j.neuron.2016.12.034
– ident: e_1_2_10_6_1
  doi: 10.1016/j.neuron.2009.06.014
– ident: e_1_2_10_207_1
  doi: 10.1016/j.neuron.2015.09.043
– ident: e_1_2_10_19_1
  doi: 10.1016/j.neuroimage.2016.11.006
– start-page: 355
  volume-title: Optical probes in biology
  year: 2016
  ident: e_1_2_10_78_1
– ident: e_1_2_10_184_1
  doi: 10.1038/ncomms4284
– ident: e_1_2_10_20_1
– ident: e_1_2_10_86_1
  doi: 10.1371/journal.pcbi.1000209
– ident: e_1_2_10_201_1
  doi: 10.1016/j.celrep.2015.04.002
– ident: e_1_2_10_43_1
  doi: 10.1103/PhysRevE.77.030903
– ident: e_1_2_10_46_1
  doi: 10.1007/978-3-030-00817-8_5
– ident: e_1_2_10_12_1
  doi: 10.1038/nrneurol.2017.105
– ident: e_1_2_10_173_1
  doi: 10.1038/nn.4001
– ident: e_1_2_10_137_1
  doi: 10.7554/eLife.20362
– ident: e_1_2_10_83_1
  doi: 10.1186/s40478-017-0411-2
– ident: e_1_2_10_200_1
  doi: 10.1016/j.ceca.2015.06.008
– ident: e_1_2_10_96_1
  doi: 10.1007/s00401-015-1392-5
– ident: e_1_2_10_202_1
  doi: 10.1038/nmeth.4230
– ident: e_1_2_10_112_1
  doi: 10.1093/cercor/bhg097
– ident: e_1_2_10_188_1
  doi: 10.1111/ene.12883
– ident: e_1_2_10_146_1
  doi: 10.1016/j.neulet.2018.06.024
– ident: e_1_2_10_81_1
  doi: 10.1371/journal.pone.0170275
– ident: e_1_2_10_124_1
  doi: 10.1016/j.neuron.2018.03.003
– ident: e_1_2_10_10_1
  doi: 10.1016/j.neuron.2014.02.007
– ident: e_1_2_10_170_1
  doi: 10.1016/j.ins.2016.08.055
– ident: e_1_2_10_7_1
  doi: 10.1016/j.neuron.2016.05.039
– ident: e_1_2_10_8_1
  doi: 10.1155/2012/476324
– ident: e_1_2_10_65_1
  doi: 10.1126/science.1190721
– ident: e_1_2_10_163_1
  doi: 10.1126/science.3045969
– ident: e_1_2_10_71_1
  doi: 10.1016/S0079-6123(03)45015-2
– ident: e_1_2_10_148_1
  doi: 10.1152/jn.1996.75.5.1970
– ident: e_1_2_10_11_1
  doi: 10.1126/science.273.5283.1868
– ident: e_1_2_10_84_1
  doi: 10.1152/jn.01113.2015
– ident: e_1_2_10_197_1
  doi: 10.1017/S135561771200001X
– ident: e_1_2_10_72_1
  doi: 10.1016/j.tics.2015.04.006
– ident: e_1_2_10_180_1
  doi: 10.1016/j.cell.2011.02.018
– ident: e_1_2_10_204_1
  doi: 10.1146/annurev-neuro-062111-150455
– ident: e_1_2_10_120_1
  doi: 10.3389/fpsyg.2017.00244
– ident: e_1_2_10_153_1
  doi: 10.1016/j.neuron.2017.05.015
– ident: e_1_2_10_195_1
  doi: 10.1038/nn1703
SSID ssj0011497
Score 2.5289173
SecondaryResourceType review_article
Snippet Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits,...
Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5
SubjectTerms Algorithms
Animals
Astrocytes
Astrocytes - chemistry
Astrocytes - physiology
Brain
Brain - cytology
Brain - physiology
Brain Chemistry - physiology
Calcium
Calcium ions
Circuits
Coding
Computational neuroscience
Decoding
dimensionality reduction
energy‐efficient coding
Exploration
Humans
Information processing
Learning algorithms
Machine learning
Nervous system
Neural networks
Neuromodulation
Neurons - chemistry
Neurons - physiology
Neurosciences
Neurosciences - methods
Neurosciences - trends
Optogenetics - methods
Population studies
predictive coding
Reflexes
Sensory integration
Statistical analysis
Systems Biology - methods
Systems Biology - trends
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQF7i0PPpYoMioqFIrZUn8iNdqLytUSquWQ1UkLlVkO3aLWJIVmxVafn3HTtarhQqpPcXKjJPYnvF8fuQzQocCYpIwTiYmcyJhgvFEKasTbUBCWJnacFrDt7P89Jx9ueAXK-jD_F-Ylh8iTrh5zwj9tXdwpSdHC9LQX6NL1Sc0p74DzuDqEdH3yB0FOF-2NJ-SJZDOIjcpOVpkXY5GDyDmw52Sa9NqrGa3ajRaRrMhHJ08RT_nBWl3oVz1p43um7t7HI__W9IN9KTDqXjYGtYmWrHVFtoeVjBGv57hNzjsHA1T8tvo_RDf1Kq8VmPc1DgSUGA1aSA8zgDM-ps17tjR8dmCQ9M-Q-cnH38cnybdoQyJgZEcSRynkjJnpHMw9ioHhpQlKTOluVY6M46ATPDMcJkqmTsCeDh1ikuprYB2p_Q5Wq3qyr5EuNQacghu5UCxPFUDWgqAN1oyGIMZmfbQ23njFKZjLPcHZ4yKlmuZFL5milAzPfQ66o5bno6_au3N27jofHUCEkDBA5JR3kMHUQxe5pdOVGXrKegA8AQFxuARL1qTiK8BgOzXnmkPiSVjiQqewXtZUl3-DkzeOfSnQkDOw2hWj379u2Amj6gUn75-HobUzr8o76J14ucRwtTSHlptbqb2FYCtRu8Hp_oDTDgmLg
  priority: 102
  providerName: Wiley-Blackwell
Title A roadmap to integrate astrocytes into Systems Neuroscience
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23632
https://www.ncbi.nlm.nih.gov/pubmed/31058383
https://www.proquest.com/docview/2313982135
https://www.proquest.com/docview/2232135442
https://pubmed.ncbi.nlm.nih.gov/PMC6832773
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/glia.23632
UnpaywallVersion publishedVersion
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0894-1491
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1136
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011497
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wAvDBgfhTEZMSGBlJL4I67FU4QYA0GFEJXGU-TPbVqXVFsq1P31OztpWBmakHiLcucktu_s352dnxHaFTAnCeNlYjIvEiYYT5RyOtEGJITZ1MXTGr5O8v0p-3zAD678xd_yQ_QJt-AZcbwODj63vh3nu9V98vZwdqxGhOYUBuGNnAMaH6CN6eRb8TOCR8kSCABizBVoM8PxJT1D6dXC63PSNaB5fb_k7UU1V8tfajZbx7RxUtrbRGpVnXYvyslo0eiRufiD6fF_6nsP3e0QKy5aE7uPbrnqAdoqKojWT5f4FY57SGNyfgu9K_BZreypmuOmxj0VBVbnDUyUS4C14WaNO550PPnNpukeounehx_v95PueIbEQExHEs-ppMwb6T1EYXZsiLXEZkpzrXRmPAGZ4JnhMlUy9wSQceoVl1I7ARZA6SM0qOrKPUHYag0lBHdyrFieqjG1AoCOlgyiMSPTIXq96qDSdNzl4QiNWdmyLpMytEwZW2aIXva685ax469a26t-LjuvPQcJ4OExySgfohe9GPwtLKKoytUL0AEICgqMwSMet2bRvwagcliFpkMk1gymVwhc3uuS6vgocnrnMLIKASV3e9O68evfRFO5QaX8-OVTEa-e_tszn6E7JOQSYnppGw2as4V7DoCr0TsQanwnO51nXQLYmCtS
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQeBgvwBiwwhhGTEggpUv8EdfaUzUxOuj6gDZpb5Ht2DDRJdWaCpW_nrOTuSpDk-DNyp3zYd_Zvzs7PyO0L2BOEsbJxGROJEwwnihldaINSAgrUxtOazid5KNz9vmCX3R7c_y_MC0_REy4ec8I47V3cJ-QPlixhn6bXqo-oTmFEfg-yyFQ8Zjoa2SPAqQvW6JPyRIoZ5GdlBys6q7PR7dA5u29kpuLaqaWP9V0uo5nw4R0_Kg9dXUeeAz9PpQf_UWj--bXHyyP__2tj9HDDqriYWtbW-ierZ6g7WEFYfrVEr_DYfNoyMpvo8Mhvq5VeaVmuKlx5KDAat7ADLkEPOsv1rgjSMeTFY2mfYrOjz-eHY2S7lyGxEAwRxLHqaTMGekchF_lwJCyJGWmNNdKZ8YRkAmeGS5TJXNHABKnTnEptRXQ9ZQ-QxtVXdkdhEutoYbgVg4Uy1M1oKUAhKMlgzDMyLSH3t_0TmE60nJ_dsa0aOmWSeFbpggt00Nvo-6sper4q9buTScXnbvOQQJAeEAyynvoTRSDo_nVE1XZegE6gD1BgTG4xfPWJuJjACP75WfaQ2LNWqKCJ_Fel1SX3wOZdw5DqhBQcz_a1Z1v_yHYyR0qxafxyTCUXvyL8mu0OTo7HRfjk8mXl-gB8WmFkGnaRRvN9cK-AuzV6L3gYb8BoG0qTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQkYAXrnIsFDCiQgIp28RHHIunFWVpoawQolLfIp-06jZZdbNCy69n7KRZLUWV4M3KjHPYM_Y39uQzQtsC5iRhvExM5kXCBOOJUk4n2oCEMJu6eFrDl0m-d8g-HfGjLjcn_AvT8kP0C27BM-J4HRzczazfWbGG_pieqCGhOYUR-DrjsggZfbvfevYoQPqyJfqULIFy1rOTkp1V3fX56BLIvJwreXNRzdTyp5pO1_FsnJDGd9pTV-eRxzDkoZwOF40eml9_sDz-97feRbc7qIpHrW3dQ9dcdR9tjioI08-W-DWOyaNxVX4TvRvh81rZMzXDTY17Dgqs5g3MkEvAs-FijTuCdDxZ0Wi6B-hw_OH7-72kO5chMRDMkcRzKinzRnoP4ZctDLGW2ExprpXOjCcgEzwzXKZK5p4AJE694lJqJ6DrKX2INqq6co8RtlpDDcGdLBTLU1VQKwDhaMkgDDMyHaA3F71Tmo60PJydMS1bumVShpYpY8sM0Kted9ZSdfxVa-uik8vOXecgASBckIzyAXrZi8HRwu6Jqly9AB3AnqDAGNziUWsT_WMAI4ftZzpAYs1aeoVA4r0uqU6OI5l3DkOqEFBzu7erK9_-bbSTK1TKjwf7o1h68i_KL9CNr7vj8mB_8vkpukXCqkJcaNpCG835wj0D6NXo59HBfgMRUinT
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq7aFceJXHQkGuqJCKlCXxI16LU4ToA8GKAyuVU-QnVGyTVZsVWn49YycburSqkHqLMuMktmfsb8bOZ4T2BMxJwniZmMyLhAnGE6WcTrQBCWE2dfG0hs-T_GjKPp7wk0t_8bf8EH3CLXhGHK-Dg8-tb8f5bnWfvP0-O1UjQnMKg_BmzgGND9DmdPKl-BbBo2QJBAAx5gq0meH4kp6h9HLh9TnpCtC8ul9ya1HN1fKXms3WMW2clA7uIbWqTrsX5edo0eiR-f0P0-Nt6nsf3e0QKy5aE3uANlz1EG0XFUTrZ0v8Gsc9pDE5v43eFfi8VvZMzXFT456KAquLBibKJcDacLPGHU86nvxl03SP0PTgw9f3R0l3PENiIKYjiedUUuaN9B6iMDs2xFpiM6W5VjoznoBM8MxwmSqZewLIOPWKS6mdAAug9DEaVHXlniJstYYSgjs5VixP1ZhaAUBHSwbRmJHpEO2vOqg0HXd5OEJjVrasy6QMLVPGlhmiV73uvGXsuFZrZ9XPZee1FyABPDwmGeVDtNuLwd_CIoqqXL0AHYCgoMAYPOJJaxb9awAqh1VoOkRizWB6hcDlvS6pTn9ETu8cRlYhoOReb1o3fv2baCo3qJSHn46LePXs_575HN0hIZcQ00s7aNCcL9wLAFyNftn51B_aiSpp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+roadmap+to+integrate+astrocytes+into+Systems+Neuroscience&rft.jtitle=Glia&rft.au=Kastanenka%2C+Ksenia+V&rft.au=Moreno-Bote%2C+Rub%C3%A9n&rft.au=De+Pitt%C3%A0%2C+Maurizio&rft.au=Perea%2C+Gertrudis&rft.date=2020-01-01&rft.issn=1098-1136&rft.eissn=1098-1136&rft.volume=68&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1002%2Fglia.23632&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon