Path algorithms for fused lasso signal approximator with application to COVID‐19 spread in Korea
Summary The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known tha...
        Saved in:
      
    
          | Published in | International statistical review Vol. 91; no. 2; pp. 218 - 242 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          John Wiley & Sons, Inc
    
        01.08.2023
     John Wiley and Sons Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-7734 1751-5823 1751-5823  | 
| DOI | 10.1111/insr.12521 | 
Cover
| Abstract | Summary
The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair‐case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair‐case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily‐confirmed cases of COVID‐19 in Korea to identify the change points of its spread. | 
    
|---|---|
| AbstractList | The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair‐case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair‐case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily‐confirmed cases of COVID‐19 in Korea to identify the change points of its spread. Summary The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair‐case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair‐case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily‐confirmed cases of COVID‐19 in Korea to identify the change points of its spread. The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair-case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair-case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily-confirmed cases of COVID-19 in Korea to identify the change points of its spread.The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair-case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair-case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily-confirmed cases of COVID-19 in Korea to identify the change points of its spread.  | 
    
| Author | Yu, Donghyeon Son, Won Lim, Johan  | 
    
| AuthorAffiliation | 1 Department of Information Statistics Dankook University Gyeonggi‐do Korea 3 Department of Statistics Inha University Incheon Korea 2 Department of Statistics Seoul National University Seoul Korea  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Information Statistics Dankook University Gyeonggi‐do Korea – name: 3 Department of Statistics Inha University Incheon Korea – name: 2 Department of Statistics Seoul National University Seoul Korea  | 
    
| Author_xml | – sequence: 1 givenname: Won surname: Son fullname: Son, Won organization: Dankook University – sequence: 2 givenname: Johan orcidid: 0000-0003-3130-9820 surname: Lim fullname: Lim, Johan organization: Seoul National University – sequence: 3 givenname: Donghyeon orcidid: 0000-0003-4519-8500 surname: Yu fullname: Yu, Donghyeon email: dyu@inha.ac.kr organization: Inha University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36710888$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kctu1DAUhi1URKeFDQ-ALLFBoBRfY2eDhIbbiIoiblvLSZwZVx472AnD7HgEnpEnwWnKrUL1xpbO9x__5z9H4MAHbwC4i9EJzuex9SmeYMIJvgEWWHBccEnoAVggispCCMoOwVFK5wghSiS7BQ5pKTCSUi5A_VYPG6jdOkQ7bLYJdiHCbkymhU6nFGCya68d1H0fw1e71UOu7-yk6XtnGz3Y4OEQ4PLs0-rZj2_fcQVTH41uofXwdciv2-Bmp10ydy7vY_DxxfMPy1fF6dnL1fLpadEwJnFheI0xqRmtalSTlmOOBC6FRlIT1jKOGKqwbFlLdVNqIg1hDUG4M23FZc0RPQaP5r6j7_V-p51TfcyO415hpKak1JSUukgq009muh_rrWkb44eo_yiCturfircbtQ5fVCUFK9n03YPLBjF8Hk0a1NamxjinvQljUkRMGQuKREbvX0HPwxhzrJmSTKAqD0czde9vR7-t_FpWBtAMNDGkFE2nGjtcLCAbtO7_Uz68Irk2EjzDO-vM_hpSrd68fzdrfgKpusWk | 
    
| CitedBy_id | crossref_primary_10_29220_CSAM_2024_31_5_487 crossref_primary_10_1007_s42952_023_00250_3 crossref_primary_10_1214_23_BJPS577  | 
    
| Cites_doi | 10.1214/07-AOAS131 10.1214/08-AOS665 10.1093/biostatistics/kxh008 10.1214/11-AOS878 10.1214/15-EJS1029 10.1016/j.jspi.2018.10.003 10.1137/070690274 10.1093/biomet/asn034 10.1111/j.1467-9868.2005.00490.x 10.1214/14-AOS1245 10.1016/j.ijid.2021.02.004 10.1214/aos/1176344136 10.1016/0167-7152(88)90118-6 10.1016/j.csda.2015.08.013 10.1198/jcgs.2010.09208  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 International Statistical Institute. 2023 International Statistical Institute  | 
    
| Copyright_xml | – notice: 2022 International Statistical Institute. – notice: 2023 International Statistical Institute  | 
    
| DBID | AAYXX CITATION NPM 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1111/insr.12521 | 
    
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef PubMed Aerospace Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics | 
    
| DocumentTitleAlternate | Son et al | 
    
| EISSN | 1751-5823 | 
    
| EndPage | 242 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:9874640 PMC9874640 36710888 10_1111_insr_12521 INSR12521  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: Inha University Research Grant – fundername: National Research Foundation of Korea funderid: NRF‐2020R1F1A1A01051039; NRF‐2021R1A2C1010786; NRF‐2022R1A5A7033499 – fundername: ; – fundername: ; grantid: NRF‐2020R1F1A1A01051039; NRF‐2021R1A2C1010786; NRF‐2022R1A5A7033499  | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29J 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAWIL AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABLJU ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACDIW ACGFO ACGFS ACHJO ACIWK ACMTB ACNCT ACPOU ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADODI ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AELLO AENEX AEQDE AEUPB AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFVYC AFWVQ AFZJQ AGHNM AGLNM AGQPQ AGYGG AHBTC AIAGR AIHAF AITYG AIURR AIWBW AJBDE AJXKR AKBRZ ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DU5 EBS ECEWR EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GIFXF GODZA H.T H.X HF~ HGD HGLYW HQ6 HVGLF HZ~ H~9 IPSME IX1 J0M JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RBU RNS ROL RPE RX1 SA0 SUPJJ TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 YYP ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION NPM 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4481-e5b112b439b0b2d51507167a08a24d45040918d4d3ac6a28e24c201fed958b503 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0306-7734 1751-5823  | 
    
| IngestDate | Sun Oct 26 03:18:55 EDT 2025 Thu Aug 21 18:38:37 EDT 2025 Fri Jul 11 14:26:52 EDT 2025 Fri Jul 25 10:44:57 EDT 2025 Mon Jul 21 06:07:54 EDT 2025 Wed Oct 01 01:25:00 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Wed Jun 11 08:26:09 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | solution path pathwise adaptive weight Change points fused lasso signal approximator modified path algorithm  | 
    
| Language | English | 
    
| License | 2022 International Statistical Institute. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4481-e5b112b439b0b2d51507167a08a24d45040918d4d3ac6a28e24c201fed958b503 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-3130-9820 0000-0003-4519-8500  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9874640 | 
    
| PMID | 36710888 | 
    
| PQID | 2847095043 | 
    
| PQPubID | 105652 | 
    
| PageCount | 242 | 
    
| ParticipantIDs | unpaywall_primary_10_1111_insr_12521 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9874640 proquest_miscellaneous_2771087307 proquest_journals_2847095043 pubmed_primary_36710888 crossref_citationtrail_10_1111_insr_12521 crossref_primary_10_1111_insr_12521 wiley_primary_10_1111_insr_12521_INSR12521  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2023 | 
    
| PublicationDateYYYYMMDD | 2023-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands – name: Hoboken  | 
    
| PublicationTitle | International statistical review | 
    
| PublicationTitleAlternate | Int Stat Rev | 
    
| PublicationYear | 2023 | 
    
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc  | 
    
| References | 2004; 32 1989; 51 2009; 51 2010; 19 2021; 104 1988; 6 2006; 7 2004; 5 2016 2016; 94 2014 2011; 39 2008; 95 2007; 1 2015; 9 2009; 37 2019; 200 2005; 67 1978; 6 1999 2014; 42 Yao Y.C. (e_1_2_9_21_1) 1989; 51 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_2_1 Bradely Efron B. (e_1_2_9_3_1) 2004; 32 Zhao P. (e_1_2_9_22_1) 2006; 7 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1  | 
    
| References_xml | – volume: 37 start-page: 2922 year: 2009 end-page: 2952 article-title: Properties and refinements of the fused lasso publication-title: Ann. Stat. – volume: 42 start-page: 2243 issue: 6 year: 2014 end-page: 2281 article-title: Wild binary segmentation for multiple change‐point detection publication-title: Ann. Stat. – volume: 1 start-page: 302 year: 2007 end-page: 332 article-title: Pathwise coordinate optimization publication-title: Ann. Appl. Stat. – volume: 32 start-page: 407 year: 2004 end-page: 499 article-title: Least angle regression publication-title: Ann. Stat. – volume: 51 start-page: 339 issue: 2 year: 2009 end-page: 360 article-title: trend filtering publication-title: SIAM Review – volume: 94 start-page: 221 year: 2016 end-page: 237 article-title: On stepwise pattern recovery of the fused Lasso publication-title: Comput. Stat. Data Anal. – volume: 95 start-page: 759 issue: 3 year: 2008 end-page: 771 article-title: Extended Bayesian information criteria for model selection with large model spaces publication-title: Biometrika – volume: 104 start-page: 742 year: 2021 end-page: 745 article-title: Comparison of the second and third waves of the COVID‐19 pandemic in South Korea: Importance of early public health intervention publication-title: Int. J. Infectious Disease – volume: 5 start-page: 557 issue: 4 year: 2004 end-page: 572 article-title: Circular binary segmentation for the analysis of array‐based dna copy number data publication-title: Biostatistics – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – volume: 200 start-page: 223 year: 2019 end-page: 238 article-title: Modified path algorithm of fused Lasso signal approximator for consistent recovery of change points publication-title: J. Stat. Plan. Inference – volume: 7 start-page: 2541 year: 2006 article-title: On model selection consistency of lasso publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 984 year: 2010 end-page: 1006 article-title: A path algorithm for the fused Lasso signal approximator publication-title: J. Comput. Graph. Stat. – year: 2016 – year: 2014 – volume: 39 start-page: 1335 issue: 3 year: 2011 end-page: 1371 article-title: The solution path of the generalized lasso publication-title: Ann. Stat. – volume: 67 start-page: 91 year: 2005 end-page: 108 article-title: Sparsity and smoothness via the fused lasso publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) – volume: 6 start-page: 181 issue: 3 year: 1988 end-page: 189 article-title: Estimating the number of change‐points via Schwarz' criterion publication-title: Stat. Probab. Lett. – year: 1999 – volume: 9 start-page: 1150 year: 2015 end-page: 1172 article-title: Preconditioning the lasso for sign consistency publication-title: Electr. J. Stat. – volume: 51 start-page: 370 issue: 3 year: 1989 end-page: 381 article-title: Least‐squares estimation of a step function publication-title: Sankhyā Indian J. Stat. Ser. A – volume: 7 start-page: 2541 year: 2006 ident: e_1_2_9_22_1 article-title: On model selection consistency of lasso publication-title: J. Mach. Learn. Res. – ident: e_1_2_9_2_1 – ident: e_1_2_9_5_1 doi: 10.1214/07-AOAS131 – ident: e_1_2_9_13_1 doi: 10.1214/08-AOS665 – ident: e_1_2_9_10_1 – ident: e_1_2_9_14_1 – ident: e_1_2_9_11_1 doi: 10.1093/biostatistics/kxh008 – ident: e_1_2_9_19_1 doi: 10.1214/11-AOS878 – ident: e_1_2_9_8_1 doi: 10.1214/15-EJS1029 – ident: e_1_2_9_17_1 doi: 10.1016/j.jspi.2018.10.003 – ident: e_1_2_9_9_1 doi: 10.1137/070690274 – volume: 32 start-page: 407 year: 2004 ident: e_1_2_9_3_1 article-title: Least angle regression publication-title: Ann. Stat. – volume: 51 start-page: 370 issue: 3 year: 1989 ident: e_1_2_9_21_1 article-title: Least‐squares estimation of a step function publication-title: Sankhyā Indian J. Stat. Ser. A – ident: e_1_2_9_4_1 doi: 10.1093/biomet/asn034 – ident: e_1_2_9_18_1 doi: 10.1111/j.1467-9868.2005.00490.x – ident: e_1_2_9_6_1 doi: 10.1214/14-AOS1245 – ident: e_1_2_9_16_1 doi: 10.1016/j.ijid.2021.02.004 – ident: e_1_2_9_15_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_9_20_1 doi: 10.1016/0167-7152(88)90118-6 – ident: e_1_2_9_12_1 doi: 10.1016/j.csda.2015.08.013 – ident: e_1_2_9_7_1 doi: 10.1198/jcgs.2010.09208  | 
    
| SSID | ssj0003284 | 
    
| Score | 2.3397467 | 
    
| Snippet | Summary
The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to... The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 218 | 
    
| SubjectTerms | Algorithms Change points COVID-19 fused lasso signal approximator modified path algorithm Original Parameter modification pathwise adaptive weight solution path  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbtRAEIZLUS7kwr4YAmpELiB55KVtd0tcUCBKQAooEJQLsnpzYjGxR2NbLCcegWfkSahuL8kQFAlulrpmxu2p6vrKXf4NsKWUFBrzgC94Efi0MNQXmAh9QUMlZKi4LJza5366e0hfHyVHa_B8fBam14eYbrjZyHDrtQ1wIZtzQV5WzXKG6dk9RR7GqaunDs60o-KI9dpRWDJnWUwHbVLbxnP20dVsdAExL3ZKXumqhfj2RcznqzTr0tHONfg0TqTvQvk861o5U9__0Hj835leh6sDp5IXvWPdgDVT3YQNi6a9svMtkO8QHomYH9fLsj05bQjiLym6xmhiibwmtjUEv8Kpln8tT211T-xtX3Ju05y0Ndl--3Hv5a8fP0NOmgUyrCZlRd7UeHQbDndefdje9Yc3NvgKy7zQN4lEfpMIOTKQkU4cbaaZCJiIqKYJrhg8ZJrqWKhURMxEVCGBFEbzhMkkiO_AelVX5h6QoNCaax7anVsqk0KEkeGMi1BzRGyRefB0_OdyNciZ27dqzPOxrLGXLXeXzYMnk-2iF_H4q9Xm6AD5EMhNbrM3UmhAYw8eT8MYgnZfRVSm7tAmQ0xjuFTiSd3t_WX6mTi1Y4x5kK140mRg5b1XR6ryxMl8c5bh1AMPtiafu_TsnzkfusQk39t_f-CO7v-L8QPYiJDs-q7HTVhvl515iCTWykcu4n4DIPkxzQ priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Path algorithms for fused lasso signal approximator with application to COVID‐19 spread in Korea | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12521 https://www.ncbi.nlm.nih.gov/pubmed/36710888 https://www.proquest.com/docview/2847095043 https://www.proquest.com/docview/2771087307 https://pubmed.ncbi.nlm.nih.gov/PMC9874640 https://www.ncbi.nlm.nih.gov/pmc/articles/9874640  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 91 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1751-5823 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003284 issn: 0306-7734 databaseCode: ABDBF dateStart: 20070401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1751-5823 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0003284 issn: 0306-7734 databaseCode: AMVHM dateStart: 20070401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0306-7734 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1751-5823 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003284 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdXVXqgF94PQ6kW0QtITr32ru09VoWqBSlUgaBysvZlauHYUWyLx4mPwGfkkzDrlwhFFdws7cjZaGY9v8lM_kZoXykpNOQBV_DUc2lqqCsgEbqCEiUkUVymrdrnLDxZ0Ffn7HwLkeG_MO3QvpLZtMiX0yK7aGcrV0t1MMyJHUCRTEMKVfp2yAC_J2h7MTs7_NB1C0Kgxa6THDHistgPeklSO72TFdV6CgndJ5tJ6BJZXh6QvNYUK_H1s8jzTYhts9DxDTQf9t8Nn3yaNrWcqm9_SDv-1xe8ia73TIoPu6VbaMsUt9GOxdBOxfkOkmcAiljkH8t1Vl8sKwyoi9OmMhpb-i6xHQOBW7QK5V-ypa3ksf2JF__WIMd1iY_evD998fP7D8JxtQJe1Tgr8OsSru6ixfHLd0cnbv92BldBSUdcwySwmgSgkZ70NWvJMoyEFwufasrg6cBJrKkOhAqFHxufKqCN1GjOYsm84B6aFGVhHiDspVpzzYnt0lLJUkF8w2MuiOaA0yJy0LPBXYnqpcvtGzTyZChhrGuT1rUOejrarjrBjr9a7Q5eT_pDWyU2UwNxejRw0JNxGY6b7aGIwpQN2ESAZDE8FmFT97sgGT8mCO1aHDso2gif0cBKeW-uQAC0kt69zx20Pwbalbt_3sbgFSbJ6eztvL16-G_3fIR2fOC3brZxF03qdWMeA2_Vcg8qjbm_15-zX5-gLMM | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMctVA7thfcjbQEjegEpqzycxD6iQrVLy4JKi3qL7NihEdtktUnE48RH4DPySZhxsmmXokpwi-TZvHbG87M9-ZuQnSxTUkMecKXIPZflhrkSEqErmZ9J5WdC5VbtcxqPj9mbk-ikr83Bb2E6fYhhwg0jw_bXGOA4IX0hyouyXowgP-Nn5NdZDAMVZKLDc_WoMOCdehQMmpMkZL06KRbynP92NR9dgszLtZLrbTmX377I2WyVZ21C2rvZ7bpaWx1DrEP5PGobNcq-_6Hy-N_Peovc6FGVvux86za5Zso7ZAPptBN3vkvUe-BHKmefqkXRnJ7VFAiY5m1tNEUoryhWh8AprHD51-IMB_gUZ37phXVz2lR0993HyatfP376gtZzwFhNi5LuV3B0jxzvvT7aHbv9pg1uBiM93zWRAoRTwDnKU4GOLHDGifS4DJhmEXQawuea6VBmsQy4CVgGEJIbLSKuIi-8T9bKqjQPCfVyrYUWPi7eMhXl0g-M4EL6WgBly8Qhz5d_XZr1iua4scYsXY5s8LWl9rU55NlgO-90PP5qtb30gLSP5TrFBA4g6rHQIU-HZohCXFqRpalasEmA1Dj0lnBTDzqHGS4TxtjGuUOSFVcaDFDhe7WlLE6t0rfgCTq2Q3YGp7vy7l9YJ7rCJJ1MPxzao81_MX5C1sdHbw_Sg8l0f4tsBAB6XRHkNllrFq15BGDWqMc2_H4DJmk17g | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMctVCTohTcltIARvYCUVR7Oxj6iLqsuRUtVKOotsmOHRmyT1SYRhVM_Qj8jn4QZJ5t2KaoEt0ievGc8P8eTvwnZTlMlNeQBV4rMc1lmmCshEbqS-alUfipUZtU-p8PdQ_b-KDrqanPwX5hWH6L_4IaRYftrDHAz19mlKM-LajGA_Iy_kd9kkeBY0Tc6uFCPCgPeqkfBoDmOQ9apk2Ihz8W-q_noCmRerZW83RRz-eO7nM1WedYmpPHddtXVyuoYYh3Kt0FTq0H68w-Vx_--13vkToeq9G3rW_fJDVM8IOtIp62480Oi9oEfqZx9LRd5fXxSUSBgmjWV0RShvKRYHQKHsMLlp_kJDvApfvmll-bNaV3SnY9fJqNfZ-e-oNUcMFbTvKB7JWw9Iofjd593dt1u0QY3hZGe75pIAcIp4BzlqUBHFjiHsfS4DJhmEXQawuea6VCmQxlwE7AUICQzWkRcRV74mKwVZWGeEOplWgstfJy8ZSrKpB8YwYX0tQDKlrFDXi9fXZJ2iua4sMYsWY5s8LEl9rE55FVvO291PP5qtbX0gKSL5SrBBA4g6rHQIS_7ZohCnFqRhSkbsImB1Dj0lnBRG63D9KcJh9jGuUPiFVfqDVDhe7WlyI-t0rfgMdy655Dt3umuvfo31omuMUkm008Hduvpvxi_ILf2R-Pkw2S6t0nWA-C8tgZyi6zVi8Y8Ay6r1XMbfb8BiAo1cg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdXVXqgFyjPmha0iF5Acuq11489VoWqBSlUhaBysvZlauHYUWyLx4mPwGfkkzC7fohQVMHN0o6cjWbW85vM5G-E9qUUXEEecDnLPJdmmrocEqHLKZFcEMlEZtU-Z9HJnL66CC82EBn-C2OH9qXIp2WxmJb5pZ2tXC7kwTAndgBFMo0oVOmbUQj4PUGb89nZ4YeuWxABLXad5Dgkbpj4QS9JaqZ38rJeTSGh-2Q9CV0hy6sDkjfacsm_fuZFsQ6xNgsd30Lnw_674ZNP07YRU_ntD2nH__qC2-hmz6T4sFu6jTZ0eQdtGQztVJzvInEGoIh58bFa5c3losaAujhra62woe8KmzEQuIVVKP-SL0wlj81PvPi3BjluKnz05v3pi5_ffxCG6yXwqsJ5iV9XcHUPzY9fvjs6cfu3M7gSSjri6lAAqwkAGuEJX4WWLKOYewn3qaIhPB0YSRRVAZcR9xPtUwm0kWnFwkSEXnAfTcqq1DsIe5lSTDFiurRUhBknvmYJ40QxwGkeO-jZ4K5U9tLl5g0aRTqUMMa1qXWtg56OtstOsOOvVnuD19P-0NapydRAnB4NHPRkXIbjZnoovNRVCzYxIFkCj0XY1IMuSMaPCSKzliQOitfCZzQwUt7rKxAAVtK797mD9sdAu3b3z20MXmOSns7enturh_92z1205QO_dbONe2jSrFr9CHirEY_7E_YLmOsr2g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+algorithms+for+fused+lasso+signal+approximator+with+application+to+COVID-19+spread+in+Korea&rft.jtitle=International+statistical+review&rft.au=Son%2C+Won&rft.au=Lim%2C+Johan&rft.au=Yu%2C+Donghyeon&rft.date=2023-08-01&rft.issn=0306-7734&rft_id=info:doi/10.1111%2Finsr.12521&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon |