Path algorithms for fused lasso signal approximator with application to COVID‐19 spread in Korea

Summary The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known tha...

Full description

Saved in:
Bibliographic Details
Published inInternational statistical review Vol. 91; no. 2; pp. 218 - 242
Main Authors Son, Won, Lim, Johan, Yu, Donghyeon
Format Journal Article
LanguageEnglish
Published Netherlands John Wiley & Sons, Inc 01.08.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0306-7734
1751-5823
1751-5823
DOI10.1111/insr.12521

Cover

Abstract Summary The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair‐case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair‐case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily‐confirmed cases of COVID‐19 in Korea to identify the change points of its spread.
AbstractList The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair‐case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair‐case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily‐confirmed cases of COVID‐19 in Korea to identify the change points of its spread.
Summary The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair‐case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair‐case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily‐confirmed cases of COVID‐19 in Korea to identify the change points of its spread.
The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair-case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair-case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily-confirmed cases of COVID-19 in Korea to identify the change points of its spread.The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find sparse signal blocks. Several path algorithms have been developed to obtain the whole solution path of the FLSA. However, it is known that the FLSA has model selection inconsistency when the underlying signals have a stair-case block, where three consecutive signal blocks are either strictly increasing or decreasing. Modified path algorithms for the FLSA have been proposed to guarantee model selection consistency regardless of the stair-case block. In this paper, we provide a comprehensive review of the path algorithms for the FLSA and prove the properties of the recently modified path algorithms' hitting times. Specifically, we reinterpret the modified path algorithm as the path algorithm for local FLSA problems and reveal the condition that the hitting time for the fusion of the modified path algorithm is not monotone in a tuning parameter. To recover the monotonicity of the solution path, we propose a pathwise adaptive FLSA having monotonicity with similar performance as the modified solution path algorithm. Finally, we apply the proposed method to the number of daily-confirmed cases of COVID-19 in Korea to identify the change points of its spread.
Author Yu, Donghyeon
Son, Won
Lim, Johan
AuthorAffiliation 1 Department of Information Statistics Dankook University Gyeonggi‐do Korea
3 Department of Statistics Inha University Incheon Korea
2 Department of Statistics Seoul National University Seoul Korea
AuthorAffiliation_xml – name: 1 Department of Information Statistics Dankook University Gyeonggi‐do Korea
– name: 3 Department of Statistics Inha University Incheon Korea
– name: 2 Department of Statistics Seoul National University Seoul Korea
Author_xml – sequence: 1
  givenname: Won
  surname: Son
  fullname: Son, Won
  organization: Dankook University
– sequence: 2
  givenname: Johan
  orcidid: 0000-0003-3130-9820
  surname: Lim
  fullname: Lim, Johan
  organization: Seoul National University
– sequence: 3
  givenname: Donghyeon
  orcidid: 0000-0003-4519-8500
  surname: Yu
  fullname: Yu, Donghyeon
  email: dyu@inha.ac.kr
  organization: Inha University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36710888$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URKeFDQ-ALLFBoBRfY2eDhIbbiIoiblvLSZwZVx472AnD7HgEnpEnwWnKrUL1xpbO9x__5z9H4MAHbwC4i9EJzuex9SmeYMIJvgEWWHBccEnoAVggispCCMoOwVFK5wghSiS7BQ5pKTCSUi5A_VYPG6jdOkQ7bLYJdiHCbkymhU6nFGCya68d1H0fw1e71UOu7-yk6XtnGz3Y4OEQ4PLs0-rZj2_fcQVTH41uofXwdciv2-Bmp10ydy7vY_DxxfMPy1fF6dnL1fLpadEwJnFheI0xqRmtalSTlmOOBC6FRlIT1jKOGKqwbFlLdVNqIg1hDUG4M23FZc0RPQaP5r6j7_V-p51TfcyO415hpKak1JSUukgq009muh_rrWkb44eo_yiCturfircbtQ5fVCUFK9n03YPLBjF8Hk0a1NamxjinvQljUkRMGQuKREbvX0HPwxhzrJmSTKAqD0czde9vR7-t_FpWBtAMNDGkFE2nGjtcLCAbtO7_Uz68Irk2EjzDO-vM_hpSrd68fzdrfgKpusWk
CitedBy_id crossref_primary_10_29220_CSAM_2024_31_5_487
crossref_primary_10_1007_s42952_023_00250_3
crossref_primary_10_1214_23_BJPS577
Cites_doi 10.1214/07-AOAS131
10.1214/08-AOS665
10.1093/biostatistics/kxh008
10.1214/11-AOS878
10.1214/15-EJS1029
10.1016/j.jspi.2018.10.003
10.1137/070690274
10.1093/biomet/asn034
10.1111/j.1467-9868.2005.00490.x
10.1214/14-AOS1245
10.1016/j.ijid.2021.02.004
10.1214/aos/1176344136
10.1016/0167-7152(88)90118-6
10.1016/j.csda.2015.08.013
10.1198/jcgs.2010.09208
ContentType Journal Article
Copyright 2022 International Statistical Institute.
2023 International Statistical Institute
Copyright_xml – notice: 2022 International Statistical Institute.
– notice: 2023 International Statistical Institute
DBID AAYXX
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/insr.12521
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
DocumentTitleAlternate Son et al
EISSN 1751-5823
EndPage 242
ExternalDocumentID oai:pubmedcentral.nih.gov:9874640
PMC9874640
36710888
10_1111_insr_12521
INSR12521
Genre article
Journal Article
GrantInformation_xml – fundername: Inha University Research Grant
– fundername: National Research Foundation of Korea
  funderid: NRF‐2020R1F1A1A01051039; NRF‐2021R1A2C1010786; NRF‐2022R1A5A7033499
– fundername: ;
– fundername: ;
  grantid: NRF‐2020R1F1A1A01051039; NRF‐2021R1A2C1010786; NRF‐2022R1A5A7033499
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWIL
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABLJU
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AENEX
AEQDE
AEUPB
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFVYC
AFWVQ
AFZJQ
AGHNM
AGLNM
AGQPQ
AGYGG
AHBTC
AIAGR
AIHAF
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EBS
ECEWR
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
H~9
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RBU
RNS
ROL
RPE
RX1
SA0
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
YYP
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4481-e5b112b439b0b2d51507167a08a24d45040918d4d3ac6a28e24c201fed958b503
IEDL.DBID UNPAY
ISSN 0306-7734
1751-5823
IngestDate Sun Oct 26 03:18:55 EDT 2025
Thu Aug 21 18:38:37 EDT 2025
Fri Jul 11 14:26:52 EDT 2025
Fri Jul 25 10:44:57 EDT 2025
Mon Jul 21 06:07:54 EDT 2025
Wed Oct 01 01:25:00 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Wed Jun 11 08:26:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords solution path
pathwise adaptive weight
Change points
fused lasso signal approximator
modified path algorithm
Language English
License 2022 International Statistical Institute.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4481-e5b112b439b0b2d51507167a08a24d45040918d4d3ac6a28e24c201fed958b503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3130-9820
0000-0003-4519-8500
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9874640
PMID 36710888
PQID 2847095043
PQPubID 105652
PageCount 242
ParticipantIDs unpaywall_primary_10_1111_insr_12521
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9874640
proquest_miscellaneous_2771087307
proquest_journals_2847095043
pubmed_primary_36710888
crossref_citationtrail_10_1111_insr_12521
crossref_primary_10_1111_insr_12521
wiley_primary_10_1111_insr_12521_INSR12521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Hoboken
PublicationTitle International statistical review
PublicationTitleAlternate Int Stat Rev
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2004; 32
1989; 51
2009; 51
2010; 19
2021; 104
1988; 6
2006; 7
2004; 5
2016
2016; 94
2014
2011; 39
2008; 95
2007; 1
2015; 9
2009; 37
2019; 200
2005; 67
1978; 6
1999
2014; 42
Yao Y.C. (e_1_2_9_21_1) 1989; 51
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_1
Bradely Efron B. (e_1_2_9_3_1) 2004; 32
Zhao P. (e_1_2_9_22_1) 2006; 7
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 37
  start-page: 2922
  year: 2009
  end-page: 2952
  article-title: Properties and refinements of the fused lasso
  publication-title: Ann. Stat.
– volume: 42
  start-page: 2243
  issue: 6
  year: 2014
  end-page: 2281
  article-title: Wild binary segmentation for multiple change‐point detection
  publication-title: Ann. Stat.
– volume: 1
  start-page: 302
  year: 2007
  end-page: 332
  article-title: Pathwise coordinate optimization
  publication-title: Ann. Appl. Stat.
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  article-title: Least angle regression
  publication-title: Ann. Stat.
– volume: 51
  start-page: 339
  issue: 2
  year: 2009
  end-page: 360
  article-title: trend filtering
  publication-title: SIAM Review
– volume: 94
  start-page: 221
  year: 2016
  end-page: 237
  article-title: On stepwise pattern recovery of the fused Lasso
  publication-title: Comput. Stat. Data Anal.
– volume: 95
  start-page: 759
  issue: 3
  year: 2008
  end-page: 771
  article-title: Extended Bayesian information criteria for model selection with large model spaces
  publication-title: Biometrika
– volume: 104
  start-page: 742
  year: 2021
  end-page: 745
  article-title: Comparison of the second and third waves of the COVID‐19 pandemic in South Korea: Importance of early public health intervention
  publication-title: Int. J. Infectious Disease
– volume: 5
  start-page: 557
  issue: 4
  year: 2004
  end-page: 572
  article-title: Circular binary segmentation for the analysis of array‐based dna copy number data
  publication-title: Biostatistics
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 200
  start-page: 223
  year: 2019
  end-page: 238
  article-title: Modified path algorithm of fused Lasso signal approximator for consistent recovery of change points
  publication-title: J. Stat. Plan. Inference
– volume: 7
  start-page: 2541
  year: 2006
  article-title: On model selection consistency of lasso
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 984
  year: 2010
  end-page: 1006
  article-title: A path algorithm for the fused Lasso signal approximator
  publication-title: J. Comput. Graph. Stat.
– year: 2016
– year: 2014
– volume: 39
  start-page: 1335
  issue: 3
  year: 2011
  end-page: 1371
  article-title: The solution path of the generalized lasso
  publication-title: Ann. Stat.
– volume: 67
  start-page: 91
  year: 2005
  end-page: 108
  article-title: Sparsity and smoothness via the fused lasso
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– volume: 6
  start-page: 181
  issue: 3
  year: 1988
  end-page: 189
  article-title: Estimating the number of change‐points via Schwarz' criterion
  publication-title: Stat. Probab. Lett.
– year: 1999
– volume: 9
  start-page: 1150
  year: 2015
  end-page: 1172
  article-title: Preconditioning the lasso for sign consistency
  publication-title: Electr. J. Stat.
– volume: 51
  start-page: 370
  issue: 3
  year: 1989
  end-page: 381
  article-title: Least‐squares estimation of a step function
  publication-title: Sankhyā Indian J. Stat. Ser. A
– volume: 7
  start-page: 2541
  year: 2006
  ident: e_1_2_9_22_1
  article-title: On model selection consistency of lasso
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_9_2_1
– ident: e_1_2_9_5_1
  doi: 10.1214/07-AOAS131
– ident: e_1_2_9_13_1
  doi: 10.1214/08-AOS665
– ident: e_1_2_9_10_1
– ident: e_1_2_9_14_1
– ident: e_1_2_9_11_1
  doi: 10.1093/biostatistics/kxh008
– ident: e_1_2_9_19_1
  doi: 10.1214/11-AOS878
– ident: e_1_2_9_8_1
  doi: 10.1214/15-EJS1029
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jspi.2018.10.003
– ident: e_1_2_9_9_1
  doi: 10.1137/070690274
– volume: 32
  start-page: 407
  year: 2004
  ident: e_1_2_9_3_1
  article-title: Least angle regression
  publication-title: Ann. Stat.
– volume: 51
  start-page: 370
  issue: 3
  year: 1989
  ident: e_1_2_9_21_1
  article-title: Least‐squares estimation of a step function
  publication-title: Sankhyā Indian J. Stat. Ser. A
– ident: e_1_2_9_4_1
  doi: 10.1093/biomet/asn034
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1467-9868.2005.00490.x
– ident: e_1_2_9_6_1
  doi: 10.1214/14-AOS1245
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ijid.2021.02.004
– ident: e_1_2_9_15_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_9_20_1
  doi: 10.1016/0167-7152(88)90118-6
– ident: e_1_2_9_12_1
  doi: 10.1016/j.csda.2015.08.013
– ident: e_1_2_9_7_1
  doi: 10.1198/jcgs.2010.09208
SSID ssj0003284
Score 2.3397467
Snippet Summary The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to...
The fused lasso signal approximator (FLSA) is a smoothing procedure for noisy observations that uses fused lasso penalty on unobserved mean levels to find...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 218
SubjectTerms Algorithms
Change points
COVID-19
fused lasso signal approximator
modified path algorithm
Original
Parameter modification
pathwise adaptive weight
solution path
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbtRAEIZLUS7kwr4YAmpELiB55KVtd0tcUCBKQAooEJQLsnpzYjGxR2NbLCcegWfkSahuL8kQFAlulrpmxu2p6vrKXf4NsKWUFBrzgC94Efi0MNQXmAh9QUMlZKi4LJza5366e0hfHyVHa_B8fBam14eYbrjZyHDrtQ1wIZtzQV5WzXKG6dk9RR7GqaunDs60o-KI9dpRWDJnWUwHbVLbxnP20dVsdAExL3ZKXumqhfj2RcznqzTr0tHONfg0TqTvQvk861o5U9__0Hj835leh6sDp5IXvWPdgDVT3YQNi6a9svMtkO8QHomYH9fLsj05bQjiLym6xmhiibwmtjUEv8Kpln8tT211T-xtX3Ju05y0Ndl--3Hv5a8fP0NOmgUyrCZlRd7UeHQbDndefdje9Yc3NvgKy7zQN4lEfpMIOTKQkU4cbaaZCJiIqKYJrhg8ZJrqWKhURMxEVCGBFEbzhMkkiO_AelVX5h6QoNCaax7anVsqk0KEkeGMi1BzRGyRefB0_OdyNciZ27dqzPOxrLGXLXeXzYMnk-2iF_H4q9Xm6AD5EMhNbrM3UmhAYw8eT8MYgnZfRVSm7tAmQ0xjuFTiSd3t_WX6mTi1Y4x5kK140mRg5b1XR6ryxMl8c5bh1AMPtiafu_TsnzkfusQk39t_f-CO7v-L8QPYiJDs-q7HTVhvl515iCTWykcu4n4DIPkxzQ
  priority: 102
  providerName: Wiley-Blackwell
Title Path algorithms for fused lasso signal approximator with application to COVID‐19 spread in Korea
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12521
https://www.ncbi.nlm.nih.gov/pubmed/36710888
https://www.proquest.com/docview/2847095043
https://www.proquest.com/docview/2771087307
https://pubmed.ncbi.nlm.nih.gov/PMC9874640
https://www.ncbi.nlm.nih.gov/pmc/articles/9874640
UnpaywallVersion submittedVersion
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1751-5823
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003284
  issn: 0306-7734
  databaseCode: ABDBF
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1751-5823
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0003284
  issn: 0306-7734
  databaseCode: AMVHM
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0306-7734
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1751-5823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003284
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdXVXqgF94PQ6kW0QtITr32ru09VoWqBSlUgaBysvZlauHYUWyLx4mPwGfkkzDrlwhFFdws7cjZaGY9v8lM_kZoXykpNOQBV_DUc2lqqCsgEbqCEiUkUVymrdrnLDxZ0Ffn7HwLkeG_MO3QvpLZtMiX0yK7aGcrV0t1MMyJHUCRTEMKVfp2yAC_J2h7MTs7_NB1C0Kgxa6THDHistgPeklSO72TFdV6CgndJ5tJ6BJZXh6QvNYUK_H1s8jzTYhts9DxDTQf9t8Nn3yaNrWcqm9_SDv-1xe8ia73TIoPu6VbaMsUt9GOxdBOxfkOkmcAiljkH8t1Vl8sKwyoi9OmMhpb-i6xHQOBW7QK5V-ypa3ksf2JF__WIMd1iY_evD998fP7D8JxtQJe1Tgr8OsSru6ixfHLd0cnbv92BldBSUdcwySwmgSgkZ70NWvJMoyEFwufasrg6cBJrKkOhAqFHxufKqCN1GjOYsm84B6aFGVhHiDspVpzzYnt0lLJUkF8w2MuiOaA0yJy0LPBXYnqpcvtGzTyZChhrGuT1rUOejrarjrBjr9a7Q5eT_pDWyU2UwNxejRw0JNxGY6b7aGIwpQN2ESAZDE8FmFT97sgGT8mCO1aHDso2gif0cBKeW-uQAC0kt69zx20Pwbalbt_3sbgFSbJ6eztvL16-G_3fIR2fOC3brZxF03qdWMeA2_Vcg8qjbm_15-zX5-gLMM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMctVA7thfcjbQEjegEpqzycxD6iQrVLy4JKi3qL7NihEdtktUnE48RH4DPySZhxsmmXokpwi-TZvHbG87M9-ZuQnSxTUkMecKXIPZflhrkSEqErmZ9J5WdC5VbtcxqPj9mbk-ikr83Bb2E6fYhhwg0jw_bXGOA4IX0hyouyXowgP-Nn5NdZDAMVZKLDc_WoMOCdehQMmpMkZL06KRbynP92NR9dgszLtZLrbTmX377I2WyVZ21C2rvZ7bpaWx1DrEP5PGobNcq-_6Hy-N_Peovc6FGVvux86za5Zso7ZAPptBN3vkvUe-BHKmefqkXRnJ7VFAiY5m1tNEUoryhWh8AprHD51-IMB_gUZ37phXVz2lR0993HyatfP376gtZzwFhNi5LuV3B0jxzvvT7aHbv9pg1uBiM93zWRAoRTwDnKU4GOLHDGifS4DJhmEXQawuea6VBmsQy4CVgGEJIbLSKuIi-8T9bKqjQPCfVyrYUWPi7eMhXl0g-M4EL6WgBly8Qhz5d_XZr1iua4scYsXY5s8LWl9rU55NlgO-90PP5qtb30gLSP5TrFBA4g6rHQIU-HZohCXFqRpalasEmA1Dj0lnBTDzqHGS4TxtjGuUOSFVcaDFDhe7WlLE6t0rfgCTq2Q3YGp7vy7l9YJ7rCJJ1MPxzao81_MX5C1sdHbw_Sg8l0f4tsBAB6XRHkNllrFq15BGDWqMc2_H4DJmk17g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMctVCTohTcltIARvYCUVR7Oxj6iLqsuRUtVKOotsmOHRmyT1SYRhVM_Qj8jn4QZJ5t2KaoEt0ievGc8P8eTvwnZTlMlNeQBV4rMc1lmmCshEbqS-alUfipUZtU-p8PdQ_b-KDrqanPwX5hWH6L_4IaRYftrDHAz19mlKM-LajGA_Iy_kd9kkeBY0Tc6uFCPCgPeqkfBoDmOQ9apk2Ihz8W-q_noCmRerZW83RRz-eO7nM1WedYmpPHddtXVyuoYYh3Kt0FTq0H68w-Vx_--13vkToeq9G3rW_fJDVM8IOtIp62480Oi9oEfqZx9LRd5fXxSUSBgmjWV0RShvKRYHQKHsMLlp_kJDvApfvmll-bNaV3SnY9fJqNfZ-e-oNUcMFbTvKB7JWw9Iofjd593dt1u0QY3hZGe75pIAcIp4BzlqUBHFjiHsfS4DJhmEXQawuea6VCmQxlwE7AUICQzWkRcRV74mKwVZWGeEOplWgstfJy8ZSrKpB8YwYX0tQDKlrFDXi9fXZJ2iua4sMYsWY5s8LEl9rE55FVvO291PP5qtbX0gKSL5SrBBA4g6rHQIS_7ZohCnFqRhSkbsImB1Dj0lnBRG63D9KcJh9jGuUPiFVfqDVDhe7WlyI-t0rfgMdy655Dt3umuvfo31omuMUkm008Hduvpvxi_ILf2R-Pkw2S6t0nWA-C8tgZyi6zVi8Y8Ay6r1XMbfb8BiAo1cg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdXVXqgFyjPmha0iF5Acuq11489VoWqBSlUhaBysvZlauHYUWyLx4mPwGfkkzC7fohQVMHN0o6cjWbW85vM5G-E9qUUXEEecDnLPJdmmrocEqHLKZFcEMlEZtU-Z9HJnL66CC82EBn-C2OH9qXIp2WxmJb5pZ2tXC7kwTAndgBFMo0oVOmbUQj4PUGb89nZ4YeuWxABLXad5Dgkbpj4QS9JaqZ38rJeTSGh-2Q9CV0hy6sDkjfacsm_fuZFsQ6xNgsd30Lnw_674ZNP07YRU_ntD2nH__qC2-hmz6T4sFu6jTZ0eQdtGQztVJzvInEGoIh58bFa5c3losaAujhra62woe8KmzEQuIVVKP-SL0wlj81PvPi3BjluKnz05v3pi5_ffxCG6yXwqsJ5iV9XcHUPzY9fvjs6cfu3M7gSSjri6lAAqwkAGuEJX4WWLKOYewn3qaIhPB0YSRRVAZcR9xPtUwm0kWnFwkSEXnAfTcqq1DsIe5lSTDFiurRUhBknvmYJ40QxwGkeO-jZ4K5U9tLl5g0aRTqUMMa1qXWtg56OtstOsOOvVnuD19P-0NapydRAnB4NHPRkXIbjZnoovNRVCzYxIFkCj0XY1IMuSMaPCSKzliQOitfCZzQwUt7rKxAAVtK797mD9sdAu3b3z20MXmOSns7enturh_92z1205QO_dbONe2jSrFr9CHirEY_7E_YLmOsr2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+algorithms+for+fused+lasso+signal+approximator+with+application+to+COVID-19+spread+in+Korea&rft.jtitle=International+statistical+review&rft.au=Son%2C+Won&rft.au=Lim%2C+Johan&rft.au=Yu%2C+Donghyeon&rft.date=2023-08-01&rft.issn=0306-7734&rft_id=info:doi/10.1111%2Finsr.12521&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon