A method for predicting mortality in acute mesenteric ischemia: Machine learning

This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI). A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 a...

Full description

Saved in:
Bibliographic Details
Published inTurkish Journal of Trauma and Emergency Surgery Vol. 30; no. 7; pp. 487 - 492
Main Author Harmantepe, Ahmet Tarık
Format Journal Article
LanguageEnglish
Published Turkey KARE Publishing 01.07.2024
Kare Publishing
Subjects
Online AccessGet full text
ISSN1306-696X
1307-7945
DOI10.14744/tjtes.2024.48074

Cover

Abstract This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI). A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7). Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83-0.84)) were noted for their effectiveness. Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed.
AbstractList BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI). METHODS: A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7). RESULTS: Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83- 0.84)) were noted for their effectiveness. CONCLUSION: Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed. Keywords: Mesenteric ischemia; prognosis; machine learning; predict.
This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI). A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7). Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83-0.84)) were noted for their effectiveness. Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed.
[LANGUAGE= "English"] BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI).METHODS: A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7).RESULTS: Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83-0.84)) were noted for their effectiveness.CONCLUSION: Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed.[LANGUAGE= "Turkish"] AMAÇ: Bu çalışma, akut mezenterik iskemi (AMI) hastalarında hastane ölümünü tahmin eden bir yapay zeka modeli geliştirmek ve doğrulamak için makine öğrenimi (ML) modellerini kullanmayı amaçladı.GEREÇ VE YÖNTEM: Ocak 2011-Haziran 2023 tarihleri arasında Sakarya Üniversitesi Eğitim ve Araştırma Hastanesi'nde AMİ tanısı alan 122 hastanın tamamı çalışmaya dahil edildi. Hastalar bir eğitim kohortu (n=97) ve bir doğrulama kohortu (n=25) olarak ikiye ayrıldı. Tüm hastalar ölenler ve hayatta kalanlar olarak 2 gruba ayrıldı. Parametre olarak serum bazlı laboratuvar sonuçları kullanıldı. En iyi sonucu elde etmek için Python'da Recursive Feature Elimination (RFE) ile hiperparametreler ortadan kaldırıldı. ML algoritmaları ve veri analizi Python (3.7) programlama dilinde yapıldı. BULGULAR: Hastaların %56.5’i erkek (n=69), %43.5’i kadın (n=53) idi. Hastaların yaş ortalaması 71,9 (39-94) idi. Hastaneye yatışta mortalite oranı %50 (n=61) idi. Optimum sonuçlara ulaşmak için model yalnızca yaş, RDW, C reaktif protein (CRP), D-dimer, laktat, globulin ve kreatin özelliklerini seçti. Test verilerindeki başarı oranı lojistik regresyonda (LG) %80, random forest’ de %60, k-en yakın komşuluğunda (KN) %52, çok katmanlı sinir ağında (MLP) %72, destek vektör makinelerinde (SVC) %84 idi. Tüm modellerin oylanmasıyla oluşturulan voiting classifier’ de (VC) %84 başarı oranı elde edildi. Modeller arasında SVC (duyarlılık 1.0 özgüllük 0.77 AUC 0.90 Güven Aralığı (%95): (0.83- 0.84)) ve VC (duyarlılık 1.0 özgüllük 0.77 AUC 0.88 Güven Aralığı (%95): (0.83- 0.84)) gösterdi.SONUÇ: Hastaların %56.5’i erkek (n=69), %43.5’i kadın (n=53) idi. Hastaların yaş ortalaması 71,9 (39-94) idi. Hastaneye yatışta mortalite oranı %50 (n=61) idi. Optimum sonuçlara ulaşmak için model yalnızca yaş, RDW, C reaktif protein (CRP), D-dimer, laktat, globulin ve kreatin özelliklerini seçti. Test verilerindeki başarı oranı lojistik regresyonda (LG) %80, random forest’ de %60, k-en yakın komşuluğunda (KN) %52, çok katmanlı sinir ağında (MLP) %72, destek vektör makinelerinde (SVC) %84 idi. Tüm modellerin oylanmasıyla oluşturulan voiting classifier’ de (VC) %84 başarı oranı elde edildi. Modeller arasında SVC (duyarlılık 1.0 özgüllük 0.77 AUC 0.90 Güven Aralığı (%95): (0.83-0.84)) ve VC (duyarlılık 1.0 özgüllük 0.77 AUC 0.88 Güven Aralığı (%95): (0.83-0.84)) gösterdi.
Author Harmantepe, Ahmet Tarık
AuthorAffiliation 3 Department of Oncology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye
4 Department of General Surgery, Sakarya University Training and Research Hospital, Sakarya- Türkiye
2 Department of General Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye
1 Department of Gastroenterology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye
AuthorAffiliation_xml – name: 2 Department of General Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye
– name: 4 Department of General Surgery, Sakarya University Training and Research Hospital, Sakarya- Türkiye
– name: 1 Department of Gastroenterology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye
– name: 3 Department of Oncology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye
Author_xml – sequence: 1
  givenname: Ahmet Tarık
  surname: Harmantepe
  fullname: Harmantepe, Ahmet Tarık
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38967529$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URB_0B7BBllhPuH6MPWaDogoKUhEsQGJneRxP4mjGDranKP8eNymUSixY2bLPObrnu-foJMTgEHpBYEG45Px12RaXFxQoX_AOJH-CzggD2UjF25PDXTRCie-n6DLnLQAQwhQj8hk6ZZ0SsqXqDH1Z4smVTVzhISa8S27lbfFhjaeYihl92WMfsLFzcVWYXSgueYt9ths3efMGfzJ244PDozMpVONz9HQwY3aX9-cF-vb-3derD83N5-uPV8ubxnIuS-MGYQCU62UvB9HBIKRiBpjtLaO265U01qwsV0BF31rGe8ppT0Faw1qigF0gesydw87sf5px1LvkJ5P2moA-ENIHQvqOkD4Qqqa3R9Nu7ie3srVOMg_GaLx-_BP8Rq_jra7oGGEtqwmv7hNS_DG7XPQ2zinUpppREIpAx-FBtTaj0z4MsabZqVLTyw54J9oORFUt_qG6613R2rrtwdf3R4aXf4__Z-7f66wCchTYFHNObvgPJr8ANLiz0g
ContentType Journal Article
Copyright COPYRIGHT 2024 KARE Publishing
2024. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://tjtes.org/policies
Copyright © 2024 Turkish Journal of Trauma and Emergency Surgery 2024
Copyright_xml – notice: COPYRIGHT 2024 KARE Publishing
– notice: 2024. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://tjtes.org/policies
– notice: Copyright © 2024 Turkish Journal of Trauma and Emergency Surgery 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
5PM
ADTOC
UNPAY
DOI 10.14744/tjtes.2024.48074
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Akut mezenter iskemisinde mortaliteyi tahmin etmeye yönelik bir yöntem: Makine öğrenimi
EISSN 1307-7945
EndPage 492
ExternalDocumentID oai:pubmedcentral.nih.gov:11331353
PMC11331353
A804865806
38967529
10_14744_tjtes_2024_48074
Genre Journal Article
GroupedDBID ---
2WC
53G
7X7
8FI
8FJ
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
DIK
F5P
FYUFA
GJB
HMCUK
IAO
IHR
INH
ITC
PGMZT
PHGZM
PHGZT
PIMPY
PUEGO
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c447t-ef6a009eb7b7f680f6793a03cbc32c8b97acadc49026b5c34b242b207ca351903
IEDL.DBID UNPAY
ISSN 1306-696X
IngestDate Sun Oct 26 03:29:06 EDT 2025
Tue Sep 30 17:08:07 EDT 2025
Tue Oct 07 07:04:56 EDT 2025
Mon Oct 20 22:50:15 EDT 2025
Mon Oct 20 16:56:12 EDT 2025
Thu Jan 02 22:30:26 EST 2025
Wed Oct 01 04:54:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-ef6a009eb7b7f680f6793a03cbc32c8b97acadc49026b5c34b242b207ca351903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11331353
PMID 38967529
PQID 3206910840
PQPubID 5083804
PageCount 6
ParticipantIDs unpaywall_primary_10_14744_tjtes_2024_48074
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331353
proquest_journals_3206910840
gale_infotracmisc_A804865806
gale_infotracacademiconefile_A804865806
pubmed_primary_38967529
crossref_primary_10_14744_tjtes_2024_48074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Turkey
PublicationPlace_xml – name: Turkey
– name: Istanbul
PublicationTitle Turkish Journal of Trauma and Emergency Surgery
PublicationTitleAlternate Ulus Travma Acil Cerrahi Derg
PublicationYear 2024
Publisher KARE Publishing
Kare Publishing
Publisher_xml – name: KARE Publishing
– name: Kare Publishing
SSID ssj0001139317
Score 2.3135421
Snippet This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute...
BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients...
[LANGUAGE= "English"] BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 487
SubjectTerms Acute Disease
Adult
Aged
Aged, 80 and over
Algorithms
Analysis
Artificial intelligence
C-reactive protein
Confidence intervals
Creatinine
Female
Health aspects
Hospital Mortality
Hospitalization
Humans
Information management
Ischemia
Lactates
Machine Learning
Male
Medical research
Medicine, Experimental
Mesenteric Ischemia - mortality
Methods
Middle Aged
Mortality
Original
Predictive Value of Tests
Prognosis
Regression analysis
Risk factors
Success
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB50PehFFF_1RQ6CoFS7bZp2BZFVFBFcRBS8hbxWV7Su2kX89870sVoPek5o05lM5vs6kxmArY61IkyE8gUVq-SCt32lY-Fbi4al4jalVVK2RU-c3_KLu_huAnr1XRhKq6zPxOKgti-G_pHvR2Eg0LUhHzkavvrUNYqiq3ULDVW1VrCHRYmxSZgKqTJWC6aOT3tX11U4kyec7-ePiOGQGIZ8j65T84ZD-n0s__BLv3Mmp0fZUH1-qKenHw7pbA5mKyTJuqXq52HCZQtw1WVlT2iGYJQN3ygMQ4nN7LmA2Qi52SBjyoxyhxPp4hEFbNgAOa57HqgDdlkkVzpWdZO4X4Tbs9Obk3O_aprgG86T3Hd9oRA3OZ3opC_SoC_QAlUQGW2i0KS6kyijrOEdJF86NhHX6KR1GCRGUa--IFqCVvaSuRXAxSB8jFyUWiQdcajSNncJPtrEkRPacg92asnJYVkbQxKnIDHLQsySxCwLMXuwTbKVZDcoQKOq9H98FVWgkt2Uiv_FaSA8WG_MxP1umsO1dmRlb-_ye3d4sFwqarwkhGTIisKOB2lDheMJVGG7OZINHopK221k8NQYxIPdsbb__9TVv1e4BjM0t8z5XYdW_jZyG4hscr1ZbdcvcCf6SA
  priority: 102
  providerName: ProQuest
Title A method for predicting mortality in acute mesenteric ischemia: Machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/38967529
https://www.proquest.com/docview/3206910840
https://pubmed.ncbi.nlm.nih.gov/PMC11331353
https://www.ncbi.nlm.nih.gov/pmc/articles/11331353
UnpaywallVersion submittedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1307-7945
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001139317
  issn: 1306-696X
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1307-7945
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001139317
  issn: 1306-696X
  databaseCode: RPM
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1307-7945
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001139317
  issn: 1306-696X
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1307-7945
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001139317
  issn: 1306-696X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB21yQEuBcSXoUR7QEIC2XHs9a7NLaBWFVKjCBEpnKzd9aYYEjdqHSH49cys7ajOBfVo7cofeh7ve943MwBvs6IQkRTKF1Sskgs-8ZVOhF8UGFgqmZCtktwWM3Gx4F-WyfIIoi4Xxpn2jS6Dar0JqvKH81ZuN2bc-cTGE1RV1KzhGIYiQf49gOFiNp9-d8oK5bHIxLLdvuSS83H9EzkbCsGIB5Q-zXsL0OFn-M46dOiRfLCrturPb7Ve31mAzh81SYG3rm4h-U5-BbtaB-bvQVXH-z3bYzhp-SibNmNP4MhWT2E-ZU1naYaUlm1vaDOH7NFs48g6EndWVkyZXW1xIqUv0bYPK1Ep202pPrJLZ9G0rO1JcfUMFudn3z5f-G3rBd9wLmvfroRC9mW11HIl0nAlMI5VGBtt4sikOpPKqMLwDCWcTkzMNS71OgqlUdTxL4yfw6C6ruxLwJtBEhrbOC1QuiSRSifcSjy1SWIrdME9eN_hkW-bChs5KRMCL3fg5QRe7sDz4B0hllP0ISxGtUkEeCmqY5VPUyohmKSh8OC0NxOjxvSHO8zzNmpv8zgKBdIn1LwevGjg398SEjvUVlHmQdp7MfYTqE53fwQhdvW6O1Q9-LB_h_7_qK_uNfs1PKSDxkh8CoP6ZmffIF2q9QiO5VKOYPjpbDb_ikez-eXI_dUatZHzD1zGGWU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPOCLkfhVBdwHjYmm0u5ut60JMadCDoELMZDwtu5u9_QMlAN6Ifxz_m3O9OOkPOgTz91utzM7nd-vOx8Ar_KiUDxVJlRUrFIqGYfGJiosCjQsk8QUVknRFiM1PJJfj5PjBfjd5cJQWGX3Taw_1MWZo3_kG4JHCl0b8pGP0_OQukbR6WrXQsO0rRWKzbrEWJvYseuvr5DCXW7ufEF9v-Z8e-vw8zBsuwyETsq0Cv1YGQQa3qY2HassGivcsiYSzjrBXWbz1DhTOJkjW7GJE9KiV7M8Sp2h5naRwHnvwZIUMkfyt_Rpa3TwrT0-lamUG9UvxIxIRLl8T-nbsucAb7uBG37wdozm8qycmusrc3JywwFuP4QHLXJlg2arrcCCLx_BwYA1PagZgl82vaBjHwqkZqc1rEeIzyYlM25WeRxIiU50QMQmyKn96cR8YPt1MKdnbfeKH4_h6E7E9wQWy7PSPwNcDMJV4UVWIMlJuMli6VOc2iXCK1vIAN52ktPTphaHJg5DYta1mDWJWddiDuANyVaTnaIAnWnTDfBRVPFKDzIqNphkkQpgtTcS7cv1L3fa0a19X-q_uzGAp42i5ktCCIgsjOcBZD0VzgdQRe_-lXLys67sHcdCUCOSAN7Ntf3_V33-7xW-hOXh4f6e3tsZ7b6A-3RfE2-8CovVxcyvIaqq7Hq7dRl8v2tr-QNpmTdR
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9tAEB1c59BekpZ-KXHKHgqFFsmytFpJuZnQEAoNOdTgnpbd1bpVaismkQnJr8_MSjKRLyVHsYs-eDva99g3MwCf86IQUSqUL6hYJRd84iudCL8oMLBUMiFbJbktLsT5jP-YJ_MBRF0ujDPtG10G1XIVVOVf561cr8y484mNJ6iqqFnDC9gTCfLvIezNLi6nv52yQnkscjFvjy95yvm4vkLOhkIw4gGlT_PeBrT7G36yD-16JF9uqrW6v1PL5ZMN6OygSQq8dXULyXfyL9jUOjAPO1Udn_dtr2G_5aNs2oy9gYGt3sLllDWdpRlSWra-ocMcskezlSPrSNxZWTFlNrXFiZS-RMc-rESlbFelOmE_nUXTsrYnxZ93MDv7_uv03G9bL_iG87T27UIoZF9WpzpdiCxcCIxjFcZGmzgymc5TZVRheI4STicm5hq3eh2FqVHU8S-M38Owuq7sR8CXQRIa2zgrULokkcom3KZ4a5PEVuiCe_C1w0OumwobkpQJgScdeJLAkw48D74QYpKiD2Exqk0iwEdRHSs5zaiEYJKFwoNRbyZGjekPd5jLNmpvZRyFAukTal4PPjTwb18JiR1qqyj3IOstjO0EqtPdH0GIXb3uDlUPvm3X0P8_9fBZs4_gFV00RuIRDOubjT1GulTrT218PAIO9hTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+predicting+mortality+in+acute+mesenteric+ischemia%3A+Machine+learning&rft.jtitle=Ulusal+travma+ve+acil+cerrahi+dergisi+%3D+Turkish+journal+of+trauma+%26+emergency+surgery+%3A+TJTES&rft.au=Harmantepe%2C+Ahmet+Tar%C4%B1k&rft.date=2024-07-01&rft.issn=1306-696X&rft.spage=487&rft.epage=492&rft_id=info:doi/10.14744%2Ftjtes.2024.48074&rft.externalDBID=n%2Fa&rft.externalDocID=10_14744_tjtes_2024_48074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1306-696X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1306-696X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1306-696X&client=summon