A method for predicting mortality in acute mesenteric ischemia: Machine learning
This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI). A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 a...
Saved in:
| Published in | Turkish Journal of Trauma and Emergency Surgery Vol. 30; no. 7; pp. 487 - 492 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Turkey
KARE Publishing
01.07.2024
Kare Publishing |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1306-696X 1307-7945 |
| DOI | 10.14744/tjtes.2024.48074 |
Cover
| Abstract | This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI).
A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7).
Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83-0.84)) were noted for their effectiveness.
Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed. |
|---|---|
| AbstractList | BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI). METHODS: A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7). RESULTS: Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83- 0.84)) were noted for their effectiveness. CONCLUSION: Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed. Keywords: Mesenteric ischemia; prognosis; machine learning; predict. This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI). A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7). Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83-0.84)) were noted for their effectiveness. Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed. [LANGUAGE= "English"] BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute mesenteric ischemia (AMI).METHODS: A total of 122 patients diagnosed with AMI at Sakarya University Training and Research Hospital between January 2011 and June 2023 were included in the study. These patients were divided into a training cohort (n=97) and a validation cohort (n=25), and further categorized as survivors and non-survivors during hospitalization. Serum-based laboratory results served as features. Hyperfeatures were eliminated using Recursive Feature Elimination (RFE) in Python to optimize outcomes. ML algorithms and data analyses were performed using Python (version 3.7).RESULTS: Of the patients, 56.5% were male (n=69) and 43.5% were female (n=53). The mean age was 71.9 years (range 39-94 years). The mortality rate during hospitalization was 50% (n=61). To achieve optimal results, the model incorporated features such as age, red cell distribution width (RDW), C-reactive protein (CRP), D-dimer, lactate, globulin, and creatinine. Success rates in test data were as follows: logistic regression (LG), 80%; random forest (RF), 60%; k-nearest neighbor (KN), 52%; multilayer perceptron (MLP), 72%; and support vector classifier (SVC), 84%. A voting classifier (VC), aggregating votes from all models, achieved an 84% success rate. Among the models, SVC (sensitivity 1.0, specificity 0.77, area under the curve (AUC) 0.90, Confidence Interval (95%): (0.83-0.84)) and VC (sensitivity 1.0, specificity 0.77, AUC 0.88, Confidence Interval (95%): (0.83-0.84)) were noted for their effectiveness.CONCLUSION: Independent risk factors for mortality were identified in patients with AMI. An efficient and rapid method using various ML models to predict mortality has been developed.[LANGUAGE= "Turkish"] AMAÇ: Bu çalışma, akut mezenterik iskemi (AMI) hastalarında hastane ölümünü tahmin eden bir yapay zeka modeli geliştirmek ve doğrulamak için makine öğrenimi (ML) modellerini kullanmayı amaçladı.GEREÇ VE YÖNTEM: Ocak 2011-Haziran 2023 tarihleri arasında Sakarya Üniversitesi Eğitim ve Araştırma Hastanesi'nde AMİ tanısı alan 122 hastanın tamamı çalışmaya dahil edildi. Hastalar bir eğitim kohortu (n=97) ve bir doğrulama kohortu (n=25) olarak ikiye ayrıldı. Tüm hastalar ölenler ve hayatta kalanlar olarak 2 gruba ayrıldı. Parametre olarak serum bazlı laboratuvar sonuçları kullanıldı. En iyi sonucu elde etmek için Python'da Recursive Feature Elimination (RFE) ile hiperparametreler ortadan kaldırıldı. ML algoritmaları ve veri analizi Python (3.7) programlama dilinde yapıldı. BULGULAR: Hastaların %56.5’i erkek (n=69), %43.5’i kadın (n=53) idi. Hastaların yaş ortalaması 71,9 (39-94) idi. Hastaneye yatışta mortalite oranı %50 (n=61) idi. Optimum sonuçlara ulaşmak için model yalnızca yaş, RDW, C reaktif protein (CRP), D-dimer, laktat, globulin ve kreatin özelliklerini seçti. Test verilerindeki başarı oranı lojistik regresyonda (LG) %80, random forest’ de %60, k-en yakın komşuluğunda (KN) %52, çok katmanlı sinir ağında (MLP) %72, destek vektör makinelerinde (SVC) %84 idi. Tüm modellerin oylanmasıyla oluşturulan voiting classifier’ de (VC) %84 başarı oranı elde edildi. Modeller arasında SVC (duyarlılık 1.0 özgüllük 0.77 AUC 0.90 Güven Aralığı (%95): (0.83- 0.84)) ve VC (duyarlılık 1.0 özgüllük 0.77 AUC 0.88 Güven Aralığı (%95): (0.83- 0.84)) gösterdi.SONUÇ: Hastaların %56.5’i erkek (n=69), %43.5’i kadın (n=53) idi. Hastaların yaş ortalaması 71,9 (39-94) idi. Hastaneye yatışta mortalite oranı %50 (n=61) idi. Optimum sonuçlara ulaşmak için model yalnızca yaş, RDW, C reaktif protein (CRP), D-dimer, laktat, globulin ve kreatin özelliklerini seçti. Test verilerindeki başarı oranı lojistik regresyonda (LG) %80, random forest’ de %60, k-en yakın komşuluğunda (KN) %52, çok katmanlı sinir ağında (MLP) %72, destek vektör makinelerinde (SVC) %84 idi. Tüm modellerin oylanmasıyla oluşturulan voiting classifier’ de (VC) %84 başarı oranı elde edildi. Modeller arasında SVC (duyarlılık 1.0 özgüllük 0.77 AUC 0.90 Güven Aralığı (%95): (0.83-0.84)) ve VC (duyarlılık 1.0 özgüllük 0.77 AUC 0.88 Güven Aralığı (%95): (0.83-0.84)) gösterdi. |
| Author | Harmantepe, Ahmet Tarık |
| AuthorAffiliation | 3 Department of Oncology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye 4 Department of General Surgery, Sakarya University Training and Research Hospital, Sakarya- Türkiye 2 Department of General Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye 1 Department of Gastroenterology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye |
| AuthorAffiliation_xml | – name: 2 Department of General Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye – name: 4 Department of General Surgery, Sakarya University Training and Research Hospital, Sakarya- Türkiye – name: 1 Department of Gastroenterology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye – name: 3 Department of Oncology Surgery, Sakarya University Faculty of Medicine, Sakarya- Türkiye |
| Author_xml | – sequence: 1 givenname: Ahmet Tarık surname: Harmantepe fullname: Harmantepe, Ahmet Tarık |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38967529$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtvEzEUhS1URB_0B7BBllhPuH6MPWaDogoKUhEsQGJneRxP4mjGDranKP8eNymUSixY2bLPObrnu-foJMTgEHpBYEG45Px12RaXFxQoX_AOJH-CzggD2UjF25PDXTRCie-n6DLnLQAQwhQj8hk6ZZ0SsqXqDH1Z4smVTVzhISa8S27lbfFhjaeYihl92WMfsLFzcVWYXSgueYt9ths3efMGfzJ244PDozMpVONz9HQwY3aX9-cF-vb-3derD83N5-uPV8ubxnIuS-MGYQCU62UvB9HBIKRiBpjtLaO265U01qwsV0BF31rGe8ppT0Faw1qigF0gesydw87sf5px1LvkJ5P2moA-ENIHQvqOkD4Qqqa3R9Nu7ie3srVOMg_GaLx-_BP8Rq_jra7oGGEtqwmv7hNS_DG7XPQ2zinUpppREIpAx-FBtTaj0z4MsabZqVLTyw54J9oORFUt_qG6613R2rrtwdf3R4aXf4__Z-7f66wCchTYFHNObvgPJr8ANLiz0g |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 KARE Publishing 2024. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://tjtes.org/policies Copyright © 2024 Turkish Journal of Trauma and Emergency Surgery 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 KARE Publishing – notice: 2024. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://tjtes.org/policies – notice: Copyright © 2024 Turkish Journal of Trauma and Emergency Surgery 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 5PM ADTOC UNPAY |
| DOI | 10.14744/tjtes.2024.48074 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Akut mezenter iskemisinde mortaliteyi tahmin etmeye yönelik bir yöntem: Makine öğrenimi |
| EISSN | 1307-7945 |
| EndPage | 492 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:11331353 PMC11331353 A804865806 38967529 10_14744_tjtes_2024_48074 |
| Genre | Journal Article |
| GroupedDBID | --- 2WC 53G 7X7 8FI 8FJ AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION DIK F5P FYUFA GJB HMCUK IAO IHR INH ITC PGMZT PHGZM PHGZT PIMPY PUEGO RNS RPM UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c447t-ef6a009eb7b7f680f6793a03cbc32c8b97acadc49026b5c34b242b207ca351903 |
| IEDL.DBID | UNPAY |
| ISSN | 1306-696X |
| IngestDate | Sun Oct 26 03:29:06 EDT 2025 Tue Sep 30 17:08:07 EDT 2025 Tue Oct 07 07:04:56 EDT 2025 Mon Oct 20 22:50:15 EDT 2025 Mon Oct 20 16:56:12 EDT 2025 Thu Jan 02 22:30:26 EST 2025 Wed Oct 01 04:54:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-ef6a009eb7b7f680f6793a03cbc32c8b97acadc49026b5c34b242b207ca351903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11331353 |
| PMID | 38967529 |
| PQID | 3206910840 |
| PQPubID | 5083804 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_14744_tjtes_2024_48074 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331353 proquest_journals_3206910840 gale_infotracmisc_A804865806 gale_infotracacademiconefile_A804865806 pubmed_primary_38967529 crossref_primary_10_14744_tjtes_2024_48074 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Turkey |
| PublicationPlace_xml | – name: Turkey – name: Istanbul |
| PublicationTitle | Turkish Journal of Trauma and Emergency Surgery |
| PublicationTitleAlternate | Ulus Travma Acil Cerrahi Derg |
| PublicationYear | 2024 |
| Publisher | KARE Publishing Kare Publishing |
| Publisher_xml | – name: KARE Publishing – name: Kare Publishing |
| SSID | ssj0001139317 |
| Score | 2.3135421 |
| Snippet | This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients with acute... BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital mortality in patients... [LANGUAGE= "English"] BACKGROUND: This study aimed to develop and validate an artificial intelligence model using machine learning (ML) to predict hospital... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 487 |
| SubjectTerms | Acute Disease Adult Aged Aged, 80 and over Algorithms Analysis Artificial intelligence C-reactive protein Confidence intervals Creatinine Female Health aspects Hospital Mortality Hospitalization Humans Information management Ischemia Lactates Machine Learning Male Medical research Medicine, Experimental Mesenteric Ischemia - mortality Methods Middle Aged Mortality Original Predictive Value of Tests Prognosis Regression analysis Risk factors Success |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB50PehFFF_1RQ6CoFS7bZp2BZFVFBFcRBS8hbxWV7Su2kX89870sVoPek5o05lM5vs6kxmArY61IkyE8gUVq-SCt32lY-Fbi4al4jalVVK2RU-c3_KLu_huAnr1XRhKq6zPxOKgti-G_pHvR2Eg0LUhHzkavvrUNYqiq3ULDVW1VrCHRYmxSZgKqTJWC6aOT3tX11U4kyec7-ePiOGQGIZ8j65T84ZD-n0s__BLv3Mmp0fZUH1-qKenHw7pbA5mKyTJuqXq52HCZQtw1WVlT2iGYJQN3ygMQ4nN7LmA2Qi52SBjyoxyhxPp4hEFbNgAOa57HqgDdlkkVzpWdZO4X4Tbs9Obk3O_aprgG86T3Hd9oRA3OZ3opC_SoC_QAlUQGW2i0KS6kyijrOEdJF86NhHX6KR1GCRGUa--IFqCVvaSuRXAxSB8jFyUWiQdcajSNncJPtrEkRPacg92asnJYVkbQxKnIDHLQsySxCwLMXuwTbKVZDcoQKOq9H98FVWgkt2Uiv_FaSA8WG_MxP1umsO1dmRlb-_ye3d4sFwqarwkhGTIisKOB2lDheMJVGG7OZINHopK221k8NQYxIPdsbb__9TVv1e4BjM0t8z5XYdW_jZyG4hscr1ZbdcvcCf6SA priority: 102 providerName: ProQuest |
| Title | A method for predicting mortality in acute mesenteric ischemia: Machine learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38967529 https://www.proquest.com/docview/3206910840 https://pubmed.ncbi.nlm.nih.gov/PMC11331353 https://www.ncbi.nlm.nih.gov/pmc/articles/11331353 |
| UnpaywallVersion | submittedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1307-7945 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001139317 issn: 1306-696X databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1307-7945 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001139317 issn: 1306-696X databaseCode: RPM dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1307-7945 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001139317 issn: 1306-696X databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1307-7945 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001139317 issn: 1306-696X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB21yQEuBcSXoUR7QEIC2XHs9a7NLaBWFVKjCBEpnKzd9aYYEjdqHSH49cys7ajOBfVo7cofeh7ve943MwBvs6IQkRTKF1Sskgs-8ZVOhF8UGFgqmZCtktwWM3Gx4F-WyfIIoi4Xxpn2jS6Dar0JqvKH81ZuN2bc-cTGE1RV1KzhGIYiQf49gOFiNp9-d8oK5bHIxLLdvuSS83H9EzkbCsGIB5Q-zXsL0OFn-M46dOiRfLCrturPb7Ve31mAzh81SYG3rm4h-U5-BbtaB-bvQVXH-z3bYzhp-SibNmNP4MhWT2E-ZU1naYaUlm1vaDOH7NFs48g6EndWVkyZXW1xIqUv0bYPK1Ep202pPrJLZ9G0rO1JcfUMFudn3z5f-G3rBd9wLmvfroRC9mW11HIl0nAlMI5VGBtt4sikOpPKqMLwDCWcTkzMNS71OgqlUdTxL4yfw6C6ruxLwJtBEhrbOC1QuiSRSifcSjy1SWIrdME9eN_hkW-bChs5KRMCL3fg5QRe7sDz4B0hllP0ISxGtUkEeCmqY5VPUyohmKSh8OC0NxOjxvSHO8zzNmpv8zgKBdIn1LwevGjg398SEjvUVlHmQdp7MfYTqE53fwQhdvW6O1Q9-LB_h_7_qK_uNfs1PKSDxkh8CoP6ZmffIF2q9QiO5VKOYPjpbDb_ikez-eXI_dUatZHzD1zGGWU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPOCLkfhVBdwHjYmm0u5ut60JMadCDoELMZDwtu5u9_QMlAN6Ifxz_m3O9OOkPOgTz91utzM7nd-vOx8Ar_KiUDxVJlRUrFIqGYfGJiosCjQsk8QUVknRFiM1PJJfj5PjBfjd5cJQWGX3Taw_1MWZo3_kG4JHCl0b8pGP0_OQukbR6WrXQsO0rRWKzbrEWJvYseuvr5DCXW7ufEF9v-Z8e-vw8zBsuwyETsq0Cv1YGQQa3qY2HassGivcsiYSzjrBXWbz1DhTOJkjW7GJE9KiV7M8Sp2h5naRwHnvwZIUMkfyt_Rpa3TwrT0-lamUG9UvxIxIRLl8T-nbsucAb7uBG37wdozm8qycmusrc3JywwFuP4QHLXJlg2arrcCCLx_BwYA1PagZgl82vaBjHwqkZqc1rEeIzyYlM25WeRxIiU50QMQmyKn96cR8YPt1MKdnbfeKH4_h6E7E9wQWy7PSPwNcDMJV4UVWIMlJuMli6VOc2iXCK1vIAN52ktPTphaHJg5DYta1mDWJWddiDuANyVaTnaIAnWnTDfBRVPFKDzIqNphkkQpgtTcS7cv1L3fa0a19X-q_uzGAp42i5ktCCIgsjOcBZD0VzgdQRe_-lXLys67sHcdCUCOSAN7Ntf3_V33-7xW-hOXh4f6e3tsZ7b6A-3RfE2-8CovVxcyvIaqq7Hq7dRl8v2tr-QNpmTdR |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9tAEB1c59BekpZ-KXHKHgqFFsmytFpJuZnQEAoNOdTgnpbd1bpVaismkQnJr8_MSjKRLyVHsYs-eDva99g3MwCf86IQUSqUL6hYJRd84iudCL8oMLBUMiFbJbktLsT5jP-YJ_MBRF0ujDPtG10G1XIVVOVf561cr8y484mNJ6iqqFnDC9gTCfLvIezNLi6nv52yQnkscjFvjy95yvm4vkLOhkIw4gGlT_PeBrT7G36yD-16JF9uqrW6v1PL5ZMN6OygSQq8dXULyXfyL9jUOjAPO1Udn_dtr2G_5aNs2oy9gYGt3sLllDWdpRlSWra-ocMcskezlSPrSNxZWTFlNrXFiZS-RMc-rESlbFelOmE_nUXTsrYnxZ93MDv7_uv03G9bL_iG87T27UIoZF9WpzpdiCxcCIxjFcZGmzgymc5TZVRheI4STicm5hq3eh2FqVHU8S-M38Owuq7sR8CXQRIa2zgrULokkcom3KZ4a5PEVuiCe_C1w0OumwobkpQJgScdeJLAkw48D74QYpKiD2Exqk0iwEdRHSs5zaiEYJKFwoNRbyZGjekPd5jLNmpvZRyFAukTal4PPjTwb18JiR1qqyj3IOstjO0EqtPdH0GIXb3uDlUPvm3X0P8_9fBZs4_gFV00RuIRDOubjT1GulTrT218PAIO9hTI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+predicting+mortality+in+acute+mesenteric+ischemia%3A+Machine+learning&rft.jtitle=Ulusal+travma+ve+acil+cerrahi+dergisi+%3D+Turkish+journal+of+trauma+%26+emergency+surgery+%3A+TJTES&rft.au=Harmantepe%2C+Ahmet+Tar%C4%B1k&rft.date=2024-07-01&rft.issn=1306-696X&rft.spage=487&rft.epage=492&rft_id=info:doi/10.14744%2Ftjtes.2024.48074&rft.externalDBID=n%2Fa&rft.externalDocID=10_14744_tjtes_2024_48074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1306-696X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1306-696X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1306-696X&client=summon |