Flow Rate and Raspberry Pi-Based Paper Microfluidic Blood Coagulation Assay Device

Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass. A current clinical standard is the use of activated clotting time, where the mechanical movement of a plunger throu...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 19; no. 13; pp. 4743 - 4751
Main Authors Sweeney, Robin E., Nguyen, Vina, Alouidor, Benjamin, Budiman, Elizabeth, Wong, Raymond K., Yoon, Jeong-Yeol
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
1558-1748
DOI10.1109/JSEN.2019.2902065

Cover

Abstract Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass. A current clinical standard is the use of activated clotting time, where the mechanical movement of a plunger through a whole blood-filled channel is monitored to evaluate the endpoint time of coagulation. As a rapid, simple, low-volume, and cost-effective alternative, we have developed a paper microfluidic assay and Raspberry Pi-based device with the aim of quantifying the extent of blood coagulation in response to varying doses of heparin and protamine. The flow rate of blood through the paper microfluidic channel is automatically monitored using the Python-coded edge detection algorithm. For each set of the assay, 8-μL of fresh human whole blood (untreated and undiluted) from human subjects is loaded onto each of eight sample pads, which have been preloaded with varying amounts of heparin or protamine. The total assay time is 3-5 min including the time for sample loading and incubation.
AbstractList Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass (CPB). A current clinical standard is the use of activated clotting time (ACT), where the mechanical movement of a plunger through a whole blood-filled channel is monitored to evaluate the endpoint time of coagulation. As a rapid, simple, low-volume, and cost-effective alternative, we have developed a paper microfluidic assay and Raspberry Pi-based device with the aim of quantifying the extent of blood coagulation in response to varying doses of heparin and protamine. The flow rate of blood through the paper microfluidic channel is automatically monitored using Python-coded edge detection algorithm. For each set of assay, 8 L of fresh human whole blood (untreated and undiluted) from human subjects is loaded onto each of 8 sample pads, which have been preloaded with varying amounts of heparin or protamine. Total assay time is 3-5 minutes including the time for sample loading and incubation.
Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass (CPB). A current clinical standard is the use of activated clotting time (ACT), where the mechanical movement of a plunger through a whole blood-filled channel is monitored to evaluate the endpoint time of coagulation. As a rapid, simple, low-volume, and cost-effective alternative, we have developed a paper microfluidic assay and Raspberry Pi-based device with the aim of quantifying the extent of blood coagulation in response to varying doses of heparin and protamine. The flow rate of blood through the paper microfluidic channel is automatically monitored using Python-coded edge detection algorithm. For each set of assay, 8 μL of fresh human whole blood (untreated and undiluted) from human subjects is loaded onto each of 8 sample pads, which have been preloaded with varying amounts of heparin or protamine. Total assay time is 3-5 minutes including the time for sample loading and incubation.Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass (CPB). A current clinical standard is the use of activated clotting time (ACT), where the mechanical movement of a plunger through a whole blood-filled channel is monitored to evaluate the endpoint time of coagulation. As a rapid, simple, low-volume, and cost-effective alternative, we have developed a paper microfluidic assay and Raspberry Pi-based device with the aim of quantifying the extent of blood coagulation in response to varying doses of heparin and protamine. The flow rate of blood through the paper microfluidic channel is automatically monitored using Python-coded edge detection algorithm. For each set of assay, 8 μL of fresh human whole blood (untreated and undiluted) from human subjects is loaded onto each of 8 sample pads, which have been preloaded with varying amounts of heparin or protamine. Total assay time is 3-5 minutes including the time for sample loading and incubation.
Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass. A current clinical standard is the use of activated clotting time, where the mechanical movement of a plunger through a whole blood-filled channel is monitored to evaluate the endpoint time of coagulation. As a rapid, simple, low-volume, and cost-effective alternative, we have developed a paper microfluidic assay and Raspberry Pi-based device with the aim of quantifying the extent of blood coagulation in response to varying doses of heparin and protamine. The flow rate of blood through the paper microfluidic channel is automatically monitored using the Python-coded edge detection algorithm. For each set of the assay, 8-[Formula Omitted] of fresh human whole blood (untreated and undiluted) from human subjects is loaded onto each of eight sample pads, which have been preloaded with varying amounts of heparin or protamine. The total assay time is 3–5 min including the time for sample loading and incubation.
Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass (CPB). A current clinical standard is the use of activated clotting time (ACT), where the mechanical movement of a plunger through a whole blood-filled channel is monitored to evaluate the endpoint time of coagulation. As a rapid, simple, low-volume, and cost-effective alternative, we have developed a paper microfluidic assay and Raspberry Pi-based device with the aim of quantifying the extent of blood coagulation in response to varying doses of heparin and protamine. The flow rate of blood through the paper microfluidic channel is automatically monitored using Python-coded edge detection algorithm. For each set of assay, 8 μL of fresh human whole blood (untreated and undiluted) from human subjects is loaded onto each of 8 sample pads, which have been preloaded with varying amounts of heparin or protamine. Total assay time is 3-5 minutes including the time for sample loading and incubation.
Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially with cardiopulmonary bypass. A current clinical standard is the use of activated clotting time, where the mechanical movement of a plunger through a whole blood-filled channel is monitored to evaluate the endpoint time of coagulation. As a rapid, simple, low-volume, and cost-effective alternative, we have developed a paper microfluidic assay and Raspberry Pi-based device with the aim of quantifying the extent of blood coagulation in response to varying doses of heparin and protamine. The flow rate of blood through the paper microfluidic channel is automatically monitored using the Python-coded edge detection algorithm. For each set of the assay, 8-μL of fresh human whole blood (untreated and undiluted) from human subjects is loaded onto each of eight sample pads, which have been preloaded with varying amounts of heparin or protamine. The total assay time is 3-5 min including the time for sample loading and incubation.
Author Nguyen, Vina
Yoon, Jeong-Yeol
Alouidor, Benjamin
Budiman, Elizabeth
Sweeney, Robin E.
Wong, Raymond K.
Author_xml – sequence: 1
  givenname: Robin E.
  surname: Sweeney
  fullname: Sweeney, Robin E.
  email: robinemilysweeney@gmail.com
  organization: Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
– sequence: 2
  givenname: Vina
  surname: Nguyen
  fullname: Nguyen, Vina
  email: vinatnguyen@gmail.com
  organization: Department of Pharmacology, Perfusion Sciences Graduate Program, The University of Arizona College of Medicine, Tucson, AZ, USA
– sequence: 3
  givenname: Benjamin
  orcidid: 0000-0002-6799-0657
  surname: Alouidor
  fullname: Alouidor, Benjamin
  email: balouidor@email.arizona.edu
  organization: Department of Pharmacology, Perfusion Sciences Graduate Program, The University of Arizona College of Medicine, Tucson, AZ, USA
– sequence: 4
  givenname: Elizabeth
  surname: Budiman
  fullname: Budiman, Elizabeth
  email: ebudiman@email.arizona.edu
  organization: Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
– sequence: 5
  givenname: Raymond K.
  orcidid: 0000-0002-5927-8950
  surname: Wong
  fullname: Wong, Raymond K.
  email: rkwong@email.arizona.edu
  organization: Department of Pharmacology, Perfusion Sciences Graduate Program, The University of Arizona College of Medicine, Tucson, AZ, USA
– sequence: 6
  givenname: Jeong-Yeol
  orcidid: 0000-0002-9720-6472
  surname: Yoon
  fullname: Yoon, Jeong-Yeol
  email: jyyoon@email.arizona.edu
  organization: Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32863779$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNU7If-ABFkwBtvZs3XJJMboV3bqlQtVcG7kJk5W7NkkzGZadl_34y7Vl3BqxzI-7w55z05RHs-eEDoKcEzQrB69f7z6ccZxUTNqMIUi-oBOiBVVZdE8npvqhkuOZPf9tFhSkuclbKSj9A-o7VgUqoDdHXmwm1xZQYojO9ykfoGYlwXl7Y8MQm64tL0EIsPto1h4Ubb2bY4cSF0xTyY69GZwQZfHKdk1sUbuLEtPEYPF8YleLI9j9DXs9Mv87flxafzd_Pji7LlXA4ldJwLUWGFpTJcdKbBTU1BSNY1lAEWuFFMKdySTgqB65ozk4mFYlwQDoQdIbrxHX1v1rfGOd1HuzJxrQnWU0B6mcDrKSC9DShDrzdQPzYr6FrwQzS_wWCs_vvG2-_6OtxoyXOr9WTwcmsQw48R0qBXNrXgnPEQxqQpZ7VSFVUyS1_sSJdhjD5noillUkgu8GT4_M-O7lv5taMsIBtB3kBKERb_jDn9g90x5Q7T2uHnqvJQ1v2XfLYhLQDcv1TnG4UxuwMzfbx1
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_s21103552
crossref_primary_10_1016_j_bios_2022_114299
crossref_primary_10_1016_j_talanta_2024_125688
crossref_primary_10_1007_s12647_021_00465_x
crossref_primary_10_1109_JTEHM_2020_2970694
crossref_primary_10_1021_acsomega_1c06823
crossref_primary_10_1109_TII_2023_3318306
crossref_primary_10_3390_bios13100948
crossref_primary_10_1007_s10544_020_00480_w
crossref_primary_10_1039_D1LC00465D
crossref_primary_10_1016_j_bios_2020_112042
crossref_primary_10_3390_s20041064
crossref_primary_10_1002_ett_3888
crossref_primary_10_1007_s42979_024_03352_9
Cites_doi 10.1177/1089253214530045
10.1111/pan.12591
10.1002/chem.201800085
10.1016/j.athoracsur.2006.09.054
10.1016/0003-4975(92)90451-9
10.1051/ject/201244015
10.1097/00000658-198101000-00017
10.1007/s00134-004-2388-0
10.1146/annurev.bioeng.7.011205.135108
10.1039/C4LC00716F
10.1002/jbio.201300197
10.3390/mi2030319
10.1053/j.jvca.2016.07.001
10.1051/ject/201345235
10.1177/1076029616651148
10.1039/c0an00907e
10.1007/978-1-62703-339-8_12
10.1016/S0003-4975(10)63676-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
L7M
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/JSEN.2019.2902065
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 4751
ExternalDocumentID oai:pubmedcentral.nih.gov:7450985
PMC7450985
32863779
10_1109_JSEN_2019_2902065
8653900
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  grantid: T32HL007955
  funderid: 10.13039/100000050
– fundername: NHLBI NIH HHS
  grantid: T32 HL007955
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
NPM
RIG
7SP
7U5
8FD
L7M
7X8
5PM
5VS
ADTOC
AETIX
AGSQL
AIBXA
H~9
UNPAY
ZY4
ID FETCH-LOGICAL-c447t-ed4466509079a46dab0b82e673db23e060b93990c1d76608843a446f934614e13
IEDL.DBID RIE
ISSN 1530-437X
1558-1748
IngestDate Sun Oct 26 02:46:18 EDT 2025
Tue Sep 30 16:42:18 EDT 2025
Sun Sep 28 12:05:40 EDT 2025
Mon Jun 30 10:16:51 EDT 2025
Thu Jan 02 22:46:46 EST 2025
Wed Oct 01 04:14:36 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords heparin
Raspberry Pi
paper microfluidics
protamine
blood coagulation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-ed4466509079a46dab0b82e673db23e060b93990c1d76608843a446f934614e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9720-6472
0000-0002-6799-0657
0000-0002-5927-8950
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7450985
PMID 32863779
PQID 2237674605
PQPubID 75733
PageCount 9
ParticipantIDs proquest_journals_2237674605
proquest_miscellaneous_2438995297
pubmed_primary_32863779
unpaywall_primary_10_1109_jsen_2019_2902065
crossref_primary_10_1109_JSEN_2019_2902065
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7450985
crossref_citationtrail_10_1109_JSEN_2019_2902065
ieee_primary_8653900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationTitleAlternate IEEE Sens J
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref20
(ref14) 2011
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ojito (ref11) 2012; 44
ref9
ref4
ref3
cuenca (ref6) 2013; 45
ref5
(ref13) 2004
References_xml – start-page: 28
  year: 2011
  ident: ref14
  publication-title: Coagulation Analyzers-Point of Care Self-Monitoring
– ident: ref10
  doi: 10.1177/1089253214530045
– ident: ref5
  doi: 10.1111/pan.12591
– ident: ref20
  doi: 10.1002/chem.201800085
– ident: ref8
  doi: 10.1016/j.athoracsur.2006.09.054
– ident: ref7
  doi: 10.1016/0003-4975(92)90451-9
– volume: 44
  start-page: 15
  year: 2012
  ident: ref11
  article-title: Comparison of point-of-care activated clotting time systems utilized in a single pediatric institution
  publication-title: J Extra Corpor Technol
  doi: 10.1051/ject/201244015
– ident: ref4
  doi: 10.1097/00000658-198101000-00017
– ident: ref3
  doi: 10.1007/s00134-004-2388-0
– ident: ref15
  doi: 10.1146/annurev.bioeng.7.011205.135108
– ident: ref17
  doi: 10.1039/C4LC00716F
– ident: ref19
  doi: 10.1002/jbio.201300197
– year: 2004
  ident: ref13
  publication-title: Medtronic ACT Plus Procedure Massachusetts General Hospital-Pathology Service
– ident: ref16
  doi: 10.3390/mi2030319
– ident: ref1
  doi: 10.1053/j.jvca.2016.07.001
– volume: 45
  start-page: 235
  year: 2013
  ident: ref6
  article-title: Method to calculate the protamine dose necessary for reversal of heparin as a function of activated clotting time in patients undergoing cardiac surgery
  publication-title: J Extra Corpor Technol
  doi: 10.1051/ject/201345235
– ident: ref12
  doi: 10.1177/1076029616651148
– ident: ref18
  doi: 10.1039/c0an00907e
– ident: ref2
  doi: 10.1007/978-1-62703-339-8_12
– ident: ref9
  doi: 10.1016/S0003-4975(10)63676-4
SSID ssj0019757
Score 2.3316896
Snippet Monitoring blood coagulation in response to an anticoagulant (heparin) and its reversal agent (protamine) is essential during and after surgery, especially...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4743
SubjectTerms Algorithms
Anticoagulants
Assaying
Biomedical monitoring
Blood coagulation
Clotting
Coagulation
Edge detection
Flow velocity
Glass
heparin
Microfluidics
Monitoring
paper microfluidics
protamine
Raspberry Pi
Surgery
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7mHsgR8bjMBARuIJlNZJHDt-3MaqaRJVVahUniI7dlkhS6v-0FT-enxJGrUMIe3Nkc9RrDv7PstfvgP4kFiDVZC0j2DaZ8wddzQbJ76ObTAec4QkJUG2x6-G7HoUj_Yg2PwLU5L2Mz1pF_ltu5jclNzK2W3W2fDEOoK5HJfEj2Cfxw5-t2B_2Ouffa90UanPIjEq27E7HQmW1DeZAZWdnwuLiqeBbIfSoSTMJ1u5qCyu8i-ceZ8uebAqZmp9p_J8Kxd1n8JgM4uKgvKrvVrqdvb7L4HHB03zGTypkSk5q7qew54tjuBwS6_wCA7qkuk362MYdPPpHRk4qEpUYVxjMdN2Pl-T_sQ_d6nRkL6a2Tn5goy_cb6amElGzpEmTy6m6kddNYy48FBr8tnihvUCht3LbxdXfl2gwc8YE0vfGrwNdt9JhVSMG6WpTkLLRWR0GFnKqZYOANEsMIJzt5-xSLkRYxkxhwpsEL2EVjEt7Csgzi1K2MQYHmdM6EwaLRV3YDFUIjQs8IBuXJVmtXo5FtHI0_IUQ2V6_fWyl6J309q7Hnxshswq6Y7_GR-j_xvDBCV7KfXgdBMPab24F2mITCKBF8oevG-63bLEuxZV2OnK2WBVeRmHUnhwUoVP8-4oTDjqPHogdgKrMUDJ790eFyKl9HcdFR58akLw3twwzHfm9vpB1m_gMT5WlORTaC3nK_vWAa-lflcvtT_DzSbP
  priority: 102
  providerName: Unpaywall
Title Flow Rate and Raspberry Pi-Based Paper Microfluidic Blood Coagulation Assay Device
URI https://ieeexplore.ieee.org/document/8653900
https://www.ncbi.nlm.nih.gov/pubmed/32863779
https://www.proquest.com/docview/2237674605
https://www.proquest.com/docview/2438995297
https://pubmed.ncbi.nlm.nih.gov/PMC7450985
https://www.ncbi.nlm.nih.gov/pmc/articles/7450985
UnpaywallVersion submittedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a42HwwGXjEhiTkXgC0jmJa8eP21g1TVpVDSqVp8iOHVaIkqptNJVfj0-SRi2bEG-RfHJxznH8OefzdwA-xNZgFSTtI5j2GXPLHc2y2Nd9G2QZR0hSE2SH_GLMLif9yQ587vbCWGtr8pnt4WGdyzdlWuGvsuMYdVSpW6A_EDFv9mp1GQMpalVPN4CpzyIxaTOYAZXHl1_Ph0jikr1QOnSE88jGHFQXVbkPX96lSe5VxUytblWeb8xBg6dwtX76hnryq1ctdS_9_Zew4_927xk8acEoOWmi5zns2GIfHm9IFO7DXlsl_WZ1ANeDvLwl1w6dElUYd7CYaTufr8ho6p-62dCQkZrZOblCkl-WV1MzTckpMuPJWal-tIXCiIsItSJfLH6jXsB4cP7t7MJvazL4KWNi6VuDCWCHMqiQinGjNNVxaLmIjA4jSznV0mEemgZGcO4-YSxS7oxMRswBARtEL2G3KAv7GojziBI2Nob3UyZ0Ko2Wijt8GCoRGhZ4QNdeStJWsBzrZuRJvXChMkHHJujYpHWsBx-7U2aNWse_jA_QB51h-_o9OFyHQtKO50USInlIYA7Zg_ddsxuJmF5RhS0rZ4OF5GU_lMKDV03kdNeOwpijtKMHYiumOgNU-d5uKaY3tdq3YO5tx-6-n7rou9O3nwtbbPXtzf19ewuP0KqhGx_C7nJe2XcOVC31UT2ajuDheDg6-f4Hvg0cig
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6axkPhgcvGJTDASDwB6XJx7PiRjVVlrNU0NqlvkR07rBAlVdtoKr8enySNWjYh3iLZTmKf4_hzzufvALyPjcYsSMpFMO1Sarc7imaxqyLjZxlDSFITZMdseEVPJ9FkBz51Z2GMMTX5zPTxso7l6zKt8FfZYYw6qp7doN-LKKVRc1qrixkIXut62insuTTkkzaG6Xvi8PT7yRhpXKIfCIuPcCXZWIXqtCp3IczbRMleVczk6kbm-cYqNHgEo_X7N-STX_1qqfrp77-kHf-3g4_hYQtHyefGf57Ajin24MGGSOEe9No86derfbgY5OUNubD4lMhC24vFTJn5fEXOp-6RXQ81OZczMycjpPlleTXV05QcITeeHJfyR5sqjFifkCvyxeBX6ilcDU4uj4dum5XBTSnlS9doDAFbnOFxISnTUnkqDgzjoVZBaDzmKWFRj5f6mjNmP2I0lLZFJkJqoYDxw2ewW5SFeQHEWkRyE2vNopRylQqthGQWIQaSB5r6DnhrKyVpK1mOmTPypN66eCJBwyZo2KQ1rAMfuiazRq_jX5X30QZdxXb4HThYu0LSzuhFEiB9iGMU2YF3XbGdixhgkYUpK1sHU8mLKBDcgeeN53T3DoOYobijA3zLp7oKqPO9XVJMr2u9b07taMf2uR8777vVt58LU2z17eXdfXsLveHl6Cw5-zr-9gruY4uGfHwAu8t5ZV5biLVUb-qZ9QfLkh4n
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7mHsgR8bjMBARuIJlNZJHDt-3MaqaRJVVahUniI7dlkhS6v-0FT-enxJGrUMIe3Nkc9RrDv7PstfvgP4kFiDVZC0j2DaZ8wddzQbJ76ObTAec4QkJUG2x6-G7HoUj_Yg2PwLU5L2Mz1pF_ltu5jclNzK2W3W2fDEOoK5HJfEj2Cfxw5-t2B_2Ouffa90UanPIjEq27E7HQmW1DeZAZWdnwuLiqeBbIfSoSTMJ1u5qCyu8i-ceZ8uebAqZmp9p_J8Kxd1n8JgM4uKgvKrvVrqdvb7L4HHB03zGTypkSk5q7qew54tjuBwS6_wCA7qkuk362MYdPPpHRk4qEpUYVxjMdN2Pl-T_sQ_d6nRkL6a2Tn5goy_cb6amElGzpEmTy6m6kddNYy48FBr8tnihvUCht3LbxdXfl2gwc8YE0vfGrwNdt9JhVSMG6WpTkLLRWR0GFnKqZYOANEsMIJzt5-xSLkRYxkxhwpsEL2EVjEt7Csgzi1K2MQYHmdM6EwaLRV3YDFUIjQs8IBuXJVmtXo5FtHI0_IUQ2V6_fWyl6J309q7Hnxshswq6Y7_GR-j_xvDBCV7KfXgdBMPab24F2mITCKBF8oevG-63bLEuxZV2OnK2WBVeRmHUnhwUoVP8-4oTDjqPHogdgKrMUDJ790eFyKl9HcdFR58akLw3twwzHfm9vpB1m_gMT5WlORTaC3nK_vWAa-lflcvtT_DzSbP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+Rate+and+Raspberry+Pi-Based+Paper+Microfluidic+Blood+Coagulation+Assay+Device&rft.jtitle=IEEE+sensors+journal&rft.au=Sweeney%2C+Robin+E&rft.au=Nguyen%2C+Vina&rft.au=Alouidor%2C+Benjamin&rft.au=Budiman%2C+Elizabeth&rft.date=2019-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=19&rft.issue=13&rft.spage=4743&rft_id=info:doi/10.1109%2FJSEN.2019.2902065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon