Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network
For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 23; no. 6; pp. 2515 - 2525 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2018.2882885 |
Cover
Abstract | For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data. |
---|---|
AbstractList | For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data. For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data.For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data. For decades, task functional magnetic resonance imaging (tfMRI) has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model (GLM), independent component analysis (ICA) and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependency features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of Deep Recurrent Neural Network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed Deep Recurrent Neural Network can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data. |
Author | Chen, Yaowu Xie, Li Zhou, Fan Han, Junwei Zhao, Shijie Guo, Lei Cui, Yan Liu, Tianming Wang, Han |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-3627-3169 surname: Cui fullname: Cui, Yan email: cuiy@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Shijie orcidid: 0000-0001-9102-5294 surname: Zhao fullname: Zhao, Shijie email: shijiezhao666@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Han orcidid: 0000-0001-5220-6084 surname: Wang fullname: Wang, Han email: sdzbwh@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Li surname: Xie fullname: Xie, Li email: xiehan@zju.edu.cn organization: College of Biomedical Engineering and Instrument Science and the State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Yaowu orcidid: 0000-0002-6037-0631 surname: Chen fullname: Chen, Yaowu email: cyw@mail.bme.zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, and Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou, China – sequence: 6 givenname: Junwei orcidid: 0000-0001-5545-7217 surname: Han fullname: Han, Junwei email: junweihan2010@gmail.com organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 7 givenname: Lei surname: Guo fullname: Guo, Lei email: lguo@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 8 givenname: Fan orcidid: 0000-0002-0900-6965 surname: Zhou fullname: Zhou, Fan email: fanzhou@mail.bme.zju.edu.cn organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China – sequence: 9 givenname: Tianming orcidid: 0000-0002-8132-9048 surname: Liu fullname: Liu, Tianming email: tianming.liu@gmail.com organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30475739$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttu1DAQhi1URI8PgJBQJG642SVjO7Fzg9SWQhe1ILXLteU4k9aLNwl20mrfHkd7ECwSliVbnvnG_z_2MTlo2gYJeQ3pFCAtPny9uJ5NaQpySqWMM3tBjijkckJpKg-2eyj4ITkLYZHGIeNRkb8ihyzlIhOsOCLzWYVNb-uVbR6SC69tk3zD_rn1P0Oi--R2cL3tHCZzu8Tk3miHIXmyOvmE2CV3aAbvIx-ZwWu3RU_Jy1q7gGeb9YT8-Hw1v7ye3Hz_Mrs8v5kYzkU_QV1ynssSBRags7ooUxDATVbRMq0NlyIGdA0QozB6rmtmQPMShJFVVbATQtd1h6bTq2ftnOq8XWq_UpCqkVCL8tGqsUtq06UIfVxD3VAusTJRfpS-A1tt1d-Rxj6qh_ZJ5QXwPMtjgfebAr79NWDo1dIGg87pBtshKApM5kwIOQp8t5e6aAffxJ4oyoAJSXMqYtbbPxXtpGxfKSbAOsH4NgSP9T82x8-wb1PsMcb2urftaMq6_5Jv1qRFxN1NMuMM8oL9Bs3Xv8o |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1109_TNSRE_2021_3111989 crossref_primary_10_3390_jcm14020550 crossref_primary_10_1016_j_knosys_2024_112856 crossref_primary_10_1016_j_synthmet_2024_117773 crossref_primary_10_1007_s13198_021_01540_x crossref_primary_10_1016_j_compbiomed_2024_108611 crossref_primary_10_1109_TNSE_2021_3102667 crossref_primary_10_32604_cmc_2021_016930 crossref_primary_10_1109_JBHI_2020_3000057 crossref_primary_10_1523_ENEURO_0200_22_2022 crossref_primary_10_1088_1361_6501_ad14e2 crossref_primary_10_1097_WCO_0000000000001280 crossref_primary_10_1109_JSYST_2020_3030474 crossref_primary_10_1109_ACCESS_2020_2984948 crossref_primary_10_1109_TPAMI_2024_3442811 crossref_primary_10_1109_TMRB_2023_3270481 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1016_j_media_2022_102665 crossref_primary_10_1016_j_compbiomed_2023_107395 crossref_primary_10_1016_j_oceaneng_2020_108530 crossref_primary_10_1109_JBHI_2020_3036743 crossref_primary_10_32604_cmes_2021_016728 |
Cites_doi | 10.1016/j.neuroimage.2016.01.005 10.1016/j.tics.2010.01.004 10.3389/neuro.11.037.2009 10.1016/j.media.2017.07.005 10.1109/TBME.2017.2715281 10.1109/TBME.2015.2496253 10.1007/s11263-015-0816-y 10.1002/hbm.460020402 10.1146/annurev-vision-082114-035447 10.1152/jn.00339.2011 10.1007/s00429-013-0687-3 10.1016/j.neuroimage.2016.01.024 10.1109/TBME.2018.2831186 10.1038/nature16961 10.1016/j.plrev.2017.11.003 10.1016/j.neuron.2006.04.031 10.1016/j.neuroimage.2013.05.041 10.1017/S0140525X11001567 10.1152/jn.00338.2011 10.1109/TMI.2016.2528129 10.1007/s11263-014-0733-5 10.1109/MSP.2012.2205597 10.1109/CVPR.2015.7298932 10.1109/TMI.2015.2418734 10.1073/pnas.1315235110 10.1073/pnas.0504136102 10.3389/fncom.2017.00007 10.1007/s11071-015-2537-8 10.1109/ICASSP.2013.6638947 10.1006/nimg.1997.0306 10.1016/j.neuroimage.2013.05.033 10.1002/aur.174 10.1145/1390156.1390177 10.1016/j.neuroimage.2005.12.016 10.1038/nrn2575 10.1152/jn.2000.84.6.3072 10.1016/j.neuroimage.2014.03.048 10.1176/appi.ajp.2007.07040609 10.1111/j.1467-9280.2007.01923.x 10.1016/j.neuroimage.2014.12.061 10.1109/TBME.2016.2598728 10.1016/j.neuroscience.2017.08.022 10.1109/ISBI.2016.7493348 10.1093/brain/awf189 10.1016/j.neuroimage.2013.04.127 10.1016/j.media.2017.08.005 10.1016/j.neuroimage.2007.04.032 10.1016/j.amc.2017.05.010 10.1109/TAMD.2015.2409835 10.1002/hbm.20663 10.1109/MIS.2015.69 10.1109/TBME.2014.2369495 10.1098/rstb.2005.1634 10.1109/ISBI.2018.8363538 10.1016/j.neuroimage.2014.06.077 10.1038/nature06976 10.1006/nimg.2000.0612 10.1109/TMI.2017.2715285 10.1093/comnet/cnx019 10.1523/JNEUROSCI.5023-14.2015 10.1006/nimg.2002.1179 10.1073/pnas.95.3.803 10.1109/TMI.2016.2538465 10.1016/j.neuroimage.2010.09.048 10.1126/science.1099745 10.1097/00004728-199903000-00016 10.1016/S0730-725X(99)00028-4 10.1162/neco.1997.9.8.1735 10.1007/s11682-017-9733-8 10.1109/TMI.2016.2526687 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
DOI | 10.1109/JBHI.2018.2882885 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 2525 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:6914656 PMC6914656 30475739 10_1109_JBHI_2018_2882885 8543169 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Zhejiang Province Science and Technology Planning grantid: 2016C33069 – fundername: NIH grantid: R01 DA-033393; R01 AG-042599 – fundername: NSF CAREER grantid: IIS-1149260 – fundername: NSF of China grantid: 61806167 – fundername: NSF grantid: CBET-1302089; BCS-1439051; DBI-1564736 – fundername: National Natural Science Foundation of China grantid: 61806167 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61333017 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2017FZA5021 – fundername: China Postdoctoral Science Foundation grantid: M613206 funderid: 10.13039/501100002858 – fundername: Fundamental Research Funds for the Central Universities grantid: 3102017zy030 – fundername: NIDA NIH HHS grantid: R01 DA033393 – fundername: NIA NIH HHS grantid: R01 AG042599 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c447t-eab4468be7e91a5f9b01714c5d2b0fc4877e9af1191a11109ff3c1a4b17c8dd93 |
IEDL.DBID | UNPAY |
ISSN | 2168-2194 2168-2208 |
IngestDate | Wed Aug 20 00:16:56 EDT 2025 Tue Sep 30 16:40:40 EDT 2025 Wed Oct 01 14:45:43 EDT 2025 Mon Jun 30 06:10:47 EDT 2025 Thu Apr 03 07:04:41 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Wed Oct 01 03:39:57 EDT 2025 Wed Aug 27 02:30:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-eab4468be7e91a5f9b01714c5d2b0fc4877e9af1191a11109ff3c1a4b17c8dd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 first author |
ORCID | 0000-0003-3627-3169 0000-0001-5545-7217 0000-0002-6037-0631 0000-0001-5220-6084 0000-0002-0900-6965 0000-0002-8132-9048 0000-0001-9102-5294 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6914656 |
PMID | 30475739 |
PQID | 2313782627 |
PQPubID | 85417 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_1109_jbhi_2018_2882885 crossref_primary_10_1109_JBHI_2018_2882885 proquest_miscellaneous_2138637789 proquest_journals_2313782627 pubmed_primary_30475739 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6914656 crossref_citationtrail_10_1109_JBHI_2018_2882885 ieee_primary_8543169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref58 ref14 ref53 ref55 ref10 hinton (ref77) 2012 huettel (ref11) 2004; 1 hermans (ref75) 0 ref17 ref16 ref19 güçlü (ref59) 2015; 35 ref18 buzsaki (ref52) 2004; 304 ref51 ref50 sutskever (ref56) 0 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref74 ref30 ref33 ref76 ref32 silver (ref34) 2016; 529 ref1 shu (ref24) 2017; 12 ref39 ref38 glorot (ref79) 0 ref71 ref70 ref73 ref72 ref68 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 fister (ref2) 2016; 84 ref21 lipton (ref57) 2015 ref28 ref27 ref29 cho (ref54) 0 ref60 ref62 ref61 kingma (ref80) 0 abadi (ref78) 0 |
References_xml | – ident: ref42 doi: 10.1016/j.neuroimage.2016.01.005 – start-page: 190 year: 0 ident: ref75 article-title: Training and analysing deep recurrent neural networks publication-title: Proc Int Conf Adv Neural Inf Process Syst – ident: ref7 doi: 10.1016/j.tics.2010.01.004 – ident: ref29 doi: 10.3389/neuro.11.037.2009 – ident: ref53 doi: 10.1016/j.media.2017.07.005 – ident: ref49 doi: 10.1109/TBME.2017.2715281 – ident: ref37 doi: 10.1109/TBME.2015.2496253 – ident: ref30 doi: 10.1007/s11263-015-0816-y – start-page: 265 year: 0 ident: ref78 article-title: TensorFlow: A system for large-scale machine learning publication-title: Proc USENIX Conf Operating System Design and Implementations – ident: ref14 doi: 10.1002/hbm.460020402 – ident: ref58 doi: 10.1146/annurev-vision-082114-035447 – ident: ref62 doi: 10.1152/jn.00339.2011 – ident: ref41 doi: 10.1007/s00429-013-0687-3 – ident: ref39 doi: 10.1016/j.neuroimage.2016.01.024 – volume: 12 start-page: 728 year: 2017 ident: ref24 article-title: Joint representation of consistent structural and functional profiles for identification of common cortical landmarks publication-title: Brain Imag Behav – year: 2012 ident: ref77 article-title: Improving neural networks by preventing co-adaptation of feature detectors – ident: ref27 doi: 10.1109/TBME.2018.2831186 – volume: 529 start-page: 484 year: 2016 ident: ref34 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref4 doi: 10.1016/j.plrev.2017.11.003 – ident: ref6 doi: 10.1016/j.neuron.2006.04.031 – ident: ref73 doi: 10.1016/j.neuroimage.2013.05.041 – start-page: 1017 year: 0 ident: ref56 article-title: Generating text with recurrent neural networks publication-title: Proc Int Conf Mach Learn – ident: ref10 doi: 10.1017/S0140525X11001567 – ident: ref63 doi: 10.1152/jn.00338.2011 – ident: ref45 doi: 10.1109/TMI.2016.2528129 – ident: ref31 doi: 10.1007/s11263-014-0733-5 – ident: ref33 doi: 10.1109/MSP.2012.2205597 – ident: ref35 doi: 10.1109/CVPR.2015.7298932 – ident: ref22 doi: 10.1109/TMI.2015.2418734 – ident: ref8 doi: 10.1073/pnas.1315235110 – ident: ref9 doi: 10.1073/pnas.0504136102 – ident: ref46 doi: 10.3389/fncom.2017.00007 – volume: 84 start-page: 895 year: 2016 ident: ref2 article-title: Artificial neural network regression as a local search heuristic for ensemble strategies in differential evolution publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2537-8 – ident: ref55 doi: 10.1109/ICASSP.2013.6638947 – ident: ref13 doi: 10.1006/nimg.1997.0306 – ident: ref72 doi: 10.1016/j.neuroimage.2013.05.033 – ident: ref68 doi: 10.1002/aur.174 – ident: ref32 doi: 10.1145/1390156.1390177 – ident: ref60 doi: 10.1016/j.neuroimage.2005.12.016 – ident: ref12 doi: 10.1038/nrn2575 – start-page: 249 year: 0 ident: ref79 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref61 doi: 10.1152/jn.2000.84.6.3072 – ident: ref50 doi: 10.1016/j.neuroimage.2014.03.048 – ident: ref71 doi: 10.1176/appi.ajp.2007.07040609 – ident: ref67 doi: 10.1111/j.1467-9280.2007.01923.x – ident: ref38 doi: 10.1016/j.neuroimage.2014.12.061 – ident: ref19 doi: 10.1109/TBME.2016.2598728 – ident: ref25 doi: 10.1016/j.neuroscience.2017.08.022 – ident: ref51 doi: 10.1109/ISBI.2016.7493348 – ident: ref66 doi: 10.1093/brain/awf189 – ident: ref74 doi: 10.1016/j.neuroimage.2013.04.127 – ident: ref48 doi: 10.1016/j.media.2017.08.005 – ident: ref69 doi: 10.1016/j.neuroimage.2007.04.032 – ident: ref3 doi: 10.1016/j.amc.2017.05.010 – ident: ref23 doi: 10.1109/TAMD.2015.2409835 – ident: ref28 doi: 10.1002/hbm.20663 – year: 0 ident: ref80 article-title: Adam: Amethod for stochastic optimization publication-title: Proc 3rd Int Conf Learn Represent – ident: ref36 doi: 10.1109/MIS.2015.69 – ident: ref20 doi: 10.1109/TBME.2014.2369495 – ident: ref18 doi: 10.1098/rstb.2005.1634 – ident: ref26 doi: 10.1109/ISBI.2018.8363538 – ident: ref40 doi: 10.1016/j.neuroimage.2014.06.077 – year: 2015 ident: ref57 article-title: A critical review of recurrent neural networks for sequence learning publication-title: Comput Sci – ident: ref1 doi: 10.1038/nature06976 – ident: ref65 doi: 10.1006/nimg.2000.0612 – ident: ref47 doi: 10.1109/TMI.2017.2715285 – ident: ref5 doi: 10.1093/comnet/cnx019 – volume: 35 start-page: 10005 year: 2015 ident: ref59 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: The Journal of Neuroscience The Official of Te Society for Neuroscience doi: 10.1523/JNEUROSCI.5023-14.2015 – ident: ref70 doi: 10.1006/nimg.2002.1179 – ident: ref16 doi: 10.1073/pnas.95.3.803 – ident: ref43 doi: 10.1109/TMI.2016.2538465 – ident: ref64 doi: 10.1016/j.neuroimage.2010.09.048 – volume: 304 start-page: 1926 year: 2004 ident: ref52 article-title: Neuronal oscillations in cortical networks publication-title: Science doi: 10.1126/science.1099745 – volume: 1 year: 2004 ident: ref11 publication-title: Functional Magnetic Resonance Imaging – ident: ref17 doi: 10.1097/00004728-199903000-00016 – ident: ref15 doi: 10.1016/S0730-725X(99)00028-4 – ident: ref76 doi: 10.1162/neco.1997.9.8.1735 – start-page: 1724 year: 0 ident: ref54 article-title: Learning phrase representations publication-title: Proc Conf Empirical Methods Natural Lang Process – ident: ref21 doi: 10.1007/s11682-017-9733-8 – ident: ref44 doi: 10.1109/TMI.2016.2526687 |
SSID | ssj0000816896 |
Score | 2.4190557 |
Snippet | For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain... For decades, task functional magnetic resonance imaging (tfMRI) has been a powerful noninvasive tool to explore the organizational architecture of human brain... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2515 |
SubjectTerms | Brain Brain - diagnostic imaging Brain architecture Brain mapping Brain modeling brain network Connectome Data models Deep learning Dependence Functional magnetic resonance imaging Humans Image Processing, Computer-Assisted - methods Independent component analysis Learning algorithms Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Modelling Nerve Net - diagnostic imaging Network analysis Neural networks Neural Networks, Computer Neuroimaging Recurrent neural networks RNN Signal Processing, Computer-Assisted Structural hierarchy Task analysis Task fMRI Task Performance and Analysis Time |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLe2PQAv42OwFQYKEk9Ab9ckbZJHBkzHpNsDbNLeqqRNtINT78S1IPjridNctWMT4q1SnFSObcWJ7Z8BXvkTR1IuXFrogqW8yAq0OZXq2tYyp1ZagQXO07NicsFPL_PLLXg71MJYa0PymR3hZ4jl14uqw6eyIxkKt9U2bAuh-lqt4T0lNJAI7bio_0i9IfIYxMzG6uj0ePIJ87jkiHqXUmLn5GvHUOircpuLeTNT8m7XLPWvn3o-v3YMndyH6ZqBPvvk26hrzaj6_Re24_9y-AB2oz9K3vUK9BC2bPMI7kxjxH0PzvtK3lANRY6xnwQ56zPHV0S3ZBrzEQmWkpAvXuB2RX7MNPlg7ZJ8xsd8hH8iiAHifxOnPoaLk4_n7ydp7MSQVpyLNrXa-GujNFZYlencKRMap1d5Tc3YVf7S4we0Q7A4neGGO8eqTHOTiUrWtWJPYKdZNPYAiHQFs4LWjlHDdcVkbox3ERytjeai5gmM14IpqwhTjt0y5mW4roxVibIsUZZllGUCr4cpyx6j41_Ee7jtA2Hc8QQO19IvoxWvSu_7Mu9BFVQk8HIY9vaHQRXd2EXnaTImCyaE9Evs98oyrI0hzVwwPyI21GggQGzvzZFmdhUwvguVIZJdAm8GhbvB21dzNdvg7entvD2De55K9RWUh7DTfu_sc-9KteZFsKE_SEYZjg priority: 102 providerName: IEEE |
Title | Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network |
URI | https://ieeexplore.ieee.org/document/8543169 https://www.ncbi.nlm.nih.gov/pubmed/30475739 https://www.proquest.com/docview/2313782627 https://www.proquest.com/docview/2138637789 https://pubmed.ncbi.nlm.nih.gov/PMC6914656 https://www.ncbi.nlm.nih.gov/pmc/articles/6914656 |
UnpaywallVersion | submittedVersion |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2208 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NToK98DVggTEZiSdQ2jhObOdxA6YyqRUaqzSeIttxtEKXVTQFwV-PL3GilSGkvSW6c6LL3cnn3N3vAF67HUfGiShDrjgLE045-lwWqsIWMo2ttAIbnCdTPp4lJ-fp-RbQrhemKdo3ej6sFpfDan7R1FYuL82oqxMb8Ywixtcd2OaYUxrA9mz66fALDpGj3GmdNsMP2-s4kj6TSaNs9FVfzLGYSw5jF1dKHJ98bS9qhqv8K868WS55b10t1a-farG4thcdP4DTToq2BOXbcF3rofn9F8DjrcR8CPd9ZEoOW9Ij2LLVY7g78bn3XThre3qbvihyhJMlyLStIV8RVZOJr0wk2FRCPjvV2xX5MVfkvbVLcoq_9REIiiAaiHuNX_oEZscfzt6NQz-TITRJIurQKu0OkFJbYTOq0jLTzQh1kxaxjkrjjj-OoEqEjVMUv3pZMkNVoqkwsigy9hQG1VVl94DIkjMr4qJksU6UYTLV2gULZVxolYgiCSDqtJMbD1iOczMWeXNwibL85Gj8MUeF5l6hAbzplyxbtI7_Me-iyntG2cACZAHsdyaQe39e5S4KZi6W4rEI4FVPdp6I6RVV2au146FMciaEdI941lpM_2xMbqaCOYrYsKWeAVG-NynOKhq0b28IAbztre6GbGjZG7I9vxX3C9hxt1nbYrkPg_r72r50sVatD5qGyAPvY38A2LolvA |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NITFe-BqDwAAj8QSka2Indh4ZMHVj6QN00t4iO3G0QpVWtAHBX8-d40YrmxBvkc52dL47-ey7-x3AKzxxVCxkHaY65aFIo5RsLgt1ZSuVxFZZSQXO-TgdnYmT8-R8C972tTDWWpd8Zgf06WL51bxs6ansQLnC7ewG3EzwViG7aq3-RcW1kHANuWL8CNEUhQ9jRsPs4ORwdEyZXGoQo1OpqHfypYPIdVa5zsm8miu50zYL_eunns0uHURHdyFfs9Dln3wbtCszKH__he74vzzegzveI2XvOhW6D1u2eQC3ch9z34VJV8vr6qHYIXWUYOMud3zJ9IrlPiORUTEJ-4Iit0v2Y6rZB2sX7DM95xMAFCMUEPyNn_oQzo4-Tt6PQt-LISyFkKvQaoMXR2WstFmkkzozrnV6mVSxGdYlSgMJuia4OB3Rhtc1LyMtTCRLVVUZ34PtZt7Yx8BUnXIr46rmsRG65CoxBp2EOq6MFrISAQzXgilKD1RO_TJmhbuwDLOCZFmQLAsvywBe91MWHUrHvwbv0rb3A_2OB7C_ln7h7XhZoPfL0YdKYxnAy56MFkhhFd3YeYtjIq5SLqXCJR51ytKvTUHNRHKkyA016gcQuvcmpZleOJTvNIsIyy6AN73CXeHtq7mYbvD25HreXsDOaJKfFqfH409P4TbOyLp6yn3YXn1v7TN0rFbmubOnPyx_HN8 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgJe-BpjgYGMxBMobRwntvO4AVOZ1AqNVRpPke04WqHLqjUFwV-PL3GilSGkvSW6c6LL3cnn3N3vAN64HUfGiShDrjgLE045-lwWqsIWMo2ttAIbnCdTPp4lx2fp2RbQrhemKdo3ej6sFhfDan7e1FYuL8yoqxMb8Ywixtcd2OaYUxrA9mz6-eArDpGj3GmdNsMP2-s4kj6TSaNs9E2fz7GYSw5jF1dKHJ98bS9qhqv8K868WS55b10t1a-farG4thcdPYSTToq2BOX7cF3rofn9F8DjrcR8BA98ZEoOWtJj2LLVE7g78bn3HThte3qbvihyiJMlyLStIV8RVZOJr0wk2FRCvjjV2xX5MVfkg7VLcoK_9REIiiAaiHuNX_oUZkcfT9-PQz-TITRJIurQKu0OkFJbYTOq0jLTzQh1kxaxjkrjjj-OoEqEjVMUv3pZMkNVoqkwsigytguD6rKye0BkyZkVcVGyWCfKMJlq7YKFMi60SkSRBBB12smNByzHuRmLvDm4RFl-fDj-lKNCc6_QAN72S5YtWsf_mHdQ5T2jbGABsgD2OxPIvT-vchcFMxdL8VgE8LonO0_E9Iqq7OXa8VAmORNCukc8ay2mfzYmN1PBHEVs2FLPgCjfmxRnFQ3atzeEAN71VndDNrTsDdme34r7Bdx3t1nbYrkPg_pqbV-6WKvWr7x3_QH71CS7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Brain+Networks+at+Multiple+Time+Scales+via+Deep+Recurrent+Neural+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Cui%2C+Yan&rft.au=Zhao%2C+Shijie&rft.au=Wang%2C+Han&rft.au=Xie%2C+Li&rft.date=2019-11-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=23&rft.issue=6&rft.spage=2515&rft.epage=2525&rft_id=info:doi/10.1109%2FJBHI.2018.2882885&rft_id=info%3Apmid%2F30475739&rft.externalDocID=PMC6914656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |