Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network

For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 23; no. 6; pp. 2515 - 2525
Main Authors Cui, Yan, Zhao, Shijie, Wang, Han, Xie, Li, Chen, Yaowu, Han, Junwei, Guo, Lei, Zhou, Fan, Liu, Tianming
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2018.2882885

Cover

Abstract For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data.
AbstractList For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data.
For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data.For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model, independent component analysis, and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependence features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of a deep recurrent neural network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed DRNN can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data.
For decades, task functional magnetic resonance imaging (tfMRI) has been a powerful noninvasive tool to explore the organizational architecture of human brain function. Researchers have developed a variety of brain network analysis methods for task fMRI data, including the general linear model (GLM), independent component analysis (ICA) and sparse representation methods. However, these shallow models are limited in faithful reconstruction and modeling of the hierarchical and temporal structures of brain networks, as demonstrated in more and more studies. Recently, recurrent neural networks (RNNs) exhibit great ability of modeling hierarchical and temporal dependency features in the machine learning field, which might be suitable for task fMRI data modeling. To explore such possible advantages of RNNs for task fMRI data, we propose a novel framework of Deep Recurrent Neural Network (DRNN) to model the functional brain networks from task fMRI data. Experimental results on the motor task fMRI data of Human Connectome Project 900 subjects release demonstrated that the proposed Deep Recurrent Neural Network can not only faithfully reconstruct functional brain networks, but also identify more meaningful brain networks with multiple time scales which are overlooked by traditional shallow models. In general, this work provides an effective and powerful approach to identifying functional brain networks at multiple time scales from task fMRI data.
Author Chen, Yaowu
Xie, Li
Zhou, Fan
Han, Junwei
Zhao, Shijie
Guo, Lei
Cui, Yan
Liu, Tianming
Wang, Han
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-3627-3169
  surname: Cui
  fullname: Cui, Yan
  email: cuiy@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Shijie
  orcidid: 0000-0001-9102-5294
  surname: Zhao
  fullname: Zhao, Shijie
  email: shijiezhao666@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Han
  orcidid: 0000-0001-5220-6084
  surname: Wang
  fullname: Wang, Han
  email: sdzbwh@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Li
  surname: Xie
  fullname: Xie, Li
  email: xiehan@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science and the State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Yaowu
  orcidid: 0000-0002-6037-0631
  surname: Chen
  fullname: Chen, Yaowu
  email: cyw@mail.bme.zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, and Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Junwei
  orcidid: 0000-0001-5545-7217
  surname: Han
  fullname: Han, Junwei
  email: junweihan2010@gmail.com
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 7
  givenname: Lei
  surname: Guo
  fullname: Guo, Lei
  email: lguo@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 8
  givenname: Fan
  orcidid: 0000-0002-0900-6965
  surname: Zhou
  fullname: Zhou, Fan
  email: fanzhou@mail.bme.zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
– sequence: 9
  givenname: Tianming
  orcidid: 0000-0002-8132-9048
  surname: Liu
  fullname: Liu, Tianming
  email: tianming.liu@gmail.com
  organization: Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30475739$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhi1URI8PgJBQJG642SVjO7Fzg9SWQhe1ILXLteU4k9aLNwl20mrfHkd7ECwSliVbnvnG_z_2MTlo2gYJeQ3pFCAtPny9uJ5NaQpySqWMM3tBjijkckJpKg-2eyj4ITkLYZHGIeNRkb8ihyzlIhOsOCLzWYVNb-uVbR6SC69tk3zD_rn1P0Oi--R2cL3tHCZzu8Tk3miHIXmyOvmE2CV3aAbvIx-ZwWu3RU_Jy1q7gGeb9YT8-Hw1v7ye3Hz_Mrs8v5kYzkU_QV1ynssSBRags7ooUxDATVbRMq0NlyIGdA0QozB6rmtmQPMShJFVVbATQtd1h6bTq2ftnOq8XWq_UpCqkVCL8tGqsUtq06UIfVxD3VAusTJRfpS-A1tt1d-Rxj6qh_ZJ5QXwPMtjgfebAr79NWDo1dIGg87pBtshKApM5kwIOQp8t5e6aAffxJ4oyoAJSXMqYtbbPxXtpGxfKSbAOsH4NgSP9T82x8-wb1PsMcb2urftaMq6_5Jv1qRFxN1NMuMM8oL9Bs3Xv8o
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_TNSRE_2021_3111989
crossref_primary_10_3390_jcm14020550
crossref_primary_10_1016_j_knosys_2024_112856
crossref_primary_10_1016_j_synthmet_2024_117773
crossref_primary_10_1007_s13198_021_01540_x
crossref_primary_10_1016_j_compbiomed_2024_108611
crossref_primary_10_1109_TNSE_2021_3102667
crossref_primary_10_32604_cmc_2021_016930
crossref_primary_10_1109_JBHI_2020_3000057
crossref_primary_10_1523_ENEURO_0200_22_2022
crossref_primary_10_1088_1361_6501_ad14e2
crossref_primary_10_1097_WCO_0000000000001280
crossref_primary_10_1109_JSYST_2020_3030474
crossref_primary_10_1109_ACCESS_2020_2984948
crossref_primary_10_1109_TPAMI_2024_3442811
crossref_primary_10_1109_TMRB_2023_3270481
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1016_j_media_2022_102665
crossref_primary_10_1016_j_compbiomed_2023_107395
crossref_primary_10_1016_j_oceaneng_2020_108530
crossref_primary_10_1109_JBHI_2020_3036743
crossref_primary_10_32604_cmes_2021_016728
Cites_doi 10.1016/j.neuroimage.2016.01.005
10.1016/j.tics.2010.01.004
10.3389/neuro.11.037.2009
10.1016/j.media.2017.07.005
10.1109/TBME.2017.2715281
10.1109/TBME.2015.2496253
10.1007/s11263-015-0816-y
10.1002/hbm.460020402
10.1146/annurev-vision-082114-035447
10.1152/jn.00339.2011
10.1007/s00429-013-0687-3
10.1016/j.neuroimage.2016.01.024
10.1109/TBME.2018.2831186
10.1038/nature16961
10.1016/j.plrev.2017.11.003
10.1016/j.neuron.2006.04.031
10.1016/j.neuroimage.2013.05.041
10.1017/S0140525X11001567
10.1152/jn.00338.2011
10.1109/TMI.2016.2528129
10.1007/s11263-014-0733-5
10.1109/MSP.2012.2205597
10.1109/CVPR.2015.7298932
10.1109/TMI.2015.2418734
10.1073/pnas.1315235110
10.1073/pnas.0504136102
10.3389/fncom.2017.00007
10.1007/s11071-015-2537-8
10.1109/ICASSP.2013.6638947
10.1006/nimg.1997.0306
10.1016/j.neuroimage.2013.05.033
10.1002/aur.174
10.1145/1390156.1390177
10.1016/j.neuroimage.2005.12.016
10.1038/nrn2575
10.1152/jn.2000.84.6.3072
10.1016/j.neuroimage.2014.03.048
10.1176/appi.ajp.2007.07040609
10.1111/j.1467-9280.2007.01923.x
10.1016/j.neuroimage.2014.12.061
10.1109/TBME.2016.2598728
10.1016/j.neuroscience.2017.08.022
10.1109/ISBI.2016.7493348
10.1093/brain/awf189
10.1016/j.neuroimage.2013.04.127
10.1016/j.media.2017.08.005
10.1016/j.neuroimage.2007.04.032
10.1016/j.amc.2017.05.010
10.1109/TAMD.2015.2409835
10.1002/hbm.20663
10.1109/MIS.2015.69
10.1109/TBME.2014.2369495
10.1098/rstb.2005.1634
10.1109/ISBI.2018.8363538
10.1016/j.neuroimage.2014.06.077
10.1038/nature06976
10.1006/nimg.2000.0612
10.1109/TMI.2017.2715285
10.1093/comnet/cnx019
10.1523/JNEUROSCI.5023-14.2015
10.1006/nimg.2002.1179
10.1073/pnas.95.3.803
10.1109/TMI.2016.2538465
10.1016/j.neuroimage.2010.09.048
10.1126/science.1099745
10.1097/00004728-199903000-00016
10.1016/S0730-725X(99)00028-4
10.1162/neco.1997.9.8.1735
10.1007/s11682-017-9733-8
10.1109/TMI.2016.2526687
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/JBHI.2018.2882885
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2525
ExternalDocumentID oai:pubmedcentral.nih.gov:6914656
PMC6914656
30475739
10_1109_JBHI_2018_2882885
8543169
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Zhejiang Province Science and Technology Planning
  grantid: 2016C33069
– fundername: NIH
  grantid: R01 DA-033393; R01 AG-042599
– fundername: NSF CAREER
  grantid: IIS-1149260
– fundername: NSF of China
  grantid: 61806167
– fundername: NSF
  grantid: CBET-1302089; BCS-1439051; DBI-1564736
– fundername: National Natural Science Foundation of China
  grantid: 61806167
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61333017
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2017FZA5021
– fundername: China Postdoctoral Science Foundation
  grantid: M613206
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3102017zy030
– fundername: NIDA NIH HHS
  grantid: R01 DA033393
– fundername: NIA NIH HHS
  grantid: R01 AG042599
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c447t-eab4468be7e91a5f9b01714c5d2b0fc4877e9af1191a11109ff3c1a4b17c8dd93
IEDL.DBID UNPAY
ISSN 2168-2194
2168-2208
IngestDate Wed Aug 20 00:16:56 EDT 2025
Tue Sep 30 16:40:40 EDT 2025
Wed Oct 01 14:45:43 EDT 2025
Mon Jun 30 06:10:47 EDT 2025
Thu Apr 03 07:04:41 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Wed Oct 01 03:39:57 EDT 2025
Wed Aug 27 02:30:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-eab4468be7e91a5f9b01714c5d2b0fc4877e9af1191a11109ff3c1a4b17c8dd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
first author
ORCID 0000-0003-3627-3169
0000-0001-5545-7217
0000-0002-6037-0631
0000-0001-5220-6084
0000-0002-0900-6965
0000-0002-8132-9048
0000-0001-9102-5294
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6914656
PMID 30475739
PQID 2313782627
PQPubID 85417
PageCount 11
ParticipantIDs unpaywall_primary_10_1109_jbhi_2018_2882885
crossref_primary_10_1109_JBHI_2018_2882885
proquest_miscellaneous_2138637789
proquest_journals_2313782627
pubmed_primary_30475739
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6914656
crossref_citationtrail_10_1109_JBHI_2018_2882885
ieee_primary_8543169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref58
ref14
ref53
ref55
ref10
hinton (ref77) 2012
huettel (ref11) 2004; 1
hermans (ref75) 0
ref17
ref16
ref19
güçlü (ref59) 2015; 35
ref18
buzsaki (ref52) 2004; 304
ref51
ref50
sutskever (ref56) 0
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref74
ref30
ref33
ref76
ref32
silver (ref34) 2016; 529
ref1
shu (ref24) 2017; 12
ref39
ref38
glorot (ref79) 0
ref71
ref70
ref73
ref72
ref68
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
fister (ref2) 2016; 84
ref21
lipton (ref57) 2015
ref28
ref27
ref29
cho (ref54) 0
ref60
ref62
ref61
kingma (ref80) 0
abadi (ref78) 0
References_xml – ident: ref42
  doi: 10.1016/j.neuroimage.2016.01.005
– start-page: 190
  year: 0
  ident: ref75
  article-title: Training and analysing deep recurrent neural networks
  publication-title: Proc Int Conf Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.1016/j.tics.2010.01.004
– ident: ref29
  doi: 10.3389/neuro.11.037.2009
– ident: ref53
  doi: 10.1016/j.media.2017.07.005
– ident: ref49
  doi: 10.1109/TBME.2017.2715281
– ident: ref37
  doi: 10.1109/TBME.2015.2496253
– ident: ref30
  doi: 10.1007/s11263-015-0816-y
– start-page: 265
  year: 0
  ident: ref78
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc USENIX Conf Operating System Design and Implementations
– ident: ref14
  doi: 10.1002/hbm.460020402
– ident: ref58
  doi: 10.1146/annurev-vision-082114-035447
– ident: ref62
  doi: 10.1152/jn.00339.2011
– ident: ref41
  doi: 10.1007/s00429-013-0687-3
– ident: ref39
  doi: 10.1016/j.neuroimage.2016.01.024
– volume: 12
  start-page: 728
  year: 2017
  ident: ref24
  article-title: Joint representation of consistent structural and functional profiles for identification of common cortical landmarks
  publication-title: Brain Imag Behav
– year: 2012
  ident: ref77
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– ident: ref27
  doi: 10.1109/TBME.2018.2831186
– volume: 529
  start-page: 484
  year: 2016
  ident: ref34
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref4
  doi: 10.1016/j.plrev.2017.11.003
– ident: ref6
  doi: 10.1016/j.neuron.2006.04.031
– ident: ref73
  doi: 10.1016/j.neuroimage.2013.05.041
– start-page: 1017
  year: 0
  ident: ref56
  article-title: Generating text with recurrent neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref10
  doi: 10.1017/S0140525X11001567
– ident: ref63
  doi: 10.1152/jn.00338.2011
– ident: ref45
  doi: 10.1109/TMI.2016.2528129
– ident: ref31
  doi: 10.1007/s11263-014-0733-5
– ident: ref33
  doi: 10.1109/MSP.2012.2205597
– ident: ref35
  doi: 10.1109/CVPR.2015.7298932
– ident: ref22
  doi: 10.1109/TMI.2015.2418734
– ident: ref8
  doi: 10.1073/pnas.1315235110
– ident: ref9
  doi: 10.1073/pnas.0504136102
– ident: ref46
  doi: 10.3389/fncom.2017.00007
– volume: 84
  start-page: 895
  year: 2016
  ident: ref2
  article-title: Artificial neural network regression as a local search heuristic for ensemble strategies in differential evolution
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2537-8
– ident: ref55
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref13
  doi: 10.1006/nimg.1997.0306
– ident: ref72
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: ref68
  doi: 10.1002/aur.174
– ident: ref32
  doi: 10.1145/1390156.1390177
– ident: ref60
  doi: 10.1016/j.neuroimage.2005.12.016
– ident: ref12
  doi: 10.1038/nrn2575
– start-page: 249
  year: 0
  ident: ref79
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref61
  doi: 10.1152/jn.2000.84.6.3072
– ident: ref50
  doi: 10.1016/j.neuroimage.2014.03.048
– ident: ref71
  doi: 10.1176/appi.ajp.2007.07040609
– ident: ref67
  doi: 10.1111/j.1467-9280.2007.01923.x
– ident: ref38
  doi: 10.1016/j.neuroimage.2014.12.061
– ident: ref19
  doi: 10.1109/TBME.2016.2598728
– ident: ref25
  doi: 10.1016/j.neuroscience.2017.08.022
– ident: ref51
  doi: 10.1109/ISBI.2016.7493348
– ident: ref66
  doi: 10.1093/brain/awf189
– ident: ref74
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: ref48
  doi: 10.1016/j.media.2017.08.005
– ident: ref69
  doi: 10.1016/j.neuroimage.2007.04.032
– ident: ref3
  doi: 10.1016/j.amc.2017.05.010
– ident: ref23
  doi: 10.1109/TAMD.2015.2409835
– ident: ref28
  doi: 10.1002/hbm.20663
– year: 0
  ident: ref80
  article-title: Adam: Amethod for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref36
  doi: 10.1109/MIS.2015.69
– ident: ref20
  doi: 10.1109/TBME.2014.2369495
– ident: ref18
  doi: 10.1098/rstb.2005.1634
– ident: ref26
  doi: 10.1109/ISBI.2018.8363538
– ident: ref40
  doi: 10.1016/j.neuroimage.2014.06.077
– year: 2015
  ident: ref57
  article-title: A critical review of recurrent neural networks for sequence learning
  publication-title: Comput Sci
– ident: ref1
  doi: 10.1038/nature06976
– ident: ref65
  doi: 10.1006/nimg.2000.0612
– ident: ref47
  doi: 10.1109/TMI.2017.2715285
– ident: ref5
  doi: 10.1093/comnet/cnx019
– volume: 35
  start-page: 10005
  year: 2015
  ident: ref59
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: The Journal of Neuroscience The Official of Te Society for Neuroscience
  doi: 10.1523/JNEUROSCI.5023-14.2015
– ident: ref70
  doi: 10.1006/nimg.2002.1179
– ident: ref16
  doi: 10.1073/pnas.95.3.803
– ident: ref43
  doi: 10.1109/TMI.2016.2538465
– ident: ref64
  doi: 10.1016/j.neuroimage.2010.09.048
– volume: 304
  start-page: 1926
  year: 2004
  ident: ref52
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 1
  year: 2004
  ident: ref11
  publication-title: Functional Magnetic Resonance Imaging
– ident: ref17
  doi: 10.1097/00004728-199903000-00016
– ident: ref15
  doi: 10.1016/S0730-725X(99)00028-4
– ident: ref76
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1724
  year: 0
  ident: ref54
  article-title: Learning phrase representations
  publication-title: Proc Conf Empirical Methods Natural Lang Process
– ident: ref21
  doi: 10.1007/s11682-017-9733-8
– ident: ref44
  doi: 10.1109/TMI.2016.2526687
SSID ssj0000816896
Score 2.4190557
Snippet For decades, task functional magnetic resonance imaging has been a powerful noninvasive tool to explore the organizational architecture of human brain...
For decades, task functional magnetic resonance imaging (tfMRI) has been a powerful noninvasive tool to explore the organizational architecture of human brain...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2515
SubjectTerms Brain
Brain - diagnostic imaging
Brain architecture
Brain mapping
Brain modeling
brain network
Connectome
Data models
Deep learning
Dependence
Functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Independent component analysis
Learning algorithms
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Modelling
Nerve Net - diagnostic imaging
Network analysis
Neural networks
Neural Networks, Computer
Neuroimaging
Recurrent neural networks
RNN
Signal Processing, Computer-Assisted
Structural hierarchy
Task analysis
Task fMRI
Task Performance and Analysis
Time
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLe2PQAv42OwFQYKEk9Ab9ckbZJHBkzHpNsDbNLeqqRNtINT78S1IPjridNctWMT4q1SnFSObcWJ7Z8BXvkTR1IuXFrogqW8yAq0OZXq2tYyp1ZagQXO07NicsFPL_PLLXg71MJYa0PymR3hZ4jl14uqw6eyIxkKt9U2bAuh-lqt4T0lNJAI7bio_0i9IfIYxMzG6uj0ePIJ87jkiHqXUmLn5GvHUOircpuLeTNT8m7XLPWvn3o-v3YMndyH6ZqBPvvk26hrzaj6_Re24_9y-AB2oz9K3vUK9BC2bPMI7kxjxH0PzvtK3lANRY6xnwQ56zPHV0S3ZBrzEQmWkpAvXuB2RX7MNPlg7ZJ8xsd8hH8iiAHifxOnPoaLk4_n7ydp7MSQVpyLNrXa-GujNFZYlencKRMap1d5Tc3YVf7S4we0Q7A4neGGO8eqTHOTiUrWtWJPYKdZNPYAiHQFs4LWjlHDdcVkbox3ERytjeai5gmM14IpqwhTjt0y5mW4roxVibIsUZZllGUCr4cpyx6j41_Ee7jtA2Hc8QQO19IvoxWvSu_7Mu9BFVQk8HIY9vaHQRXd2EXnaTImCyaE9Evs98oyrI0hzVwwPyI21GggQGzvzZFmdhUwvguVIZJdAm8GhbvB21dzNdvg7entvD2De55K9RWUh7DTfu_sc-9KteZFsKE_SEYZjg
  priority: 102
  providerName: IEEE
Title Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network
URI https://ieeexplore.ieee.org/document/8543169
https://www.ncbi.nlm.nih.gov/pubmed/30475739
https://www.proquest.com/docview/2313782627
https://www.proquest.com/docview/2138637789
https://pubmed.ncbi.nlm.nih.gov/PMC6914656
https://www.ncbi.nlm.nih.gov/pmc/articles/6914656
UnpaywallVersion submittedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2208
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NToK98DVggTEZiSdQ2jhObOdxA6YyqRUaqzSeIttxtEKXVTQFwV-PL3GilSGkvSW6c6LL3cnn3N3vAF67HUfGiShDrjgLE045-lwWqsIWMo2ttAIbnCdTPp4lJ-fp-RbQrhemKdo3ej6sFpfDan7R1FYuL82oqxMb8Ywixtcd2OaYUxrA9mz66fALDpGj3GmdNsMP2-s4kj6TSaNs9FVfzLGYSw5jF1dKHJ98bS9qhqv8K868WS55b10t1a-farG4thcdP4DTToq2BOXbcF3rofn9F8DjrcR8CPd9ZEoOW9Ij2LLVY7g78bn3XThre3qbvihyhJMlyLStIV8RVZOJr0wk2FRCPjvV2xX5MVfkvbVLcoq_9REIiiAaiHuNX_oEZscfzt6NQz-TITRJIurQKu0OkFJbYTOq0jLTzQh1kxaxjkrjjj-OoEqEjVMUv3pZMkNVoqkwsigy9hQG1VVl94DIkjMr4qJksU6UYTLV2gULZVxolYgiCSDqtJMbD1iOczMWeXNwibL85Gj8MUeF5l6hAbzplyxbtI7_Me-iyntG2cACZAHsdyaQe39e5S4KZi6W4rEI4FVPdp6I6RVV2au146FMciaEdI941lpM_2xMbqaCOYrYsKWeAVG-NynOKhq0b28IAbztre6GbGjZG7I9vxX3C9hxt1nbYrkPg_r72r50sVatD5qGyAPvY38A2LolvA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NITFe-BqDwAAj8QSka2Indh4ZMHVj6QN00t4iO3G0QpVWtAHBX8-d40YrmxBvkc52dL47-ey7-x3AKzxxVCxkHaY65aFIo5RsLgt1ZSuVxFZZSQXO-TgdnYmT8-R8C972tTDWWpd8Zgf06WL51bxs6ansQLnC7ewG3EzwViG7aq3-RcW1kHANuWL8CNEUhQ9jRsPs4ORwdEyZXGoQo1OpqHfypYPIdVa5zsm8miu50zYL_eunns0uHURHdyFfs9Dln3wbtCszKH__he74vzzegzveI2XvOhW6D1u2eQC3ch9z34VJV8vr6qHYIXWUYOMud3zJ9IrlPiORUTEJ-4Iit0v2Y6rZB2sX7DM95xMAFCMUEPyNn_oQzo4-Tt6PQt-LISyFkKvQaoMXR2WstFmkkzozrnV6mVSxGdYlSgMJuia4OB3Rhtc1LyMtTCRLVVUZ34PtZt7Yx8BUnXIr46rmsRG65CoxBp2EOq6MFrISAQzXgilKD1RO_TJmhbuwDLOCZFmQLAsvywBe91MWHUrHvwbv0rb3A_2OB7C_ln7h7XhZoPfL0YdKYxnAy56MFkhhFd3YeYtjIq5SLqXCJR51ytKvTUHNRHKkyA016gcQuvcmpZleOJTvNIsIyy6AN73CXeHtq7mYbvD25HreXsDOaJKfFqfH409P4TbOyLp6yn3YXn1v7TN0rFbmubOnPyx_HN8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgJe-BpjgYGMxBMobRwntvO4AVOZ1AqNVRpPke04WqHLqjUFwV-PL3GilSGkvSW6c6LL3cnn3N3vAN64HUfGiShDrjgLE045-lwWqsIWMo2ttAIbnCdTPp4lx2fp2RbQrhemKdo3ej6sFhfDan7e1FYuL8yoqxMb8Ywixtcd2OaYUxrA9mz6-eArDpGj3GmdNsMP2-s4kj6TSaNs9E2fz7GYSw5jF1dKHJ98bS9qhqv8K868WS55b10t1a-farG4thcdPYSTToq2BOX7cF3rofn9F8DjrcR8BA98ZEoOWtJj2LLVE7g78bn3HThte3qbvihyiJMlyLStIV8RVZOJr0wk2FRCvjjV2xX5MVfkg7VLcoK_9REIiiAaiHuNX_oUZkcfT9-PQz-TITRJIurQKu0OkFJbYTOq0jLTzQh1kxaxjkrjjj-OoEqEjVMUv3pZMkNVoqkwsigytguD6rKye0BkyZkVcVGyWCfKMJlq7YKFMi60SkSRBBB12smNByzHuRmLvDm4RFl-fDj-lKNCc6_QAN72S5YtWsf_mHdQ5T2jbGABsgD2OxPIvT-vchcFMxdL8VgE8LonO0_E9Iqq7OXa8VAmORNCukc8ay2mfzYmN1PBHEVs2FLPgCjfmxRnFQ3atzeEAN71VndDNrTsDdme34r7Bdx3t1nbYrkPg_pqbV-6WKvWr7x3_QH71CS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Brain+Networks+at+Multiple+Time+Scales+via+Deep+Recurrent+Neural+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Cui%2C+Yan&rft.au=Zhao%2C+Shijie&rft.au=Wang%2C+Han&rft.au=Xie%2C+Li&rft.date=2019-11-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=23&rft.issue=6&rft.spage=2515&rft.epage=2525&rft_id=info:doi/10.1109%2FJBHI.2018.2882885&rft_id=info%3Apmid%2F30475739&rft.externalDocID=PMC6914656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon