Nerve growth factor metabolic dysfunction in Down’s syndrome brains
Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syn...
Saved in:
Published in | Brain (London, England : 1878) Vol. 137; no. 3; pp. 860 - 872 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.03.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awt372 |
Cover
Abstract | Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down's syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer's disease and Down's syndrome. |
---|---|
AbstractList | Individuals with Down’s syndrome are at increased risk of Alzheimer’s disease. Using post-mortem human brain tissue, foetal cortex cultures and Ts65Dn trisomic mice, Iulita
et al.
reveal marked alterations in nerve growth factor metabolism in Down’s syndrome, consistent with similar defects previously reported by this group in Alzheimer’s disease.
Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (
n
= 14), frontal (
n
= 34) and parietal (
n
= 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down’s syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer’s disease and Down’s syndrome. Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down's syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer's disease and Down's syndrome. Individuals with Down's syndrome are at increased risk of Alzheimer's disease. Using post-mortem human brain tissue, foetal cortex cultures and Ts65Dn trisomic mice, Iulita et al. reveal marked alterations in nerve growth factor metabolism in Down's syndrome, consistent with similar defects previously reported by this group in Alzheimer's disease. Individuals with Down's syndrome are at increased risk of Alzheimer's disease. Using post-mortem human brain tissue, foetal cortex cultures and Ts65Dn trisomic mice, Iulita et al. reveal marked alterations in nerve growth factor metabolism in Down's syndrome, consistent with similar defects previously reported by this group in Alzheimer's disease. Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down's syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer's disease and Down's syndrome.Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down's syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer's disease and Down's syndrome. |
Author | Wisniewski, Thomas Busciglio, Jorge Do Carmo, Sonia Iulita, M. Florencia Ower, Alison K. Cuello, A. Claudio Hanna, Michael Fortress, Ashley M. Aguilar, Lisi Flores Granholm, Ann-Charlotte Buhusi, Mona |
AuthorAffiliation | 2 Department of Neurosciences and the Centre on Ageing, Medical University of South Carolina, BSB Room 403, 173 Ashley Avenue, Charleston, 29425, USA 3 Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, H3G1Y6, Canada 1 Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Montreal, H3G1Y6, Canada 4 Department of Neurobiology and Behaviour, University of California, 2205 McGaugh Hall, Irvine, 92697, USA 5 Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, 240 East 38th Street, New York, 10016, USA 6 Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, H3G1Y6, Canada |
AuthorAffiliation_xml | – name: 1 Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William-Osler Promenade, Montreal, H3G1Y6, Canada – name: 4 Department of Neurobiology and Behaviour, University of California, 2205 McGaugh Hall, Irvine, 92697, USA – name: 5 Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, 240 East 38th Street, New York, 10016, USA – name: 3 Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, H3G1Y6, Canada – name: 2 Department of Neurosciences and the Centre on Ageing, Medical University of South Carolina, BSB Room 403, 173 Ashley Avenue, Charleston, 29425, USA – name: 6 Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, H3G1Y6, Canada |
Author_xml | – sequence: 1 givenname: M. Florencia surname: Iulita fullname: Iulita, M. Florencia – sequence: 2 givenname: Sonia surname: Do Carmo fullname: Do Carmo, Sonia – sequence: 3 givenname: Alison K. surname: Ower fullname: Ower, Alison K. – sequence: 4 givenname: Ashley M. surname: Fortress fullname: Fortress, Ashley M. – sequence: 5 givenname: Lisi Flores surname: Aguilar fullname: Aguilar, Lisi Flores – sequence: 6 givenname: Michael surname: Hanna fullname: Hanna, Michael – sequence: 7 givenname: Thomas surname: Wisniewski fullname: Wisniewski, Thomas – sequence: 8 givenname: Ann-Charlotte surname: Granholm fullname: Granholm, Ann-Charlotte – sequence: 9 givenname: Mona surname: Buhusi fullname: Buhusi, Mona – sequence: 10 givenname: Jorge surname: Busciglio fullname: Busciglio, Jorge – sequence: 11 givenname: A. Claudio surname: Cuello fullname: Cuello, A. Claudio |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28192045$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24519975$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT1PHDEQhq0IFA6SLjXaJlKKLIw_d90gISAfEkqapLbmvF5wtGuD7eN0Xf4Gfy-_JHvckS9RpJpinvedmXf2yU6IwRHyisIRBc2P5wl9OMZl4Q17RmZUKKgZlWqHzABA1a2WsEf2c_4GQAVn6jnZY0JSrRs5IxefXLpz1VWKy3Jd9WhLTNXoCs7j4G3VrXK_CLb4GCofqvO4DD--3-cqr0KX4uiqh-n5Bdntccju5bYekK_vLr6cfagvP7__eHZ6WVshmlLbVmGngHdWiV6jpNAJphhYKVhHqeNKccktp03bKwuoEOaibx2ylmtnLT8gJxvfm8V8dJ11oSQczE3yI6aViejN353gr81VvDNcs6YBMRm82RqkeLtwuZjRZ-uGAYOLi2yoBMmFZBT-BwXVas7phB7-udavfR5jnoDXWwCzxaFPGKzPv7mWagZizbENZ1PMObneWF9wnf50jR8MBbP-uXlI3Wx-Pone_iN69H0S_wmPnbE- |
CitedBy_id | crossref_primary_10_3390_jcm13051338 crossref_primary_10_3389_fnins_2019_00062 crossref_primary_10_1152_ajpregu_00342_2015 crossref_primary_10_1016_j_nbd_2020_105150 crossref_primary_10_3390_cells11010016 crossref_primary_10_1007_s00401_019_01965_6 crossref_primary_10_1042_BSR20204264 crossref_primary_10_3390_jcm10173931 crossref_primary_10_1016_j_neurobiolaging_2019_11_010 crossref_primary_10_1186_s12989_022_00477_8 crossref_primary_10_1016_j_tips_2014_04_010 crossref_primary_10_1016_S1474_4422_16_00063_6 crossref_primary_10_1007_s12031_015_0637_z crossref_primary_10_1016_j_biopha_2022_113337 crossref_primary_10_1093_brain_awaa326 crossref_primary_10_3390_ijms21186906 crossref_primary_10_1007_s10354_015_0408_z crossref_primary_10_3389_fnagi_2021_719507 crossref_primary_10_1016_j_celrep_2022_110532 crossref_primary_10_1016_j_neuroscience_2015_03_006 crossref_primary_10_1016_j_nbd_2017_08_019 crossref_primary_10_1016_j_neurobiolaging_2018_03_002 crossref_primary_10_3390_biomedicines11020335 crossref_primary_10_3390_cells10081983 crossref_primary_10_1093_gerona_glx092 crossref_primary_10_3389_fncel_2022_987212 crossref_primary_10_1002_alz_12229 crossref_primary_10_1108_AMHID_11_2015_0052 crossref_primary_10_1038_mtm_2015_13 crossref_primary_10_3233_JAD_240622 crossref_primary_10_3389_fnins_2019_00129 crossref_primary_10_1016_j_bbadis_2022_166388 crossref_primary_10_3389_fnins_2022_773347 crossref_primary_10_3389_fnagi_2017_00284 crossref_primary_10_3389_fnins_2019_00446 crossref_primary_10_1016_j_semcdb_2016_09_007 crossref_primary_10_3390_jcm10163639 crossref_primary_10_1523_JNEUROSCI_2658_14_2015 crossref_primary_10_3390_biom12111722 crossref_primary_10_3389_fnagi_2020_585873 crossref_primary_10_1111_jnc_13415 crossref_primary_10_1007_s11064_022_03659_0 crossref_primary_10_1007_s11011_017_0001_9 crossref_primary_10_1038_s41380_020_0797_2 crossref_primary_10_1093_brain_awac096 crossref_primary_10_1186_s13195_021_00796_6 crossref_primary_10_3233_JAD_221063 crossref_primary_10_1002_ajmg_c_31536 crossref_primary_10_1016_j_ejphar_2017_10_004 crossref_primary_10_1016_j_ijbiomac_2024_135967 crossref_primary_10_1016_j_jalz_2014_10_007 crossref_primary_10_3233_TRD_200090 crossref_primary_10_14283_jpad_2018_43 crossref_primary_10_1016_j_jalz_2017_08_016 crossref_primary_10_3233_JAD_190756 crossref_primary_10_3389_fnins_2022_909669 crossref_primary_10_3390_ijms24043231 crossref_primary_10_3389_fnins_2019_00533 crossref_primary_10_3390_ijms19010248 crossref_primary_10_3389_fimmu_2020_00456 crossref_primary_10_3389_fnagi_2021_700280 crossref_primary_10_1016_j_pneurobio_2018_12_004 crossref_primary_10_3389_fnagi_2021_707950 crossref_primary_10_3389_fnagi_2021_645334 crossref_primary_10_1016_j_jalz_2016_05_001 crossref_primary_10_1038_srep20272 |
Cites_doi | 10.1016/0169-328X(86)90023-9 10.1006/exnr.2000.7359 10.1073/pnas.96.7.4067 10.1016/j.cmet.2012.12.005 10.1093/jnen/63.6.641 10.1016/j.expneurol.2004.11.017 10.1007/s00726-007-0618-9 10.1006/nbdi.1996.0003 10.3109/13506120208995241 10.1016/0306-4522(95)91510-J 10.1097/NEN.0b013e3181c22569 10.1016/S0168-0102(03)00005-1 10.1016/S0736-5748(99)00036-2 10.1016/S0736-5748(03)00031-5 10.1016/0169-328X(94)90159-7 10.1038/ng1095-177 10.1111/j.1365-2559.1988.tb02018.x 10.1016/S0896-6273(02)00604-9 10.1111/j.1471-4159.2011.07359.x 10.1002/ana.410170310 10.1016/j.mcn.2012.10.001 10.1016/j.jprot.2011.05.025 10.1016/S0140-6736(76)91936-X 10.1101/lm.68104 10.1111/j.1471-4159.2009.05894.x 10.1212/01.wnl.0000271077.82508.a0 10.1093/brain/99.3.459 10.1016/j.jalz.2011.09.229 10.1038/cdd.2013.22 10.1126/science.7046051 10.1126/science.1073634 10.1016/j.neurobiolaging.2007.11.026 10.1155/2012/170276 10.1007/s00018-005-5077-4 10.1016/S0002-9440(10)62275-4 10.1073/pnas.0510645103 10.1523/JNEUROSCI.1144-11.2012 10.1007/s00401-011-0910-3 10.1126/science.7058341 10.1111/j.1471-4159.2009.06277.x 10.1006/mcne.2001.1016 10.1097/NEN.0b013e3181aed9e6 10.1016/0306-4522(94)90285-2 10.1016/j.expneurol.2008.11.021 10.1146/annurev.neuro.24.1.1217 10.1016/S0169-328X(96)00193-3 10.1016/j.neuron.2006.05.022 10.1073/pnas.181219298 10.1016/j.neurobiolaging.2003.10.010 10.1016/S0140-6736(80)92137-6 10.1164/ajrccm.158.6.9803014 10.1155/2012/463909 10.1002/hipo.10130 10.1016/B978-0-444-54299-1.00006-6 10.1126/science.270.5236.593 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1093/brain/awt372 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 872 |
ExternalDocumentID | PMC3927704 24519975 28192045 10_1093_brain_awt372 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG08051 – fundername: NIA NIH HHS grantid: P50 AG016573 – fundername: NIA NIH HHS grantid: R01 AG012122 – fundername: NIA NIH HHS grantid: AG012122 – fundername: NICHD NIH HHS grantid: R01 HD038466 – fundername: Canadian Institutes of Health Research grantid: MOP-97776 – fundername: NINDS NIH HHS grantid: NS073502 – fundername: NINDS NIH HHS grantid: R01 NS073502 – fundername: NIA NIH HHS grantid: AG16573 – fundername: NICHD NIH HHS grantid: HD38466 |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 ABQTQ IQODW M49 CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c447t-c86ad603dc64f9a510d42620c542d11e366353c3178f6c0a6a0b4f8ea2839ecc3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 14:21:12 EDT 2025 Sun Sep 28 06:39:20 EDT 2025 Sun Sep 28 13:03:33 EDT 2025 Mon Jul 21 05:34:26 EDT 2025 Wed Apr 02 07:21:45 EDT 2025 Tue Jul 01 00:46:06 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Chromosomal aberration Endocrinopathy Cholinergic neuron Trisomy Alzheimer disease Central nervous system Aneuploidy Cardiovascular disease Nerve growth factor Metabolic syndrome Encephalon Down's syndrome basal forebrain cholinergic neurons Degenerative disease Alzheimer's disease Nervous system diseases Enzyme Chromosome G21 Metabolic diseases matrix metallo-protease 9 Down syndrome Cerebral disorder Peptidases Metabolic disorder Central nervous system disease proNGF Hydrolases Down’s syndrome Alzheimer’s disease |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-c86ad603dc64f9a510d42620c542d11e366353c3178f6c0a6a0b4f8ea2839ecc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://escholarship.org/uc/item/8n96h4kx |
PMID | 24519975 |
PQID | 1500689331 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3927704 proquest_miscellaneous_1505345210 proquest_miscellaneous_1500689331 pubmed_primary_24519975 pascalfrancis_primary_28192045 crossref_citationtrail_10_1093_brain_awt372 crossref_primary_10_1093_brain_awt372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Wu ( key 20170425175627_awt372-B55) 2013; 52 Jette ( key 20170425175627_awt372-B28) 1994; 25 Busciglio ( key 20170425175627_awt372-B8) 2002; 33 Bowen ( key 20170425175627_awt372-B4) 1976; 99 Helguera ( key 20170425175627_awt372-B25) 2013; 17 Allard ( key 20170425175627_awt372-B1) 2012; 32 Goedert ( key 20170425175627_awt372-B21) 1986; 387 Bartus ( key 20170425175627_awt372-B3) 1982; 217 Bruno ( key 20170425175627_awt372-B6) 2009; 68 Handen ( key 20170425175627_awt372-B24) 2012; 8 Sofroniew ( key 20170425175627_awt372-B47) 2001; 24 Lockrow ( key 20170425175627_awt372-B32) 2012; 2012 Azizeh ( key 20170425175627_awt372-B2) 2000; 163 Nielsen ( key 20170425175627_awt372-B38) 2007; 69 Tiveron ( key 20170425175627_awt372-B49) 2013; 20 Cho ( key 20170425175627_awt372-B11) 2011; 74 Fahnestock ( key 20170425175627_awt372-B18) 2001; 18 Lemere ( key 20170425175627_awt372-B30) 1996; 3 Debeir ( key 20170425175627_awt372-B15) 1999; 96 Fabbro ( key 20170425175627_awt372-B17) 2009; 109 Reeves ( key 20170425175627_awt372-B44) 1995; 11 Salehi ( key 20170425175627_awt372-B45) 2006; 51 Thoenen ( key 20170425175627_awt372-B48) 1995; 270 Kerkovich ( key 20170425175627_awt372-B29) 1999; 17 Mori ( key 20170425175627_awt372-B37) 2002; 9 Wilcock ( key 20170425175627_awt372-B53) 2012; 2012 Whitehouse ( key 20170425175627_awt372-B52) 1982; 215 Figueiredo ( key 20170425175627_awt372-B20) 1995; 68 Montine ( key 20170425175627_awt372-B36) 2012; 123 Davies ( key 20170425175627_awt372-B14) 1976; 2 Fabbro ( key 20170425175627_awt372-B16) 2011; 118 Mann ( key 20170425175627_awt372-B34) 1988; 13 Hunter ( key 20170425175627_awt372-B26) 2004; 25 Granholm ( key 20170425175627_awt372-B22) 2003; 13 Choi ( key 20170425175627_awt372-B12) 2009; 110 Bruno ( key 20170425175627_awt372-B5) 2006; 103 Miranda ( key 20170425175627_awt372-B35) 2006; 63 Pelsman ( key 20170425175627_awt372-B41) 2003; 21 Chen ( key 20170425175627_awt372-B9) 2009; 30 Fahnestock ( key 20170425175627_awt372-B19) 1996; 42 Vignola ( key 20170425175627_awt372-B51) 1998; 158 Gu ( key 20170425175627_awt372-B23) 2002; 297 Pedraza ( key 20170425175627_awt372-B40) 2005; 166 Seo ( key 20170425175627_awt372-B46) 2005; 193 Cooper ( key 20170425175627_awt372-B13) 2001; 98 Peng ( key 20170425175627_awt372-B42) 2004; 63 Venero ( key 20170425175627_awt372-B50) 1994; 59 Pepeu ( key 20170425175627_awt372-B43) 2004; 11 Pagenstecher ( key 20170425175627_awt372-B39) 1998; 152 Yates ( key 20170425175627_awt372-B56) 1980; 2 Lott ( key 20170425175627_awt372-B33) 2012; 197 Cheon ( key 20170425175627_awt372-B10) 2008; 35 Lockrow ( key 20170425175627_awt372-B31) 2009; 216 Bruno ( key 20170425175627_awt372-B7) 2009; 68 Wisniewski ( key 20170425175627_awt372-B54) 1985; 17 Hunter ( key 20170425175627_awt372-B27) 2003; 45 7058341 - Science. 1982 Mar 5;215(4537):1237-9 12657457 - Neurosci Res. 2003 Apr;45(4):437-45 9847290 - Am J Respir Crit Care Med. 1998 Dec;158(6):1945-50 21689108 - J Neurochem. 2011 Sep;118(5):928-38 11879646 - Neuron. 2002 Feb 28;33(5):677-88 22545043 - Curr Gerontol Geriatr Res. 2012;2012:463909 14747513 - Learn Mem. 2004 Jan-Feb;11(1):21-7 7808223 - Brain Res Mol Brain Res. 1994 Sep;25(3-4):242-50 19619138 - J Neurochem. 2009 Sep;110(6):1818-27 15681836 - Am J Pathol. 2005 Feb;166(2):533-43 7550346 - Nat Genet. 1995 Oct;11(2):177-84 6107618 - Lancet. 1980 Nov 1;2(8201):979 23102120 - Alzheimers Dement. 2012 Nov;8(6):496-501 17761554 - Neurology. 2007 Oct 16;69(16):1569-79 14750653 - Hippocampus. 2003;13(8):905-14 12711349 - Int J Dev Neurosci. 2003 May;21(3):117-24 3158266 - Ann Neurol. 1985 Mar;17(3):278-82 22323714 - J Neurosci. 2012 Feb 8;32(6):2002-12 11520181 - Mol Cell Neurosci. 2001 Aug;18(2):210-20 63862 - Lancet. 1976 Dec 25;2(8000):1403 7477932 - Neuroscience. 1995 Sep;68(1):29-45 7046051 - Science. 1982 Jul 30;217(4558):408-14 11520933 - Annu Rev Neurosci. 2001;24:1217-81 22541290 - Prog Brain Res. 2012;197:101-21 15212841 - Neurobiol Aging. 2004 Aug;25(7):873-84 10097164 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4067-72 16815330 - Neuron. 2006 Jul 6;51(1):29-42 15217092 - J Neuropathol Exp Neurol. 2004 Jun;63(6):641-9 23063501 - Mol Cell Neurosci. 2013 Jan;52:9-19 22101365 - Acta Neuropathol. 2012 Jan;123(1):1-11 19135442 - Exp Neurol. 2009 Apr;216(2):278-89 22454637 - Curr Gerontol Geriatr Res. 2012;2012:170276 19915485 - J Neuropathol Exp Neurol. 2009 Dec;68(12):1309-18 15869949 - Exp Neurol. 2005 Jun;193(2):469-80 8058122 - Neuroscience. 1994 Apr;59(4):797-815 9173910 - Neurobiol Dis. 1996 Feb;3(1):16-32 19222708 - J Neurochem. 2009 Apr;109(2):303-15 9502415 - Am J Pathol. 1998 Mar;152(3):729-41 16465451 - Cell Mol Life Sci. 2006 Mar;63(6):709-22 21624510 - J Proteomics. 2011 Sep 6;74(10):2052-9 16618925 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6735-40 23312288 - Cell Metab. 2013 Jan 8;17(1):132-40 11504920 - Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10439-44 19606067 - J Neuropathol Exp Neurol. 2009 Aug;68(8):857-69 10785449 - Exp Neurol. 2000 May;163(1):111-22 18180075 - Neurobiol Aging. 2009 Sep;30(9):1453-65 18163181 - Amino Acids. 2008 Aug;35(2):339-43 8915599 - Brain Res Mol Brain Res. 1996 Nov;42(1):175-8 10479069 - Int J Dev Neurosci. 1999 Jul;17(4):347-56 2971602 - Histopathology. 1988 Aug;13(2):125-37 12440481 - Amyloid. 2002 Jun;9(2):88-102 11871 - Brain. 1976 Sep;99(3):459-96 12183632 - Science. 2002 Aug 16;297(5584):1186-90 7570017 - Science. 1995 Oct 27;270(5236):593-8 3742235 - Brain Res. 1986 Jul;387(1):85-92 23538417 - Cell Death Differ. 2013 Aug;20(8):1017-30 |
References_xml | – volume: 387 start-page: 85 year: 1986 ident: key 20170425175627_awt372-B21 article-title: Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer's disease publication-title: Brain Res doi: 10.1016/0169-328X(86)90023-9 – volume: 163 start-page: 111 year: 2000 ident: key 20170425175627_awt372-B2 article-title: Molecular dating of senile plaques in the brains of individuals with Down syndrome and in aged dogs publication-title: Exp Neurol doi: 10.1006/exnr.2000.7359 – volume: 96 start-page: 4067 year: 1999 ident: key 20170425175627_awt372-B15 article-title: A nerve growth factor mimetic TrkA antagonist causes withdrawal of cortical cholinergic boutons in the adult rat publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.7.4067 – volume: 17 start-page: 132 year: 2013 ident: key 20170425175627_awt372-B25 article-title: Adaptive downregulation of mitochondrial function in down syndrome publication-title: Cell Metab doi: 10.1016/j.cmet.2012.12.005 – volume: 63 start-page: 641 year: 2004 ident: key 20170425175627_awt372-B42 article-title: Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease publication-title: J Neuropathol Exp Neurol doi: 10.1093/jnen/63.6.641 – volume: 193 start-page: 469 year: 2005 ident: key 20170425175627_awt372-B46 article-title: Abnormal APP, cholinergic and cognitive function in Ts65Dn Down's model mice publication-title: Exp Neurol doi: 10.1016/j.expneurol.2004.11.017 – volume: 35 start-page: 339 year: 2008 ident: key 20170425175627_awt372-B10 article-title: Protein expression of BACE1, BACE2 and APP in Down syndrome brains publication-title: Amino Acids doi: 10.1007/s00726-007-0618-9 – volume: 3 start-page: 16 year: 1996 ident: key 20170425175627_awt372-B30 article-title: Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation publication-title: Neurobiol Dis doi: 10.1006/nbdi.1996.0003 – volume: 9 start-page: 88 year: 2002 ident: key 20170425175627_awt372-B37 article-title: Intraneuronal Abeta42 accumulation in Down syndrome brain publication-title: Amyloid doi: 10.3109/13506120208995241 – volume: 68 start-page: 29 year: 1995 ident: key 20170425175627_awt372-B20 article-title: Differential expression of p140trk, p75NGFR and growth-associated phosphoprotein-43 genes in nucleus basalis magnocellularis, thalamus and adjacent cortex following neocortical infarction and nerve growth factor treatment publication-title: Neuroscience doi: 10.1016/0306-4522(95)91510-J – volume: 68 start-page: 1309 year: 2009 ident: key 20170425175627_awt372-B7 article-title: Increased matrix metalloproteinase 9 activity in mild cognitive impairment publication-title: J Neuropathol Exp Neurol doi: 10.1097/NEN.0b013e3181c22569 – volume: 45 start-page: 437 year: 2003 ident: key 20170425175627_awt372-B27 article-title: Regional alterations in amyloid precursor protein and nerve growth factor across age in a mouse model of Down's syndrome publication-title: Neurosci Res doi: 10.1016/S0168-0102(03)00005-1 – volume: 17 start-page: 347 year: 1999 ident: key 20170425175627_awt372-B29 article-title: Fetal human cortical neurons grown in culture: morphological differentiation, biochemical correlates and development of electrical activity publication-title: Int J Dev Neurosci doi: 10.1016/S0736-5748(99)00036-2 – volume: 21 start-page: 117 year: 2003 ident: key 20170425175627_awt372-B41 article-title: GVS-111 prevents oxidative damage and apoptosis in normal and Down's syndrome human cortical neurons publication-title: Int J Dev Neurosci doi: 10.1016/S0736-5748(03)00031-5 – volume: 25 start-page: 242 year: 1994 ident: key 20170425175627_awt372-B28 article-title: NGF mRNA is not decreased in frontal cortex from Alzheimer's disease patients publication-title: Brain Res Mol Brain Res doi: 10.1016/0169-328X(94)90159-7 – volume: 152 start-page: 729 year: 1998 ident: key 20170425175627_awt372-B39 article-title: Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states publication-title: Am J Pathol – volume: 11 start-page: 177 year: 1995 ident: key 20170425175627_awt372-B44 article-title: A mouse model for Down syndrome exhibits learning and behaviour deficits publication-title: Nat Genet doi: 10.1038/ng1095-177 – volume: 13 start-page: 125 year: 1988 ident: key 20170425175627_awt372-B34 article-title: Alzheimer's disease and Down's syndrome publication-title: Histopathology doi: 10.1111/j.1365-2559.1988.tb02018.x – volume: 33 start-page: 677 year: 2002 ident: key 20170425175627_awt372-B8 article-title: Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down's syndrome publication-title: Neuron doi: 10.1016/S0896-6273(02)00604-9 – volume: 118 start-page: 928 year: 2011 ident: key 20170425175627_awt372-B16 article-title: Amyloid-beta levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer's disease transgenic mouse model publication-title: J Neurochem doi: 10.1111/j.1471-4159.2011.07359.x – volume: 17 start-page: 278 year: 1985 ident: key 20170425175627_awt372-B54 article-title: Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome publication-title: Ann Neurol doi: 10.1002/ana.410170310 – volume: 52 start-page: 9 year: 2013 ident: key 20170425175627_awt372-B55 article-title: Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3 signaling pathway publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2012.10.001 – volume: 74 start-page: 2052 year: 2011 ident: key 20170425175627_awt372-B11 article-title: Verification of a biomarker discovery approach for detection of Down syndrome in amniotic fluid via multiplex selected reaction monitoring (SRM) assay publication-title: J Proteomics doi: 10.1016/j.jprot.2011.05.025 – volume: 2 start-page: 1403 year: 1976 ident: key 20170425175627_awt372-B14 article-title: Selective loss of central cholinergic neurons in Alzheimer's disease publication-title: Lancet doi: 10.1016/S0140-6736(76)91936-X – volume: 11 start-page: 21 year: 2004 ident: key 20170425175627_awt372-B43 article-title: Changes in acetylcholine extracellular levels during cognitive processes publication-title: Learn Mem doi: 10.1101/lm.68104 – volume: 109 start-page: 303 year: 2009 ident: key 20170425175627_awt372-B17 article-title: Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain publication-title: J Neurochem doi: 10.1111/j.1471-4159.2009.05894.x – volume: 69 start-page: 1569 year: 2007 ident: key 20170425175627_awt372-B38 article-title: Plasma and CSF serpins in Alzheimer disease and dementia with Lewy bodies publication-title: Neurology doi: 10.1212/01.wnl.0000271077.82508.a0 – volume: 99 start-page: 459 year: 1976 ident: key 20170425175627_awt372-B4 article-title: Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies publication-title: Brain doi: 10.1093/brain/99.3.459 – volume: 8 start-page: 496 year: 2012 ident: key 20170425175627_awt372-B24 article-title: Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.09.229 – volume: 20 start-page: 1017 year: 2013 ident: key 20170425175627_awt372-B49 article-title: ProNGF\NGF imbalance triggers learning and memory deficits, neurodegeneration and spontaneous epileptic-like discharges in transgenic mice publication-title: Cell Death Differ doi: 10.1038/cdd.2013.22 – volume: 217 start-page: 408 year: 1982 ident: key 20170425175627_awt372-B3 article-title: The cholinergic hypothesis of geriatric memory dysfunction publication-title: Science doi: 10.1126/science.7046051 – volume: 297 start-page: 1186 year: 2002 ident: key 20170425175627_awt372-B23 article-title: S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death publication-title: Science doi: 10.1126/science.1073634 – volume: 30 start-page: 1453 year: 2009 ident: key 20170425175627_awt372-B9 article-title: In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2007.11.026 – volume: 2012 start-page: 170276 year: 2012 ident: key 20170425175627_awt372-B53 article-title: Neuroinflammation in the aging down syndrome brain; lessons from Alzheimer's disease publication-title: Curr Gerontol Geriatr Res doi: 10.1155/2012/170276 – volume: 63 start-page: 709 year: 2006 ident: key 20170425175627_awt372-B35 article-title: Neuroserpin: a serpin to think about publication-title: Cellular and molecular life sciences: CMLS doi: 10.1007/s00018-005-5077-4 – volume: 166 start-page: 533 year: 2005 ident: key 20170425175627_awt372-B40 article-title: Pro-NGF isolated from the human brain affected by Alzheimer's disease induces neuronal apoptosis mediated by p75NTR publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)62275-4 – volume: 103 start-page: 6735 year: 2006 ident: key 20170425175627_awt372-B5 article-title: Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510645103 – volume: 32 start-page: 2002 year: 2012 ident: key 20170425175627_awt372-B1 article-title: Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1144-11.2012 – volume: 123 start-page: 1 year: 2012 ident: key 20170425175627_awt372-B36 article-title: National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0910-3 – volume: 215 start-page: 1237 year: 1982 ident: key 20170425175627_awt372-B52 article-title: Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain publication-title: Science doi: 10.1126/science.7058341 – volume: 110 start-page: 1818 year: 2009 ident: key 20170425175627_awt372-B12 article-title: Age-dependent dysregulation of brain amyloid precursor protein in the Ts65Dn Down syndrome mouse model publication-title: J Neurochem doi: 10.1111/j.1471-4159.2009.06277.x – volume: 18 start-page: 210 year: 2001 ident: key 20170425175627_awt372-B18 article-title: The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease publication-title: Mol Cell Neurosci doi: 10.1006/mcne.2001.1016 – volume: 68 start-page: 857 year: 2009 ident: key 20170425175627_awt372-B6 article-title: Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease publication-title: J Neuropathol Exp Neurol doi: 10.1097/NEN.0b013e3181aed9e6 – volume: 59 start-page: 797 year: 1994 ident: key 20170425175627_awt372-B50 article-title: Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration publication-title: Neuroscience doi: 10.1016/0306-4522(94)90285-2 – volume: 216 start-page: 278 year: 2009 ident: key 20170425175627_awt372-B31 article-title: Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model publication-title: Exp Neurol doi: 10.1016/j.expneurol.2008.11.021 – volume: 24 start-page: 1217 year: 2001 ident: key 20170425175627_awt372-B47 article-title: Nerve growth factor signaling, neuroprotection, and neural repair publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.24.1.1217 – volume: 42 start-page: 175 year: 1996 ident: key 20170425175627_awt372-B19 article-title: Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer's disease parietal cortex publication-title: Brain Res. Mol. Brain Res doi: 10.1016/S0169-328X(96)00193-3 – volume: 51 start-page: 29 year: 2006 ident: key 20170425175627_awt372-B45 article-title: Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration publication-title: Neuron doi: 10.1016/j.neuron.2006.05.022 – volume: 98 start-page: 10439 year: 2001 ident: key 20170425175627_awt372-B13 article-title: Failed retrograde transport of NGF in a mouse model of Down's syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.181219298 – volume: 25 start-page: 873 year: 2004 ident: key 20170425175627_awt372-B26 article-title: Behavioral and neurobiological markers of Alzheimer's disease in Ts65Dn mice: effects of estrogen publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2003.10.010 – volume: 2 start-page: 979 year: 1980 ident: key 20170425175627_awt372-B56 article-title: Alzheimer-like cholinergic deficiency in Down syndrome publication-title: Lancet doi: 10.1016/S0140-6736(80)92137-6 – volume: 158 start-page: 1945 year: 1998 ident: key 20170425175627_awt372-B51 article-title: Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.158.6.9803014 – volume: 2012 start-page: 463909 year: 2012 ident: key 20170425175627_awt372-B32 article-title: Age-related neurodegeneration and memory loss in down syndrome publication-title: Curr Gerontol Geriatr Res doi: 10.1155/2012/463909 – volume: 13 start-page: 905 year: 2003 ident: key 20170425175627_awt372-B22 article-title: Estrogen alters amyloid precursor protein as well as dendritic and cholinergic markers in a mouse model of Down syndrome publication-title: Hippocampus doi: 10.1002/hipo.10130 – volume: 197 start-page: 101 year: 2012 ident: key 20170425175627_awt372-B33 article-title: Neurological phenotypes for Down syndrome across the life span publication-title: Prog Brain Res doi: 10.1016/B978-0-444-54299-1.00006-6 – volume: 270 start-page: 593 year: 1995 ident: key 20170425175627_awt372-B48 article-title: Neurotrophins and neuronal plasticity publication-title: Science doi: 10.1126/science.270.5236.593 – reference: 22454637 - Curr Gerontol Geriatr Res. 2012;2012:170276 – reference: 22545043 - Curr Gerontol Geriatr Res. 2012;2012:463909 – reference: 11879646 - Neuron. 2002 Feb 28;33(5):677-88 – reference: 3742235 - Brain Res. 1986 Jul;387(1):85-92 – reference: 7477932 - Neuroscience. 1995 Sep;68(1):29-45 – reference: 10097164 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4067-72 – reference: 16618925 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6735-40 – reference: 12711349 - Int J Dev Neurosci. 2003 May;21(3):117-24 – reference: 23102120 - Alzheimers Dement. 2012 Nov;8(6):496-501 – reference: 10479069 - Int J Dev Neurosci. 1999 Jul;17(4):347-56 – reference: 14747513 - Learn Mem. 2004 Jan-Feb;11(1):21-7 – reference: 7046051 - Science. 1982 Jul 30;217(4558):408-14 – reference: 15869949 - Exp Neurol. 2005 Jun;193(2):469-80 – reference: 7570017 - Science. 1995 Oct 27;270(5236):593-8 – reference: 15217092 - J Neuropathol Exp Neurol. 2004 Jun;63(6):641-9 – reference: 2971602 - Histopathology. 1988 Aug;13(2):125-37 – reference: 7058341 - Science. 1982 Mar 5;215(4537):1237-9 – reference: 6107618 - Lancet. 1980 Nov 1;2(8201):979 – reference: 19915485 - J Neuropathol Exp Neurol. 2009 Dec;68(12):1309-18 – reference: 63862 - Lancet. 1976 Dec 25;2(8000):1403 – reference: 19606067 - J Neuropathol Exp Neurol. 2009 Aug;68(8):857-69 – reference: 17761554 - Neurology. 2007 Oct 16;69(16):1569-79 – reference: 23312288 - Cell Metab. 2013 Jan 8;17(1):132-40 – reference: 3158266 - Ann Neurol. 1985 Mar;17(3):278-82 – reference: 19222708 - J Neurochem. 2009 Apr;109(2):303-15 – reference: 21624510 - J Proteomics. 2011 Sep 6;74(10):2052-9 – reference: 11871 - Brain. 1976 Sep;99(3):459-96 – reference: 9847290 - Am J Respir Crit Care Med. 1998 Dec;158(6):1945-50 – reference: 11504920 - Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10439-44 – reference: 9173910 - Neurobiol Dis. 1996 Feb;3(1):16-32 – reference: 16465451 - Cell Mol Life Sci. 2006 Mar;63(6):709-22 – reference: 18163181 - Amino Acids. 2008 Aug;35(2):339-43 – reference: 19619138 - J Neurochem. 2009 Sep;110(6):1818-27 – reference: 16815330 - Neuron. 2006 Jul 6;51(1):29-42 – reference: 23063501 - Mol Cell Neurosci. 2013 Jan;52:9-19 – reference: 7550346 - Nat Genet. 1995 Oct;11(2):177-84 – reference: 11520933 - Annu Rev Neurosci. 2001;24:1217-81 – reference: 23538417 - Cell Death Differ. 2013 Aug;20(8):1017-30 – reference: 15681836 - Am J Pathol. 2005 Feb;166(2):533-43 – reference: 9502415 - Am J Pathol. 1998 Mar;152(3):729-41 – reference: 8058122 - Neuroscience. 1994 Apr;59(4):797-815 – reference: 12440481 - Amyloid. 2002 Jun;9(2):88-102 – reference: 12183632 - Science. 2002 Aug 16;297(5584):1186-90 – reference: 8915599 - Brain Res Mol Brain Res. 1996 Nov;42(1):175-8 – reference: 21689108 - J Neurochem. 2011 Sep;118(5):928-38 – reference: 22323714 - J Neurosci. 2012 Feb 8;32(6):2002-12 – reference: 19135442 - Exp Neurol. 2009 Apr;216(2):278-89 – reference: 15212841 - Neurobiol Aging. 2004 Aug;25(7):873-84 – reference: 18180075 - Neurobiol Aging. 2009 Sep;30(9):1453-65 – reference: 14750653 - Hippocampus. 2003;13(8):905-14 – reference: 7808223 - Brain Res Mol Brain Res. 1994 Sep;25(3-4):242-50 – reference: 12657457 - Neurosci Res. 2003 Apr;45(4):437-45 – reference: 10785449 - Exp Neurol. 2000 May;163(1):111-22 – reference: 11520181 - Mol Cell Neurosci. 2001 Aug;18(2):210-20 – reference: 22101365 - Acta Neuropathol. 2012 Jan;123(1):1-11 – reference: 22541290 - Prog Brain Res. 2012;197:101-21 |
SSID | ssj0014326 |
Score | 2.4129496 |
Snippet | Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic... Individuals with Down's syndrome are at increased risk of Alzheimer's disease. Using post-mortem human brain tissue, foetal cortex cultures and Ts65Dn trisomic... Individuals with Down’s syndrome are at increased risk of Alzheimer’s disease. Using post-mortem human brain tissue, foetal cortex cultures and Ts65Dn trisomic... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 860 |
SubjectTerms | Adult Adult and adolescent clinical studies Aged Alzheimer's disease Animals Biological and medical sciences Case-Control Studies Chromosome aberrations Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Disease Models, Animal Down Syndrome - enzymology Down Syndrome - metabolism Down Syndrome - physiopathology Fetus - enzymology Fetus - metabolism Fetus - pathology Gestational Age Humans Matrix Metalloproteinase 9 - physiology Medical genetics Medical sciences Metabolic diseases Mice Mice, Transgenic Middle Aged Miscellaneous Nerve Growth Factor - biosynthesis Nerve Growth Factor - metabolism Nerve Growth Factor - physiology Neurology Organic mental disorders. Neuropsychology Original Other metabolic disorders Prosencephalon - enzymology Prosencephalon - metabolism Prosencephalon - pathology Protein Precursors - physiology Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry |
Title | Nerve growth factor metabolic dysfunction in Down’s syndrome brains |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24519975 https://www.proquest.com/docview/1500689331 https://www.proquest.com/docview/1505345210 https://pubmed.ncbi.nlm.nih.gov/PMC3927704 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB2Mwxq5ddikabOwheLUtWZIfTZrSrE4MJWF9M76uheKW2WVs7MfvSLIVu2Td5cUEW0RC5-joO3eE3vkl8T3hFNo_SInwLD9nxJI-I-6Xfp6p9OjFkh2t6adT73Q0-tnPLmnSj9mPrXkl_0NVeAd0lVmy_0BZ86fwAn4DfeEJFIbnX9F4KcMVJ19Ak27O2s45siU00FWWrs6_1_LW6qIZD5S-zWtTpGCSyvYQ9cCtK99s7fKhTQeCi57p4DCMTmbL6TyYhOtwvgoGxtWDaDINThaRMq-C4NhEBIUBgFD4up6FYTQwp0afdVxGcKEaIx73TRIO3cRk3ZbqOBDDzBK-rjhrxLAu_tIKUqG7DJg72d0q7nUpLLVb8k771hA9cFhX-8Z9Z6IQpQ9RVuO_g-66HJCXhNTzY-ODokQ16zOLbdMmYM59NeO-nm8AaB5cJTWcrVI3RdmmtdwMvu2hmdUj9LBVQ3CgeeoxGhXVE3Rv0QZaPEVTxVpYsxbWrIUNa-Eea-HzCkvW-lDjjrGwZqxnaH04W02PrLbfhpVRyhsrEyzJmU3gfNLST0Ba56pfQeZRN3ecgkh0SjJAnKJkmZ2wxE5pKYoEIKoPooA8RzvVZVW8QJiSFFCQlwgqXMrcQnrT7SJhHDSEMs3ZGE26TYuzthi97IlyEeugCBKrlcZ6i8fovRl9pYuw_Gbc3mD_zeCO0mP0tiNIDGJU-saSqri8rmPQi2wG2J04t47xCAW8a4_RribiZgZZpsnnMAMfkNcMkGXch1-q8zNVzh00FM5t-vJPi3-F7m8O22u003y9Lt4AIm7SPcW4vwAlZLWs |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nerve+growth+factor+metabolic+dysfunction+in+Down%27s+syndrome+brains&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=FLORENCIA+LULITA%2C+M&rft.au=DO+CARMO%2C+Sonia&rft.au=CLAUDIO+CUELLO%2C+A&rft.au=OWER%2C+Alison+K&rft.date=2014-03-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.volume=137&rft.spage=860&rft.epage=872&rft_id=info:doi/10.1093%2Fbrain%2Fawt372&rft.externalDBID=n%2Fa&rft.externalDocID=28192045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |