Development and Validation of a Novel Calibration Methodology and Control Approach for Robot-Aided Transcranial Magnetic Stimulation (TMS)

Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is comp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 68; no. 5; pp. 1589 - 1600
Main Authors Noccaro, A., Mioli, A., D'Alonzo, M., Pinardi, M., Pino, G. Di, Formica, D.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2021.3055434

Cover

Abstract Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. Results: employing our method significantly decreases (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. Conclusion: The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. Significance: This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.
AbstractList This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application.OBJECTIVEThis article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application.The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex.METHODSThe robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex.employing our method significantly decreases ( ) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ( ). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators.RESULTSemploying our method significantly decreases ( ) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ( ). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators.The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs.CONCLUSIONThe proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs.This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.SIGNIFICANCEThis article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.
Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. Results: employing our method significantly decreases ([Formula Omitted]) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ([Formula Omitted]). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. Conclusion: The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. Significance: This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.
This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. employing our method significantly decreases ( ) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ( ). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.
Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. Results: employing our method significantly decreases (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. Conclusion: The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. Significance: This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.
Author Pinardi, M.
Noccaro, A.
Formica, D.
D'Alonzo, M.
Pino, G. Di
Mioli, A.
AuthorAffiliation 1 NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
AuthorAffiliation_xml – name: 1 NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0003-0865-4992
  surname: Noccaro
  fullname: Noccaro, A.
  email: a.noccaro@unicampus.it
  organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 2
  givenname: A.
  orcidid: 0000-0001-8573-8255
  surname: Mioli
  fullname: Mioli, A.
  organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma
– sequence: 3
  givenname: M.
  orcidid: 0000-0002-6815-6242
  surname: D'Alonzo
  fullname: D'Alonzo, M.
  organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma
– sequence: 4
  givenname: M.
  orcidid: 0000-0003-2183-3848
  surname: Pinardi
  fullname: Pinardi, M.
  organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma
– sequence: 5
  givenname: G. Di
  orcidid: 0000-0001-5046-5816
  surname: Pino
  fullname: Pino, G. Di
  organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma
– sequence: 6
  givenname: D.
  orcidid: 0000-0003-0240-1265
  surname: Formica
  fullname: Formica, D.
  organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33513096$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1v0zAUtdAQ6wY_ACEhS7yMhxQ7duLkZVLpxoe0gsQKr5btOK0n1w6OM9S_sF-Nu5QBReLFlu8959x7z_UJOHLeaQCeYzTFGNVvlm8Xl9Mc5XhKUFFQQh-BCS6KKssLgo_ABCFcZXVe02Nw0vc36UkrWj4Bx4QUmKC6nIC7C32rre822kUoXAO_CWsaEY130LdQwE8-5eE8RWUYwwsd177x1q-294y5dzF4C2ddF7xQa9j6AL946WM2M41u4DII16t0GGHhQqycjkbB62g2gx0lz5aL69dPweNW2F4_29-n4Ou7y-X8Q3b1-f3H-ewqU5SymEnFsJQkp7WiSjUNEy3Ssq4a3apKUskola0ilNYNwzXLC8pkKTFuaYLXrSanIB91B9eJ7Q9hLe-C2Yiw5RjxnbE8yo3mO2P53thEOh9J3ZByjUp2BfGb6IXhf2ecWfOVv-WsxGWdoyRwthcI_vug-8g3plfaWuG0H3qe04pUmLGSJOirA-iNH4JLnvC8wEVVYExxQr38s6OHVn7tNgHwCFDB933Q7T9j7v7P4ZjsgKNMvN9RGsrY_zJfjEyjtX6oVBOKCEPkJ9yj00Y
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TSMC_2025_3535783
crossref_primary_10_1109_TBME_2024_3486748
crossref_primary_10_1109_TMRB_2024_3506163
crossref_primary_10_3390_brainsci12091218
crossref_primary_10_1109_TRO_2022_3214350
crossref_primary_10_1038_s41598_023_33531_2
crossref_primary_10_1109_LRA_2024_3524900
crossref_primary_10_1016_j_clinph_2024_03_037
crossref_primary_10_1016_j_brs_2021_11_014
crossref_primary_10_3390_app142311441
Cites_doi 10.1016/j.neuroimage.2017.04.001
10.1016/j.brs.2012.06.002
10.1115/1.3140702
10.1109/TRO.2016.2530079
10.1109/IROS.2015.7353795
10.1109/IEMBS.2010.5627660
10.1016/j.neucli.2009.03.001
10.1049/ic.2010.0396
10.1002/hbm.20360
10.3233/RNN-170751
10.4067/S0717-95022012000400033
10.1007/s00701-009-0565-1
10.1109/70.34770
10.1007/s00138-017-0841-7
10.1186/s12938-018-0570-9
10.1007/s10548-018-0655-6
10.1016/j.promfg.2015.11.052
10.1097/00004691-199101000-00005
10.1115/1.4024473
10.1016/j.neuroimage.2015.09.013
10.1016/j.clinph.2009.08.016
10.1109/BIOROB.2018.8487930
10.1109/ICRA.2014.6907313
10.1007/BFb0029270
10.1109/70.704233
10.1051/matecconf/20165607001
10.1038/s41467-019-10638-7
10.1002/hbm.20041
10.1016/0013-4694(94)90029-9
10.1109/LRA.2015.2506663
10.1016/j.clinph.2015.02.001
10.1016/j.neucli.2010.01.006
10.1162/jocn.2009.21126
10.1109/EMBC.2013.6610758
10.1002/rcs.1427
10.1109/37.482135
10.1109/70.817672
10.1109/TIE.2015.2505690
10.1371/journal.pone.0060358
10.1016/j.clinph.2014.04.010
10.1109/70.313105
10.1002/rcs.411
10.1016/S0925-4927(01)00121-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TBME.2021.3055434
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1600
ExternalDocumentID oai:pubmedcentral.nih.gov:7616920
PMC7616920
33513096
10_1109_TBME_2021_3055434
9340370
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 10.13039/501100000781
– fundername: Restoring the Self with Embodiable Hand Prostheses
  grantid: 678908
– fundername: European Research Council
  grantid: 678908
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c447t-bc71bb3249c4ccdd7af0eb98defc8b4b744bfc3449d71972547b6b11f44cc9fe3
IEDL.DBID UNPAY
ISSN 0018-9294
1558-2531
IngestDate Sun Oct 26 04:13:55 EDT 2025
Tue Sep 30 17:06:28 EDT 2025
Mon Sep 29 04:05:18 EDT 2025
Mon Jun 30 08:31:21 EDT 2025
Mon Jul 21 05:35:31 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Wed Oct 01 04:08:52 EDT 2025
Wed Aug 27 02:30:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-bc71bb3249c4ccdd7af0eb98defc8b4b744bfc3449d71972547b6b11f44cc9fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5046-5816
0000-0003-0865-4992
0000-0003-2183-3848
0000-0002-6815-6242
0000-0003-0240-1265
0000-0001-8573-8255
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7616920
PMID 33513096
PQID 2515851141
PQPubID 85474
PageCount 12
ParticipantIDs ieee_primary_9340370
pubmed_primary_33513096
crossref_citationtrail_10_1109_TBME_2021_3055434
proquest_journals_2515851141
unpaywall_primary_10_1109_tbme_2021_3055434
crossref_primary_10_1109_TBME_2021_3055434
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7616920
proquest_miscellaneous_2483817763
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
matthäus (ref53) 2008
ref14
ref52
ref55
ref11
ref54
ref10
ref17
pino (ref5) 2014; 10
ref18
matthäus (ref43) 2006; 1
ref51
ref50
hovey (ref3) 2006; 20
ref48
ref42
ref41
ref44
ref8
ref7
ref9
ref4
yi (ref16) 2012
ref6
rossi (ref47) 2009; 120
ref40
ref35
ref34
(ref20) 0
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
lebossé (ref37) 0
ref24
ref23
ref26
ref25
pino (ref2) 2014; 8
ref22
ref28
ref27
(ref19) 0
ref29
rossini (ref49) 2015; 126
siciliano (ref45) 2010
(ref46) 2020
(ref21) 0
References_xml – ident: ref18
  doi: 10.1016/j.neuroimage.2017.04.001
– ident: ref13
  doi: 10.1016/j.brs.2012.06.002
– ident: ref44
  doi: 10.1115/1.3140702
– volume: 8
  year: 2014
  ident: ref2
  article-title: Augmentation-related brain plasticity
  publication-title: Front Syst Neurosci
– ident: ref27
  doi: 10.1109/TRO.2016.2530079
– ident: ref24
  doi: 10.1109/IROS.2015.7353795
– ident: ref51
  doi: 10.1109/IEMBS.2010.5627660
– ident: ref11
  doi: 10.1016/j.neucli.2009.03.001
– ident: ref33
  doi: 10.1049/ic.2010.0396
– ident: ref6
  doi: 10.1002/hbm.20360
– ident: ref50
  doi: 10.3233/RNN-170751
– year: 0
  ident: ref19
  article-title: Smartmove, May 2020
– ident: ref39
  doi: 10.4067/S0717-95022012000400033
– ident: ref35
  doi: 10.1007/s00701-009-0565-1
– ident: ref25
  doi: 10.1109/70.34770
– ident: ref28
  doi: 10.1007/s00138-017-0841-7
– ident: ref52
  doi: 10.1186/s12938-018-0570-9
– ident: ref9
  doi: 10.1007/s10548-018-0655-6
– volume: 1
  year: 2006
  ident: ref43
  article-title: Solving the positioning problem in TMS
  publication-title: GMS CURAC
– volume: 20
  start-page: 284
  year: 2006
  ident: ref3
  article-title: The guide to magnetic stimulation
  publication-title: Magstim Company Ltd
– ident: ref41
  doi: 10.1016/j.promfg.2015.11.052
– ident: ref36
  doi: 10.1097/00004691-199101000-00005
– ident: ref23
  doi: 10.1115/1.4024473
– ident: ref17
  doi: 10.1016/j.neuroimage.2015.09.013
– volume: 120
  start-page: 2008
  year: 2009
  ident: ref47
  article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.08.016
– ident: ref38
  doi: 10.1109/BIOROB.2018.8487930
– ident: ref22
  doi: 10.1109/ICRA.2014.6907313
– year: 2008
  ident: ref53
  article-title: A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping
– year: 2012
  ident: ref16
  article-title: Design of a robotic transcranial magnetic stimulation system
– ident: ref1
  doi: 10.1007/BFb0029270
– ident: ref30
  doi: 10.1109/70.704233
– ident: ref7
  doi: 10.1051/matecconf/20165607001
– year: 0
  ident: ref21
  article-title: M-series TMS, May 2020
– ident: ref55
  doi: 10.1038/s41467-019-10638-7
– ident: ref15
  doi: 10.1002/hbm.20041
– ident: ref48
  doi: 10.1016/0013-4694(94)90029-9
– ident: ref26
  doi: 10.1109/LRA.2015.2506663
– volume: 126
  start-page: 1071
  year: 2015
  ident: ref49
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. an updated report from an IFCN committee
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2015.02.001
– ident: ref10
  doi: 10.1016/j.neucli.2010.01.006
– year: 2010
  ident: ref45
  publication-title: Robotics Modelling Planning and Control
– volume: 10
  start-page: p. 597?608
  year: 2014
  ident: ref5
  article-title: Modulation of brain plasticity in stroke: A novel model for neurorehabilitation
  publication-title: Nat Rev Neurol
– ident: ref12
  doi: 10.1162/jocn.2009.21126
– ident: ref14
  doi: 10.1109/EMBC.2013.6610758
– ident: ref34
  doi: 10.1002/rcs.1427
– ident: ref54
  doi: 10.1109/37.482135
– ident: ref40
  doi: 10.1109/70.817672
– ident: ref29
  doi: 10.1109/TIE.2015.2505690
– ident: ref8
  doi: 10.1371/journal.pone.0060358
– ident: ref4
  doi: 10.1016/j.clinph.2014.04.010
– ident: ref31
  doi: 10.1109/70.313105
– year: 0
  ident: ref20
  article-title: Auxilum, May 2020
– start-page: 137
  year: 0
  ident: ref37
  article-title: Robotic image-guided transcrasial magnetic stimulation
  publication-title: Computer Assisted Radiology and Surgery
– year: 2020
  ident: ref46
  article-title: Franka Control Interface (FCI) documentation
– ident: ref32
  doi: 10.1002/rcs.411
– ident: ref42
  doi: 10.1016/S0925-4927(01)00121-4
SSID ssj0014846
Score 2.4925148
Snippet Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new...
This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1589
SubjectTerms Algorithms
Calibration
calibration methodology
Cameras
Coils
Control algorithms
Control theory
Cortex (motor)
End effectors
Evoked Potentials, Motor
hand-eye and robot-world calibration
Humans
impedance control
Magnetic fields
Motor evoked potentials
Neuronavigation
Operators
Orientation
Position errors
Robot arms
Robot control
Robot vision systems
Robotic TMS
Robotics
Robots
Scalp
Spherical shells
Transcranial Magnetic Stimulation
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDzwOPFoegYKMxIFXtvF6EsfHpWpVIaUHukW9RX7CiiWpIBGCn8CvZpxko11aIS6rSB6vMvJneyYz8w0hLwy6VWA8j5VK8hi01LEU3sUWjQHJndXOB0exOMmOz-D9eXq-Rd6OtTDOuS75zE3CYxfLt7Vpw6eyfckh4QId9Gsiz_parTFiAHlflJMw3MBTCUMEkyVyf_6uOERPcMomgd4KeOjFw3mKp3eg6l-7jrr-KleZmpczJm-01YX6-UMtl2vX0dEdUqwU6bNQvkzaRk_Mr784Hv9X07vk9mCX0lkPpHtky1U75NYaW-EOuV4Mcfhd8nst14iqytKPaM733Zlo7amiJzWO01D4pXuI0aJrVd19xO9mHPQ58nQ2kJpTtJ7ph1rXTTxbWGdpd4sa_MEdQgv1qQrllvS0WXwdOo7Rl_Pi9NV9cnZ0OD84joeuDrEBEE2sjWBaox0nDRhjrVA-cVrm1nmTa9ACQHvDAaQVoSdaCkJnmjEPKC694w_IdlVX7hGhaep8qixMLZPAtFdTbpzkWc4Uy41mEUlWi1uagfI8dN5Ylp3rk8gyQKMM0CgHaETk9Tjlouf7-Jfwbli6UXBYtYjsrRBUDifC9xLtyBCBZYBv9Xwcxr0cAjSqcnWLMpAHwkQ88iPysAfc-N8rwEZEbEBxFAg84Zsj1eJzxxcuMpbJKb7WmxG0l3RrcOKGbo-v1u0JuRmk-pTPPbLdfGvdUzTLGv2s249_ABIiNAc
  priority: 102
  providerName: IEEE
Title Development and Validation of a Novel Calibration Methodology and Control Approach for Robot-Aided Transcranial Magnetic Stimulation (TMS)
URI https://ieeexplore.ieee.org/document/9340370
https://www.ncbi.nlm.nih.gov/pubmed/33513096
https://www.proquest.com/docview/2515851141
https://www.proquest.com/docview/2483817763
https://pubmed.ncbi.nlm.nih.gov/PMC7616920
https://www.ncbi.nlm.nih.gov/pmc/articles/7616920
UnpaywallVersion submittedVersion
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYlhV0edmnXzVtXNNjDLjixIvmix6y0lIHDaJPRPRldt7DEDq3D2H7CfvWObMUk6xj0xRB0FCzyHZ3vREffQei1grSKKUtDIaIsZJLLkKfWhBrIAKdGS2NdopiPk7Mp-3gZX-4gsr4L0xTtKznrl_NFv5x9a2orlws1WNeJDSDvTvgQsvTdJAb63UO70_Gn0Zd2xwXnHTbNDyFMAgIAYP4kk0R8UEOAgYxwSPpO5opRthWLmuYq_-KZN8sl767Kpfj5Q8znG7Ho9CE6X6-iLUH53l_Vsq9-_SXweKtlPkIPPDPFo3boMdox5R66v6FXuIfu5P4kfh_93qg2wqLU-DMQ-rY_E64sFnhcwTh2V79kCzKcN82qm7_xmxnHbZU8HnlZcwz8GZ9XsqrD0UwbjZs4quABPoJz8bV0Fy7xRT1b-J5j-M0kv3j7BE1PTybHZ6Hv6xAqxtI6lColUgKT44oppXUqbGQkz7SxKpNMpoxJqyhjXKeuK1rMUplIQiwDc24NPUC9sirNM4Tj2NhYaDbUhDMirRhSZThNMiJIpiQJULT-hQvlRc9d74150SQ_ES8mH_KTwoGi8KAI0LtuyrJV_Pif8b6DTWfIKYtoGgXocA2jwu8J1wUwSXcGSxi81atuGLzZHdGI0lQrsGGZk0yETT9AT1vUdd9NaQyEgycBSrfw2Bk4pfDtEUBWoxjuwRSg9x1yb6zNecfW2p7fyvoFuuc-trWgh6hXX63MS-BrtTxqLlUeeT_9AyBNPzw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5VRaL0wKPlESiwSBx4OfV6x489hqpVgDoHmqLerH2WiGBX4AjBT-BXM2s7VkIrxCWytLORR_vt7oxn5htCnmt0q0A7HkgZZgEooQKROhsYNAYEt0ZZ5x3FfJKMT-H9WXy2Qd70tTDW2ib5zA79YxPLN5Ve-E9l-4JDyFN00K_FABC31Vp9zACytiwnZLiFIwFdDJOFYn_6Nj9EXzBiQ09wBdx34-E8xvPbk_WvXEhNh5WrjM3LOZNbi_JC_vwh5_OVC-noFsmXqrR5KF-Gi1oN9a-_WB7_V9fb5GZnmdJRC6U7ZMOWO2R7ha9wh1zPu0j8Lvm9km1EZWnoJzTo2_5MtHJU0kmF49SXfqkWZDRvmlU3n_GbGQdtljwddbTmFO1n-rFSVR2MZsYa2tyjGn9wj9Bcnpe-4JKe1LOvXc8x-mKan7y8S06PDqcH46Dr6xBogLQOlE6ZUmjJCQ1aG5NKF1olMmOdzhSoFEA5zQGESX1XtBhSlSjGHKC4cJbfI5tlVdoHhMaxdbE0EBkmgCknI66t4EnGJMu0YgMSLhe30B3pue-9MS8a5ycUhYdG4aFRdNAYkFf9lIuW8eNfwrt-6XrBbtUGZG-JoKI7E74XaEn6GCwDfKtn_TDuZh-ikaWtFigDmadMxEN_QO63gOv_ewnYAUnXoNgLeKbw9ZFy9rlhDE8TlogIX-t1D9pLutU4cU23h1fr9pRsjaf5cXH8bvLhEbnhZ7QJoHtks_62sI_RSKvVk2Zv_gFGYzdU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYlhV0edml38dYNDfawC3asSL7oMSstZeAw2mR0T0bXLSyxw-Ywtp-wX70jWzHJOgZ9MQQdBYt8R-c70dF3EHqpIK1iytJQiDgPmeQy5Jk1oQYywKnR0liXKBaT9GzG3l8ml3uIbO7CtEX7Ss6jarGMqvmXtrZytVTDTZ3YEPLulI8gS99PE6DfA7Q_m3wYf-p2XHDeUdv8EMIkIAAA5k8yScyHDQQYyAhHJHIyV4yynVjUNlf5F8-8Wi55c12txM8fYrHYikWnd9H5ZhVdCcrXaN3ISP36S-DxWsu8h-54ZorH3dB9tGeqA3R7S6_wAN0o_En8Ifq9VW2ERaXxRyD0XX8mXFss8KSGceyufskOZLhom1W3f-O3M467Knk89rLmGPgzPq9l3YTjuTYat3FUwQN8BBfic-UuXOKLZr70Pcfwq2lx8foBmp2eTI_PQt_XIVSMZU0oVUakBCbHFVNK60zY2Eiea2NVLpnMGJNWUca4zlxXtIRlMpWEWAbm3Br6EA2qujKPEU4SYxOh2UgTzoi0YkSV4TTNiSC5kiRA8eYXLpUXPXe9NxZlm_zEvJy-K05KB4rSgyJAb_opq07x43_Ghw42vSGnLKZZHKCjDYxKvyd8L4FJujNYwuCtXvTD4M3uiEZUpl6DDcudZCJs-gF61KGu_25KEyAcPA1QtoPH3sAphe-OALJaxXAPpgC97ZF7ZW3OO3bW9uRa1k_RLfexqwU9QoPm29o8A77WyOfeQ_8Aqlg-Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+a+Novel+Calibration+Methodology+and+Control+Approach+for+Robot-Aided+Transcranial+Magnetic+Stimulation+%28TMS%29&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Noccaro%2C+A.&rft.au=Mioli%2C+A.&rft.au=D%27Alonzo%2C+M.&rft.au=Pinardi%2C+M.&rft.date=2021-05-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=68&rft.issue=5&rft.spage=1589&rft.epage=1600&rft_id=info:doi/10.1109%2FTBME.2021.3055434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2021_3055434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon