Development and Validation of a Novel Calibration Methodology and Control Approach for Robot-Aided Transcranial Magnetic Stimulation (TMS)
Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is comp...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 68; no. 5; pp. 1589 - 1600 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2021.3055434 |
Cover
| Abstract | Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. Results: employing our method significantly decreases (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. Conclusion: The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. Significance: This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available. |
|---|---|
| AbstractList | This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application.OBJECTIVEThis article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application.The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex.METHODSThe robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex.employing our method significantly decreases ( ) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ( ). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators.RESULTSemploying our method significantly decreases ( ) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ( ). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators.The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs.CONCLUSIONThe proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs.This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available.SIGNIFICANCEThis article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available. Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. Results: employing our method significantly decreases ([Formula Omitted]) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ([Formula Omitted]). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. Conclusion: The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. Significance: This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available. This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. employing our method significantly decreases ( ) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% ( ). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available. Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS application. Methods: The robotic TMS platform is composed of a 7 dof manipulator, controlled by an impedance control, and a camera-based neuronavigation system. The proposed calibration method was optimized on the workspace useful for the specific TMS application (spherical shell around the subject's head), and tested on three different hand-eye and robot-world calibration algorithms. The platform functionality was tested on six healthy subjects during a real TMS procedure, over the left primary motor cortex. Results: employing our method significantly decreases (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>) the calibration error by 34% for the position and 19% for the orientation. The robotic TMS platform achieved greater orientation accuracy than the expert operators, significantly reducing orientation errors by 46% (<inline-formula><tex-math notation="LaTeX">p< 0.001</tex-math></inline-formula>). No significant differences were found in the position errors and in the amplitude of the motor evoked potentials (MEPs) between the robot-aided TMS and the expert operators. Conclusion: The proposed calibration represents a valid method to significantly reduce the calibration errors in robot-aided TMS applications. Results showed the efficacy of the proposed platform (including the control algorithm) in administering a real TMS procedure, achieving better coil positioning than expert operators, and similar results in terms of MEPs. Significance: This article spotlights how to improve the performance of a robotic TMS platform, providing a reproducible and low-cost alternative to the few devices commercially available. |
| Author | Pinardi, M. Noccaro, A. Formica, D. D'Alonzo, M. Pino, G. Di Mioli, A. |
| AuthorAffiliation | 1 NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy |
| AuthorAffiliation_xml | – name: 1 NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy |
| Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0003-0865-4992 surname: Noccaro fullname: Noccaro, A. email: a.noccaro@unicampus.it organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 2 givenname: A. orcidid: 0000-0001-8573-8255 surname: Mioli fullname: Mioli, A. organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma – sequence: 3 givenname: M. orcidid: 0000-0002-6815-6242 surname: D'Alonzo fullname: D'Alonzo, M. organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma – sequence: 4 givenname: M. orcidid: 0000-0003-2183-3848 surname: Pinardi fullname: Pinardi, M. organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma – sequence: 5 givenname: G. Di orcidid: 0000-0001-5046-5816 surname: Pino fullname: Pino, G. Di organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma – sequence: 6 givenname: D. orcidid: 0000-0003-0240-1265 surname: Formica fullname: Formica, D. organization: NEXT: Neurophysiology, and Neuroengineering of Human-Technology Interaction Research UnitUniversità Campus Bio-Medico di Roma |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33513096$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ul1v0zAUtdAQ6wY_ACEhS7yMhxQ7duLkZVLpxoe0gsQKr5btOK0n1w6OM9S_sF-Nu5QBReLFlu8959x7z_UJOHLeaQCeYzTFGNVvlm8Xl9Mc5XhKUFFQQh-BCS6KKssLgo_ABCFcZXVe02Nw0vc36UkrWj4Bx4QUmKC6nIC7C32rre822kUoXAO_CWsaEY130LdQwE8-5eE8RWUYwwsd177x1q-294y5dzF4C2ddF7xQa9j6AL946WM2M41u4DII16t0GGHhQqycjkbB62g2gx0lz5aL69dPweNW2F4_29-n4Ou7y-X8Q3b1-f3H-ewqU5SymEnFsJQkp7WiSjUNEy3Ssq4a3apKUskola0ilNYNwzXLC8pkKTFuaYLXrSanIB91B9eJ7Q9hLe-C2Yiw5RjxnbE8yo3mO2P53thEOh9J3ZByjUp2BfGb6IXhf2ecWfOVv-WsxGWdoyRwthcI_vug-8g3plfaWuG0H3qe04pUmLGSJOirA-iNH4JLnvC8wEVVYExxQr38s6OHVn7tNgHwCFDB933Q7T9j7v7P4ZjsgKNMvN9RGsrY_zJfjEyjtX6oVBOKCEPkJ9yj00Y |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1109_TSMC_2025_3535783 crossref_primary_10_1109_TBME_2024_3486748 crossref_primary_10_1109_TMRB_2024_3506163 crossref_primary_10_3390_brainsci12091218 crossref_primary_10_1109_TRO_2022_3214350 crossref_primary_10_1038_s41598_023_33531_2 crossref_primary_10_1109_LRA_2024_3524900 crossref_primary_10_1016_j_clinph_2024_03_037 crossref_primary_10_1016_j_brs_2021_11_014 crossref_primary_10_3390_app142311441 |
| Cites_doi | 10.1016/j.neuroimage.2017.04.001 10.1016/j.brs.2012.06.002 10.1115/1.3140702 10.1109/TRO.2016.2530079 10.1109/IROS.2015.7353795 10.1109/IEMBS.2010.5627660 10.1016/j.neucli.2009.03.001 10.1049/ic.2010.0396 10.1002/hbm.20360 10.3233/RNN-170751 10.4067/S0717-95022012000400033 10.1007/s00701-009-0565-1 10.1109/70.34770 10.1007/s00138-017-0841-7 10.1186/s12938-018-0570-9 10.1007/s10548-018-0655-6 10.1016/j.promfg.2015.11.052 10.1097/00004691-199101000-00005 10.1115/1.4024473 10.1016/j.neuroimage.2015.09.013 10.1016/j.clinph.2009.08.016 10.1109/BIOROB.2018.8487930 10.1109/ICRA.2014.6907313 10.1007/BFb0029270 10.1109/70.704233 10.1051/matecconf/20165607001 10.1038/s41467-019-10638-7 10.1002/hbm.20041 10.1016/0013-4694(94)90029-9 10.1109/LRA.2015.2506663 10.1016/j.clinph.2015.02.001 10.1016/j.neucli.2010.01.006 10.1162/jocn.2009.21126 10.1109/EMBC.2013.6610758 10.1002/rcs.1427 10.1109/37.482135 10.1109/70.817672 10.1109/TIE.2015.2505690 10.1371/journal.pone.0060358 10.1016/j.clinph.2014.04.010 10.1109/70.313105 10.1002/rcs.411 10.1016/S0925-4927(01)00121-4 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1109/TBME.2021.3055434 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1600 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7616920 PMC7616920 33513096 10_1109_TBME_2021_3055434 9340370 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Research Council funderid: 10.13039/501100000781 – fundername: Restoring the Self with Embodiable Hand Prostheses grantid: 678908 – fundername: European Research Council grantid: 678908 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c447t-bc71bb3249c4ccdd7af0eb98defc8b4b744bfc3449d71972547b6b11f44cc9fe3 |
| IEDL.DBID | UNPAY |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Oct 26 04:13:55 EDT 2025 Tue Sep 30 17:06:28 EDT 2025 Mon Sep 29 04:05:18 EDT 2025 Mon Jun 30 08:31:21 EDT 2025 Mon Jul 21 05:35:31 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Wed Oct 01 04:08:52 EDT 2025 Wed Aug 27 02:30:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-bc71bb3249c4ccdd7af0eb98defc8b4b744bfc3449d71972547b6b11f44cc9fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5046-5816 0000-0003-0865-4992 0000-0003-2183-3848 0000-0002-6815-6242 0000-0003-0240-1265 0000-0001-8573-8255 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7616920 |
| PMID | 33513096 |
| PQID | 2515851141 |
| PQPubID | 85474 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9340370 pubmed_primary_33513096 crossref_citationtrail_10_1109_TBME_2021_3055434 proquest_journals_2515851141 unpaywall_primary_10_1109_tbme_2021_3055434 crossref_primary_10_1109_TBME_2021_3055434 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7616920 proquest_miscellaneous_2483817763 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 matthäus (ref53) 2008 ref14 ref52 ref55 ref11 ref54 ref10 ref17 pino (ref5) 2014; 10 ref18 matthäus (ref43) 2006; 1 ref51 ref50 hovey (ref3) 2006; 20 ref48 ref42 ref41 ref44 ref8 ref7 ref9 ref4 yi (ref16) 2012 ref6 rossi (ref47) 2009; 120 ref40 ref35 ref34 (ref20) 0 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 lebossé (ref37) 0 ref24 ref23 ref26 ref25 pino (ref2) 2014; 8 ref22 ref28 ref27 (ref19) 0 ref29 rossini (ref49) 2015; 126 siciliano (ref45) 2010 (ref46) 2020 (ref21) 0 |
| References_xml | – ident: ref18 doi: 10.1016/j.neuroimage.2017.04.001 – ident: ref13 doi: 10.1016/j.brs.2012.06.002 – ident: ref44 doi: 10.1115/1.3140702 – volume: 8 year: 2014 ident: ref2 article-title: Augmentation-related brain plasticity publication-title: Front Syst Neurosci – ident: ref27 doi: 10.1109/TRO.2016.2530079 – ident: ref24 doi: 10.1109/IROS.2015.7353795 – ident: ref51 doi: 10.1109/IEMBS.2010.5627660 – ident: ref11 doi: 10.1016/j.neucli.2009.03.001 – ident: ref33 doi: 10.1049/ic.2010.0396 – ident: ref6 doi: 10.1002/hbm.20360 – ident: ref50 doi: 10.3233/RNN-170751 – year: 0 ident: ref19 article-title: Smartmove, May 2020 – ident: ref39 doi: 10.4067/S0717-95022012000400033 – ident: ref35 doi: 10.1007/s00701-009-0565-1 – ident: ref25 doi: 10.1109/70.34770 – ident: ref28 doi: 10.1007/s00138-017-0841-7 – ident: ref52 doi: 10.1186/s12938-018-0570-9 – ident: ref9 doi: 10.1007/s10548-018-0655-6 – volume: 1 year: 2006 ident: ref43 article-title: Solving the positioning problem in TMS publication-title: GMS CURAC – volume: 20 start-page: 284 year: 2006 ident: ref3 article-title: The guide to magnetic stimulation publication-title: Magstim Company Ltd – ident: ref41 doi: 10.1016/j.promfg.2015.11.052 – ident: ref36 doi: 10.1097/00004691-199101000-00005 – ident: ref23 doi: 10.1115/1.4024473 – ident: ref17 doi: 10.1016/j.neuroimage.2015.09.013 – volume: 120 start-page: 2008 year: 2009 ident: ref47 article-title: Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2009.08.016 – ident: ref38 doi: 10.1109/BIOROB.2018.8487930 – ident: ref22 doi: 10.1109/ICRA.2014.6907313 – year: 2008 ident: ref53 article-title: A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping – year: 2012 ident: ref16 article-title: Design of a robotic transcranial magnetic stimulation system – ident: ref1 doi: 10.1007/BFb0029270 – ident: ref30 doi: 10.1109/70.704233 – ident: ref7 doi: 10.1051/matecconf/20165607001 – year: 0 ident: ref21 article-title: M-series TMS, May 2020 – ident: ref55 doi: 10.1038/s41467-019-10638-7 – ident: ref15 doi: 10.1002/hbm.20041 – ident: ref48 doi: 10.1016/0013-4694(94)90029-9 – ident: ref26 doi: 10.1109/LRA.2015.2506663 – volume: 126 start-page: 1071 year: 2015 ident: ref49 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. an updated report from an IFCN committee publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2015.02.001 – ident: ref10 doi: 10.1016/j.neucli.2010.01.006 – year: 2010 ident: ref45 publication-title: Robotics Modelling Planning and Control – volume: 10 start-page: p. 597?608 year: 2014 ident: ref5 article-title: Modulation of brain plasticity in stroke: A novel model for neurorehabilitation publication-title: Nat Rev Neurol – ident: ref12 doi: 10.1162/jocn.2009.21126 – ident: ref14 doi: 10.1109/EMBC.2013.6610758 – ident: ref34 doi: 10.1002/rcs.1427 – ident: ref54 doi: 10.1109/37.482135 – ident: ref40 doi: 10.1109/70.817672 – ident: ref29 doi: 10.1109/TIE.2015.2505690 – ident: ref8 doi: 10.1371/journal.pone.0060358 – ident: ref4 doi: 10.1016/j.clinph.2014.04.010 – ident: ref31 doi: 10.1109/70.313105 – year: 0 ident: ref20 article-title: Auxilum, May 2020 – start-page: 137 year: 0 ident: ref37 article-title: Robotic image-guided transcrasial magnetic stimulation publication-title: Computer Assisted Radiology and Surgery – year: 2020 ident: ref46 article-title: Franka Control Interface (FCI) documentation – ident: ref32 doi: 10.1002/rcs.411 – ident: ref42 doi: 10.1016/S0925-4927(01)00121-4 |
| SSID | ssj0014846 |
| Score | 2.4925148 |
| Snippet | Objective: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new... This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1589 |
| SubjectTerms | Algorithms Calibration calibration methodology Cameras Coils Control algorithms Control theory Cortex (motor) End effectors Evoked Potentials, Motor hand-eye and robot-world calibration Humans impedance control Magnetic fields Motor evoked potentials Neuronavigation Operators Orientation Position errors Robot arms Robot control Robot vision systems Robotic TMS Robotics Robots Scalp Spherical shells Transcranial Magnetic Stimulation |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDzwOPFoegYKMxIFXtvF6EsfHpWpVIaUHukW9RX7CiiWpIBGCn8CvZpxko11aIS6rSB6vMvJneyYz8w0hLwy6VWA8j5VK8hi01LEU3sUWjQHJndXOB0exOMmOz-D9eXq-Rd6OtTDOuS75zE3CYxfLt7Vpw6eyfckh4QId9Gsiz_parTFiAHlflJMw3MBTCUMEkyVyf_6uOERPcMomgd4KeOjFw3mKp3eg6l-7jrr-KleZmpczJm-01YX6-UMtl2vX0dEdUqwU6bNQvkzaRk_Mr784Hv9X07vk9mCX0lkPpHtky1U75NYaW-EOuV4Mcfhd8nst14iqytKPaM733Zlo7amiJzWO01D4pXuI0aJrVd19xO9mHPQ58nQ2kJpTtJ7ph1rXTTxbWGdpd4sa_MEdQgv1qQrllvS0WXwdOo7Rl_Pi9NV9cnZ0OD84joeuDrEBEE2sjWBaox0nDRhjrVA-cVrm1nmTa9ACQHvDAaQVoSdaCkJnmjEPKC694w_IdlVX7hGhaep8qixMLZPAtFdTbpzkWc4Uy41mEUlWi1uagfI8dN5Ylp3rk8gyQKMM0CgHaETk9Tjlouf7-Jfwbli6UXBYtYjsrRBUDifC9xLtyBCBZYBv9Xwcxr0cAjSqcnWLMpAHwkQ88iPysAfc-N8rwEZEbEBxFAg84Zsj1eJzxxcuMpbJKb7WmxG0l3RrcOKGbo-v1u0JuRmk-pTPPbLdfGvdUzTLGv2s249_ABIiNAc priority: 102 providerName: IEEE |
| Title | Development and Validation of a Novel Calibration Methodology and Control Approach for Robot-Aided Transcranial Magnetic Stimulation (TMS) |
| URI | https://ieeexplore.ieee.org/document/9340370 https://www.ncbi.nlm.nih.gov/pubmed/33513096 https://www.proquest.com/docview/2515851141 https://www.proquest.com/docview/2483817763 https://pubmed.ncbi.nlm.nih.gov/PMC7616920 https://www.ncbi.nlm.nih.gov/pmc/articles/7616920 |
| UnpaywallVersion | submittedVersion |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYlhV0edmnXzVtXNNjDLjixIvmix6y0lIHDaJPRPRldt7DEDq3D2H7CfvWObMUk6xj0xRB0FCzyHZ3vREffQei1grSKKUtDIaIsZJLLkKfWhBrIAKdGS2NdopiPk7Mp-3gZX-4gsr4L0xTtKznrl_NFv5x9a2orlws1WNeJDSDvTvgQsvTdJAb63UO70_Gn0Zd2xwXnHTbNDyFMAgIAYP4kk0R8UEOAgYxwSPpO5opRthWLmuYq_-KZN8sl767Kpfj5Q8znG7Ho9CE6X6-iLUH53l_Vsq9-_SXweKtlPkIPPDPFo3boMdox5R66v6FXuIfu5P4kfh_93qg2wqLU-DMQ-rY_E64sFnhcwTh2V79kCzKcN82qm7_xmxnHbZU8HnlZcwz8GZ9XsqrD0UwbjZs4quABPoJz8bV0Fy7xRT1b-J5j-M0kv3j7BE1PTybHZ6Hv6xAqxtI6lColUgKT44oppXUqbGQkz7SxKpNMpoxJqyhjXKeuK1rMUplIQiwDc24NPUC9sirNM4Tj2NhYaDbUhDMirRhSZThNMiJIpiQJULT-hQvlRc9d74150SQ_ES8mH_KTwoGi8KAI0LtuyrJV_Pif8b6DTWfIKYtoGgXocA2jwu8J1wUwSXcGSxi81atuGLzZHdGI0lQrsGGZk0yETT9AT1vUdd9NaQyEgycBSrfw2Bk4pfDtEUBWoxjuwRSg9x1yb6zNecfW2p7fyvoFuuc-trWgh6hXX63MS-BrtTxqLlUeeT_9AyBNPzw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5VRaL0wKPlESiwSBx4OfV6x489hqpVgDoHmqLerH2WiGBX4AjBT-BXM2s7VkIrxCWytLORR_vt7oxn5htCnmt0q0A7HkgZZgEooQKROhsYNAYEt0ZZ5x3FfJKMT-H9WXy2Qd70tTDW2ib5zA79YxPLN5Ve-E9l-4JDyFN00K_FABC31Vp9zACytiwnZLiFIwFdDJOFYn_6Nj9EXzBiQ09wBdx34-E8xvPbk_WvXEhNh5WrjM3LOZNbi_JC_vwh5_OVC-noFsmXqrR5KF-Gi1oN9a-_WB7_V9fb5GZnmdJRC6U7ZMOWO2R7ha9wh1zPu0j8Lvm9km1EZWnoJzTo2_5MtHJU0kmF49SXfqkWZDRvmlU3n_GbGQdtljwddbTmFO1n-rFSVR2MZsYa2tyjGn9wj9Bcnpe-4JKe1LOvXc8x-mKan7y8S06PDqcH46Dr6xBogLQOlE6ZUmjJCQ1aG5NKF1olMmOdzhSoFEA5zQGESX1XtBhSlSjGHKC4cJbfI5tlVdoHhMaxdbE0EBkmgCknI66t4EnGJMu0YgMSLhe30B3pue-9MS8a5ycUhYdG4aFRdNAYkFf9lIuW8eNfwrt-6XrBbtUGZG-JoKI7E74XaEn6GCwDfKtn_TDuZh-ikaWtFigDmadMxEN_QO63gOv_ewnYAUnXoNgLeKbw9ZFy9rlhDE8TlogIX-t1D9pLutU4cU23h1fr9pRsjaf5cXH8bvLhEbnhZ7QJoHtks_62sI_RSKvVk2Zv_gFGYzdU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYlhV0edml38dYNDfawC3asSL7oMSstZeAw2mR0T0bXLSyxw-Ywtp-wX70jWzHJOgZ9MQQdBYt8R-c70dF3EHqpIK1iytJQiDgPmeQy5Jk1oQYywKnR0liXKBaT9GzG3l8ml3uIbO7CtEX7Ss6jarGMqvmXtrZytVTDTZ3YEPLulI8gS99PE6DfA7Q_m3wYf-p2XHDeUdv8EMIkIAAA5k8yScyHDQQYyAhHJHIyV4yynVjUNlf5F8-8Wi55c12txM8fYrHYikWnd9H5ZhVdCcrXaN3ISP36S-DxWsu8h-54ZorH3dB9tGeqA3R7S6_wAN0o_En8Ifq9VW2ERaXxRyD0XX8mXFss8KSGceyufskOZLhom1W3f-O3M467Knk89rLmGPgzPq9l3YTjuTYat3FUwQN8BBfic-UuXOKLZr70Pcfwq2lx8foBmp2eTI_PQt_XIVSMZU0oVUakBCbHFVNK60zY2Eiea2NVLpnMGJNWUca4zlxXtIRlMpWEWAbm3Br6EA2qujKPEU4SYxOh2UgTzoi0YkSV4TTNiSC5kiRA8eYXLpUXPXe9NxZlm_zEvJy-K05KB4rSgyJAb_opq07x43_Ghw42vSGnLKZZHKCjDYxKvyd8L4FJujNYwuCtXvTD4M3uiEZUpl6DDcudZCJs-gF61KGu_25KEyAcPA1QtoPH3sAphe-OALJaxXAPpgC97ZF7ZW3OO3bW9uRa1k_RLfexqwU9QoPm29o8A77WyOfeQ_8Aqlg-Ow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+a+Novel+Calibration+Methodology+and+Control+Approach+for+Robot-Aided+Transcranial+Magnetic+Stimulation+%28TMS%29&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Noccaro%2C+A.&rft.au=Mioli%2C+A.&rft.au=D%27Alonzo%2C+M.&rft.au=Pinardi%2C+M.&rft.date=2021-05-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=68&rft.issue=5&rft.spage=1589&rft.epage=1600&rft_id=info:doi/10.1109%2FTBME.2021.3055434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2021_3055434 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |