Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy
Exercise intolerance is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still unsettled whether exercise training is safe and beneficial for patients with MM. To address this, we studied the effect of 12 weeks cycle training on exercise capacity, quality of life and under...
Saved in:
Published in | Brain (London, England : 1878) Vol. 129; no. 12; pp. 3402 - 3412 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.12.2006
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awl149 |
Cover
Abstract | Exercise intolerance is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still unsettled whether exercise training is safe and beneficial for patients with MM. To address this, we studied the effect of 12 weeks cycle training on exercise capacity, quality of life and underlying molecular and cellular events in five patients with single large-scale deletions, one with a microdeletion and 14 with point mutations of mitochondrial DNA (mtDNA), and 13 healthy subjects. Each training session lasted 30 min, and was performed at an intensity of 70% of VO2max (maximal oxygen uptake). Each subject performed 50 training sessions in 12 weeks. All subjects were evaluated before and after training, and 13 MM patients were studied after 8 weeks of deconditioning. Evaluation included VO2max and mutation load and mtDNA quantity, mitochondrial enzymatic activity, and number of centrally nucleated, apoptotic, ragged red and cytochrome oxidase (COX)-negative fibres in muscle biopsies from the quadriceps muscle. After 12 weeks of training, VO2max and muscle citrate synthase increased in MM (26 and 67%) and healthy (17 and 65%) subjects, while mtDNA quantity in muscle only increased in the MM patients (81%). In the MM patients, training did not change mtDNA mutation load in muscle, mitochondrial enzyme complex activities, muscle morphology and plasma creatine kinase. After deconditioning, VO2max and citrate synthase activity returned to values before training, while muscle mtDNA mutation load decreased. These findings show that aerobic training efficiently improves oxidative capacity in MM patients. Based on unchanged levels of mutant load in muscle, morphological findings on muscle biopsy and plasma creatine kinase levels during training, the treatment appears to be safe. Regular, supervised aerobic exercise is therefore recommended in MM patients with the studied mutations. |
---|---|
AbstractList | Exercise intolerance is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still unsettled whether exercise training is safe and beneficial for patients with MM. To address this, we studied the effect of 12 weeks cycle training on exercise capacity, quality of life and underlying molecular and cellular events in five patients with single large-scale deletions, one with a microdeletion and 14 with point mutations of mitochondrial DNA (mtDNA), and 13 healthy subjects. Each training session lasted 30 min, and was performed at an intensity of 70% of VO2max (maximal oxygen uptake). Each subject performed 50 training sessions in 12 weeks. All subjects were evaluated before and after training, and 13 MM patients were studied after 8 weeks of deconditioning. Evaluation included VO2max and mutation load and mtDNA quantity, mitochondrial enzymatic activity, and number of centrally nucleated, apoptotic, ragged red and cytochrome oxidase (COX)-negative fibres in muscle biopsies from the quadriceps muscle. After 12 weeks of training, VO2max and muscle citrate synthase increased in MM (26 and 67%) and healthy (17 and 65%) subjects, while mtDNA quantity in muscle only increased in the MM patients (81%). In the MM patients, training did not change mtDNA mutation load in muscle, mitochondrial enzyme complex activities, muscle morphology and plasma creatine kinase. After deconditioning, VO2max and citrate synthase activity returned to values before training, while muscle mtDNA mutation load decreased. These findings show that aerobic training efficiently improves oxidative capacity in MM patients. Based on unchanged levels of mutant load in muscle, morphological findings on muscle biopsy and plasma creatine kinase levels during training, the treatment appears to be safe. Regular, supervised aerobic exercise is therefore recommended in MM patients with the studied mutations. Exercise intolerance is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still unsettled whether exercise training is safe and beneficial for patients with MM. To address this, we studied the effect of 12 weeks cycle training on exercise capacity, quality of life and underlying molecular and cellular events in five patients with single large-scale deletions, one with a microdeletion and 14 with point mutations of mitochondrial DNA (mtDNA), and 13 healthy subjects. Each training session lasted 30 min, and was performed at an intensity of 70% of VO2max (maximal oxygen uptake). Each subject performed 50 training sessions in 12 weeks. All subjects were evaluated before and after training, and 13 MM patients were studied after 8 weeks of deconditioning. Evaluation included VO2max and mutation load and mtDNA quantity, mitochondrial enzymatic activity, and number of centrally nucleated, apoptotic, ragged red and cytochrome oxidase (COX)-negative fibres in muscle biopsies from the quadriceps muscle. After 12 weeks of training, VO2max and muscle citrate synthase increased in MM (26 and 67%) and healthy (17 and 65%) subjects, while mtDNA quantity in muscle only increased in the MM patients (81%). In the MM patients, training did not change mtDNA mutation load in muscle, mitochondrial enzyme complex activities, muscle morphology and plasma creatine kinase. After deconditioning, VO2max and citrate synthase activity returned to values before training, while muscle mtDNA mutation load decreased. These findings show that aerobic training efficiently improves oxidative capacity in MM patients. Based on unchanged levels of mutant load in muscle, morphological findings on muscle biopsy and plasma creatine kinase levels during training, the treatment appears to be safe. Regular, supervised aerobic exercise is therefore recommended in MM patients with the studied mutations.Exercise intolerance is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still unsettled whether exercise training is safe and beneficial for patients with MM. To address this, we studied the effect of 12 weeks cycle training on exercise capacity, quality of life and underlying molecular and cellular events in five patients with single large-scale deletions, one with a microdeletion and 14 with point mutations of mitochondrial DNA (mtDNA), and 13 healthy subjects. Each training session lasted 30 min, and was performed at an intensity of 70% of VO2max (maximal oxygen uptake). Each subject performed 50 training sessions in 12 weeks. All subjects were evaluated before and after training, and 13 MM patients were studied after 8 weeks of deconditioning. Evaluation included VO2max and mutation load and mtDNA quantity, mitochondrial enzymatic activity, and number of centrally nucleated, apoptotic, ragged red and cytochrome oxidase (COX)-negative fibres in muscle biopsies from the quadriceps muscle. After 12 weeks of training, VO2max and muscle citrate synthase increased in MM (26 and 67%) and healthy (17 and 65%) subjects, while mtDNA quantity in muscle only increased in the MM patients (81%). In the MM patients, training did not change mtDNA mutation load in muscle, mitochondrial enzyme complex activities, muscle morphology and plasma creatine kinase. After deconditioning, VO2max and citrate synthase activity returned to values before training, while muscle mtDNA mutation load decreased. These findings show that aerobic training efficiently improves oxidative capacity in MM patients. Based on unchanged levels of mutant load in muscle, morphological findings on muscle biopsy and plasma creatine kinase levels during training, the treatment appears to be safe. Regular, supervised aerobic exercise is therefore recommended in MM patients with the studied mutations. Exercise intolerance is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still unsettled whether exercise training is safe and beneficial for patients with MM. To address this, we studied the effect of 12 weeks cycle training on exercise capacity, quality of life and underlying molecular and cellular events in five patients with single large-scale deletions, one with a microdeletion and 14 with point mutations of mitochondrial DNA (mtDNA), and 13 healthy subjects. Each training session lasted 30 min, and was performed at an intensity of 70% of VO sub(2max) (maximal oxygen uptake). Each subject performed 50 training sessions in 12 weeks. All subjects were evaluated before and after training, and 13 MM patients were studied after 8 weeks of deconditioning. Evaluation included VO sub(2max) and mutation load and mtDNA quantity, mitochondrial enzymatic activity, and number of centrally nucleated, apoptotic, ragged red and cytochrome oxidase (COX)-negative fibres in muscle biopsies from the quadriceps muscle. After 12 weeks of training, VO sub(2max) and muscle citrate synthase increased in MM (26 and 67%) and healthy (17 and 65%) subjects, while mtDNA quantity in muscle only increased in the MM patients (81%). In the MM patients, training did not change mtDNA mutation load in muscle, mitochondrial enzyme complex activities, muscle morphology and plasma creatine kinase. After deconditioning, VO sub(2max) and citrate synthase activity returned to values before training, while muscle mtDNA mutation load decreased. These findings show that aerobic training efficiently improves oxidative capacity in MM patients. Based on unchanged levels of mutant load in muscle, morphological findings on muscle biopsy and plasma creatine kinase levels during training, the treatment appears to be safe. Regular, supervised aerobic exercise is therefore recommended in MM patients with the studied mutations. |
Author | Wibrand, Flemming Olsen, David B. Vissing, John Schwartz, Marianne Hauerslev, Simon Krag, Thomas Jeppesen, Tina D. Dunø, Morten |
Author_xml | – sequence: 1 givenname: Tina D. surname: Jeppesen fullname: Jeppesen, Tina D. organization: Department of Neurology, Neuromuscular Research Unit, The Copenhagen Muscle Research Centre Rigshospitalet, Copenhagen, Denmark – sequence: 2 givenname: Marianne surname: Schwartz fullname: Schwartz, Marianne organization: Department of Clinical Genetics, National University Hospital Rigshospitalet, Copenhagen, Denmark – sequence: 3 givenname: David B. surname: Olsen fullname: Olsen, David B. organization: Department of Neurology, Neuromuscular Research Unit, The Copenhagen Muscle Research Centre Rigshospitalet, Copenhagen, Denmark – sequence: 4 givenname: Flemming surname: Wibrand fullname: Wibrand, Flemming organization: Department of Clinical Genetics, National University Hospital Rigshospitalet, Copenhagen, Denmark – sequence: 5 givenname: Thomas surname: Krag fullname: Krag, Thomas organization: Department of Neurology, Neuromuscular Research Unit, The Copenhagen Muscle Research Centre Rigshospitalet, Copenhagen, Denmark – sequence: 6 givenname: Morten surname: Dunø fullname: Dunø, Morten organization: Department of Clinical Genetics, National University Hospital Rigshospitalet, Copenhagen, Denmark – sequence: 7 givenname: Simon surname: Hauerslev fullname: Hauerslev, Simon organization: Department of Neurology, Neuromuscular Research Unit, The Copenhagen Muscle Research Centre Rigshospitalet, Copenhagen, Denmark – sequence: 8 givenname: John surname: Vissing fullname: Vissing, John organization: Department of Neurology, Neuromuscular Research Unit, The Copenhagen Muscle Research Centre Rigshospitalet, Copenhagen, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18360636$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16815877$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0stvEzEQB2ALFdG0cOOMLCTgwlJ7_T5WFVCkSBx4COVieZ1Z4rJrB3tDm_8ehwQqVQJOPvgbP-Y3J-gopggIPabkFSWGnXXZhXjmrgfKzT00o1ySpqVCHqEZIUQ22ghyjE5KuSKEctbKB-iYSk2FVmqG7Dnk1AWPp90xIX7FoeDiesAuLnEY1zn9gILhBrIPBbB3a-fDtMUh4rWbAsSp4OswrfAYpuRXKS5zcAMet6lur7YP0f3eDQUeHdZT9OnN648Xl838_dt3F-fzxnOupsZRTUF4UK2XnWiXoLk0SjLhhFfa9JR3hIMD1bMlYRyMlJpw6hhxppdA2Sl6sT-3Pvj7Bspkx1A8DIOLkDbFKkUV57rlVT7_p6ytMUoY_V9IDTdacFbh0zvwKm1yrN-tpgLSsh16ckCbboSlXecwury1v6Oo4NkBuOLd0GcXa8dvnWaSSCare7l3PqdSMvS3hNjdRNhfE2H3E1F5e4fX-GpwKe4SH_5W1OyLQpng5s8FLn-zUjEl7OWXheWLz4rP5cJ-YD8Bg0HKZA |
CODEN | BRAIAK |
CitedBy_id | crossref_primary_10_1007_s10540_007_9042_3 crossref_primary_10_1038_s41392_024_02044_3 crossref_primary_10_3390_ijms24098154 crossref_primary_10_1016_j_neurol_2009_07_006 crossref_primary_10_1016_S1474_4422_10_70116_2 crossref_primary_10_1177_0883073814538512 crossref_primary_10_1212_WNL_0000000000008861 crossref_primary_10_1371_journal_pone_0114462 crossref_primary_10_1134_S0006297913090034 crossref_primary_10_1212_01_wnl_0000341274_61236_02 crossref_primary_10_1007_s11659_012_0305_4 crossref_primary_10_1007_s00347_007_1643_5 crossref_primary_10_1590_1414_431x20143467 crossref_primary_10_1155_2015_945901 crossref_primary_10_1016_j_nurt_2008_07_002 crossref_primary_10_4254_wjh_v13_i11_1707 crossref_primary_10_1016_j_bbagen_2013_12_025 crossref_primary_10_1073_pnas_2200549119 crossref_primary_10_1097_WCO_0000000000000743 crossref_primary_10_1016_S0035_3787_07_92636_3 crossref_primary_10_1097_CND_0b013e3181a8d36b crossref_primary_10_1007_s10545_015_9834_8 crossref_primary_10_3389_fphys_2024_1404657 crossref_primary_10_3390_antiox11030510 crossref_primary_10_1002_jpen_1826 crossref_primary_10_1016_j_nmd_2012_08_005 crossref_primary_10_1055_a_2264_2067 crossref_primary_10_3109_07853890_2011_605389 crossref_primary_10_1016_j_ymgme_2009_11_005 crossref_primary_10_1007_s10545_010_9085_7 crossref_primary_10_1007_s11940_009_0046_0 crossref_primary_10_1007_s10863_014_9559_7 crossref_primary_10_1002_14651858_CD004426_pub3 crossref_primary_10_1186_s12967_023_04626_1 crossref_primary_10_1097_PEP_0000000000000016 crossref_primary_10_1111_1753_0407_12561 crossref_primary_10_1111_j_1475_097X_2012_01122_x crossref_primary_10_3109_07420520903553443 crossref_primary_10_1016_S0162_0908_08_79159_1 crossref_primary_10_1016_j_nut_2019_06_025 crossref_primary_10_1038_nrneurol_2013_129 crossref_primary_10_1146_annurev_pathol_4_110807_092314 crossref_primary_10_1007_s13311_012_0175_0 crossref_primary_10_3390_pharmaceutics12111083 crossref_primary_10_1016_j_mito_2025_102010 crossref_primary_10_1249_JES_0000000000000250 crossref_primary_10_1371_journal_pone_0219628 crossref_primary_10_1186_s12891_017_1781_0 crossref_primary_10_1371_journal_pone_0064067 crossref_primary_10_3390_jcm9103113 crossref_primary_10_31362_patd_570009 crossref_primary_10_1186_ar4076 crossref_primary_10_1016_j_ymgme_2021_12_010 crossref_primary_10_1002_mus_28356 crossref_primary_10_3390_cells8030237 crossref_primary_10_1002_jimd_12644 crossref_primary_10_1016_j_pmr_2012_06_001 crossref_primary_10_1152_japplphysiol_01051_2006 crossref_primary_10_1016_j_pediatrneurol_2014_06_023 crossref_primary_10_1097_CND_0b013e318033457d crossref_primary_10_1177_0883073814537379 crossref_primary_10_1016_j_ncl_2007_11_010 crossref_primary_10_1097_CND_0b013e3181a7b35f crossref_primary_10_1016_j_biopsych_2017_08_007 crossref_primary_10_1016_j_nmd_2007_10_007 crossref_primary_10_1152_ajpendo_00120_2017 crossref_primary_10_1371_journal_pone_0022294 crossref_primary_10_1016_j_ijcard_2013_05_062 crossref_primary_10_1177_0009922818821890 crossref_primary_10_1016_j_yfrne_2011_06_003 crossref_primary_10_1111_cge_13139 crossref_primary_10_3233_JND_140061 crossref_primary_10_3390_genes14050954 crossref_primary_10_1002_14651858_CD003907_pub4 crossref_primary_10_1016_j_hfc_2021_07_003 crossref_primary_10_1002_14651858_CD003907_pub5 crossref_primary_10_1093_brain_awn252 crossref_primary_10_3389_fphys_2019_00503 crossref_primary_10_1172_jci_insight_155201 crossref_primary_10_3390_jcm10081796 crossref_primary_10_1016_j_bbagen_2013_11_016 crossref_primary_10_1016_j_nmd_2013_05_007 crossref_primary_10_33549_physiolres_934529 crossref_primary_10_1016_j_mito_2011_05_005 crossref_primary_10_1152_ajpregu_00264_2016 crossref_primary_10_1093_brain_awr293 crossref_primary_10_1111_j_1365_2796_2008_02058_x crossref_primary_10_1007_s12035_015_9090_9 crossref_primary_10_3389_fneur_2019_00790 crossref_primary_10_3389_fphys_2020_615038 crossref_primary_10_1016_j_nmd_2019_09_012 crossref_primary_10_4236_ijcm_2016_77054 crossref_primary_10_1152_ajpendo_00230_2011 crossref_primary_10_2174_0113892029308327240612110334 crossref_primary_10_3390_muscles3040033 crossref_primary_10_3389_fneur_2024_1499876 crossref_primary_10_1007_s10059_009_0071_6 crossref_primary_10_1042_EBC20170097 crossref_primary_10_1152_japplphysiol_91571_2008 crossref_primary_10_1016_j_arr_2016_04_006 crossref_primary_10_1016_j_cophys_2019_05_011 crossref_primary_10_1016_j_mito_2024_101979 crossref_primary_10_3390_jcm10010094 crossref_primary_10_1016_j_jrm_2011_09_010 crossref_primary_10_1007_s11825_012_0345_9 crossref_primary_10_3390_jcm7020016 crossref_primary_10_1097_WCO_0b013e32833d1096 crossref_primary_10_1016_j_arr_2023_101906 crossref_primary_10_1111_j_1468_1331_2009_02660_x crossref_primary_10_1002_mus_21758 crossref_primary_10_1042_BCJ20220233 crossref_primary_10_3390_ijms22136913 crossref_primary_10_1016_j_nmd_2012_10_012 crossref_primary_10_1016_j_cell_2020_02_051 crossref_primary_10_3233_JND_150101 crossref_primary_10_1016_j_bbabio_2009_09_005 crossref_primary_10_3390_life11111111 crossref_primary_10_1007_s13311_018_00674_4 crossref_primary_10_1016_j_nmd_2012_10_005 crossref_primary_10_1016_j_pmr_2008_10_011 crossref_primary_10_1507_endocrj_EJ15_0479 crossref_primary_10_1152_japplphysiol_00885_2015 crossref_primary_10_5124_jkma_2024_67_9_560 crossref_primary_10_1111_j_1469_8749_2009_03605_x crossref_primary_10_1007_s11010_020_04021_0 crossref_primary_10_1016_j_mito_2013_09_003 crossref_primary_10_1002_mus_26498 crossref_primary_10_1007_s00393_012_1082_9 crossref_primary_10_1016_j_tem_2012_04_006 crossref_primary_10_1093_brain_aws200 crossref_primary_10_1371_journal_pone_0041817 crossref_primary_10_1016_j_bbabio_2015_03_001 crossref_primary_10_1016_j_cmet_2015_05_006 crossref_primary_10_1007_s00415_021_10821_1 crossref_primary_10_1212_WNL_0000000000007265 crossref_primary_10_1016_j_nmd_2010_01_010 crossref_primary_10_1016_j_nmd_2013_08_004 crossref_primary_10_1212_WNL_0000000000005243 crossref_primary_10_1042_CS20160200 crossref_primary_10_1186_s13287_019_1510_8 crossref_primary_10_3389_fphys_2020_594223 crossref_primary_10_3390_cells12202494 crossref_primary_10_3389_fphys_2020_00349 crossref_primary_10_1002_mus_23771 crossref_primary_10_1016_j_heliyon_2024_e39648 crossref_primary_10_3390_ijms24055005 crossref_primary_10_1007_s40291_020_00510_6 crossref_primary_10_1093_brain_awx168 crossref_primary_10_1002_mus_23491 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright Oxford University Press(England) Dec 2006 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright Oxford University Press(England) Dec 2006 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 7TS 7X8 |
DOI | 10.1093/brain/awl149 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Nursing & Allied Health Premium Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 3412 |
ExternalDocumentID | 1175633151 16815877 18360636 10_1093_brain_awl149 ark_67375_HXZ_4ZV74L6Z_S |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACBNA ACGFS ACIWK ACPRK ACUFI ACUKT ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFXAL AGINJ AGKEF AGORE AGQPQ AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ASPBG ATGXG AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSCLL BSWAC BTRTY BVRKM C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO RZO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YSK YXANX ZCG ZKX ~91 AAYXX CITATION RIG 1CY AAGKA AAPGJ AAQQT AAWDT AAYJJ ABDPE ABIME ABPIB ABSMQ ABZEO ACFRR ACPQN ACUTJ ACVCV ACZBC ADMTO AEHUL AEKPW AFFQV AFSHK AFYAG AGKRT AGMDO AHGBF AI. AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ATDFG ATTQO AVNTJ BZKNY CXTWN DFGAJ EIHJH ELUNK IQODW MBLQV MBTAY MVM OBFPC OHT O~Y QBD RNI RZF TCN TMA VH1 YQJ ZGI ZKB ZXP 6.Y ABQTQ ABSAR ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF M49 NPM VXZ 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 7TS 7X8 |
ID | FETCH-LOGICAL-c447t-a181e5ce72c6b52de84697635a5c789f14b04eae7f3d034e9668041a30a9f6e13 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Sat Sep 27 18:36:31 EDT 2025 Fri Sep 05 08:07:44 EDT 2025 Sun Sep 28 12:05:22 EDT 2025 Sun Jun 29 16:45:10 EDT 2025 Wed Feb 19 01:46:40 EST 2025 Mon Jul 21 09:13:16 EDT 2025 Thu Apr 24 22:53:26 EDT 2025 Tue Jul 01 02:39:58 EDT 2025 Sat Sep 20 11:00:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Physical exercise Human Nervous system diseases mtDNA Metabolic diseases training Enzymopathy Congenital disease Striated muscle disease Mitochondria mutation load Mitochondrial myopathy Mutation |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-a181e5ce72c6b52de84697635a5c789f14b04eae7f3d034e9668041a30a9f6e13 |
Notes | istex:FB357A596C7B4D2DD31BC7E132C2502EBB6DC28D ark:/67375/HXZ-4ZV74L6Z-S Abbreviations CKcreatine kinase HRheart rate MMmitochondrial myopathy mtDNAmitochondrial DNA RRFragged red fibres VO2maxmaximal oxygen uptake Wmaxmaximal workload ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 16815877 |
PQID | 195430233 |
PQPubID | 35133 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_771744824 proquest_miscellaneous_68197598 proquest_miscellaneous_19498543 proquest_journals_195430233 pubmed_primary_16815877 pascalfrancis_primary_18360636 crossref_primary_10_1093_brain_awl149 crossref_citationtrail_10_1093_brain_awl149 istex_primary_ark_67375_HXZ_4ZV74L6Z_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-12-01 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2006 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
SSID | ssj0014326 |
Score | 2.2911167 |
Snippet | Exercise intolerance is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still unsettled whether exercise training is safe and... |
SourceID | proquest pubmed pascalfrancis crossref istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3402 |
SubjectTerms | Adult Aerobiosis - physiology Biological and medical sciences Creatine Kinase - blood Diseases of striated muscles. Neuromuscular diseases DNA, Mitochondrial - genetics Exercise Therapy - methods Female Gene Deletion Heart Rate - physiology Humans Lactates - blood Male Medical sciences Middle Aged Mitochondria - enzymology Mitochondrial Myopathies - genetics Mitochondrial Myopathies - physiopathology Mitochondrial Myopathies - therapy mitochondrial myopathy mtDNA Multiple sclerosis and variants. Guillain barré syndrome and other inflammatory polyneuropathies. Leukoencephalitis Muscle, Skeletal - enzymology Muscle, Skeletal - pathology Muscle, Skeletal - physiopathology mutation load Neurology Oxygen Consumption - physiology Point Mutation - genetics Quality of Life training Treatment Outcome |
Title | Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy |
URI | https://api.istex.fr/ark:/67375/HXZ-4ZV74L6Z-S/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/16815877 https://www.proquest.com/docview/195430233 https://www.proquest.com/docview/19498543 https://www.proquest.com/docview/68197598 https://www.proquest.com/docview/771744824 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2156 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014326 issn: 0006-8950 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2156 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0014326 issn: 0006-8950 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1460-2156 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0014326 issn: 0006-8950 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJiFeEN8Lg-EH4KVKlw_HTh4HpSqDwQMdVH2JnMQRE11a9UMD_hD-Xu5iJ2mmVhq8RJV7TuLcz-e78_mOkJeggqe-k4U2T13PZsIJ7ETIzM5llLhZ6uHpT4y2-MSH5-x0HIw7nT8bUUvrVdJLf289V_I_XIU24Cuekv0HztY3hQb4DfyFK3AYrjfi8YnCLEppXecBq5MvZW52BEp3gVrWVZW6KSyMKWrdTT5Vc7jtEuY1yMEiK2t4XP6aYaHi9oYvPmJr_Q_tVAhFuOFUOFXzuTK-nVGv2-81-z3fr2Agpdf6rG79PDW0_V73Td36DS157fce9K55J5pIj0ricjuMdHLZntJClnHHBlWDt6SweUcDN29DqPrM8TYWaFh3va3CXyfGShalS2Ugr6auzobazrJ9bfWrYxL1brwfl_1j3fsW2fcE51gZo__-Q707xfyyjF89NnOgAnofl72Pde-WqrOPs_Ynht7KJcy-XJdN2W3XlPrN6B65awwTeqJRdp90VPGA3D4zoRcPSWzARiuw0YslRbBR4BGtwEYrsNEKbPSioBXYKIKNtsBGK7A9IueDd6O3Q9tU57BTxsTKlqAbqiBVwkt5EniZAk02wvSGMkhFGOUuSxympBK5nzk-U2BXY64r6Tsyyrly_cdkr5gV6oDQQPgciTwHjJFEgY2bR0mU5F6Qg36eKYt0qw8ZpyZ1PQ52Gm9jmkVe1dRznbJlB93rkic1kVz8wDBHEcTD8SRmk6-CfeST-ItFjlpMa-6KJ6C4zy1yWHExNuJhGWMqRazI5VvkRf0vyG7ckJOFmq2RhEUhUO2m4KCwiyAKLUJ3UAjhCsZCj1nkicZP83rQOwiFeHrDD3JI7jRT-BnZWy3W6jmo3KvkqMT_X31E2FM |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerobic+training+is+safe+and+improves+exercise+capacity+in+patients+with+mitochondrial+myopathy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Jeppesen%2C+T.+D.&rft.au=Schwartz%2C+M.&rft.au=Olsen%2C+D.+B.&rft.au=Wibrand%2C+F.&rft.date=2006-12-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=129&rft.issue=12&rft.spage=3402&rft.epage=3412&rft_id=info:doi/10.1093%2Fbrain%2Fawl149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_awl149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |