A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompressible flows
•WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and performs similar to mathematically and numerically more complex ALDM.•Self-similar isotropic turbulence after transition of high and infinite...
Saved in:
| Published in | Computers & fluids Vol. 86; pp. 109 - 124 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
05.11.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7930 1879-0747 |
| DOI | 10.1016/j.compfluid.2013.06.034 |
Cover
| Abstract | •WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and performs similar to mathematically and numerically more complex ALDM.•Self-similar isotropic turbulence after transition of high and infinite Re Taylor–Green vortex.•General validity of WENO-CU6-M1 parameters confirmed for moderate Reynolds number decaying grid generated turbulence.•Method also valid for non-turbulent flows without further adjustments to its parameters.
In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible Taylor–Green vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscous–inviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortex–wall interaction problem and lid-driven cavity flow. |
|---|---|
| AbstractList | •WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and performs similar to mathematically and numerically more complex ALDM.•Self-similar isotropic turbulence after transition of high and infinite Re Taylor–Green vortex.•General validity of WENO-CU6-M1 parameters confirmed for moderate Reynolds number decaying grid generated turbulence.•Method also valid for non-turbulent flows without further adjustments to its parameters.
In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible Taylor–Green vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscous–inviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortex–wall interaction problem and lid-driven cavity flow. In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible TayloraGreen vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscousainviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortexawall interaction problem and lid-driven cavity flow. In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible Taylor-Green vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscous-inviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortex-wall interaction problem and lid-driven cavity flow. |
| Author | Hu, Xiangyu Y. Adams, Nikolaus A. Schranner, Felix S. |
| Author_xml | – sequence: 1 givenname: Felix S. surname: Schranner fullname: Schranner, Felix S. email: felix.schranner@aer.mw.tum.de – sequence: 2 givenname: Xiangyu Y. surname: Hu fullname: Hu, Xiangyu Y. email: xiangyu.hu@tum.de – sequence: 3 givenname: Nikolaus A. surname: Adams fullname: Adams, Nikolaus A. email: Nikolaus.Adams@tum.de |
| BookMark | eNqNkc1u1DAURi1UJKaFZ8BLNgnX8V-yYDGqoCBV6qZ7y3FuGA9OHOyk1bw9mRmERDfTlXXt832yfa7J1RhHJOQjg5IBU5_3pYvD1IfFd2UFjJegSuDiDdmwWjcFaKGvyAZAyEI3HN6R65z3sM68Ehty2NJpd8je2RAO1MUx-zzjONNntL9OO8OUMGffBqQ7_3NXrFMMy-zjSO00pWjdjs6RLmOH6XT2hB3NfliCPUKZxp768b-ePsTn_J687W3I-OHvekMev319vP1e3D_c_bjd3hdOCD0XlgmuJHBbq5opIdE1UjEJSrfrcypb6UY2fcdZX1d9y1batrZpe1RKCOj4Dfl0rl2v-nvBPJvBZ4ch2BHjkg3T0GjdVFC_EgWhxWVUMi5UpYBfRoWWUjZ1Va3olzPqUsw5YW-cn0-_OCfrg2FgjsrN3vxTbo7KDSizKl_z-kV-Sn6w6fCK5PacxNXEk8dksvM4Oux8QjebLvqLHX8APDXPrA |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2018_07_043 crossref_primary_10_1007_s10483_018_2258_9 crossref_primary_10_1016_j_jcp_2024_113088 crossref_primary_10_1016_j_jcp_2016_07_037 crossref_primary_10_1016_j_cpc_2019_06_013 crossref_primary_10_1007_s40571_021_00447_5 crossref_primary_10_1007_s44198_025_00269_6 crossref_primary_10_1016_j_jcp_2014_12_044 crossref_primary_10_1016_j_jcp_2016_01_024 crossref_primary_10_1016_j_jcp_2016_09_058 crossref_primary_10_1016_j_jcp_2021_110770 crossref_primary_10_1016_j_jcp_2022_111477 crossref_primary_10_2514_1_J054741 crossref_primary_10_1016_j_jcp_2020_109241 crossref_primary_10_1016_j_jcp_2023_112436 crossref_primary_10_1088_1402_4896_ac3cf8 crossref_primary_10_2514_1_J057370 crossref_primary_10_1016_j_jcp_2022_111445 |
| Cites_doi | 10.1016/0021-9991(81)90128-5 10.1002/fld.1887 10.2514/6.1977-648 10.1016/0021-9991(82)90058-4 10.1063/1.2773765 10.1007/BF01009458 10.1115/1.2801684 10.1006/jcph.1995.1205 10.1016/j.jcp.2004.04.010 10.1006/jcph.1997.5716 10.1063/1.3614479 10.1103/PhysRevLett.85.306 10.1016/j.jcp.2005.08.017 10.1063/1.858513 10.1017/S0022112071001599 10.1006/jcph.1996.0130 10.1016/j.jcp.2009.07.028 10.1016/j.jcp.2011.05.023 10.1017/S0022112092002180 10.1007/978-3-663-13974-4_20 10.1016/j.jcp.2007.07.036 10.1002/fld.331 10.1016/j.compfluid.2004.11.009 10.1016/0021-9991(89)90151-4 10.2514/6.2006-1091 10.1016/j.jcp.2006.05.009 10.1080/14685248.2012.740567 10.1137/0726003 10.1007/s10915-004-5407-y 10.1063/1.2814345 10.1103/PhysRevE.60.R1162 10.1017/S0022112006003909 10.1080/030919209410001648390 10.1016/j.jcp.2009.07.039 10.1006/jcph.2000.6443 10.1016/j.jcp.2010.08.019 10.1080/1061856031000104851 10.1006/jcph.1997.5843 10.1006/jcph.1994.1187 10.1016/j.jcp.2005.01.023 10.1098/rspa.1937.0036 10.1016/j.ijheatfluidflow.2010.02.026 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd |
| Copyright_xml | – notice: 2013 Elsevier Ltd |
| DBID | AAYXX CITATION 7UA C1K F1W H96 L.G 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.compfluid.2013.06.034 |
| DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0747 |
| EndPage | 124 |
| ExternalDocumentID | 10_1016_j_compfluid_2013_06_034 S0045793013002715 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7UA C1K F1W H96 L.G 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c447t-a1436503a8681645ec95615067b7932a27959fd31f82fb1143aba9bfe66440d3 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7930 |
| IngestDate | Sun Sep 28 06:16:28 EDT 2025 Thu Oct 02 07:09:27 EDT 2025 Tue Oct 07 09:23:21 EDT 2025 Tue Oct 07 09:24:25 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Wed Oct 01 03:04:21 EDT 2025 Fri Feb 23 02:29:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Underresolved computation Weakly compressible model Physically consistent Implicit large-eddy simulation High resolution scheme |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-a1436503a8681645ec95615067b7932a27959fd31f82fb1143aba9bfe66440d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1475559822 |
| PQPubID | 23462 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1709779208 proquest_miscellaneous_1709770474 proquest_miscellaneous_1513462603 proquest_miscellaneous_1475559822 crossref_citationtrail_10_1016_j_compfluid_2013_06_034 crossref_primary_10_1016_j_compfluid_2013_06_034 elsevier_sciencedirect_doi_10_1016_j_compfluid_2013_06_034 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-05 |
| PublicationDateYYYYMMDD | 2013-11-05 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & fluids |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Temam (b0090) 1968; 98 Remmler, Hickel (b0040) 2012 Adams, Hickel, Franz (b0010) 2004; 200 Hu, Adams (b0045) 2011; 230 Wells, Afanasyev (b0080) 2004; 98 Shu, Don, Gottlieb, Schilling, Jameson (b0055) 2005; 24 Taylor EM, Wu M, Martin M. Optimization of nonlinear error sources for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. AIAA Paper; 2006. p. 44. Clercx, Heijst (b0070) 2000; 85 Clercx, Bruneau (b0185) 2006; 35 Ghia K, Hankey Jr. W, Hodge J. Study of incompressible Navier–Stokes equations in primitive variables using implicit numerical technique. In: 3rd Computational fluid dynamics conference; 1977. p. 156–67. Speziale (b0230) 1992; 241 Brown, Minion (b0210) 1995; 122 Bell, Colella, Glaz (b0220) 1989; 85 Davidson (b0235) 2011; 23 Brachet, Meneguzzi, Vincent, Politano, Sulem (b0165) 1992; 4 Ghia, Ghia, Shin (b0200) 1982; 48 Erturk (b0205) 2009; 60 Hu, Wang, Adams (b0050) 2010; 229 Kramer, Clercx, van Heijst (b0180) 2007; 19 Comte-Bellot, Corrsin (b0170) 1971; 48 Margolin, Rider (b0005) 2002; 39 Martin, Taylor, Wu, Weirs (b0135) 2006; 220 Liu, Osher, Chan (b0155) 1994; 115 Bruneau, Greffier, Kellay (b0075) 1999; 60 Gerolymos, Sénéchal, Vallet (b0150) 2009; 228 Brachet, Meiron, Orszag, Nickel, Morf, Frisch (b0160) 1984; 34 Roe (b0095) 1981; 43 Shu (b0110) 2003; 17 Jiang, Shu (b0115) 1996; 126 Grinstein FF, Fureby C. Recent progress on flux-limiting based implicit large eddy simulation. In: European conference on computational fluid dynamics. ECCOMAS CFD; 2006. Henrick, Aslam, Powers (b0145) 2005; 207 Fauconnier, Bogey, Dick (b0225) 2013; 14 Hickel, Adams (b0035) 2007; 19 Taylor, Green (b0120) 1937; 158 Rogallo (b0175) 1981 Minion, Brown (b0215) 1997; 138 Meyer, Hickel, Adams (b0030) 2010; 31 Fauconnier, Langhe, Dick (b0125) 2009; 228 Elsworth D, Toro E. Riemann solvers for solving the incompressible Navier–Stokes equations using the artificial compressibility method. Technical report, Cranfield, College of Aeronautics Report No 9208, June 1992. Balsara, Shu (b0020) 2000; 160 Tadmor (b0060) 1989; 26 Keetels, D’Ortona, Kramer, Clercx, Schneider, van Heijst (b0190) 2007; 227 Wells, Clercx, van Heijst (b0065) 2007; 573 Chorin (b0085) 1997; 135 Hickel, Adams, Domaradzki (b0025) 2006; 213 Marx Y. Evaluation of the artificial compressibility method for the solution of the incompressible Navier–Stokes equations. In: 9th GAMM conference of numerical methods in fluid mechanics, Lausanne; 1991. Grinstein, Margolin, Rider (b0015) 2007 Taylor (10.1016/j.compfluid.2013.06.034_b0120) 1937; 158 Minion (10.1016/j.compfluid.2013.06.034_b0215) 1997; 138 Chorin (10.1016/j.compfluid.2013.06.034_b0085) 1997; 135 Brown (10.1016/j.compfluid.2013.06.034_b0210) 1995; 122 Liu (10.1016/j.compfluid.2013.06.034_b0155) 1994; 115 Ghia (10.1016/j.compfluid.2013.06.034_b0200) 1982; 48 Speziale (10.1016/j.compfluid.2013.06.034_b0230) 1992; 241 Jiang (10.1016/j.compfluid.2013.06.034_b0115) 1996; 126 Clercx (10.1016/j.compfluid.2013.06.034_b0070) 2000; 85 Gerolymos (10.1016/j.compfluid.2013.06.034_b0150) 2009; 228 Shu (10.1016/j.compfluid.2013.06.034_b0055) 2005; 24 10.1016/j.compfluid.2013.06.034_b0105 Adams (10.1016/j.compfluid.2013.06.034_b0010) 2004; 200 Brachet (10.1016/j.compfluid.2013.06.034_b0160) 1984; 34 Comte-Bellot (10.1016/j.compfluid.2013.06.034_b0170) 1971; 48 10.1016/j.compfluid.2013.06.034_b0100 Roe (10.1016/j.compfluid.2013.06.034_b0095) 1981; 43 Shu (10.1016/j.compfluid.2013.06.034_b0110) 2003; 17 10.1016/j.compfluid.2013.06.034_b0140 Clercx (10.1016/j.compfluid.2013.06.034_b0185) 2006; 35 Kramer (10.1016/j.compfluid.2013.06.034_b0180) 2007; 19 Hu (10.1016/j.compfluid.2013.06.034_b0050) 2010; 229 Brachet (10.1016/j.compfluid.2013.06.034_b0165) 1992; 4 Rogallo (10.1016/j.compfluid.2013.06.034_b0175) 1981 Erturk (10.1016/j.compfluid.2013.06.034_b0205) 2009; 60 Hickel (10.1016/j.compfluid.2013.06.034_b0025) 2006; 213 Henrick (10.1016/j.compfluid.2013.06.034_b0145) 2005; 207 Davidson (10.1016/j.compfluid.2013.06.034_b0235) 2011; 23 Remmler (10.1016/j.compfluid.2013.06.034_b0040) 2012 Bruneau (10.1016/j.compfluid.2013.06.034_b0075) 1999; 60 Balsara (10.1016/j.compfluid.2013.06.034_b0020) 2000; 160 Hickel (10.1016/j.compfluid.2013.06.034_b0035) 2007; 19 Wells (10.1016/j.compfluid.2013.06.034_b0065) 2007; 573 Bell (10.1016/j.compfluid.2013.06.034_b0220) 1989; 85 Wells (10.1016/j.compfluid.2013.06.034_b0080) 2004; 98 Martin (10.1016/j.compfluid.2013.06.034_b0135) 2006; 220 Fauconnier (10.1016/j.compfluid.2013.06.034_b0125) 2009; 228 Margolin (10.1016/j.compfluid.2013.06.034_b0005) 2002; 39 Keetels (10.1016/j.compfluid.2013.06.034_b0190) 2007; 227 Fauconnier (10.1016/j.compfluid.2013.06.034_b0225) 2013; 14 Hu (10.1016/j.compfluid.2013.06.034_b0045) 2011; 230 10.1016/j.compfluid.2013.06.034_b0195 10.1016/j.compfluid.2013.06.034_b0130 Meyer (10.1016/j.compfluid.2013.06.034_b0030) 2010; 31 Temam (10.1016/j.compfluid.2013.06.034_b0090) 1968; 98 Tadmor (10.1016/j.compfluid.2013.06.034_b0060) 1989; 26 Grinstein (10.1016/j.compfluid.2013.06.034_b0015) 2007 |
| References_xml | – volume: 17 start-page: 107 year: 2003 end-page: 118 ident: b0110 article-title: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD publication-title: Int J Comput Fluid Dyn – volume: 85 start-page: 306 year: 2000 end-page: 309 ident: b0070 article-title: Energy spectra for decaying 2D turbulence in a bounded domain publication-title: Phys Rev Lett – volume: 230 start-page: 7240 year: 2011 end-page: 7249 ident: b0045 article-title: Scale separation for implicit large eddy simulation publication-title: J Comput Phys – volume: 241 start-page: 645 year: 1992 end-page: 667 ident: b0230 article-title: The energy decay in self-preserving isotropic turbulence revisited publication-title: J Fluid Mech – reference: Taylor EM, Wu M, Martin M. Optimization of nonlinear error sources for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. AIAA Paper; 2006. p. 44. – volume: 24 start-page: 1 year: 2005 end-page: 27 ident: b0055 article-title: Numerical convergence study of nearly incompressible inviscid Taylor–Green vortex flow publication-title: J Sci Comput – volume: 39 start-page: 821 year: 2002 end-page: 841 ident: b0005 article-title: A rationale for implicit turbulence modelling publication-title: Int J Numer Methods Fluids – volume: 85 start-page: 257 year: 1989 end-page: 283 ident: b0220 article-title: A second order projection method for the incompressible Navier–Stokes equations publication-title: J Comput Phys – volume: 227 start-page: 919 year: 2007 end-page: 945 ident: b0190 article-title: Fourier spectral and wavelet solvers for the incompressible Navier–Stokes equations with volume-penalization: aonvergence of a dipole–wall collision publication-title: J Comput Phys – reference: Ghia K, Hankey Jr. W, Hodge J. Study of incompressible Navier–Stokes equations in primitive variables using implicit numerical technique. In: 3rd Computational fluid dynamics conference; 1977. p. 156–67. – volume: 60 start-page: R1162 year: 1999 end-page: R1165 ident: b0075 article-title: Numerical study of grid turbulence in two dimensions and comparison with experiments on turbulent soap films publication-title: Phys Rev E – volume: 228 start-page: 8053 year: 2009 end-page: 8084 ident: b0125 article-title: Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex publication-title: J Comput Phys – volume: 126 start-page: 202 year: 1996 end-page: 228 ident: b0115 article-title: Efficient implementation of weighted ENO schemes publication-title: J Comput Phys – reference: Grinstein FF, Fureby C. Recent progress on flux-limiting based implicit large eddy simulation. In: European conference on computational fluid dynamics. ECCOMAS CFD; 2006. – volume: 43 start-page: 357 year: 1981 end-page: 372 ident: b0095 article-title: Approximate riemann solvers parameter vectors and difference schemes publication-title: J Comput Phys – volume: 98 start-page: 115 year: 1968 end-page: 152 ident: b0090 article-title: Une méthode d’approximation des solutions des équations Navier–Stokes publication-title: Bull Soc Math – volume: 115 start-page: 200 year: 1994 end-page: 212 ident: b0155 article-title: Weighted essentially non-oscillatory schemes publication-title: J Comput Phys – volume: 160 start-page: 405 year: 2000 end-page: 452 ident: b0020 article-title: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy publication-title: J Comput Phys – volume: 135 start-page: 118 year: 1997 end-page: 125 ident: b0085 article-title: A numerical method for solving incompressible viscous flow problems publication-title: J Comput Phys – volume: 220 start-page: 270 year: 2006 end-page: 289 ident: b0135 article-title: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence publication-title: J Comput Phys – start-page: 1 year: 2012 end-page: 18 ident: b0040 article-title: Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation publication-title: Theor Comput Fluid Dyn – volume: 138 start-page: 734 year: 1997 end-page: 765 ident: b0215 article-title: Performance of under-resolved two-dimensional incompressible flow simulations, II publication-title: J Comput Phys – volume: 26 start-page: 30 year: 1989 end-page: 44 ident: b0060 article-title: Convergence of spectral methods for nonlinear conservation laws publication-title: SIAM J Numer Anal – reference: Marx Y. Evaluation of the artificial compressibility method for the solution of the incompressible Navier–Stokes equations. In: 9th GAMM conference of numerical methods in fluid mechanics, Lausanne; 1991. – volume: 34 start-page: 1049 year: 1984 end-page: 1063 ident: b0160 article-title: The Taylor–Green vortex and fully developed turbulence publication-title: J Statist Phys – volume: 213 start-page: 413 year: 2006 end-page: 436 ident: b0025 article-title: An adaptive local deconvolution method for implicit les publication-title: J Comput Phys – volume: 207 start-page: 542 year: 2005 end-page: 567 ident: b0145 article-title: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points publication-title: J Comput Phys – volume: 573 start-page: 339 year: 2007 end-page: 369 ident: b0065 article-title: Vortices in oscillating spin-up publication-title: J Fluid Mech – volume: 19 start-page: 105106 year: 2007 ident: b0035 article-title: On implicit subgrid-scale modeling in wall-bounded flows publication-title: Phys Fluids – reference: Elsworth D, Toro E. Riemann solvers for solving the incompressible Navier–Stokes equations using the artificial compressibility method. Technical report, Cranfield, College of Aeronautics Report No 9208, June 1992. – volume: 35 start-page: 245 year: 2006 end-page: 279 ident: b0185 article-title: The normal and oblique collision of a dipole with a no-slip boundary publication-title: Comput Fluids – volume: 98 start-page: 1 year: 2004 end-page: 20 ident: b0080 article-title: Decaying quasi-two-dimensional turbulence in a rectangular container: laboratory experiments publication-title: Geophys Astrophys Fluid Dyn – volume: 23 start-page: 085108 year: 2011 ident: b0235 article-title: The minimum energy decay rate in quasi-isotropic grid turbulence publication-title: Phys Fluids – volume: 228 start-page: 8481 year: 2009 end-page: 8524 ident: b0150 article-title: Very-high-order weno schemes publication-title: J Comput Phys – volume: 19 start-page: 1 year: 2007 end-page: 13 ident: b0180 article-title: Vorticity dynamics of a dipole colliding with a no-slip wall publication-title: Phys Fluids – volume: 158 start-page: 499 year: 1937 end-page: 521 ident: b0120 article-title: Mechanism of the production of small eddies from larger ones publication-title: Proc R Soc Lond A – start-page: 1 year: 1981 end-page: 91 ident: b0175 article-title: Numerical experiments in homogeneous turbulence publication-title: NASA TM-81315 – volume: 60 start-page: 275 year: 2009 end-page: 294 ident: b0205 article-title: Discussions on driven cavity flow publication-title: Int J Numer Methods Fluids – volume: 122 start-page: 165 year: 1995 end-page: 183 ident: b0210 article-title: Performance of under-resolved two-dimensional incompressible flow simulations publication-title: J Comput Phys – volume: 200 start-page: 412 year: 2004 end-page: 431 ident: b0010 article-title: Implicit subgrid-scale modeling by adaptive deconvolution publication-title: J Comput Phys – volume: 31 start-page: 368 year: 2010 end-page: 377 ident: b0030 article-title: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow publication-title: Int J Heat Fluid Flow – volume: 4 start-page: 2845 year: 1992 end-page: 2854 ident: b0165 article-title: Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flow publication-title: Phys Fluids – volume: 48 start-page: 273 year: 1971 end-page: 337 ident: b0170 article-title: Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, turbulence publication-title: J Fluid Mech – volume: 48 start-page: 387 year: 1982 end-page: 411 ident: b0200 article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: J Comput Phys – year: 2007 ident: b0015 article-title: Implicit large eddy simulation: computing turbulent fluid dynamics – volume: 229 start-page: 8952 year: 2010 end-page: 8965 ident: b0050 article-title: An adaptive central-upwind weighted essentially non-osciallatory scheme publication-title: J Comput Phys – volume: 14 start-page: 22 year: 2013 end-page: 49 ident: b0225 article-title: On the performance of relaxation filtering for large-eddy simulation publication-title: J Turbul – ident: 10.1016/j.compfluid.2013.06.034_b0105 – volume: 43 start-page: 357 year: 1981 ident: 10.1016/j.compfluid.2013.06.034_b0095 article-title: Approximate riemann solvers parameter vectors and difference schemes publication-title: J Comput Phys doi: 10.1016/0021-9991(81)90128-5 – volume: 60 start-page: 275 year: 2009 ident: 10.1016/j.compfluid.2013.06.034_b0205 article-title: Discussions on driven cavity flow publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1887 – ident: 10.1016/j.compfluid.2013.06.034_b0195 doi: 10.2514/6.1977-648 – volume: 48 start-page: 387 year: 1982 ident: 10.1016/j.compfluid.2013.06.034_b0200 article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: J Comput Phys doi: 10.1016/0021-9991(82)90058-4 – volume: 19 start-page: 105106 year: 2007 ident: 10.1016/j.compfluid.2013.06.034_b0035 article-title: On implicit subgrid-scale modeling in wall-bounded flows publication-title: Phys Fluids doi: 10.1063/1.2773765 – year: 2007 ident: 10.1016/j.compfluid.2013.06.034_b0015 – volume: 34 start-page: 1049 year: 1984 ident: 10.1016/j.compfluid.2013.06.034_b0160 article-title: The Taylor–Green vortex and fully developed turbulence publication-title: J Statist Phys doi: 10.1007/BF01009458 – ident: 10.1016/j.compfluid.2013.06.034_b0130 doi: 10.1115/1.2801684 – volume: 122 start-page: 165 year: 1995 ident: 10.1016/j.compfluid.2013.06.034_b0210 article-title: Performance of under-resolved two-dimensional incompressible flow simulations publication-title: J Comput Phys doi: 10.1006/jcph.1995.1205 – volume: 200 start-page: 412 year: 2004 ident: 10.1016/j.compfluid.2013.06.034_b0010 article-title: Implicit subgrid-scale modeling by adaptive deconvolution publication-title: J Comput Phys doi: 10.1016/j.jcp.2004.04.010 – volume: 135 start-page: 118 year: 1997 ident: 10.1016/j.compfluid.2013.06.034_b0085 article-title: A numerical method for solving incompressible viscous flow problems publication-title: J Comput Phys doi: 10.1006/jcph.1997.5716 – volume: 23 start-page: 085108 year: 2011 ident: 10.1016/j.compfluid.2013.06.034_b0235 article-title: The minimum energy decay rate in quasi-isotropic grid turbulence publication-title: Phys Fluids doi: 10.1063/1.3614479 – volume: 85 start-page: 306 year: 2000 ident: 10.1016/j.compfluid.2013.06.034_b0070 article-title: Energy spectra for decaying 2D turbulence in a bounded domain publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.85.306 – volume: 213 start-page: 413 year: 2006 ident: 10.1016/j.compfluid.2013.06.034_b0025 article-title: An adaptive local deconvolution method for implicit les publication-title: J Comput Phys doi: 10.1016/j.jcp.2005.08.017 – volume: 4 start-page: 2845 year: 1992 ident: 10.1016/j.compfluid.2013.06.034_b0165 article-title: Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flow publication-title: Phys Fluids doi: 10.1063/1.858513 – volume: 48 start-page: 273 year: 1971 ident: 10.1016/j.compfluid.2013.06.034_b0170 article-title: Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112071001599 – volume: 126 start-page: 202 year: 1996 ident: 10.1016/j.compfluid.2013.06.034_b0115 article-title: Efficient implementation of weighted ENO schemes publication-title: J Comput Phys doi: 10.1006/jcph.1996.0130 – volume: 228 start-page: 8053 year: 2009 ident: 10.1016/j.compfluid.2013.06.034_b0125 article-title: Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex publication-title: J Comput Phys doi: 10.1016/j.jcp.2009.07.028 – volume: 230 start-page: 7240 year: 2011 ident: 10.1016/j.compfluid.2013.06.034_b0045 article-title: Scale separation for implicit large eddy simulation publication-title: J Comput Phys doi: 10.1016/j.jcp.2011.05.023 – volume: 241 start-page: 645 year: 1992 ident: 10.1016/j.compfluid.2013.06.034_b0230 article-title: The energy decay in self-preserving isotropic turbulence revisited publication-title: J Fluid Mech doi: 10.1017/S0022112092002180 – ident: 10.1016/j.compfluid.2013.06.034_b0100 doi: 10.1007/978-3-663-13974-4_20 – start-page: 1 year: 1981 ident: 10.1016/j.compfluid.2013.06.034_b0175 article-title: Numerical experiments in homogeneous turbulence publication-title: NASA TM-81315 – volume: 227 start-page: 919 year: 2007 ident: 10.1016/j.compfluid.2013.06.034_b0190 article-title: Fourier spectral and wavelet solvers for the incompressible Navier–Stokes equations with volume-penalization: aonvergence of a dipole–wall collision publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.07.036 – volume: 39 start-page: 821 year: 2002 ident: 10.1016/j.compfluid.2013.06.034_b0005 article-title: A rationale for implicit turbulence modelling publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.331 – volume: 35 start-page: 245 year: 2006 ident: 10.1016/j.compfluid.2013.06.034_b0185 article-title: The normal and oblique collision of a dipole with a no-slip boundary publication-title: Comput Fluids doi: 10.1016/j.compfluid.2004.11.009 – volume: 85 start-page: 257 year: 1989 ident: 10.1016/j.compfluid.2013.06.034_b0220 article-title: A second order projection method for the incompressible Navier–Stokes equations publication-title: J Comput Phys doi: 10.1016/0021-9991(89)90151-4 – ident: 10.1016/j.compfluid.2013.06.034_b0140 doi: 10.2514/6.2006-1091 – start-page: 1 year: 2012 ident: 10.1016/j.compfluid.2013.06.034_b0040 article-title: Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation publication-title: Theor Comput Fluid Dyn – volume: 220 start-page: 270 year: 2006 ident: 10.1016/j.compfluid.2013.06.034_b0135 article-title: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence publication-title: J Comput Phys doi: 10.1016/j.jcp.2006.05.009 – volume: 98 start-page: 115 year: 1968 ident: 10.1016/j.compfluid.2013.06.034_b0090 article-title: Une méthode d’approximation des solutions des équations Navier–Stokes publication-title: Bull Soc Math – volume: 14 start-page: 22 year: 2013 ident: 10.1016/j.compfluid.2013.06.034_b0225 article-title: On the performance of relaxation filtering for large-eddy simulation publication-title: J Turbul doi: 10.1080/14685248.2012.740567 – volume: 26 start-page: 30 year: 1989 ident: 10.1016/j.compfluid.2013.06.034_b0060 article-title: Convergence of spectral methods for nonlinear conservation laws publication-title: SIAM J Numer Anal doi: 10.1137/0726003 – volume: 24 start-page: 1 year: 2005 ident: 10.1016/j.compfluid.2013.06.034_b0055 article-title: Numerical convergence study of nearly incompressible inviscid Taylor–Green vortex flow publication-title: J Sci Comput doi: 10.1007/s10915-004-5407-y – volume: 19 start-page: 1 year: 2007 ident: 10.1016/j.compfluid.2013.06.034_b0180 article-title: Vorticity dynamics of a dipole colliding with a no-slip wall publication-title: Phys Fluids doi: 10.1063/1.2814345 – volume: 60 start-page: R1162 year: 1999 ident: 10.1016/j.compfluid.2013.06.034_b0075 article-title: Numerical study of grid turbulence in two dimensions and comparison with experiments on turbulent soap films publication-title: Phys Rev E doi: 10.1103/PhysRevE.60.R1162 – volume: 573 start-page: 339 year: 2007 ident: 10.1016/j.compfluid.2013.06.034_b0065 article-title: Vortices in oscillating spin-up publication-title: J Fluid Mech doi: 10.1017/S0022112006003909 – volume: 98 start-page: 1 year: 2004 ident: 10.1016/j.compfluid.2013.06.034_b0080 article-title: Decaying quasi-two-dimensional turbulence in a rectangular container: laboratory experiments publication-title: Geophys Astrophys Fluid Dyn doi: 10.1080/030919209410001648390 – volume: 228 start-page: 8481 year: 2009 ident: 10.1016/j.compfluid.2013.06.034_b0150 article-title: Very-high-order weno schemes publication-title: J Comput Phys doi: 10.1016/j.jcp.2009.07.039 – volume: 160 start-page: 405 year: 2000 ident: 10.1016/j.compfluid.2013.06.034_b0020 article-title: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy publication-title: J Comput Phys doi: 10.1006/jcph.2000.6443 – volume: 229 start-page: 8952 year: 2010 ident: 10.1016/j.compfluid.2013.06.034_b0050 article-title: An adaptive central-upwind weighted essentially non-osciallatory scheme publication-title: J Comput Phys doi: 10.1016/j.jcp.2010.08.019 – volume: 17 start-page: 107 year: 2003 ident: 10.1016/j.compfluid.2013.06.034_b0110 article-title: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD publication-title: Int J Comput Fluid Dyn doi: 10.1080/1061856031000104851 – volume: 138 start-page: 734 year: 1997 ident: 10.1016/j.compfluid.2013.06.034_b0215 article-title: Performance of under-resolved two-dimensional incompressible flow simulations, II publication-title: J Comput Phys doi: 10.1006/jcph.1997.5843 – volume: 115 start-page: 200 year: 1994 ident: 10.1016/j.compfluid.2013.06.034_b0155 article-title: Weighted essentially non-oscillatory schemes publication-title: J Comput Phys doi: 10.1006/jcph.1994.1187 – volume: 207 start-page: 542 year: 2005 ident: 10.1016/j.compfluid.2013.06.034_b0145 article-title: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points publication-title: J Comput Phys doi: 10.1016/j.jcp.2005.01.023 – volume: 158 start-page: 499 year: 1937 ident: 10.1016/j.compfluid.2013.06.034_b0120 article-title: Mechanism of the production of small eddies from larger ones publication-title: Proc R Soc Lond A doi: 10.1098/rspa.1937.0036 – volume: 31 start-page: 368 year: 2010 ident: 10.1016/j.compfluid.2013.06.034_b0030 article-title: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.02.026 |
| SSID | ssj0004324 |
| Score | 2.1448817 |
| Snippet | •WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and... In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109 |
| SubjectTerms | Computational fluid dynamics Computer simulation Fluid flow High resolution scheme Implicit large-eddy simulation Mathematical analysis Mathematical models Physically consistent Truncation errors Turbulence Turbulent flow Underresolved computation Weakly compressible model |
| Title | A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompressible flows |
| URI | https://dx.doi.org/10.1016/j.compfluid.2013.06.034 https://www.proquest.com/docview/1475559822 https://www.proquest.com/docview/1513462603 https://www.proquest.com/docview/1709770474 https://www.proquest.com/docview/1709779208 |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: AKRWK dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wTwWs13SR9eFtEWRU9KXgrSZvCam2XbdfFi7_dmTT1Ba4Hj0mTPmbSeTAz3xByhLEdoSLpga4PPZFK7UVxajyVZoyZQGexwOLkm9tgcC-uHuTDHDnramEwrdLJ_lamW2ntZk4cNU9GwyHW-AoJpwtDb-Bb2UJzIULsYnD89pnmgYhzbZQZoRk5-5bjhWnbeTEZImSozy2QJxe_aagfstoqoIsVsuwsR9pvX26VzJlyjSx9wRNcJ699OnJ0L15pirmvwMSyoVOjnuzMc5v3qgtDEajYg5E7e7RDF6dNRbGybGyvvZiM1sNn1-SrplVOEc_hy33yoprWG-Tu4vzubOC53gpeCkRqPAV2EhhnXEVBBB6TNClWuErQXRqo1FM97EGeZ9zPo16uwWniSqtY5yYAA4plfJPMl1Vptgg1keBp6ItMM3D1wLtSMAalD65jHoQB2yZBR84kdbjj2P6iSLoEs8fkgw8J8iHBVDsutgn72DhqoTf-3nLa8Sv5dooSUBB_bz7sOJzAP4aBE1WaalKDexRKaZEOZ6yRPhfoHfIZa0IG5jYT4axn2TVxj0U7__mYXbKII1s1KffIfDOemH0wnxp9YP-PA7LQv7we3L4DZxYdlg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZW9EB7QKWlKrQFI_Ua8MZ2Hr0hVLS07J4WiZtlJ460bTZZkWwRF347M45DAYndA0e_8vDYnvk0M58J-Y6-HaETGYCujwORSRMkaWYDneWM2cjkqcDk5PEkGl2KX1fyakBO-1wYDKv0Z393prvT2tcc-9k8XsxmmOMrJKwudL0BtsJE8zdChjEisKO7_3EeSDnXuZmRm5GzJ0FeGLddlMsZcoYOuWPy5OIlFfXssHYa6Ow92fKmIz3pvm6bDGz1gbx7RCj4kdye0IWf-PKWZhj8ClKsWnpj9V9XM-8CX01pKTIVB1Dyi4_29OK0rSmmll27tn82p81s7m_5amhdUCR0ePScoqxvmh0yPfs5PR0F_nKFIBMibgMNhhJYZ1wnUQKQSdoMU1wlKC8DsxTqEC8hL3I-LJKwMICauDY6NYWNwIJiOf9ENqq6sp8JtYngWTwUuWGA9QBeaSiD1gfsWERxxHZJ1E-nyjzxON5_Uao-wuyPepCDQjkojLXjYpewh4GLjntj_ZAfvbzUk2WkQEOsH3zYS1jBJkPPia5svWwAH8VSOqrDFX3kkAuEh3xFn5iBvc1EvOpdrk8asmTvNT9zQDZH0_GFujif_P5C3mKLS6GUX8lGe72038CWas2-2yv3zVMfKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physically+consistent+weakly+compressible+high-resolution+approach+to+underresolved+simulations+of+incompressible+flows&rft.jtitle=Computers+%26+fluids&rft.au=Schranner%2C+Felix+S.&rft.au=Hu%2C+Xiangyu+Y.&rft.au=Adams%2C+Nikolaus+A.&rft.date=2013-11-05&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=86&rft.spage=109&rft.epage=124&rft_id=info:doi/10.1016%2Fj.compfluid.2013.06.034&rft.externalDocID=S0045793013002715 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |