A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompressible flows

•WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and performs similar to mathematically and numerically more complex ALDM.•Self-similar isotropic turbulence after transition of high and infinite...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 86; pp. 109 - 124
Main Authors Schranner, Felix S., Hu, Xiangyu Y., Adams, Nikolaus A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.11.2013
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2013.06.034

Cover

Abstract •WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and performs similar to mathematically and numerically more complex ALDM.•Self-similar isotropic turbulence after transition of high and infinite Re Taylor–Green vortex.•General validity of WENO-CU6-M1 parameters confirmed for moderate Reynolds number decaying grid generated turbulence.•Method also valid for non-turbulent flows without further adjustments to its parameters. In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible Taylor–Green vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscous–inviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortex–wall interaction problem and lid-driven cavity flow.
AbstractList •WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and performs similar to mathematically and numerically more complex ALDM.•Self-similar isotropic turbulence after transition of high and infinite Re Taylor–Green vortex.•General validity of WENO-CU6-M1 parameters confirmed for moderate Reynolds number decaying grid generated turbulence.•Method also valid for non-turbulent flows without further adjustments to its parameters. In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible Taylor–Green vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscous–inviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortex–wall interaction problem and lid-driven cavity flow.
In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible TayloraGreen vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscousainviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortexawall interaction problem and lid-driven cavity flow.
In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the truncation error of the underlying difference schemes strongly affects the solution. Therefore, a significant gain in computational efficiency is possible if the truncation error functions as physically consistent, i.e. reproducing the correct evolution of resolved scales, subgrid-scale (SGS) model. The truncation error of high-order WENO-based schemes can be exploited to function as an implicit subgrid-scale (SGS) model. A recently developed sixth-order adaptive central-upwind weighted essentially non-oscillatory scheme with implicit scale-separation has been demonstrated to incorporate a physically consistent implicit SGS model for compressible turbulent flows. We consider the implicit SGS modeling capabilities of an improved version of this scheme simultaneously for underresolved turbulent and non-turbulent incompressible flows, thus extending previous works on this subject to a more general scope. With this model we are able to reach very long integration times for the incompressible Taylor-Green vortex at infinite Reynolds number, and recover in particular a low-mode transition to isotropy. Inviscid shear-layer instabilities are resolved to highly nonlinear stages, which is shown by considering the doubly periodic two-dimensional shear layer as test configuration. Proper resolved-scale prediction is also obtained for viscous-inviscid interactions and fully confined viscous flows. These properties are demonstrated by applying the model to a vortex-wall interaction problem and lid-driven cavity flow.
Author Hu, Xiangyu Y.
Adams, Nikolaus A.
Schranner, Felix S.
Author_xml – sequence: 1
  givenname: Felix S.
  surname: Schranner
  fullname: Schranner, Felix S.
  email: felix.schranner@aer.mw.tum.de
– sequence: 2
  givenname: Xiangyu Y.
  surname: Hu
  fullname: Hu, Xiangyu Y.
  email: xiangyu.hu@tum.de
– sequence: 3
  givenname: Nikolaus A.
  surname: Adams
  fullname: Adams, Nikolaus A.
  email: Nikolaus.Adams@tum.de
BookMark eNqNkc1u1DAURi1UJKaFZ8BLNgnX8V-yYDGqoCBV6qZ7y3FuGA9OHOyk1bw9mRmERDfTlXXt832yfa7J1RhHJOQjg5IBU5_3pYvD1IfFd2UFjJegSuDiDdmwWjcFaKGvyAZAyEI3HN6R65z3sM68Ehty2NJpd8je2RAO1MUx-zzjONNntL9OO8OUMGffBqQ7_3NXrFMMy-zjSO00pWjdjs6RLmOH6XT2hB3NfliCPUKZxp768b-ePsTn_J687W3I-OHvekMev319vP1e3D_c_bjd3hdOCD0XlgmuJHBbq5opIdE1UjEJSrfrcypb6UY2fcdZX1d9y1batrZpe1RKCOj4Dfl0rl2v-nvBPJvBZ4ch2BHjkg3T0GjdVFC_EgWhxWVUMi5UpYBfRoWWUjZ1Va3olzPqUsw5YW-cn0-_OCfrg2FgjsrN3vxTbo7KDSizKl_z-kV-Sn6w6fCK5PacxNXEk8dksvM4Oux8QjebLvqLHX8APDXPrA
CitedBy_id crossref_primary_10_1016_j_jcp_2018_07_043
crossref_primary_10_1007_s10483_018_2258_9
crossref_primary_10_1016_j_jcp_2024_113088
crossref_primary_10_1016_j_jcp_2016_07_037
crossref_primary_10_1016_j_cpc_2019_06_013
crossref_primary_10_1007_s40571_021_00447_5
crossref_primary_10_1007_s44198_025_00269_6
crossref_primary_10_1016_j_jcp_2014_12_044
crossref_primary_10_1016_j_jcp_2016_01_024
crossref_primary_10_1016_j_jcp_2016_09_058
crossref_primary_10_1016_j_jcp_2021_110770
crossref_primary_10_1016_j_jcp_2022_111477
crossref_primary_10_2514_1_J054741
crossref_primary_10_1016_j_jcp_2020_109241
crossref_primary_10_1016_j_jcp_2023_112436
crossref_primary_10_1088_1402_4896_ac3cf8
crossref_primary_10_2514_1_J057370
crossref_primary_10_1016_j_jcp_2022_111445
Cites_doi 10.1016/0021-9991(81)90128-5
10.1002/fld.1887
10.2514/6.1977-648
10.1016/0021-9991(82)90058-4
10.1063/1.2773765
10.1007/BF01009458
10.1115/1.2801684
10.1006/jcph.1995.1205
10.1016/j.jcp.2004.04.010
10.1006/jcph.1997.5716
10.1063/1.3614479
10.1103/PhysRevLett.85.306
10.1016/j.jcp.2005.08.017
10.1063/1.858513
10.1017/S0022112071001599
10.1006/jcph.1996.0130
10.1016/j.jcp.2009.07.028
10.1016/j.jcp.2011.05.023
10.1017/S0022112092002180
10.1007/978-3-663-13974-4_20
10.1016/j.jcp.2007.07.036
10.1002/fld.331
10.1016/j.compfluid.2004.11.009
10.1016/0021-9991(89)90151-4
10.2514/6.2006-1091
10.1016/j.jcp.2006.05.009
10.1080/14685248.2012.740567
10.1137/0726003
10.1007/s10915-004-5407-y
10.1063/1.2814345
10.1103/PhysRevE.60.R1162
10.1017/S0022112006003909
10.1080/030919209410001648390
10.1016/j.jcp.2009.07.039
10.1006/jcph.2000.6443
10.1016/j.jcp.2010.08.019
10.1080/1061856031000104851
10.1006/jcph.1997.5843
10.1006/jcph.1994.1187
10.1016/j.jcp.2005.01.023
10.1098/rspa.1937.0036
10.1016/j.ijheatfluidflow.2010.02.026
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2013.06.034
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
EndPage 124
ExternalDocumentID 10_1016_j_compfluid_2013_06_034
S0045793013002715
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c447t-a1436503a8681645ec95615067b7932a27959fd31f82fb1143aba9bfe66440d3
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Sun Sep 28 06:16:28 EDT 2025
Thu Oct 02 07:09:27 EDT 2025
Tue Oct 07 09:23:21 EDT 2025
Tue Oct 07 09:24:25 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Wed Oct 01 03:04:21 EDT 2025
Fri Feb 23 02:29:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Underresolved computation
Weakly compressible model
Physically consistent
Implicit large-eddy simulation
High resolution scheme
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-a1436503a8681645ec95615067b7932a27959fd31f82fb1143aba9bfe66440d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1475559822
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_1709779208
proquest_miscellaneous_1709770474
proquest_miscellaneous_1513462603
proquest_miscellaneous_1475559822
crossref_citationtrail_10_1016_j_compfluid_2013_06_034
crossref_primary_10_1016_j_compfluid_2013_06_034
elsevier_sciencedirect_doi_10_1016_j_compfluid_2013_06_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-05
PublicationDateYYYYMMDD 2013-11-05
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-05
  day: 05
PublicationDecade 2010
PublicationTitle Computers & fluids
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Temam (b0090) 1968; 98
Remmler, Hickel (b0040) 2012
Adams, Hickel, Franz (b0010) 2004; 200
Hu, Adams (b0045) 2011; 230
Wells, Afanasyev (b0080) 2004; 98
Shu, Don, Gottlieb, Schilling, Jameson (b0055) 2005; 24
Taylor EM, Wu M, Martin M. Optimization of nonlinear error sources for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. AIAA Paper; 2006. p. 44.
Clercx, Heijst (b0070) 2000; 85
Clercx, Bruneau (b0185) 2006; 35
Ghia K, Hankey Jr. W, Hodge J. Study of incompressible Navier–Stokes equations in primitive variables using implicit numerical technique. In: 3rd Computational fluid dynamics conference; 1977. p. 156–67.
Speziale (b0230) 1992; 241
Brown, Minion (b0210) 1995; 122
Bell, Colella, Glaz (b0220) 1989; 85
Davidson (b0235) 2011; 23
Brachet, Meneguzzi, Vincent, Politano, Sulem (b0165) 1992; 4
Ghia, Ghia, Shin (b0200) 1982; 48
Erturk (b0205) 2009; 60
Hu, Wang, Adams (b0050) 2010; 229
Kramer, Clercx, van Heijst (b0180) 2007; 19
Comte-Bellot, Corrsin (b0170) 1971; 48
Margolin, Rider (b0005) 2002; 39
Martin, Taylor, Wu, Weirs (b0135) 2006; 220
Liu, Osher, Chan (b0155) 1994; 115
Bruneau, Greffier, Kellay (b0075) 1999; 60
Gerolymos, Sénéchal, Vallet (b0150) 2009; 228
Brachet, Meiron, Orszag, Nickel, Morf, Frisch (b0160) 1984; 34
Roe (b0095) 1981; 43
Shu (b0110) 2003; 17
Jiang, Shu (b0115) 1996; 126
Grinstein FF, Fureby C. Recent progress on flux-limiting based implicit large eddy simulation. In: European conference on computational fluid dynamics. ECCOMAS CFD; 2006.
Henrick, Aslam, Powers (b0145) 2005; 207
Fauconnier, Bogey, Dick (b0225) 2013; 14
Hickel, Adams (b0035) 2007; 19
Taylor, Green (b0120) 1937; 158
Rogallo (b0175) 1981
Minion, Brown (b0215) 1997; 138
Meyer, Hickel, Adams (b0030) 2010; 31
Fauconnier, Langhe, Dick (b0125) 2009; 228
Elsworth D, Toro E. Riemann solvers for solving the incompressible Navier–Stokes equations using the artificial compressibility method. Technical report, Cranfield, College of Aeronautics Report No 9208, June 1992.
Balsara, Shu (b0020) 2000; 160
Tadmor (b0060) 1989; 26
Keetels, D’Ortona, Kramer, Clercx, Schneider, van Heijst (b0190) 2007; 227
Wells, Clercx, van Heijst (b0065) 2007; 573
Chorin (b0085) 1997; 135
Hickel, Adams, Domaradzki (b0025) 2006; 213
Marx Y. Evaluation of the artificial compressibility method for the solution of the incompressible Navier–Stokes equations. In: 9th GAMM conference of numerical methods in fluid mechanics, Lausanne; 1991.
Grinstein, Margolin, Rider (b0015) 2007
Taylor (10.1016/j.compfluid.2013.06.034_b0120) 1937; 158
Minion (10.1016/j.compfluid.2013.06.034_b0215) 1997; 138
Chorin (10.1016/j.compfluid.2013.06.034_b0085) 1997; 135
Brown (10.1016/j.compfluid.2013.06.034_b0210) 1995; 122
Liu (10.1016/j.compfluid.2013.06.034_b0155) 1994; 115
Ghia (10.1016/j.compfluid.2013.06.034_b0200) 1982; 48
Speziale (10.1016/j.compfluid.2013.06.034_b0230) 1992; 241
Jiang (10.1016/j.compfluid.2013.06.034_b0115) 1996; 126
Clercx (10.1016/j.compfluid.2013.06.034_b0070) 2000; 85
Gerolymos (10.1016/j.compfluid.2013.06.034_b0150) 2009; 228
Shu (10.1016/j.compfluid.2013.06.034_b0055) 2005; 24
10.1016/j.compfluid.2013.06.034_b0105
Adams (10.1016/j.compfluid.2013.06.034_b0010) 2004; 200
Brachet (10.1016/j.compfluid.2013.06.034_b0160) 1984; 34
Comte-Bellot (10.1016/j.compfluid.2013.06.034_b0170) 1971; 48
10.1016/j.compfluid.2013.06.034_b0100
Roe (10.1016/j.compfluid.2013.06.034_b0095) 1981; 43
Shu (10.1016/j.compfluid.2013.06.034_b0110) 2003; 17
10.1016/j.compfluid.2013.06.034_b0140
Clercx (10.1016/j.compfluid.2013.06.034_b0185) 2006; 35
Kramer (10.1016/j.compfluid.2013.06.034_b0180) 2007; 19
Hu (10.1016/j.compfluid.2013.06.034_b0050) 2010; 229
Brachet (10.1016/j.compfluid.2013.06.034_b0165) 1992; 4
Rogallo (10.1016/j.compfluid.2013.06.034_b0175) 1981
Erturk (10.1016/j.compfluid.2013.06.034_b0205) 2009; 60
Hickel (10.1016/j.compfluid.2013.06.034_b0025) 2006; 213
Henrick (10.1016/j.compfluid.2013.06.034_b0145) 2005; 207
Davidson (10.1016/j.compfluid.2013.06.034_b0235) 2011; 23
Remmler (10.1016/j.compfluid.2013.06.034_b0040) 2012
Bruneau (10.1016/j.compfluid.2013.06.034_b0075) 1999; 60
Balsara (10.1016/j.compfluid.2013.06.034_b0020) 2000; 160
Hickel (10.1016/j.compfluid.2013.06.034_b0035) 2007; 19
Wells (10.1016/j.compfluid.2013.06.034_b0065) 2007; 573
Bell (10.1016/j.compfluid.2013.06.034_b0220) 1989; 85
Wells (10.1016/j.compfluid.2013.06.034_b0080) 2004; 98
Martin (10.1016/j.compfluid.2013.06.034_b0135) 2006; 220
Fauconnier (10.1016/j.compfluid.2013.06.034_b0125) 2009; 228
Margolin (10.1016/j.compfluid.2013.06.034_b0005) 2002; 39
Keetels (10.1016/j.compfluid.2013.06.034_b0190) 2007; 227
Fauconnier (10.1016/j.compfluid.2013.06.034_b0225) 2013; 14
Hu (10.1016/j.compfluid.2013.06.034_b0045) 2011; 230
10.1016/j.compfluid.2013.06.034_b0195
10.1016/j.compfluid.2013.06.034_b0130
Meyer (10.1016/j.compfluid.2013.06.034_b0030) 2010; 31
Temam (10.1016/j.compfluid.2013.06.034_b0090) 1968; 98
Tadmor (10.1016/j.compfluid.2013.06.034_b0060) 1989; 26
Grinstein (10.1016/j.compfluid.2013.06.034_b0015) 2007
References_xml – volume: 17
  start-page: 107
  year: 2003
  end-page: 118
  ident: b0110
  article-title: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD
  publication-title: Int J Comput Fluid Dyn
– volume: 85
  start-page: 306
  year: 2000
  end-page: 309
  ident: b0070
  article-title: Energy spectra for decaying 2D turbulence in a bounded domain
  publication-title: Phys Rev Lett
– volume: 230
  start-page: 7240
  year: 2011
  end-page: 7249
  ident: b0045
  article-title: Scale separation for implicit large eddy simulation
  publication-title: J Comput Phys
– volume: 241
  start-page: 645
  year: 1992
  end-page: 667
  ident: b0230
  article-title: The energy decay in self-preserving isotropic turbulence revisited
  publication-title: J Fluid Mech
– reference: Taylor EM, Wu M, Martin M. Optimization of nonlinear error sources for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. AIAA Paper; 2006. p. 44.
– volume: 24
  start-page: 1
  year: 2005
  end-page: 27
  ident: b0055
  article-title: Numerical convergence study of nearly incompressible inviscid Taylor–Green vortex flow
  publication-title: J Sci Comput
– volume: 39
  start-page: 821
  year: 2002
  end-page: 841
  ident: b0005
  article-title: A rationale for implicit turbulence modelling
  publication-title: Int J Numer Methods Fluids
– volume: 85
  start-page: 257
  year: 1989
  end-page: 283
  ident: b0220
  article-title: A second order projection method for the incompressible Navier–Stokes equations
  publication-title: J Comput Phys
– volume: 227
  start-page: 919
  year: 2007
  end-page: 945
  ident: b0190
  article-title: Fourier spectral and wavelet solvers for the incompressible Navier–Stokes equations with volume-penalization: aonvergence of a dipole–wall collision
  publication-title: J Comput Phys
– reference: Ghia K, Hankey Jr. W, Hodge J. Study of incompressible Navier–Stokes equations in primitive variables using implicit numerical technique. In: 3rd Computational fluid dynamics conference; 1977. p. 156–67.
– volume: 60
  start-page: R1162
  year: 1999
  end-page: R1165
  ident: b0075
  article-title: Numerical study of grid turbulence in two dimensions and comparison with experiments on turbulent soap films
  publication-title: Phys Rev E
– volume: 228
  start-page: 8053
  year: 2009
  end-page: 8084
  ident: b0125
  article-title: Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex
  publication-title: J Comput Phys
– volume: 126
  start-page: 202
  year: 1996
  end-page: 228
  ident: b0115
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J Comput Phys
– reference: Grinstein FF, Fureby C. Recent progress on flux-limiting based implicit large eddy simulation. In: European conference on computational fluid dynamics. ECCOMAS CFD; 2006.
– volume: 43
  start-page: 357
  year: 1981
  end-page: 372
  ident: b0095
  article-title: Approximate riemann solvers parameter vectors and difference schemes
  publication-title: J Comput Phys
– volume: 98
  start-page: 115
  year: 1968
  end-page: 152
  ident: b0090
  article-title: Une méthode d’approximation des solutions des équations Navier–Stokes
  publication-title: Bull Soc Math
– volume: 115
  start-page: 200
  year: 1994
  end-page: 212
  ident: b0155
  article-title: Weighted essentially non-oscillatory schemes
  publication-title: J Comput Phys
– volume: 160
  start-page: 405
  year: 2000
  end-page: 452
  ident: b0020
  article-title: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
  publication-title: J Comput Phys
– volume: 135
  start-page: 118
  year: 1997
  end-page: 125
  ident: b0085
  article-title: A numerical method for solving incompressible viscous flow problems
  publication-title: J Comput Phys
– volume: 220
  start-page: 270
  year: 2006
  end-page: 289
  ident: b0135
  article-title: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence
  publication-title: J Comput Phys
– start-page: 1
  year: 2012
  end-page: 18
  ident: b0040
  article-title: Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation
  publication-title: Theor Comput Fluid Dyn
– volume: 138
  start-page: 734
  year: 1997
  end-page: 765
  ident: b0215
  article-title: Performance of under-resolved two-dimensional incompressible flow simulations, II
  publication-title: J Comput Phys
– volume: 26
  start-page: 30
  year: 1989
  end-page: 44
  ident: b0060
  article-title: Convergence of spectral methods for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
– reference: Marx Y. Evaluation of the artificial compressibility method for the solution of the incompressible Navier–Stokes equations. In: 9th GAMM conference of numerical methods in fluid mechanics, Lausanne; 1991.
– volume: 34
  start-page: 1049
  year: 1984
  end-page: 1063
  ident: b0160
  article-title: The Taylor–Green vortex and fully developed turbulence
  publication-title: J Statist Phys
– volume: 213
  start-page: 413
  year: 2006
  end-page: 436
  ident: b0025
  article-title: An adaptive local deconvolution method for implicit les
  publication-title: J Comput Phys
– volume: 207
  start-page: 542
  year: 2005
  end-page: 567
  ident: b0145
  article-title: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points
  publication-title: J Comput Phys
– volume: 573
  start-page: 339
  year: 2007
  end-page: 369
  ident: b0065
  article-title: Vortices in oscillating spin-up
  publication-title: J Fluid Mech
– volume: 19
  start-page: 105106
  year: 2007
  ident: b0035
  article-title: On implicit subgrid-scale modeling in wall-bounded flows
  publication-title: Phys Fluids
– reference: Elsworth D, Toro E. Riemann solvers for solving the incompressible Navier–Stokes equations using the artificial compressibility method. Technical report, Cranfield, College of Aeronautics Report No 9208, June 1992.
– volume: 35
  start-page: 245
  year: 2006
  end-page: 279
  ident: b0185
  article-title: The normal and oblique collision of a dipole with a no-slip boundary
  publication-title: Comput Fluids
– volume: 98
  start-page: 1
  year: 2004
  end-page: 20
  ident: b0080
  article-title: Decaying quasi-two-dimensional turbulence in a rectangular container: laboratory experiments
  publication-title: Geophys Astrophys Fluid Dyn
– volume: 23
  start-page: 085108
  year: 2011
  ident: b0235
  article-title: The minimum energy decay rate in quasi-isotropic grid turbulence
  publication-title: Phys Fluids
– volume: 228
  start-page: 8481
  year: 2009
  end-page: 8524
  ident: b0150
  article-title: Very-high-order weno schemes
  publication-title: J Comput Phys
– volume: 19
  start-page: 1
  year: 2007
  end-page: 13
  ident: b0180
  article-title: Vorticity dynamics of a dipole colliding with a no-slip wall
  publication-title: Phys Fluids
– volume: 158
  start-page: 499
  year: 1937
  end-page: 521
  ident: b0120
  article-title: Mechanism of the production of small eddies from larger ones
  publication-title: Proc R Soc Lond A
– start-page: 1
  year: 1981
  end-page: 91
  ident: b0175
  article-title: Numerical experiments in homogeneous turbulence
  publication-title: NASA TM-81315
– volume: 60
  start-page: 275
  year: 2009
  end-page: 294
  ident: b0205
  article-title: Discussions on driven cavity flow
  publication-title: Int J Numer Methods Fluids
– volume: 122
  start-page: 165
  year: 1995
  end-page: 183
  ident: b0210
  article-title: Performance of under-resolved two-dimensional incompressible flow simulations
  publication-title: J Comput Phys
– volume: 200
  start-page: 412
  year: 2004
  end-page: 431
  ident: b0010
  article-title: Implicit subgrid-scale modeling by adaptive deconvolution
  publication-title: J Comput Phys
– volume: 31
  start-page: 368
  year: 2010
  end-page: 377
  ident: b0030
  article-title: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow
  publication-title: Int J Heat Fluid Flow
– volume: 4
  start-page: 2845
  year: 1992
  end-page: 2854
  ident: b0165
  article-title: Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flow
  publication-title: Phys Fluids
– volume: 48
  start-page: 273
  year: 1971
  end-page: 337
  ident: b0170
  article-title: Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, turbulence
  publication-title: J Fluid Mech
– volume: 48
  start-page: 387
  year: 1982
  end-page: 411
  ident: b0200
  article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: J Comput Phys
– year: 2007
  ident: b0015
  article-title: Implicit large eddy simulation: computing turbulent fluid dynamics
– volume: 229
  start-page: 8952
  year: 2010
  end-page: 8965
  ident: b0050
  article-title: An adaptive central-upwind weighted essentially non-osciallatory scheme
  publication-title: J Comput Phys
– volume: 14
  start-page: 22
  year: 2013
  end-page: 49
  ident: b0225
  article-title: On the performance of relaxation filtering for large-eddy simulation
  publication-title: J Turbul
– ident: 10.1016/j.compfluid.2013.06.034_b0105
– volume: 43
  start-page: 357
  year: 1981
  ident: 10.1016/j.compfluid.2013.06.034_b0095
  article-title: Approximate riemann solvers parameter vectors and difference schemes
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(81)90128-5
– volume: 60
  start-page: 275
  year: 2009
  ident: 10.1016/j.compfluid.2013.06.034_b0205
  article-title: Discussions on driven cavity flow
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1887
– ident: 10.1016/j.compfluid.2013.06.034_b0195
  doi: 10.2514/6.1977-648
– volume: 48
  start-page: 387
  year: 1982
  ident: 10.1016/j.compfluid.2013.06.034_b0200
  article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(82)90058-4
– volume: 19
  start-page: 105106
  year: 2007
  ident: 10.1016/j.compfluid.2013.06.034_b0035
  article-title: On implicit subgrid-scale modeling in wall-bounded flows
  publication-title: Phys Fluids
  doi: 10.1063/1.2773765
– year: 2007
  ident: 10.1016/j.compfluid.2013.06.034_b0015
– volume: 34
  start-page: 1049
  year: 1984
  ident: 10.1016/j.compfluid.2013.06.034_b0160
  article-title: The Taylor–Green vortex and fully developed turbulence
  publication-title: J Statist Phys
  doi: 10.1007/BF01009458
– ident: 10.1016/j.compfluid.2013.06.034_b0130
  doi: 10.1115/1.2801684
– volume: 122
  start-page: 165
  year: 1995
  ident: 10.1016/j.compfluid.2013.06.034_b0210
  article-title: Performance of under-resolved two-dimensional incompressible flow simulations
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1995.1205
– volume: 200
  start-page: 412
  year: 2004
  ident: 10.1016/j.compfluid.2013.06.034_b0010
  article-title: Implicit subgrid-scale modeling by adaptive deconvolution
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2004.04.010
– volume: 135
  start-page: 118
  year: 1997
  ident: 10.1016/j.compfluid.2013.06.034_b0085
  article-title: A numerical method for solving incompressible viscous flow problems
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1997.5716
– volume: 23
  start-page: 085108
  year: 2011
  ident: 10.1016/j.compfluid.2013.06.034_b0235
  article-title: The minimum energy decay rate in quasi-isotropic grid turbulence
  publication-title: Phys Fluids
  doi: 10.1063/1.3614479
– volume: 85
  start-page: 306
  year: 2000
  ident: 10.1016/j.compfluid.2013.06.034_b0070
  article-title: Energy spectra for decaying 2D turbulence in a bounded domain
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.85.306
– volume: 213
  start-page: 413
  year: 2006
  ident: 10.1016/j.compfluid.2013.06.034_b0025
  article-title: An adaptive local deconvolution method for implicit les
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2005.08.017
– volume: 4
  start-page: 2845
  year: 1992
  ident: 10.1016/j.compfluid.2013.06.034_b0165
  article-title: Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flow
  publication-title: Phys Fluids
  doi: 10.1063/1.858513
– volume: 48
  start-page: 273
  year: 1971
  ident: 10.1016/j.compfluid.2013.06.034_b0170
  article-title: Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112071001599
– volume: 126
  start-page: 202
  year: 1996
  ident: 10.1016/j.compfluid.2013.06.034_b0115
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1996.0130
– volume: 228
  start-page: 8053
  year: 2009
  ident: 10.1016/j.compfluid.2013.06.034_b0125
  article-title: Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2009.07.028
– volume: 230
  start-page: 7240
  year: 2011
  ident: 10.1016/j.compfluid.2013.06.034_b0045
  article-title: Scale separation for implicit large eddy simulation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2011.05.023
– volume: 241
  start-page: 645
  year: 1992
  ident: 10.1016/j.compfluid.2013.06.034_b0230
  article-title: The energy decay in self-preserving isotropic turbulence revisited
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112092002180
– ident: 10.1016/j.compfluid.2013.06.034_b0100
  doi: 10.1007/978-3-663-13974-4_20
– start-page: 1
  year: 1981
  ident: 10.1016/j.compfluid.2013.06.034_b0175
  article-title: Numerical experiments in homogeneous turbulence
  publication-title: NASA TM-81315
– volume: 227
  start-page: 919
  year: 2007
  ident: 10.1016/j.compfluid.2013.06.034_b0190
  article-title: Fourier spectral and wavelet solvers for the incompressible Navier–Stokes equations with volume-penalization: aonvergence of a dipole–wall collision
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.07.036
– volume: 39
  start-page: 821
  year: 2002
  ident: 10.1016/j.compfluid.2013.06.034_b0005
  article-title: A rationale for implicit turbulence modelling
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.331
– volume: 35
  start-page: 245
  year: 2006
  ident: 10.1016/j.compfluid.2013.06.034_b0185
  article-title: The normal and oblique collision of a dipole with a no-slip boundary
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2004.11.009
– volume: 85
  start-page: 257
  year: 1989
  ident: 10.1016/j.compfluid.2013.06.034_b0220
  article-title: A second order projection method for the incompressible Navier–Stokes equations
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(89)90151-4
– ident: 10.1016/j.compfluid.2013.06.034_b0140
  doi: 10.2514/6.2006-1091
– start-page: 1
  year: 2012
  ident: 10.1016/j.compfluid.2013.06.034_b0040
  article-title: Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation
  publication-title: Theor Comput Fluid Dyn
– volume: 220
  start-page: 270
  year: 2006
  ident: 10.1016/j.compfluid.2013.06.034_b0135
  article-title: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2006.05.009
– volume: 98
  start-page: 115
  year: 1968
  ident: 10.1016/j.compfluid.2013.06.034_b0090
  article-title: Une méthode d’approximation des solutions des équations Navier–Stokes
  publication-title: Bull Soc Math
– volume: 14
  start-page: 22
  year: 2013
  ident: 10.1016/j.compfluid.2013.06.034_b0225
  article-title: On the performance of relaxation filtering for large-eddy simulation
  publication-title: J Turbul
  doi: 10.1080/14685248.2012.740567
– volume: 26
  start-page: 30
  year: 1989
  ident: 10.1016/j.compfluid.2013.06.034_b0060
  article-title: Convergence of spectral methods for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0726003
– volume: 24
  start-page: 1
  year: 2005
  ident: 10.1016/j.compfluid.2013.06.034_b0055
  article-title: Numerical convergence study of nearly incompressible inviscid Taylor–Green vortex flow
  publication-title: J Sci Comput
  doi: 10.1007/s10915-004-5407-y
– volume: 19
  start-page: 1
  year: 2007
  ident: 10.1016/j.compfluid.2013.06.034_b0180
  article-title: Vorticity dynamics of a dipole colliding with a no-slip wall
  publication-title: Phys Fluids
  doi: 10.1063/1.2814345
– volume: 60
  start-page: R1162
  year: 1999
  ident: 10.1016/j.compfluid.2013.06.034_b0075
  article-title: Numerical study of grid turbulence in two dimensions and comparison with experiments on turbulent soap films
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.60.R1162
– volume: 573
  start-page: 339
  year: 2007
  ident: 10.1016/j.compfluid.2013.06.034_b0065
  article-title: Vortices in oscillating spin-up
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112006003909
– volume: 98
  start-page: 1
  year: 2004
  ident: 10.1016/j.compfluid.2013.06.034_b0080
  article-title: Decaying quasi-two-dimensional turbulence in a rectangular container: laboratory experiments
  publication-title: Geophys Astrophys Fluid Dyn
  doi: 10.1080/030919209410001648390
– volume: 228
  start-page: 8481
  year: 2009
  ident: 10.1016/j.compfluid.2013.06.034_b0150
  article-title: Very-high-order weno schemes
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2009.07.039
– volume: 160
  start-page: 405
  year: 2000
  ident: 10.1016/j.compfluid.2013.06.034_b0020
  article-title: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6443
– volume: 229
  start-page: 8952
  year: 2010
  ident: 10.1016/j.compfluid.2013.06.034_b0050
  article-title: An adaptive central-upwind weighted essentially non-osciallatory scheme
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.08.019
– volume: 17
  start-page: 107
  year: 2003
  ident: 10.1016/j.compfluid.2013.06.034_b0110
  article-title: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD
  publication-title: Int J Comput Fluid Dyn
  doi: 10.1080/1061856031000104851
– volume: 138
  start-page: 734
  year: 1997
  ident: 10.1016/j.compfluid.2013.06.034_b0215
  article-title: Performance of under-resolved two-dimensional incompressible flow simulations, II
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1997.5843
– volume: 115
  start-page: 200
  year: 1994
  ident: 10.1016/j.compfluid.2013.06.034_b0155
  article-title: Weighted essentially non-oscillatory schemes
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1994.1187
– volume: 207
  start-page: 542
  year: 2005
  ident: 10.1016/j.compfluid.2013.06.034_b0145
  article-title: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2005.01.023
– volume: 158
  start-page: 499
  year: 1937
  ident: 10.1016/j.compfluid.2013.06.034_b0120
  article-title: Mechanism of the production of small eddies from larger ones
  publication-title: Proc R Soc Lond A
  doi: 10.1098/rspa.1937.0036
– volume: 31
  start-page: 368
  year: 2010
  ident: 10.1016/j.compfluid.2013.06.034_b0030
  article-title: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.02.026
SSID ssj0004324
Score 2.1448817
Snippet •WENO-CU6-M1 with implicit SGS capabilities for weakly compressible turbulent and nonturbulent flows.•Method is superior to the dynamic Smagorinsky model and...
In engineering applications critical complex unsteady flows often are, at least in certain flow areas, only marginally resolved. Within these areas, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Computational fluid dynamics
Computer simulation
Fluid flow
High resolution scheme
Implicit large-eddy simulation
Mathematical analysis
Mathematical models
Physically consistent
Truncation errors
Turbulence
Turbulent flow
Underresolved computation
Weakly compressible model
Title A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompressible flows
URI https://dx.doi.org/10.1016/j.compfluid.2013.06.034
https://www.proquest.com/docview/1475559822
https://www.proquest.com/docview/1513462603
https://www.proquest.com/docview/1709770474
https://www.proquest.com/docview/1709779208
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AKRWK
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wTwWs13SR9eFtEWRU9KXgrSZvCam2XbdfFi7_dmTT1Ba4Hj0mTPmbSeTAz3xByhLEdoSLpga4PPZFK7UVxajyVZoyZQGexwOLkm9tgcC-uHuTDHDnramEwrdLJ_lamW2ntZk4cNU9GwyHW-AoJpwtDb-Bb2UJzIULsYnD89pnmgYhzbZQZoRk5-5bjhWnbeTEZImSozy2QJxe_aagfstoqoIsVsuwsR9pvX26VzJlyjSx9wRNcJ699OnJ0L15pirmvwMSyoVOjnuzMc5v3qgtDEajYg5E7e7RDF6dNRbGybGyvvZiM1sNn1-SrplVOEc_hy33yoprWG-Tu4vzubOC53gpeCkRqPAV2EhhnXEVBBB6TNClWuErQXRqo1FM97EGeZ9zPo16uwWniSqtY5yYAA4plfJPMl1Vptgg1keBp6ItMM3D1wLtSMAalD65jHoQB2yZBR84kdbjj2P6iSLoEs8fkgw8J8iHBVDsutgn72DhqoTf-3nLa8Sv5dooSUBB_bz7sOJzAP4aBE1WaalKDexRKaZEOZ6yRPhfoHfIZa0IG5jYT4axn2TVxj0U7__mYXbKII1s1KffIfDOemH0wnxp9YP-PA7LQv7we3L4DZxYdlg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZW9EB7QKWlKrQFI_Ua8MZ2Hr0hVLS07J4WiZtlJ460bTZZkWwRF347M45DAYndA0e_8vDYnvk0M58J-Y6-HaETGYCujwORSRMkaWYDneWM2cjkqcDk5PEkGl2KX1fyakBO-1wYDKv0Z393prvT2tcc-9k8XsxmmOMrJKwudL0BtsJE8zdChjEisKO7_3EeSDnXuZmRm5GzJ0FeGLddlMsZcoYOuWPy5OIlFfXssHYa6Ow92fKmIz3pvm6bDGz1gbx7RCj4kdye0IWf-PKWZhj8ClKsWnpj9V9XM-8CX01pKTIVB1Dyi4_29OK0rSmmll27tn82p81s7m_5amhdUCR0ePScoqxvmh0yPfs5PR0F_nKFIBMibgMNhhJYZ1wnUQKQSdoMU1wlKC8DsxTqEC8hL3I-LJKwMICauDY6NYWNwIJiOf9ENqq6sp8JtYngWTwUuWGA9QBeaSiD1gfsWERxxHZJ1E-nyjzxON5_Uao-wuyPepCDQjkojLXjYpewh4GLjntj_ZAfvbzUk2WkQEOsH3zYS1jBJkPPia5svWwAH8VSOqrDFX3kkAuEh3xFn5iBvc1EvOpdrk8asmTvNT9zQDZH0_GFujif_P5C3mKLS6GUX8lGe72038CWas2-2yv3zVMfKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physically+consistent+weakly+compressible+high-resolution+approach+to+underresolved+simulations+of+incompressible+flows&rft.jtitle=Computers+%26+fluids&rft.au=Schranner%2C+Felix+S.&rft.au=Hu%2C+Xiangyu+Y.&rft.au=Adams%2C+Nikolaus+A.&rft.date=2013-11-05&rft.pub=Elsevier+Ltd&rft.issn=0045-7930&rft.eissn=1879-0747&rft.volume=86&rft.spage=109&rft.epage=124&rft_id=info:doi/10.1016%2Fj.compfluid.2013.06.034&rft.externalDocID=S0045793013002715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon