Automated Algorithm Selection: Survey and Perspectives
It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of t...
Saved in:
Published in | Evolutionary computation Vol. 27; no. 1; pp. 3 - 45 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.03.2019
MIT Press Journals, The |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6560 1530-9304 1530-9304 |
DOI | 10.1162/evco_a_00242 |
Cover
Abstract | It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the
and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges. |
---|---|
AbstractList | It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the
and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges. It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges. It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges. |
Author | Trautmann, Heike Neumann, Frank Hoos, Holger H. Kerschke, Pascal |
Author_xml | – sequence: 1 givenname: Pascal surname: Kerschke fullname: Kerschke, Pascal email: kerschke@uni-muenster.de organization: Information Systems and Statistics, University of Münster, 48149 Münster, Germany kerschke@uni-muenster.de – sequence: 2 givenname: Holger H. surname: Hoos fullname: Hoos, Holger H. organization: Leiden Institute of Advanced Computer Science, Leiden University, 2333 CA Leiden, The Netherlands hh@liacs.nl – sequence: 3 givenname: Frank surname: Neumann fullname: Neumann, Frank email: frank.neumann@adelaide.edu.au organization: Optimisation and Logistics, The University of Adelaide, Adelaide, SA 5005, Australia frank.neumann@adelaide.edu.au – sequence: 4 givenname: Heike surname: Trautmann fullname: Trautmann, Heike email: trautmann@uni-muenster.de organization: Information Systems and Statistics, University of Münster, 48149 Münster, Germany trautmann@uni-muenster.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30475672$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kN1LwzAUxYNM1E3ffJaCL3uwmo8maX1yDL9goKA-hyy9aqRtZtIO5l9vyhzI0KeE3N859-QM0aBxDSB0TPA5IYJewNI4pRXGNKM76IBwhtOC4WwQ71iwVHCB99EwhA-MCaOY7KH9OJZcSHqAxKRrXa1bKJNJ9ea8bd_r5AkqMK11zWXy1PklrBLdlMkj-LDo35cQDtHuq64CHP2cI_Ryc_08vUtnD7f308ksNVkm21QaYDnOeCF4QeclKzlnDERBmDGacQFasAK4ZJz2AzPXMicZZxmeU5kRykZovPZdePfZQWhVbYOBqtINuC4oSlgumCRSRPR0C_1wnW9iOkUpjv7x8zxSJz9UN6-hVAtva-1XatNIBOgaMN6F4OFVGdvqvozWa1spglVfu_pdexSdbYk2vv_gV2u8tr9S9siSSktiGJJLoWJqEtUK5-rLLrYtxn9Y_LntG6DUo58 |
CitedBy_id | crossref_primary_10_1145_3561974 crossref_primary_10_1016_j_ejor_2024_06_029 crossref_primary_10_3390_e26030262 crossref_primary_10_1109_TEVC_2022_3214894 crossref_primary_10_1016_j_eswa_2021_114694 crossref_primary_10_1016_j_eswa_2022_117058 crossref_primary_10_1016_j_jocs_2022_101562 crossref_primary_10_1016_j_neucom_2022_06_084 crossref_primary_10_1109_TEVC_2021_3108185 crossref_primary_10_1109_TEVC_2022_3186667 crossref_primary_10_1002_int_22549 crossref_primary_10_1016_j_asoc_2022_109452 crossref_primary_10_1109_TCYB_2024_3412997 crossref_primary_10_1016_j_ejor_2023_04_023 crossref_primary_10_1007_s11227_023_05218_y crossref_primary_10_1109_TEVC_2022_3169770 crossref_primary_10_3390_math9212751 crossref_primary_10_1109_ACCESS_2020_2964726 crossref_primary_10_1007_s10479_023_05508_x crossref_primary_10_1007_s00453_020_00742_2 crossref_primary_10_1007_s41965_024_00172_x crossref_primary_10_1016_j_neucom_2022_10_075 crossref_primary_10_3390_a14020040 crossref_primary_10_1162_evco_a_00325 crossref_primary_10_1016_j_jss_2023_111883 crossref_primary_10_1145_3463369 crossref_primary_10_5937_bizinfo2401001A crossref_primary_10_1007_s00291_024_00804_9 crossref_primary_10_1515_revce_2024_0060 crossref_primary_10_1109_ACCESS_2024_3395495 crossref_primary_10_1049_tje2_12368 crossref_primary_10_1145_3673908 crossref_primary_10_1109_TAI_2020_3022339 crossref_primary_10_1016_j_ejor_2024_06_005 crossref_primary_10_1142_S0129065721500209 crossref_primary_10_3390_app14146035 crossref_primary_10_1007_s10994_022_06161_4 crossref_primary_10_1016_j_ejor_2021_04_032 crossref_primary_10_1109_ACCESS_2023_3238872 crossref_primary_10_1016_j_swevo_2021_100888 crossref_primary_10_1016_j_ins_2024_121397 crossref_primary_10_1109_TEVC_2022_3208595 crossref_primary_10_3390_jpm12060908 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_3390_electronics9111759 crossref_primary_10_1109_TMC_2023_3301973 crossref_primary_10_1002_stvr_1861 crossref_primary_10_4204_EPTCS_306_35 crossref_primary_10_1007_s10601_023_09364_1 crossref_primary_10_1109_TMC_2022_3227770 crossref_primary_10_3390_en13174291 crossref_primary_10_1145_3558774 crossref_primary_10_1016_j_knosys_2022_109199 crossref_primary_10_1002_hyp_14857 crossref_primary_10_1093_nsr_nwae132 crossref_primary_10_1016_j_tcs_2022_10_019 crossref_primary_10_1016_j_ejor_2022_01_034 crossref_primary_10_1007_s12599_020_00642_3 crossref_primary_10_1109_JAS_2023_123687 crossref_primary_10_1016_j_artint_2023_103915 crossref_primary_10_1109_TEVC_2022_3232844 crossref_primary_10_1007_s12293_022_00367_8 crossref_primary_10_1007_s41060_020_00229_x crossref_primary_10_1109_TSMC_2020_3027860 crossref_primary_10_3390_electronics10070781 crossref_primary_10_1016_j_eswa_2024_123937 crossref_primary_10_1162_evco_e_00324 crossref_primary_10_7498_aps_70_20210831 crossref_primary_10_1016_j_swevo_2024_101838 crossref_primary_10_1109_TETCI_2022_3146882 crossref_primary_10_1016_j_cor_2021_105489 crossref_primary_10_1016_j_cor_2023_106290 crossref_primary_10_3390_a12100200 crossref_primary_10_1145_3568680 crossref_primary_10_3390_app14062542 crossref_primary_10_3390_math9233036 crossref_primary_10_3390_land11060923 crossref_primary_10_3390_math10030432 crossref_primary_10_1016_j_eswa_2020_113613 crossref_primary_10_1016_j_jss_2025_112373 crossref_primary_10_3390_s21248401 crossref_primary_10_1109_ACCESS_2024_3468723 crossref_primary_10_1109_JSTARS_2022_3226516 crossref_primary_10_1109_TEVC_2022_3215013 crossref_primary_10_1111_itor_12922 crossref_primary_10_1016_j_asoc_2023_110121 crossref_primary_10_1016_j_dss_2020_113343 crossref_primary_10_1016_j_swevo_2022_101148 crossref_primary_10_1145_3646554 crossref_primary_10_1109_TSMC_2024_3374889 crossref_primary_10_1109_LRA_2024_3518077 crossref_primary_10_1016_j_cor_2025_107050 crossref_primary_10_1109_ACCESS_2023_3243068 crossref_primary_10_1016_j_cor_2024_106836 crossref_primary_10_1016_j_eswa_2024_123838 crossref_primary_10_1162_evco_a_00341 crossref_primary_10_1016_j_softx_2023_101355 crossref_primary_10_1007_s00521_022_07060_4 crossref_primary_10_1016_j_swevo_2024_101534 crossref_primary_10_1007_s10994_022_06271_z crossref_primary_10_1007_s10898_025_01472_x crossref_primary_10_1016_j_asoc_2023_110815 crossref_primary_10_1016_j_eswa_2024_123151 crossref_primary_10_1109_TEVC_2022_3205165 crossref_primary_10_1016_j_swevo_2025_101894 crossref_primary_10_1145_3637225 crossref_primary_10_1016_j_asoc_2020_106103 crossref_primary_10_1080_03081079_2023_2245124 crossref_primary_10_1007_s13748_019_00185_z crossref_primary_10_1038_s41598_023_35132_5 crossref_primary_10_3390_a14030100 crossref_primary_10_1007_s41870_022_01065_x crossref_primary_10_1111_exsy_13400 crossref_primary_10_1002_net_22244 crossref_primary_10_1016_j_tre_2022_102835 crossref_primary_10_1109_TEVC_2019_2940828 crossref_primary_10_1016_j_ins_2024_120272 crossref_primary_10_1016_j_neucom_2021_09_023 crossref_primary_10_1016_j_compchemeng_2024_108688 crossref_primary_10_1111_itor_12906 crossref_primary_10_3390_math10091544 crossref_primary_10_1016_j_ins_2019_06_040 crossref_primary_10_1016_j_asoc_2019_105901 |
Cites_doi | 10.1007/978-3-319-11812-3_28 10.1145/3071178.3071304 10.1007/s11390-014-1416-y 10.1007/s10994-017-5629-5 10.1007/978-3-642-23229-9_8 10.1126/science.275.5296.51 10.1145/2330163.2330209 10.1145/2739480.2754717 10.1109/TEVC.2016.2599164 10.1162/evco_a_00194 10.1214/aos/1176347963 10.1145/2487575.2487629 10.1145/3075564.3078887 10.1007/978-3-319-99253-2_8 10.7551/mitpress/10654.001.0001 10.1109/TEVC.2005.861417 10.1109/ICTAI.2013.12 10.1609/aimag.v36i3.2571 10.1007/978-3-540-31880-4_18 10.1109/IJCNN.2008.4634391 10.1145/2464576.2482696 10.1007/978-3-642-44973-4_4 10.1007/978-0-387-84858-7 10.1007/978-3-319-07407-8 10.1007/978-3-319-98334-9_13 10.3233/HIS-2011-0133 10.1142/S021821301460032X 10.1093/oso/9780195079517.001.0001 10.1007/978-3-642-13800-3_7 10.1287/opre.21.2.498 10.1609/aimag.v33i1.2395 10.1007/978-3-642-02538-9_5 10.1007/978-3-319-50349-3_4 10.1162/evco.2006.14.4.433 10.18637/jss.v011.i09 10.1109/TEVC.2014.2302006 10.1287/ijoc.1060.0175 10.1613/jair.2861 10.1007/3-540-44826-8_17 10.1109/TEVC.2014.2313407 10.1017/CBO9780511543357 10.1126/science.1205438 10.1109/ICTAI.2015.79 10.1145/2464576.2501592 10.1023/A:1009745219419 10.1007/s10462-009-9124-7 10.1109/TPAMI.2005.127 10.1007/s10472-011-9230-5 10.1145/3071178.3071278 10.1007/978-3-642-13800-3_29 10.1007/978-3-319-26561-2 10.1145/2739480.2754705 10.1007/978-3-540-70928-2_68 10.1007/978-3-319-69404-7_17 10.1057/jors.2013.71 10.1109/AIDM.2006.4 10.1145/3071178.3071305 10.1007/978-0-387-45528-0 10.1007/978-3-319-09584-4_4 10.1162/evco_a_00234 10.1109/CEC.2016.7743962 10.1007/978-3-319-54157-0_23 10.1007/s12293-015-0159-9 10.1007/978-3-642-02538-9_9 10.1145/1143997.1144085 10.1287/ijoc.1120.0506 10.1109/TKDE.2002.1000348 10.1145/2908812.2908820 10.1007/978-3-642-34413-8_9 10.1007/s10994-017-5686-9 10.1145/3205455.3205548 10.1002/sam.11380 10.1023/A:1015454612213 10.1145/3205651.3208233 10.1007/978-3-319-45823-6_15 10.1007/978-3-642-25566-3_40 10.1007/s12532-009-0004-6 10.1007/978-3-030-05348-2_19 10.1162/106365600568202 10.1162/evco_a_00222 10.1109/TSMCB.2008.2006910 10.1007/s00500-016-2091-4 10.1145/3071178.3071205 10.1007/978-3-319-19084-6_18 10.1109/ICIAFS.2014.7069635 10.1007/3-540-45692-9_10 10.1007/1-84628-137-7_6 10.1145/2460239.2460253 10.1007/BFb0056848 10.1145/2001576.2001690 10.1162/EVCO_a_00121 10.1145/2739480.2754747 10.1109/ICTAI.2014.18 10.1145/3067695.3082477 10.32614/RJ-2017-004 10.1007/978-3-319-50349-3_20 10.1109/CEC.2015.7257045 10.24963/ijcai.2017/715 10.1145/2739480.2754642 10.1007/978-1-4757-2440-0 10.1109/CEC.2000.870802 10.1007/978-3-319-07494-8_9 10.1109/CEC.2016.7748359 10.1145/2464576.2482693 10.1007/978-3-642-32378-2_6 10.1162/106365600568095 10.1145/2908812.2908845 10.1007/978-3-642-20525-5_30 10.1162/evco.1998.6.2.109 10.1017/S1471068414000210 10.1145/2739482.2768467 10.1016/S0004-3702(00)00081-3 10.1109/CEC.2009.4983112 10.1007/978-3-642-40137-4 10.1007/978-3-319-45823-6_90 10.1162/106365602317301754 10.1145/3071178.3071343 10.1007/s10601-008-9051-2 10.1109/4235.585893 10.1007/978-3-642-44973-4_17 10.1145/2464576.2482701 10.1142/S0218213017600065 10.1007/BF02592071 10.1515/9781400841103 10.1162/evco.2007.15.2.169 |
ContentType | Journal Article |
Copyright | Copyright MIT Press Journals, The Spring 2019 |
Copyright_xml | – notice: Copyright MIT Press Journals, The Spring 2019 |
DBID | AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1162/evco_a_00242 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1530-9304 |
EndPage | 45 |
ExternalDocumentID | 30475672 10_1162_evco_a_00242 evco_a_00242.pdf |
Genre | Journal Article |
GroupedDBID | --- .4S .DC 0R~ 36B 4.4 53G 5GY 5VS 6IK AAJGR AAKMM AALFJ AALMD AAYFX ABDBF ABGDV ABMYL ABQDU ACATF ACM ACVLL ADHRN ADL ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT AIYWX ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF AZFZN BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EJD EMB EMK EMOBN EPL EST ESX F5P FEDTE FNEHJ GUFHI HGAVV HZ~ I-F I07 IPLJI JAVBF MCG MINIK O9- OCL P2P PK0 RMI SV3 TUS W7O ZWS AAYOK AAYXX ABAZT ABJNI ABVLG ACUHS AEFXT AEJOY AKRVB CAG CITATION COF LHSKQ NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c447t-7ce3804596592bd3d5533e6913cca356ea639e57352533ecba78145340b274123 |
ISSN | 1063-6560 1530-9304 |
IngestDate | Fri Jul 11 10:53:35 EDT 2025 Sun Jun 29 16:21:11 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 Tue Jul 01 01:17:50 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Mon Mar 11 05:41:17 EDT 2024 Tue Mar 01 17:17:31 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | metalearning data streams exploratory landscape analysis feature-based approaches continuous optimisation machine learning Automated algorithm selection automated algorithm configuration combinatorial optimisation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-7ce3804596592bd3d5533e6913cca356ea639e57352533ecba78145340b274123 |
Notes | Spring, 2019 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.mitpressjournals.org/doi/pdf/10.1162/evco_a_00242 |
PMID | 30475672 |
PQID | 2202531325 |
PQPubID | 2047842 |
PageCount | 43 |
ParticipantIDs | mit_journals_evcov27i1_301876_2021_11_08_zip_evco_a_00242 crossref_citationtrail_10_1162_evco_a_00242 proquest_journals_2202531325 mit_journals_10_1162_evco_a_00242 pubmed_primary_30475672 proquest_miscellaneous_2138637176 crossref_primary_10_1162_evco_a_00242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge |
PublicationTitle | Evolutionary computation |
PublicationTitleAlternate | Evol Comput |
PublicationYear | 2019 |
Publisher | MIT Press MIT Press Journals, The |
Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
References | B21 Ansótegui C. (B4) 2015 B22 B24 B25 B26 Bossek J. (B27) 2016 Loshchilov I. (B129) 2013 Smith-Miles K. A. (B190) 2009 B28 Gao W. (B59) 2015 Kerschke P. (B103) 2017 Roberts M. (B176) 2008 Biere A. (B16) 2009; 185 B30 B31 Huyer W. (B89) 2009 B33 Applegate D. L. (B5) 2007 B208 B206 B207 B205 Cameron C. (B32) 2017 Ortiz-Bayliss J. C. (B162) 2015 B203 Gerevini A. (B61) 2005 B1 B201 B2 B3 Wright S. (B222) 1932 B7 B8 Ulrich T. (B204) 2010 B9 B40 B42 B43 Cook D. J. (B39) 1997 B46 B215 B214 B211 B212 Wagner M. (B216) 2017 Wessing S. (B218) 2016 López-Ibáñez M. (B127) 2016 Jones T. (B92) 1995 B50 Nagata Y. (B152) 1997 B52 B55 Hsu E. I. (B80) 2009 B56 B57 B58 B109 B107 B108 van Rijn J. N. (B209) 2013 B229 B105 B106 B227 B101 B102 B223 Grimme C. (B67) 2018 B221 Eggensperger K. (B51) 2013 B66 Rosé H. (B179) 1996 Leyton-Brown K. (B117) 2002 B119 B115 Lindauer T. M. (B122) 2015 B112 Roussel O (B180) 2012 B110 Gerevini A. (B62) 2003 Poursoltan S. (B168) 2015; 9491 B71 B72 Malan K. M. (B133) 2013 B75 B77 B78 B128 B124 B121 Rice J. R. (B172) 1976 Xu L. (B224) 2007 B81 B82 B84 B85 Naudts B. (B155) 1997 B86 B87 Ghallab M. (B65) 2004 Howe A. E. (B79) 1999 B136 B137 van Rijn J. N. (B210) 2014 B134 B135 Xu L. (B225) 2008 Xu L. (B226) 2012 B132 B130 Muñoz Acosta M. A. (B145) 2012 Arik S. (B6) 2015 B90 Coello Coello C. A. (B37) 2007 B95 B96 Gent I. P. (B60) 1999; 99 B147 B148 B146 B141 B142 B140 Gerevini A. (B63) 2009 Bischl B. (B19) 2016 Boukeas G. (B29) 2004 Witten I. H. (B219) 2016 B157 Rochet S. (B177) 1997 Morgan R. (B144) 2015 B154 Cenamor I. (B36) 2014 Hutter F. (B88) 2014 B153 B150 Mersmann O. (B143) 2013 B151 Dietterich T. G. (B49) 2000 Lindauer T. M. (B123) 2015 Collautti M. (B38) 2013 Bischl B. (B20) 2016; 17 Nudelman E. (B158) 2004 Kadioglu S. (B93) 2011 B169 Leyton-Brown K. (B116) 2003 Lindauer T. M. (B125) 2017; 79 B165 B166 Pál L (B163) 2013 B164 Hutter F. (B83) 2006 B160 Kotthoff L (B111) 2014; 35 B178 B174 B175 Davidor Y. (B44) 1991; 1 B173 B170 B171 Fawcett C. (B53) 2014 Tu H.-H. (B199) 2010 B189 B187 B188 Kerschke P. (B100) 2017 B185 B186 B183 B184 B181 B182 Tang K. (B195) 2014 B198 B196 B197 B194 B192 B193 Degroote H. (B47) 2016; 1649 Kadioglu S. (B94) 2010 B191 Helmert M. (B73) 2006 Bossek J. (B23) 2015 Mahajan Y. S. (B131) 2004 Maron O. (B139) 1994 Muñoz Acosta M. A. (B149) 2015 Birattari M. (B18) 2002 Kotthoff L. (B113) 2017; 18 Hamerly G. (B68) 2003 Kovárik O. (B114) 2012 Nudelman E. (B159) 2004 Flamm C. (B54) 2002; 216 Ochoa G. (B161) 2015 Carnein M. (B34) 2019 Kauffman S. A (B97) 1993 B10 B11 B12 B13 B14 B15 B17 Kerschke P. (B104) 2014 Poursoltan S. (B167) 2015; 9491 Maratea M. (B138) 2012; 17 Helsgaun K. (B74) 2000 Wolpert D. H. (B220) 1995 Cenamor I. (B35) 2013 Hoffmann J. (B76) 2011 |
References_xml | – start-page: 325 year: 2014 ident: B210 publication-title: Proceedings of the 17th International Conference on Discovery Science doi: 10.1007/978-3-319-11812-3_28 – ident: B182 doi: 10.1145/3071178.3071304 – ident: B2 doi: 10.1007/s11390-014-1416-y – start-page: 15 year: 2017 ident: B32 publication-title: Proceedings of the Open Algorithm Selection Challenge – volume-title: Evolutionary algorithms for solving multi-objective problems year: 2007 ident: B37 – ident: B150 doi: 10.1007/s10994-017-5629-5 – ident: B166 doi: 10.1007/978-3-642-23229-9_8 – start-page: 126:106 year: 2000 ident: B74 publication-title: European Journal of Operational Research – ident: B82 doi: 10.1126/science.275.5296.51 – start-page: 696 year: 2007 ident: B224 publication-title: Proceedings of the 13th International Conference on Principles and Practice of Constraint Programming – ident: B21 doi: 10.1145/2330163.2330209 – ident: B13 doi: 10.1145/2739480.2754717 – ident: B194 doi: 10.1109/TEVC.2016.2599164 – start-page: 35 year: 2014 ident: B36 publication-title: Proceedings of the Eighth International Planning Competition – ident: B148 doi: 10.1162/evco_a_00194 – ident: B56 doi: 10.1214/aos/1176347963 – start-page: 11 volume-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation (GECCO) year: 2002 ident: B18 – year: 2004 ident: B158 publication-title: SAT Competition 2004 – ident: B196 doi: 10.1145/2487575.2487629 – ident: B33 doi: 10.1145/3075564.3078887 – start-page: 360 year: 2004 ident: B131 publication-title: Proceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing – start-page: 454 year: 2011 ident: B93 publication-title: Proceedings of the 17th International Conference on Principles and Practice of Constraint Programming – volume: 9491 start-page: 344 year: 2015 ident: B167 publication-title: Neural Information Processing. ICONIP 2015 – start-page: 32:565 year: 2008 ident: B225 publication-title: Journal of Artificial Intelligence Resesearch – ident: B198 doi: 10.1007/978-3-319-99253-2_8 – ident: B17 doi: 10.7551/mitpress/10654.001.0001 – start-page: 237:41 year: 2016 ident: B19 publication-title: Artificial Intelligence – volume-title: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO) year: 2009 ident: B89 – ident: B81 doi: 10.1109/TEVC.2005.861417 – volume: 18 start-page: 1 issue: 25 year: 2017 ident: B113 publication-title: Journal of Machine Learning Research – ident: B206 doi: 10.1109/ICTAI.2013.12 – ident: B205 doi: 10.1609/aimag.v36i3.2571 – ident: B42 doi: 10.1007/978-3-540-31880-4_18 – ident: B189 doi: 10.1109/IJCNN.2008.4634391 – start-page: 1177 volume-title: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO) year: 2013 ident: B129 doi: 10.1145/2464576.2482696 – ident: B1 doi: 10.1007/978-3-642-44973-4_4 – ident: B72 doi: 10.1007/978-0-387-84858-7 – ident: B169 doi: 10.1007/978-3-319-07407-8 – volume: 17 start-page: 1 issue: 170 year: 2016 ident: B20 publication-title: Journal of Machine Learning Research – volume: 79 start-page: 1 year: 2017 ident: B125 publication-title: Proceedings of Machine Learning Research – ident: B78 doi: 10.1007/978-3-319-98334-9_13 – ident: B95 doi: 10.3233/HIS-2011-0133 – ident: B207 doi: 10.1142/S021821301460032X – volume-title: The origins of order: Self-organization and selection in evolution year: 1993 ident: B97 doi: 10.1093/oso/9780195079517.001.0001 – ident: B58 doi: 10.1007/978-3-642-13800-3_7 – ident: B119 doi: 10.1287/opre.21.2.498 – ident: B90 doi: 10.1609/aimag.v33i1.2395 – ident: B43 doi: 10.1007/978-3-642-02538-9_5 – ident: B26 doi: 10.1007/978-3-319-50349-3_4 – ident: B208 doi: 10.1162/evco.2006.14.4.433 – ident: B96 doi: 10.18637/jss.v011.i09 – ident: B147 doi: 10.1109/TEVC.2014.2302006 – start-page: 59 volume-title: Proceedings of Advances in Neural Information Processing Systems 6 year: 1994 ident: B139 – ident: B203 doi: 10.1287/ijoc.1060.0175 – ident: B86 doi: 10.1613/jair.2861 – start-page: 707 year: 2010 ident: B204 publication-title: Proceedings of the 11th International Conference on Parallel Problem Solving from Nature – ident: B30 doi: 10.1007/3-540-44826-8_17 – volume: 216 start-page: 155 issue: 2 year: 2002 ident: B54 publication-title: Zeitschrift für Physikalische Chemie. International Journal of Research in Physical Chemistry and Chemical Physics – ident: B201 doi: 10.1109/TEVC.2014.2313407 – ident: B12 doi: 10.1017/CBO9780511543357 – start-page: 213 year: 2006 ident: B83 publication-title: Proceedings of the 12th International Conference on Principles and Practice of Constraint Programming – ident: B171 doi: 10.1126/science.1205438 – start-page: 556 year: 2002 ident: B117 publication-title: Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming – ident: B174 doi: 10.1109/ICTAI.2015.79 – volume: 9491 start-page: 332 year: 2015 ident: B168 publication-title: Neural Information Processing. ICONIP 2015 – ident: B84 doi: 10.1145/2464576.2501592 – ident: B183 doi: 10.1023/A:1009745219419 – ident: B178 doi: 10.1007/s10462-009-9124-7 – ident: B115 doi: 10.1109/TPAMI.2005.127 – start-page: 26:191 year: 2006 ident: B73 publication-title: Journal of Artificial Intelligence Research – ident: B191 doi: 10.1007/s10472-011-9230-5 – ident: B11 doi: 10.1145/3071178.3071278 – start-page: 1 year: 2017 ident: B103 publication-title: Evolutionary Computation – ident: B188 doi: 10.1007/978-3-642-13800-3_29 – year: 2015 ident: B6 publication-title: Proceedings Part III of the 22nd International Conference on Neural Information Processing doi: 10.1007/978-3-319-26561-2 – start-page: 435 year: 2013 ident: B38 publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases – start-page: 377 year: 2009 ident: B80 publication-title: Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing – start-page: 46 volume-title: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions year: 2012 ident: B180 – year: 2015 ident: B23 publication-title: netgen: Network generator for combinatorial graph problems – year: 2016 ident: B218 publication-title: optproblems: Infrastructure to define optimization problems and some test problems for black-box optimization – ident: B140 doi: 10.1145/2739480.2754705 – ident: B52 doi: 10.1007/978-3-540-70928-2_68 – start-page: 20:239 year: 2003 ident: B62 publication-title: Journal of Artificial Intelligence Research – ident: B164 doi: 10.1007/978-3-319-69404-7_17 – start-page: 643 year: 2013 ident: B209 publication-title: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases – volume-title: Data mining: Practical machine learning tools and techniques year: 2016 ident: B219 – start-page: 228 year: 2012 ident: B226 publication-title: Proceedings of the 15th International Conference on Theory and Applications of Satisfiability Testing – year: 2018 ident: B67 publication-title: Proceedings of the International Global Optimization Workshop – year: 2017 ident: B100 publication-title: flacco: Feature-based landscape analysis of continuous and constrained optimization problems – start-page: 184 year: 2004 ident: B29 publication-title: SOFSEM: 30th International Conference on Current Trends in Theory and Practice of Computer Science – start-page: 1 year: 2015 ident: B122 publication-title: Proceedings of the 9th International Conference on Learning and Intelligent Optimization – start-page: 190 year: 2015 ident: B162 publication-title: Proceedings of the 14th Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence and Soft Computing, Part I – volume: 1649 start-page: 93 year: 2016 ident: B47 publication-title: Proceedings of ITAT 2016: Information Technologies—Applications and Theory: Conference on Theory and Practice of Information Technologies – ident: B31 doi: 10.1057/jors.2013.71 – volume-title: Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling year: 2009 ident: B63 – ident: B7 doi: 10.1109/AIDM.2006.4 – start-page: 14 volume-title: Proceedings of the Fourth Workshop on Planning and Learning at the Twenty-Third International Conference on Automated Planning and Scheduling year: 2013 ident: B35 – ident: B181 doi: 10.1145/3071178.3071305 – ident: B22 doi: 10.1007/978-0-387-45528-0 – ident: B87 doi: 10.1007/978-3-319-09584-4_4 – ident: B108 doi: 10.1162/evco_a_00234 – ident: B157 doi: 10.1109/CEC.2016.7743962 – ident: B102 doi: 10.1007/978-3-319-54157-0_23 – start-page: 1 year: 2017 ident: B216 publication-title: Journal of Heuristics – ident: B227 doi: 10.1007/s12293-015-0159-9 – ident: B128 doi: 10.1007/978-3-642-02538-9_9 – ident: B130 doi: 10.1145/1143997.1144085 – start-page: 356 year: 1932 ident: B222 publication-title: Proceedings of the 6th International Congress of Genetics – ident: B153 doi: 10.1287/ijoc.1120.0506 – ident: B197 doi: 10.1109/TKDE.2002.1000348 – volume-title: Proceedings of the Fourteenth National Conference on Artificial Intelligence year: 1997 ident: B39 – start-page: 41:155 year: 2011 ident: B76 publication-title: Journal of Artificial Intelligence Research – start-page: 241:148 year: 2013 ident: B133 publication-title: Information Sciences – start-page: 1 year: 2000 ident: B49 publication-title: Multiple Classifier Systems – ident: B160 doi: 10.1145/2908812.2908820 – ident: B141 doi: 10.1007/978-3-642-34413-8_9 – ident: B211 doi: 10.1007/s10994-017-5686-9 – ident: B25 doi: 10.1145/3205455.3205548 – ident: B137 doi: 10.1002/sam.11380 – ident: B3 doi: 10.1023/A:1015454612213 – ident: B101 doi: 10.1145/3205651.3208233 – ident: B14 doi: 10.1007/978-3-319-45823-6_15 – start-page: 208 year: 1996 ident: B179 publication-title: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature – ident: B85 doi: 10.1007/978-3-642-25566-3_40 – year: 1995 ident: B220 publication-title: No free lunch theorems for search – ident: B75 doi: 10.1007/s12532-009-0004-6 – start-page: 62 year: 1999 ident: B79 publication-title: Proceedings of the Fifth European Conference on Planning – volume: 17 start-page: 37 year: 2012 ident: B138 publication-title: Technical Communications of the 28th International Conference on Logic Programming – ident: B28 doi: 10.1007/978-3-030-05348-2_19 – ident: B229 doi: 10.1162/106365600568202 – start-page: 450 volume-title: Proceedings of the 7th International Conference on Genetic Algorithms year: 1997 ident: B152 – ident: B134 doi: 10.1162/evco_a_00222 – year: 2012 ident: B114 publication-title: Meta-learning and meta-optimization – ident: B223 doi: 10.1109/TSMCB.2008.2006910 – volume: 185 year: 2009 ident: B16 publication-title: Handbook of satisfiability – ident: B185 doi: 10.1007/s00500-016-2091-4 – ident: B212 doi: 10.1145/3071178.3071205 – start-page: 1 volume-title: Proceedings of the IEEE Congress on Evolutionary Computation year: 2012 ident: B145 – start-page: 41:1 year: 2009 ident: B190 publication-title: ACM Computing Surveys – volume: 99 start-page: 654 year: 1999 ident: B60 publication-title: Proceedings of the Sixteenth National Conference on Artificial Intelligence – ident: B112 doi: 10.1007/978-3-319-19084-6_18 – ident: B193 doi: 10.1109/ICIAFS.2014.7069635 – ident: B192 doi: 10.1007/3-540-45692-9_10 – start-page: 3:43 year: 2016 ident: B127 publication-title: Operations Research Perspectives – start-page: 733 year: 2015 ident: B4 publication-title: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence – ident: B46 doi: 10.1007/1-84628-137-7_6 – ident: B154 doi: 10.1145/2460239.2460253 – start-page: 65 volume-title: Proceedings of the 7th International Conference on Genetic Algorithms year: 1997 ident: B155 – start-page: 275 year: 1997 ident: B177 publication-title: European Conference on Artificial Evolution – ident: B55 doi: 10.1007/BFb0056848 – ident: B142 doi: 10.1145/2001576.2001690 – start-page: 1542 volume-title: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence year: 2003 ident: B116 – ident: B186 doi: 10.1162/EVCO_a_00121 – ident: B50 doi: 10.1145/2739480.2754747 – start-page: 317:224 year: 2015 ident: B149 publication-title: Information Sciences – start-page: 281 volume-title: Proceedings of Advances in Neural Information Processing Systems 16 year: 2003 ident: B68 – ident: B165 doi: 10.1109/ICTAI.2014.18 – ident: B71 doi: 10.1145/3067695.3082477 – year: 2005 ident: B61 publication-title: Plan constraints and preferences in PDDL3 – ident: B24 doi: 10.32614/RJ-2017-004 – start-page: 53:745 year: 2015 ident: B123 publication-title: Journal of Artificial Intelligence Research – ident: B121 doi: 10.1007/978-3-319-50349-3_20 – start-page: 751 year: 2010 ident: B94 publication-title: Proceedings of the 19th European Conference on Artificial Intelligence – ident: B135 doi: 10.1109/CEC.2015.7257045 – year: 2015 ident: B59 publication-title: Conference version appeared in Parallel Problem Solving from Nature – ident: B124 doi: 10.24963/ijcai.2017/715 – start-page: 69:151 year: 2013 ident: B143 publication-title: Annals of Mathematics and Artificial Intelligence – volume: 1 start-page: 23 year: 1991 ident: B44 publication-title: Foundations of genetic algorithms – volume-title: Automated planning: Theory and practice year: 2004 ident: B65 – ident: B105 doi: 10.1145/2739480.2754642 – start-page: 438 year: 2004 ident: B159 publication-title: Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming – start-page: 206:79 year: 2014 ident: B88 publication-title: Artificial Intelligence – ident: B214 doi: 10.1007/978-1-4757-2440-0 – ident: B57 doi: 10.1109/CEC.2000.870802 – start-page: 115 year: 2014 ident: B104 publication-title: EVOLVE—A bridge between probability, set oriented numerics, and evolutionary computation V doi: 10.1007/978-3-319-07494-8_9 – ident: B107 doi: 10.1109/CEC.2016.7748359 – start-page: 1153 volume-title: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO) year: 2013 ident: B163 doi: 10.1145/2464576.2482693 – start-page: 184 volume-title: Proceedings of the 6th International Conference on Genetic Algorithms year: 1995 ident: B92 – start-page: 1 year: 2015 ident: B161 publication-title: Proceedings of the 12th International Conference on Artificial Evolution – ident: B146 doi: 10.1007/978-3-642-32378-2_6 – start-page: 1 year: 2019 ident: B34 publication-title: Business and Information Systems Engineering – ident: B110 doi: 10.1162/evco_a_00234 – start-page: 1 year: 2015 ident: B144 publication-title: Soft Computing – start-page: 1095 volume-title: Proceedings of the 27th International Conference on Machine Learning year: 2010 ident: B199 – ident: B215 doi: 10.1162/106365600568095 – ident: B106 doi: 10.1145/2908812.2908845 – ident: B151 doi: 10.1007/978-3-642-20525-5_30 – ident: B40 doi: 10.1162/evco.1998.6.2.109 – start-page: 15:65 year: 1976 ident: B172 publication-title: Advances in Computers – ident: B77 doi: 10.1017/S1471068414000210 – ident: B8 doi: 10.1145/2739482.2768467 – ident: B66 doi: 10.1016/S0004-3702(00)00081-3 – start-page: 279:94 year: 2014 ident: B195 publication-title: Information Sciences – ident: B132 doi: 10.1109/CEC.2009.4983112 – ident: B10 doi: 10.1007/978-3-642-40137-4 – volume: 35 start-page: 48 issue: 3 year: 2014 ident: B111 publication-title: AI – ident: B109 doi: 10.1007/978-3-319-45823-6_90 – ident: B187 doi: 10.1162/106365602317301754 – ident: B15 doi: 10.1145/3071178.3071343 – year: 2013 ident: B51 publication-title: NIPS Workshop on Bayesian Optimization in Theory and Practice – start-page: 288 year: 2008 ident: B176 publication-title: Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling – ident: B170 doi: 10.1007/s10601-008-9051-2 – ident: B221 doi: 10.1109/4235.585893 – volume-title: Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling year: 2014 ident: B53 – ident: B136 doi: 10.1007/978-3-642-44973-4_17 – ident: B9 doi: 10.1145/2464576.2482701 – start-page: 3 year: 2016 ident: B27 publication-title: Proceedings of the Conference of the Italian Association for Artificial Intelligence – ident: B175 doi: 10.1142/S0218213017600065 – ident: B173 doi: 10.1007/BF02592071 – volume-title: The traveling salesman problem: A computational study year: 2007 ident: B5 doi: 10.1515/9781400841103 – ident: B184 doi: 10.1162/evco.2007.15.2.169 |
SSID | ssj0013201 |
Score | 2.6637614 |
Snippet | It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different... |
SourceID | proquest pubmed crossref mit |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
SubjectTerms | Algorithms automated algorithm configuration Automated algorithm selection Automation Combinatorial analysis combinatorial optimisation continuous optimisation data streams exploratory landscape analysis feature-based approaches machine learning metalearning Optimization System effectiveness |
Title | Automated Algorithm Selection: Survey and Perspectives |
URI | https://direct.mit.edu/evco/article/doi/10.1162/evco_a_00242 https://www.ncbi.nlm.nih.gov/pubmed/30475672 https://www.proquest.com/docview/2202531325 https://www.proquest.com/docview/2138637176 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4EDjPFV2FCQ4IQyEjuxG27dxhQhgSaxSdysxHFZRddMa9LD_nresxMnGas0uERVbCd13vN7P_t9EfI-jwoABbPCnxXChOQkfkL5xBdMgMLXCfAUxg5_-87T8-jrz7hnaDfRJVV-oG7ujCv5H6rCPaArRsn-A2XdQ-EG_Ab6whUoDNd70XhaVyUgTsCM08WvErb5F5ew-BfGu8p4bPyor9faZlg67aIqV4Pj-HXzF9F9TpkaD0PjPIxTF9aF5zRbqcy5ZKSlddFLywWGDqcH3cEyWgYcLnaxQKAX66ptSfX8t-6fOWCYU-t01YhJADY-pu2xWqQVnYEPtI36stXG_Q94yApK1tO4Np_k37KcY25YvValzKTBEp3Oau30t1SZczA0WxtOZX_0FtmmAgDWiGxPD48PT3rGJlMl202qjY_g9FN__AC5bF3Oq82bEgNOznbI42ZX4U0tizwlD_RylzxpK3Z4jQDfJY966SefEe74x3P84zn--exZ7vGAe7w-9zwn5ydfzo5Sv6mj4asoEpUvlGYTgO6YO5LmBStiwPiaJyGD5ctirjOAqToWmBkXGlSeYR60mEVBjsmNKHtBRstyqV8RL2BY3wxaVayisGBJAV1poqNZUgQJnY3Jx_YbSdUkmcdaJwt5F0XG5IPrfWWTq2zo9w4-t2xW3mpDn2TQB9vWVMxDybDuJJcU0CwMk8FE3syvbo3dawnZPYDCgBgTm8bwetcMwhctatlSlzX0CdmEMxEKPiYvLQO4iaA9O-aCvr7nJN-Qh91S2yOj6rrW-wB4q_xtw7B_AGWNqIk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Algorithm+Selection%3A+Survey+and+Perspectives&rft.jtitle=Evolutionary+computation&rft.au=Kerschke%2C+Pascal&rft.au=Hoos%2C+Holger+H.&rft.au=Neumann%2C+Frank&rft.au=Trautmann%2C+Heike&rft.date=2019-03-01&rft.issn=1063-6560&rft.eissn=1530-9304&rft.volume=27&rft.issue=1&rft.spage=3&rft.epage=45&rft_id=info:doi/10.1162%2Fevco_a_00242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_evco_a_00242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6560&client=summon |