Automated Algorithm Selection: Survey and Perspectives

It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of t...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary computation Vol. 27; no. 1; pp. 3 - 45
Main Authors Kerschke, Pascal, Hoos, Holger H., Neumann, Frank, Trautmann, Heike
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.03.2019
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN1063-6560
1530-9304
1530-9304
DOI10.1162/evco_a_00242

Cover

Abstract It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.
AbstractList It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.
It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.
It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Per-instance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems. This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling, or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective per-instance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.
Author Trautmann, Heike
Neumann, Frank
Hoos, Holger H.
Kerschke, Pascal
Author_xml – sequence: 1
  givenname: Pascal
  surname: Kerschke
  fullname: Kerschke, Pascal
  email: kerschke@uni-muenster.de
  organization: Information Systems and Statistics, University of Münster, 48149 Münster, Germany kerschke@uni-muenster.de
– sequence: 2
  givenname: Holger H.
  surname: Hoos
  fullname: Hoos, Holger H.
  organization: Leiden Institute of Advanced Computer Science, Leiden University, 2333 CA Leiden, The Netherlands hh@liacs.nl
– sequence: 3
  givenname: Frank
  surname: Neumann
  fullname: Neumann, Frank
  email: frank.neumann@adelaide.edu.au
  organization: Optimisation and Logistics, The University of Adelaide, Adelaide, SA 5005, Australia frank.neumann@adelaide.edu.au
– sequence: 4
  givenname: Heike
  surname: Trautmann
  fullname: Trautmann, Heike
  email: trautmann@uni-muenster.de
  organization: Information Systems and Statistics, University of Münster, 48149 Münster, Germany trautmann@uni-muenster.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30475672$$D View this record in MEDLINE/PubMed
BookMark eNp1kN1LwzAUxYNM1E3ffJaCL3uwmo8maX1yDL9goKA-hyy9aqRtZtIO5l9vyhzI0KeE3N859-QM0aBxDSB0TPA5IYJewNI4pRXGNKM76IBwhtOC4WwQ71iwVHCB99EwhA-MCaOY7KH9OJZcSHqAxKRrXa1bKJNJ9ea8bd_r5AkqMK11zWXy1PklrBLdlMkj-LDo35cQDtHuq64CHP2cI_Ryc_08vUtnD7f308ksNVkm21QaYDnOeCF4QeclKzlnDERBmDGacQFasAK4ZJz2AzPXMicZZxmeU5kRykZovPZdePfZQWhVbYOBqtINuC4oSlgumCRSRPR0C_1wnW9iOkUpjv7x8zxSJz9UN6-hVAtva-1XatNIBOgaMN6F4OFVGdvqvozWa1spglVfu_pdexSdbYk2vv_gV2u8tr9S9siSSktiGJJLoWJqEtUK5-rLLrYtxn9Y_LntG6DUo58
CitedBy_id crossref_primary_10_1145_3561974
crossref_primary_10_1016_j_ejor_2024_06_029
crossref_primary_10_3390_e26030262
crossref_primary_10_1109_TEVC_2022_3214894
crossref_primary_10_1016_j_eswa_2021_114694
crossref_primary_10_1016_j_eswa_2022_117058
crossref_primary_10_1016_j_jocs_2022_101562
crossref_primary_10_1016_j_neucom_2022_06_084
crossref_primary_10_1109_TEVC_2021_3108185
crossref_primary_10_1109_TEVC_2022_3186667
crossref_primary_10_1002_int_22549
crossref_primary_10_1016_j_asoc_2022_109452
crossref_primary_10_1109_TCYB_2024_3412997
crossref_primary_10_1016_j_ejor_2023_04_023
crossref_primary_10_1007_s11227_023_05218_y
crossref_primary_10_1109_TEVC_2022_3169770
crossref_primary_10_3390_math9212751
crossref_primary_10_1109_ACCESS_2020_2964726
crossref_primary_10_1007_s10479_023_05508_x
crossref_primary_10_1007_s00453_020_00742_2
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1016_j_neucom_2022_10_075
crossref_primary_10_3390_a14020040
crossref_primary_10_1162_evco_a_00325
crossref_primary_10_1016_j_jss_2023_111883
crossref_primary_10_1145_3463369
crossref_primary_10_5937_bizinfo2401001A
crossref_primary_10_1007_s00291_024_00804_9
crossref_primary_10_1515_revce_2024_0060
crossref_primary_10_1109_ACCESS_2024_3395495
crossref_primary_10_1049_tje2_12368
crossref_primary_10_1145_3673908
crossref_primary_10_1109_TAI_2020_3022339
crossref_primary_10_1016_j_ejor_2024_06_005
crossref_primary_10_1142_S0129065721500209
crossref_primary_10_3390_app14146035
crossref_primary_10_1007_s10994_022_06161_4
crossref_primary_10_1016_j_ejor_2021_04_032
crossref_primary_10_1109_ACCESS_2023_3238872
crossref_primary_10_1016_j_swevo_2021_100888
crossref_primary_10_1016_j_ins_2024_121397
crossref_primary_10_1109_TEVC_2022_3208595
crossref_primary_10_3390_jpm12060908
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_3390_electronics9111759
crossref_primary_10_1109_TMC_2023_3301973
crossref_primary_10_1002_stvr_1861
crossref_primary_10_4204_EPTCS_306_35
crossref_primary_10_1007_s10601_023_09364_1
crossref_primary_10_1109_TMC_2022_3227770
crossref_primary_10_3390_en13174291
crossref_primary_10_1145_3558774
crossref_primary_10_1016_j_knosys_2022_109199
crossref_primary_10_1002_hyp_14857
crossref_primary_10_1093_nsr_nwae132
crossref_primary_10_1016_j_tcs_2022_10_019
crossref_primary_10_1016_j_ejor_2022_01_034
crossref_primary_10_1007_s12599_020_00642_3
crossref_primary_10_1109_JAS_2023_123687
crossref_primary_10_1016_j_artint_2023_103915
crossref_primary_10_1109_TEVC_2022_3232844
crossref_primary_10_1007_s12293_022_00367_8
crossref_primary_10_1007_s41060_020_00229_x
crossref_primary_10_1109_TSMC_2020_3027860
crossref_primary_10_3390_electronics10070781
crossref_primary_10_1016_j_eswa_2024_123937
crossref_primary_10_1162_evco_e_00324
crossref_primary_10_7498_aps_70_20210831
crossref_primary_10_1016_j_swevo_2024_101838
crossref_primary_10_1109_TETCI_2022_3146882
crossref_primary_10_1016_j_cor_2021_105489
crossref_primary_10_1016_j_cor_2023_106290
crossref_primary_10_3390_a12100200
crossref_primary_10_1145_3568680
crossref_primary_10_3390_app14062542
crossref_primary_10_3390_math9233036
crossref_primary_10_3390_land11060923
crossref_primary_10_3390_math10030432
crossref_primary_10_1016_j_eswa_2020_113613
crossref_primary_10_1016_j_jss_2025_112373
crossref_primary_10_3390_s21248401
crossref_primary_10_1109_ACCESS_2024_3468723
crossref_primary_10_1109_JSTARS_2022_3226516
crossref_primary_10_1109_TEVC_2022_3215013
crossref_primary_10_1111_itor_12922
crossref_primary_10_1016_j_asoc_2023_110121
crossref_primary_10_1016_j_dss_2020_113343
crossref_primary_10_1016_j_swevo_2022_101148
crossref_primary_10_1145_3646554
crossref_primary_10_1109_TSMC_2024_3374889
crossref_primary_10_1109_LRA_2024_3518077
crossref_primary_10_1016_j_cor_2025_107050
crossref_primary_10_1109_ACCESS_2023_3243068
crossref_primary_10_1016_j_cor_2024_106836
crossref_primary_10_1016_j_eswa_2024_123838
crossref_primary_10_1162_evco_a_00341
crossref_primary_10_1016_j_softx_2023_101355
crossref_primary_10_1007_s00521_022_07060_4
crossref_primary_10_1016_j_swevo_2024_101534
crossref_primary_10_1007_s10994_022_06271_z
crossref_primary_10_1007_s10898_025_01472_x
crossref_primary_10_1016_j_asoc_2023_110815
crossref_primary_10_1016_j_eswa_2024_123151
crossref_primary_10_1109_TEVC_2022_3205165
crossref_primary_10_1016_j_swevo_2025_101894
crossref_primary_10_1145_3637225
crossref_primary_10_1016_j_asoc_2020_106103
crossref_primary_10_1080_03081079_2023_2245124
crossref_primary_10_1007_s13748_019_00185_z
crossref_primary_10_1038_s41598_023_35132_5
crossref_primary_10_3390_a14030100
crossref_primary_10_1007_s41870_022_01065_x
crossref_primary_10_1111_exsy_13400
crossref_primary_10_1002_net_22244
crossref_primary_10_1016_j_tre_2022_102835
crossref_primary_10_1109_TEVC_2019_2940828
crossref_primary_10_1016_j_ins_2024_120272
crossref_primary_10_1016_j_neucom_2021_09_023
crossref_primary_10_1016_j_compchemeng_2024_108688
crossref_primary_10_1111_itor_12906
crossref_primary_10_3390_math10091544
crossref_primary_10_1016_j_ins_2019_06_040
crossref_primary_10_1016_j_asoc_2019_105901
Cites_doi 10.1007/978-3-319-11812-3_28
10.1145/3071178.3071304
10.1007/s11390-014-1416-y
10.1007/s10994-017-5629-5
10.1007/978-3-642-23229-9_8
10.1126/science.275.5296.51
10.1145/2330163.2330209
10.1145/2739480.2754717
10.1109/TEVC.2016.2599164
10.1162/evco_a_00194
10.1214/aos/1176347963
10.1145/2487575.2487629
10.1145/3075564.3078887
10.1007/978-3-319-99253-2_8
10.7551/mitpress/10654.001.0001
10.1109/TEVC.2005.861417
10.1109/ICTAI.2013.12
10.1609/aimag.v36i3.2571
10.1007/978-3-540-31880-4_18
10.1109/IJCNN.2008.4634391
10.1145/2464576.2482696
10.1007/978-3-642-44973-4_4
10.1007/978-0-387-84858-7
10.1007/978-3-319-07407-8
10.1007/978-3-319-98334-9_13
10.3233/HIS-2011-0133
10.1142/S021821301460032X
10.1093/oso/9780195079517.001.0001
10.1007/978-3-642-13800-3_7
10.1287/opre.21.2.498
10.1609/aimag.v33i1.2395
10.1007/978-3-642-02538-9_5
10.1007/978-3-319-50349-3_4
10.1162/evco.2006.14.4.433
10.18637/jss.v011.i09
10.1109/TEVC.2014.2302006
10.1287/ijoc.1060.0175
10.1613/jair.2861
10.1007/3-540-44826-8_17
10.1109/TEVC.2014.2313407
10.1017/CBO9780511543357
10.1126/science.1205438
10.1109/ICTAI.2015.79
10.1145/2464576.2501592
10.1023/A:1009745219419
10.1007/s10462-009-9124-7
10.1109/TPAMI.2005.127
10.1007/s10472-011-9230-5
10.1145/3071178.3071278
10.1007/978-3-642-13800-3_29
10.1007/978-3-319-26561-2
10.1145/2739480.2754705
10.1007/978-3-540-70928-2_68
10.1007/978-3-319-69404-7_17
10.1057/jors.2013.71
10.1109/AIDM.2006.4
10.1145/3071178.3071305
10.1007/978-0-387-45528-0
10.1007/978-3-319-09584-4_4
10.1162/evco_a_00234
10.1109/CEC.2016.7743962
10.1007/978-3-319-54157-0_23
10.1007/s12293-015-0159-9
10.1007/978-3-642-02538-9_9
10.1145/1143997.1144085
10.1287/ijoc.1120.0506
10.1109/TKDE.2002.1000348
10.1145/2908812.2908820
10.1007/978-3-642-34413-8_9
10.1007/s10994-017-5686-9
10.1145/3205455.3205548
10.1002/sam.11380
10.1023/A:1015454612213
10.1145/3205651.3208233
10.1007/978-3-319-45823-6_15
10.1007/978-3-642-25566-3_40
10.1007/s12532-009-0004-6
10.1007/978-3-030-05348-2_19
10.1162/106365600568202
10.1162/evco_a_00222
10.1109/TSMCB.2008.2006910
10.1007/s00500-016-2091-4
10.1145/3071178.3071205
10.1007/978-3-319-19084-6_18
10.1109/ICIAFS.2014.7069635
10.1007/3-540-45692-9_10
10.1007/1-84628-137-7_6
10.1145/2460239.2460253
10.1007/BFb0056848
10.1145/2001576.2001690
10.1162/EVCO_a_00121
10.1145/2739480.2754747
10.1109/ICTAI.2014.18
10.1145/3067695.3082477
10.32614/RJ-2017-004
10.1007/978-3-319-50349-3_20
10.1109/CEC.2015.7257045
10.24963/ijcai.2017/715
10.1145/2739480.2754642
10.1007/978-1-4757-2440-0
10.1109/CEC.2000.870802
10.1007/978-3-319-07494-8_9
10.1109/CEC.2016.7748359
10.1145/2464576.2482693
10.1007/978-3-642-32378-2_6
10.1162/106365600568095
10.1145/2908812.2908845
10.1007/978-3-642-20525-5_30
10.1162/evco.1998.6.2.109
10.1017/S1471068414000210
10.1145/2739482.2768467
10.1016/S0004-3702(00)00081-3
10.1109/CEC.2009.4983112
10.1007/978-3-642-40137-4
10.1007/978-3-319-45823-6_90
10.1162/106365602317301754
10.1145/3071178.3071343
10.1007/s10601-008-9051-2
10.1109/4235.585893
10.1007/978-3-642-44973-4_17
10.1145/2464576.2482701
10.1142/S0218213017600065
10.1007/BF02592071
10.1515/9781400841103
10.1162/evco.2007.15.2.169
ContentType Journal Article
Copyright Copyright MIT Press Journals, The Spring 2019
Copyright_xml – notice: Copyright MIT Press Journals, The Spring 2019
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1162/evco_a_00242
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
EndPage 45
ExternalDocumentID 30475672
10_1162_evco_a_00242
evco_a_00242.pdf
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABDBF
ABGDV
ABMYL
ABQDU
ACATF
ACM
ACVLL
ADHRN
ADL
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AIYWX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
MCG
MINIK
O9-
OCL
P2P
PK0
RMI
SV3
TUS
W7O
ZWS
AAYOK
AAYXX
ABAZT
ABJNI
ABVLG
ACUHS
AEFXT
AEJOY
AKRVB
CAG
CITATION
COF
LHSKQ
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c447t-7ce3804596592bd3d5533e6913cca356ea639e57352533ecba78145340b274123
ISSN 1063-6560
1530-9304
IngestDate Fri Jul 11 10:53:35 EDT 2025
Sun Jun 29 16:21:11 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
Tue Jul 01 01:17:50 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Mon Mar 11 05:41:17 EDT 2024
Tue Mar 01 17:17:31 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords metalearning
data streams
exploratory landscape analysis
feature-based approaches
continuous optimisation
machine learning
Automated algorithm selection
automated algorithm configuration
combinatorial optimisation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-7ce3804596592bd3d5533e6913cca356ea639e57352533ecba78145340b274123
Notes Spring, 2019
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.mitpressjournals.org/doi/pdf/10.1162/evco_a_00242
PMID 30475672
PQID 2202531325
PQPubID 2047842
PageCount 43
ParticipantIDs mit_journals_evcov27i1_301876_2021_11_08_zip_evco_a_00242
crossref_citationtrail_10_1162_evco_a_00242
proquest_journals_2202531325
mit_journals_10_1162_evco_a_00242
pubmed_primary_30475672
proquest_miscellaneous_2138637176
crossref_primary_10_1162_evco_a_00242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2019
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B21
Ansótegui C. (B4) 2015
B22
B24
B25
B26
Bossek J. (B27) 2016
Loshchilov I. (B129) 2013
Smith-Miles K. A. (B190) 2009
B28
Gao W. (B59) 2015
Kerschke P. (B103) 2017
Roberts M. (B176) 2008
Biere A. (B16) 2009; 185
B30
B31
Huyer W. (B89) 2009
B33
Applegate D. L. (B5) 2007
B208
B206
B207
B205
Cameron C. (B32) 2017
Ortiz-Bayliss J. C. (B162) 2015
B203
Gerevini A. (B61) 2005
B1
B201
B2
B3
Wright S. (B222) 1932
B7
B8
Ulrich T. (B204) 2010
B9
B40
B42
B43
Cook D. J. (B39) 1997
B46
B215
B214
B211
B212
Wagner M. (B216) 2017
Wessing S. (B218) 2016
López-Ibáñez M. (B127) 2016
Jones T. (B92) 1995
B50
Nagata Y. (B152) 1997
B52
B55
Hsu E. I. (B80) 2009
B56
B57
B58
B109
B107
B108
van Rijn J. N. (B209) 2013
B229
B105
B106
B227
B101
B102
B223
Grimme C. (B67) 2018
B221
Eggensperger K. (B51) 2013
B66
Rosé H. (B179) 1996
Leyton-Brown K. (B117) 2002
B119
B115
Lindauer T. M. (B122) 2015
B112
Roussel O (B180) 2012
B110
Gerevini A. (B62) 2003
Poursoltan S. (B168) 2015; 9491
B71
B72
Malan K. M. (B133) 2013
B75
B77
B78
B128
B124
B121
Rice J. R. (B172) 1976
Xu L. (B224) 2007
B81
B82
B84
B85
Naudts B. (B155) 1997
B86
B87
Ghallab M. (B65) 2004
Howe A. E. (B79) 1999
B136
B137
van Rijn J. N. (B210) 2014
B134
B135
Xu L. (B225) 2008
Xu L. (B226) 2012
B132
B130
Muñoz Acosta M. A. (B145) 2012
Arik S. (B6) 2015
B90
Coello Coello C. A. (B37) 2007
B95
B96
Gent I. P. (B60) 1999; 99
B147
B148
B146
B141
B142
B140
Gerevini A. (B63) 2009
Bischl B. (B19) 2016
Boukeas G. (B29) 2004
Witten I. H. (B219) 2016
B157
Rochet S. (B177) 1997
Morgan R. (B144) 2015
B154
Cenamor I. (B36) 2014
Hutter F. (B88) 2014
B153
B150
Mersmann O. (B143) 2013
B151
Dietterich T. G. (B49) 2000
Lindauer T. M. (B123) 2015
Collautti M. (B38) 2013
Bischl B. (B20) 2016; 17
Nudelman E. (B158) 2004
Kadioglu S. (B93) 2011
B169
Leyton-Brown K. (B116) 2003
Lindauer T. M. (B125) 2017; 79
B165
B166
Pál L (B163) 2013
B164
Hutter F. (B83) 2006
B160
Kotthoff L (B111) 2014; 35
B178
B174
B175
Davidor Y. (B44) 1991; 1
B173
B170
B171
Fawcett C. (B53) 2014
Tu H.-H. (B199) 2010
B189
B187
B188
Kerschke P. (B100) 2017
B185
B186
B183
B184
B181
B182
Tang K. (B195) 2014
B198
B196
B197
B194
B192
B193
Degroote H. (B47) 2016; 1649
Kadioglu S. (B94) 2010
B191
Helmert M. (B73) 2006
Bossek J. (B23) 2015
Mahajan Y. S. (B131) 2004
Maron O. (B139) 1994
Muñoz Acosta M. A. (B149) 2015
Birattari M. (B18) 2002
Kotthoff L. (B113) 2017; 18
Hamerly G. (B68) 2003
Kovárik O. (B114) 2012
Nudelman E. (B159) 2004
Flamm C. (B54) 2002; 216
Ochoa G. (B161) 2015
Carnein M. (B34) 2019
Kauffman S. A (B97) 1993
B10
B11
B12
B13
B14
B15
B17
Kerschke P. (B104) 2014
Poursoltan S. (B167) 2015; 9491
Maratea M. (B138) 2012; 17
Helsgaun K. (B74) 2000
Wolpert D. H. (B220) 1995
Cenamor I. (B35) 2013
Hoffmann J. (B76) 2011
References_xml – start-page: 325
  year: 2014
  ident: B210
  publication-title: Proceedings of the 17th International Conference on Discovery Science
  doi: 10.1007/978-3-319-11812-3_28
– ident: B182
  doi: 10.1145/3071178.3071304
– ident: B2
  doi: 10.1007/s11390-014-1416-y
– start-page: 15
  year: 2017
  ident: B32
  publication-title: Proceedings of the Open Algorithm Selection Challenge
– volume-title: Evolutionary algorithms for solving multi-objective problems
  year: 2007
  ident: B37
– ident: B150
  doi: 10.1007/s10994-017-5629-5
– ident: B166
  doi: 10.1007/978-3-642-23229-9_8
– start-page: 126:106
  year: 2000
  ident: B74
  publication-title: European Journal of Operational Research
– ident: B82
  doi: 10.1126/science.275.5296.51
– start-page: 696
  year: 2007
  ident: B224
  publication-title: Proceedings of the 13th International Conference on Principles and Practice of Constraint Programming
– ident: B21
  doi: 10.1145/2330163.2330209
– ident: B13
  doi: 10.1145/2739480.2754717
– ident: B194
  doi: 10.1109/TEVC.2016.2599164
– start-page: 35
  year: 2014
  ident: B36
  publication-title: Proceedings of the Eighth International Planning Competition
– ident: B148
  doi: 10.1162/evco_a_00194
– ident: B56
  doi: 10.1214/aos/1176347963
– start-page: 11
  volume-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation (GECCO)
  year: 2002
  ident: B18
– year: 2004
  ident: B158
  publication-title: SAT Competition 2004
– ident: B196
  doi: 10.1145/2487575.2487629
– ident: B33
  doi: 10.1145/3075564.3078887
– start-page: 360
  year: 2004
  ident: B131
  publication-title: Proceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing
– start-page: 454
  year: 2011
  ident: B93
  publication-title: Proceedings of the 17th International Conference on Principles and Practice of Constraint Programming
– volume: 9491
  start-page: 344
  year: 2015
  ident: B167
  publication-title: Neural Information Processing. ICONIP 2015
– start-page: 32:565
  year: 2008
  ident: B225
  publication-title: Journal of Artificial Intelligence Resesearch
– ident: B198
  doi: 10.1007/978-3-319-99253-2_8
– ident: B17
  doi: 10.7551/mitpress/10654.001.0001
– start-page: 237:41
  year: 2016
  ident: B19
  publication-title: Artificial Intelligence
– volume-title: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO)
  year: 2009
  ident: B89
– ident: B81
  doi: 10.1109/TEVC.2005.861417
– volume: 18
  start-page: 1
  issue: 25
  year: 2017
  ident: B113
  publication-title: Journal of Machine Learning Research
– ident: B206
  doi: 10.1109/ICTAI.2013.12
– ident: B205
  doi: 10.1609/aimag.v36i3.2571
– ident: B42
  doi: 10.1007/978-3-540-31880-4_18
– ident: B189
  doi: 10.1109/IJCNN.2008.4634391
– start-page: 1177
  volume-title: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO)
  year: 2013
  ident: B129
  doi: 10.1145/2464576.2482696
– ident: B1
  doi: 10.1007/978-3-642-44973-4_4
– ident: B72
  doi: 10.1007/978-0-387-84858-7
– ident: B169
  doi: 10.1007/978-3-319-07407-8
– volume: 17
  start-page: 1
  issue: 170
  year: 2016
  ident: B20
  publication-title: Journal of Machine Learning Research
– volume: 79
  start-page: 1
  year: 2017
  ident: B125
  publication-title: Proceedings of Machine Learning Research
– ident: B78
  doi: 10.1007/978-3-319-98334-9_13
– ident: B95
  doi: 10.3233/HIS-2011-0133
– ident: B207
  doi: 10.1142/S021821301460032X
– volume-title: The origins of order: Self-organization and selection in evolution
  year: 1993
  ident: B97
  doi: 10.1093/oso/9780195079517.001.0001
– ident: B58
  doi: 10.1007/978-3-642-13800-3_7
– ident: B119
  doi: 10.1287/opre.21.2.498
– ident: B90
  doi: 10.1609/aimag.v33i1.2395
– ident: B43
  doi: 10.1007/978-3-642-02538-9_5
– ident: B26
  doi: 10.1007/978-3-319-50349-3_4
– ident: B208
  doi: 10.1162/evco.2006.14.4.433
– ident: B96
  doi: 10.18637/jss.v011.i09
– ident: B147
  doi: 10.1109/TEVC.2014.2302006
– start-page: 59
  volume-title: Proceedings of Advances in Neural Information Processing Systems 6
  year: 1994
  ident: B139
– ident: B203
  doi: 10.1287/ijoc.1060.0175
– ident: B86
  doi: 10.1613/jair.2861
– start-page: 707
  year: 2010
  ident: B204
  publication-title: Proceedings of the 11th International Conference on Parallel Problem Solving from Nature
– ident: B30
  doi: 10.1007/3-540-44826-8_17
– volume: 216
  start-page: 155
  issue: 2
  year: 2002
  ident: B54
  publication-title: Zeitschrift für Physikalische Chemie. International Journal of Research in Physical Chemistry and Chemical Physics
– ident: B201
  doi: 10.1109/TEVC.2014.2313407
– ident: B12
  doi: 10.1017/CBO9780511543357
– start-page: 213
  year: 2006
  ident: B83
  publication-title: Proceedings of the 12th International Conference on Principles and Practice of Constraint Programming
– ident: B171
  doi: 10.1126/science.1205438
– start-page: 556
  year: 2002
  ident: B117
  publication-title: Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming
– ident: B174
  doi: 10.1109/ICTAI.2015.79
– volume: 9491
  start-page: 332
  year: 2015
  ident: B168
  publication-title: Neural Information Processing. ICONIP 2015
– ident: B84
  doi: 10.1145/2464576.2501592
– ident: B183
  doi: 10.1023/A:1009745219419
– ident: B178
  doi: 10.1007/s10462-009-9124-7
– ident: B115
  doi: 10.1109/TPAMI.2005.127
– start-page: 26:191
  year: 2006
  ident: B73
  publication-title: Journal of Artificial Intelligence Research
– ident: B191
  doi: 10.1007/s10472-011-9230-5
– ident: B11
  doi: 10.1145/3071178.3071278
– start-page: 1
  year: 2017
  ident: B103
  publication-title: Evolutionary Computation
– ident: B188
  doi: 10.1007/978-3-642-13800-3_29
– year: 2015
  ident: B6
  publication-title: Proceedings Part III of the 22nd International Conference on Neural Information Processing
  doi: 10.1007/978-3-319-26561-2
– start-page: 435
  year: 2013
  ident: B38
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– start-page: 377
  year: 2009
  ident: B80
  publication-title: Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing
– start-page: 46
  volume-title: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions
  year: 2012
  ident: B180
– year: 2015
  ident: B23
  publication-title: netgen: Network generator for combinatorial graph problems
– year: 2016
  ident: B218
  publication-title: optproblems: Infrastructure to define optimization problems and some test problems for black-box optimization
– ident: B140
  doi: 10.1145/2739480.2754705
– ident: B52
  doi: 10.1007/978-3-540-70928-2_68
– start-page: 20:239
  year: 2003
  ident: B62
  publication-title: Journal of Artificial Intelligence Research
– ident: B164
  doi: 10.1007/978-3-319-69404-7_17
– start-page: 643
  year: 2013
  ident: B209
  publication-title: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume-title: Data mining: Practical machine learning tools and techniques
  year: 2016
  ident: B219
– start-page: 228
  year: 2012
  ident: B226
  publication-title: Proceedings of the 15th International Conference on Theory and Applications of Satisfiability Testing
– year: 2018
  ident: B67
  publication-title: Proceedings of the International Global Optimization Workshop
– year: 2017
  ident: B100
  publication-title: flacco: Feature-based landscape analysis of continuous and constrained optimization problems
– start-page: 184
  year: 2004
  ident: B29
  publication-title: SOFSEM: 30th International Conference on Current Trends in Theory and Practice of Computer Science
– start-page: 1
  year: 2015
  ident: B122
  publication-title: Proceedings of the 9th International Conference on Learning and Intelligent Optimization
– start-page: 190
  year: 2015
  ident: B162
  publication-title: Proceedings of the 14th Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence and Soft Computing, Part I
– volume: 1649
  start-page: 93
  year: 2016
  ident: B47
  publication-title: Proceedings of ITAT 2016: Information Technologies—Applications and Theory: Conference on Theory and Practice of Information Technologies
– ident: B31
  doi: 10.1057/jors.2013.71
– volume-title: Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling
  year: 2009
  ident: B63
– ident: B7
  doi: 10.1109/AIDM.2006.4
– start-page: 14
  volume-title: Proceedings of the Fourth Workshop on Planning and Learning at the Twenty-Third International Conference on Automated Planning and Scheduling
  year: 2013
  ident: B35
– ident: B181
  doi: 10.1145/3071178.3071305
– ident: B22
  doi: 10.1007/978-0-387-45528-0
– ident: B87
  doi: 10.1007/978-3-319-09584-4_4
– ident: B108
  doi: 10.1162/evco_a_00234
– ident: B157
  doi: 10.1109/CEC.2016.7743962
– ident: B102
  doi: 10.1007/978-3-319-54157-0_23
– start-page: 1
  year: 2017
  ident: B216
  publication-title: Journal of Heuristics
– ident: B227
  doi: 10.1007/s12293-015-0159-9
– ident: B128
  doi: 10.1007/978-3-642-02538-9_9
– ident: B130
  doi: 10.1145/1143997.1144085
– start-page: 356
  year: 1932
  ident: B222
  publication-title: Proceedings of the 6th International Congress of Genetics
– ident: B153
  doi: 10.1287/ijoc.1120.0506
– ident: B197
  doi: 10.1109/TKDE.2002.1000348
– volume-title: Proceedings of the Fourteenth National Conference on Artificial Intelligence
  year: 1997
  ident: B39
– start-page: 41:155
  year: 2011
  ident: B76
  publication-title: Journal of Artificial Intelligence Research
– start-page: 241:148
  year: 2013
  ident: B133
  publication-title: Information Sciences
– start-page: 1
  year: 2000
  ident: B49
  publication-title: Multiple Classifier Systems
– ident: B160
  doi: 10.1145/2908812.2908820
– ident: B141
  doi: 10.1007/978-3-642-34413-8_9
– ident: B211
  doi: 10.1007/s10994-017-5686-9
– ident: B25
  doi: 10.1145/3205455.3205548
– ident: B137
  doi: 10.1002/sam.11380
– ident: B3
  doi: 10.1023/A:1015454612213
– ident: B101
  doi: 10.1145/3205651.3208233
– ident: B14
  doi: 10.1007/978-3-319-45823-6_15
– start-page: 208
  year: 1996
  ident: B179
  publication-title: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature
– ident: B85
  doi: 10.1007/978-3-642-25566-3_40
– year: 1995
  ident: B220
  publication-title: No free lunch theorems for search
– ident: B75
  doi: 10.1007/s12532-009-0004-6
– start-page: 62
  year: 1999
  ident: B79
  publication-title: Proceedings of the Fifth European Conference on Planning
– volume: 17
  start-page: 37
  year: 2012
  ident: B138
  publication-title: Technical Communications of the 28th International Conference on Logic Programming
– ident: B28
  doi: 10.1007/978-3-030-05348-2_19
– ident: B229
  doi: 10.1162/106365600568202
– start-page: 450
  volume-title: Proceedings of the 7th International Conference on Genetic Algorithms
  year: 1997
  ident: B152
– ident: B134
  doi: 10.1162/evco_a_00222
– year: 2012
  ident: B114
  publication-title: Meta-learning and meta-optimization
– ident: B223
  doi: 10.1109/TSMCB.2008.2006910
– volume: 185
  year: 2009
  ident: B16
  publication-title: Handbook of satisfiability
– ident: B185
  doi: 10.1007/s00500-016-2091-4
– ident: B212
  doi: 10.1145/3071178.3071205
– start-page: 1
  volume-title: Proceedings of the IEEE Congress on Evolutionary Computation
  year: 2012
  ident: B145
– start-page: 41:1
  year: 2009
  ident: B190
  publication-title: ACM Computing Surveys
– volume: 99
  start-page: 654
  year: 1999
  ident: B60
  publication-title: Proceedings of the Sixteenth National Conference on Artificial Intelligence
– ident: B112
  doi: 10.1007/978-3-319-19084-6_18
– ident: B193
  doi: 10.1109/ICIAFS.2014.7069635
– ident: B192
  doi: 10.1007/3-540-45692-9_10
– start-page: 3:43
  year: 2016
  ident: B127
  publication-title: Operations Research Perspectives
– start-page: 733
  year: 2015
  ident: B4
  publication-title: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
– ident: B46
  doi: 10.1007/1-84628-137-7_6
– ident: B154
  doi: 10.1145/2460239.2460253
– start-page: 65
  volume-title: Proceedings of the 7th International Conference on Genetic Algorithms
  year: 1997
  ident: B155
– start-page: 275
  year: 1997
  ident: B177
  publication-title: European Conference on Artificial Evolution
– ident: B55
  doi: 10.1007/BFb0056848
– ident: B142
  doi: 10.1145/2001576.2001690
– start-page: 1542
  volume-title: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
  year: 2003
  ident: B116
– ident: B186
  doi: 10.1162/EVCO_a_00121
– ident: B50
  doi: 10.1145/2739480.2754747
– start-page: 317:224
  year: 2015
  ident: B149
  publication-title: Information Sciences
– start-page: 281
  volume-title: Proceedings of Advances in Neural Information Processing Systems 16
  year: 2003
  ident: B68
– ident: B165
  doi: 10.1109/ICTAI.2014.18
– ident: B71
  doi: 10.1145/3067695.3082477
– year: 2005
  ident: B61
  publication-title: Plan constraints and preferences in PDDL3
– ident: B24
  doi: 10.32614/RJ-2017-004
– start-page: 53:745
  year: 2015
  ident: B123
  publication-title: Journal of Artificial Intelligence Research
– ident: B121
  doi: 10.1007/978-3-319-50349-3_20
– start-page: 751
  year: 2010
  ident: B94
  publication-title: Proceedings of the 19th European Conference on Artificial Intelligence
– ident: B135
  doi: 10.1109/CEC.2015.7257045
– year: 2015
  ident: B59
  publication-title: Conference version appeared in Parallel Problem Solving from Nature
– ident: B124
  doi: 10.24963/ijcai.2017/715
– start-page: 69:151
  year: 2013
  ident: B143
  publication-title: Annals of Mathematics and Artificial Intelligence
– volume: 1
  start-page: 23
  year: 1991
  ident: B44
  publication-title: Foundations of genetic algorithms
– volume-title: Automated planning: Theory and practice
  year: 2004
  ident: B65
– ident: B105
  doi: 10.1145/2739480.2754642
– start-page: 438
  year: 2004
  ident: B159
  publication-title: Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming
– start-page: 206:79
  year: 2014
  ident: B88
  publication-title: Artificial Intelligence
– ident: B214
  doi: 10.1007/978-1-4757-2440-0
– ident: B57
  doi: 10.1109/CEC.2000.870802
– start-page: 115
  year: 2014
  ident: B104
  publication-title: EVOLVE—A bridge between probability, set oriented numerics, and evolutionary computation V
  doi: 10.1007/978-3-319-07494-8_9
– ident: B107
  doi: 10.1109/CEC.2016.7748359
– start-page: 1153
  volume-title: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO)
  year: 2013
  ident: B163
  doi: 10.1145/2464576.2482693
– start-page: 184
  volume-title: Proceedings of the 6th International Conference on Genetic Algorithms
  year: 1995
  ident: B92
– start-page: 1
  year: 2015
  ident: B161
  publication-title: Proceedings of the 12th International Conference on Artificial Evolution
– ident: B146
  doi: 10.1007/978-3-642-32378-2_6
– start-page: 1
  year: 2019
  ident: B34
  publication-title: Business and Information Systems Engineering
– ident: B110
  doi: 10.1162/evco_a_00234
– start-page: 1
  year: 2015
  ident: B144
  publication-title: Soft Computing
– start-page: 1095
  volume-title: Proceedings of the 27th International Conference on Machine Learning
  year: 2010
  ident: B199
– ident: B215
  doi: 10.1162/106365600568095
– ident: B106
  doi: 10.1145/2908812.2908845
– ident: B151
  doi: 10.1007/978-3-642-20525-5_30
– ident: B40
  doi: 10.1162/evco.1998.6.2.109
– start-page: 15:65
  year: 1976
  ident: B172
  publication-title: Advances in Computers
– ident: B77
  doi: 10.1017/S1471068414000210
– ident: B8
  doi: 10.1145/2739482.2768467
– ident: B66
  doi: 10.1016/S0004-3702(00)00081-3
– start-page: 279:94
  year: 2014
  ident: B195
  publication-title: Information Sciences
– ident: B132
  doi: 10.1109/CEC.2009.4983112
– ident: B10
  doi: 10.1007/978-3-642-40137-4
– volume: 35
  start-page: 48
  issue: 3
  year: 2014
  ident: B111
  publication-title: AI
– ident: B109
  doi: 10.1007/978-3-319-45823-6_90
– ident: B187
  doi: 10.1162/106365602317301754
– ident: B15
  doi: 10.1145/3071178.3071343
– year: 2013
  ident: B51
  publication-title: NIPS Workshop on Bayesian Optimization in Theory and Practice
– start-page: 288
  year: 2008
  ident: B176
  publication-title: Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling
– ident: B170
  doi: 10.1007/s10601-008-9051-2
– ident: B221
  doi: 10.1109/4235.585893
– volume-title: Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling
  year: 2014
  ident: B53
– ident: B136
  doi: 10.1007/978-3-642-44973-4_17
– ident: B9
  doi: 10.1145/2464576.2482701
– start-page: 3
  year: 2016
  ident: B27
  publication-title: Proceedings of the Conference of the Italian Association for Artificial Intelligence
– ident: B175
  doi: 10.1142/S0218213017600065
– ident: B173
  doi: 10.1007/BF02592071
– volume-title: The traveling salesman problem: A computational study
  year: 2007
  ident: B5
  doi: 10.1515/9781400841103
– ident: B184
  doi: 10.1162/evco.2007.15.2.169
SSID ssj0013201
Score 2.6637614
Snippet It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different...
SourceID proquest
pubmed
crossref
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Algorithms
automated algorithm configuration
Automated algorithm selection
Automation
Combinatorial analysis
combinatorial optimisation
continuous optimisation
data streams
exploratory landscape analysis
feature-based approaches
machine learning
metalearning
Optimization
System effectiveness
Title Automated Algorithm Selection: Survey and Perspectives
URI https://direct.mit.edu/evco/article/doi/10.1162/evco_a_00242
https://www.ncbi.nlm.nih.gov/pubmed/30475672
https://www.proquest.com/docview/2202531325
https://www.proquest.com/docview/2138637176
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4EDjPFV2FCQ4IQyEjuxG27dxhQhgSaxSdysxHFZRddMa9LD_nresxMnGas0uERVbCd13vN7P_t9EfI-jwoABbPCnxXChOQkfkL5xBdMgMLXCfAUxg5_-87T8-jrz7hnaDfRJVV-oG7ujCv5H6rCPaArRsn-A2XdQ-EG_Ab6whUoDNd70XhaVyUgTsCM08WvErb5F5ew-BfGu8p4bPyor9faZlg67aIqV4Pj-HXzF9F9TpkaD0PjPIxTF9aF5zRbqcy5ZKSlddFLywWGDqcH3cEyWgYcLnaxQKAX66ptSfX8t-6fOWCYU-t01YhJADY-pu2xWqQVnYEPtI36stXG_Q94yApK1tO4Np_k37KcY25YvValzKTBEp3Oau30t1SZczA0WxtOZX_0FtmmAgDWiGxPD48PT3rGJlMl202qjY_g9FN__AC5bF3Oq82bEgNOznbI42ZX4U0tizwlD_RylzxpK3Z4jQDfJY966SefEe74x3P84zn--exZ7vGAe7w-9zwn5ydfzo5Sv6mj4asoEpUvlGYTgO6YO5LmBStiwPiaJyGD5ctirjOAqToWmBkXGlSeYR60mEVBjsmNKHtBRstyqV8RL2BY3wxaVayisGBJAV1poqNZUgQJnY3Jx_YbSdUkmcdaJwt5F0XG5IPrfWWTq2zo9w4-t2xW3mpDn2TQB9vWVMxDybDuJJcU0CwMk8FE3syvbo3dawnZPYDCgBgTm8bwetcMwhctatlSlzX0CdmEMxEKPiYvLQO4iaA9O-aCvr7nJN-Qh91S2yOj6rrW-wB4q_xtw7B_AGWNqIk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Algorithm+Selection%3A+Survey+and+Perspectives&rft.jtitle=Evolutionary+computation&rft.au=Kerschke%2C+Pascal&rft.au=Hoos%2C+Holger+H.&rft.au=Neumann%2C+Frank&rft.au=Trautmann%2C+Heike&rft.date=2019-03-01&rft.issn=1063-6560&rft.eissn=1530-9304&rft.volume=27&rft.issue=1&rft.spage=3&rft.epage=45&rft_id=info:doi/10.1162%2Fevco_a_00242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_evco_a_00242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6560&client=summon