Multi-objective aerodynamic shape optimization using MOGA coupled to advanced adaptive mesh refinement

•We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and adaptive mesh results are compared.•Adaptive remeshing approach accelerates the optimization process.•Increasing the solution accuracy is another b...

Full description

Saved in:
Bibliographic Details
Published inComputers & fluids Vol. 88; pp. 298 - 312
Main Authors Kouhi, Mohammad, Lee, Dong Seop, Bugeda, Gabriel, Oñate, Eugenio
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.12.2013
Subjects
Online AccessGet full text
ISSN0045-7930
1879-0747
DOI10.1016/j.compfluid.2013.08.015

Cover

Abstract •We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and adaptive mesh results are compared.•Adaptive remeshing approach accelerates the optimization process.•Increasing the solution accuracy is another benefit of adaptive remeshing approach. This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study the trade-off between the mesh refinement during the optimization process and the improvement of the optimized solution. This subject is investigated in the transonic airfoil design optimization using an Adaptive Mesh Refinement (AMR) technique coupled to Multi-Objective Genetic Algorithm (MOGA) and an Euler aerodynamic analysis tool. The methodology is implemented to solve three practical design problems; the first test case considers a reconstruction design optimization that minimizes the pressure error between a predefined pressure curve and candidate pressure distribution. The second test considers the total drag minimization by designing airfoil shape operating at transonic speeds. For the final test case, a multi-objective design optimization is conducted to maximize both the lift to drag ratio (L/D) and lift coefficient (Cl). The solutions obtained with and without adaptive mesh refinement are compared in terms of solution improvement and computational cost. Numerical results clearly show that the use of adaptive mesh refinement can improve the solution accuracy while reducing significant computational cost in both single- and multi-objective design optimizations.
AbstractList This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study the trade-off between the mesh refinement during the optimization process and the improvement of the optimized solution. This subject is investigated in the transonic airfoil design optimization using an Adaptive Mesh Refinement (AMR) technique coupled to Multi-Objective Genetic Algorithm (MOGA) and an Euler aerodynamic analysis tool. The methodology is implemented to solve three practical design problems; the first test case considers a reconstruction design optimization that minimizes the pressure error between a predefined pressure curve and candidate pressure distribution. The second test considers the total drag minimization by designing airfoil shape operating at transonic speeds. For the final test case, a multi-objective design optimization is conducted to maximize both the lift to drag ratio (L/D) and lift coefficient (Cl). The solutions obtained with and without adaptive mesh refinement are compared in terms of solution improvement and computational cost. Numerical results clearly show that the use of adaptive mesh refinement can improve the solution accuracy while reducing significant computational cost in both single- and multi-objective design optimizations.
•We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and adaptive mesh results are compared.•Adaptive remeshing approach accelerates the optimization process.•Increasing the solution accuracy is another benefit of adaptive remeshing approach. This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study the trade-off between the mesh refinement during the optimization process and the improvement of the optimized solution. This subject is investigated in the transonic airfoil design optimization using an Adaptive Mesh Refinement (AMR) technique coupled to Multi-Objective Genetic Algorithm (MOGA) and an Euler aerodynamic analysis tool. The methodology is implemented to solve three practical design problems; the first test case considers a reconstruction design optimization that minimizes the pressure error between a predefined pressure curve and candidate pressure distribution. The second test considers the total drag minimization by designing airfoil shape operating at transonic speeds. For the final test case, a multi-objective design optimization is conducted to maximize both the lift to drag ratio (L/D) and lift coefficient (Cl). The solutions obtained with and without adaptive mesh refinement are compared in terms of solution improvement and computational cost. Numerical results clearly show that the use of adaptive mesh refinement can improve the solution accuracy while reducing significant computational cost in both single- and multi-objective design optimizations.
Author Lee, Dong Seop
Bugeda, Gabriel
Kouhi, Mohammad
Oñate, Eugenio
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Kouhi
  fullname: Kouhi, Mohammad
  email: kouhi@cimne.upc.edu
  organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain
– sequence: 2
  givenname: Dong Seop
  surname: Lee
  fullname: Lee, Dong Seop
  email: ds.chris.lee@gmail.com
  organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain
– sequence: 3
  givenname: Gabriel
  surname: Bugeda
  fullname: Bugeda, Gabriel
  email: bugeda@cimne.upc.edu
  organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain
– sequence: 4
  givenname: Eugenio
  surname: Oñate
  fullname: Oñate, Eugenio
  email: onate@cimne.upc.edu
  organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain
BookMark eNqNksFu3CAURVGVSp2k_Yay7MbuwzwMXnQxitq0UqJs2jViADeMbOMCHin9-ngyVRfZZFaA3rl38Q6X5GKKkyfkI4OaAWs_72sbx7kfluDqBhivQdXAxBuyYUp2FUiUF2QDgKKSHYd35DLnPaxv3uCG9HfLUEIVd3tvSzh4anyK7nEyY7A0P5jZ0ziXMIa_poQ40SWH6Te9u7_ZUhuXefCOlkiNO5jJrnfjzPxcM_r8QJPvw-RHP5X35G1vhuw__DuvyK9vX39ef69u729-XG9vK4soSyWxaTkKBYhoHULTYKOUbVmH6FrXNxx7uU7szuKuNwal6KwVDQJaI3DHr8inU--c4p_F56LHkK0fBjP5uGTNWqmAsVbxc1DZScngDFQgQ4EozkE5dIpJDiv65YTaFHNed6VtKM9bLsmEQTPQR8F6r_8L1kfBGpReBa95-SI_pzCa9HhGcntK-lXFIfiksw3-KDCk9RtoF8OrHU_QW8eH
CitedBy_id crossref_primary_10_1016_j_istruc_2021_04_084
crossref_primary_10_1049_joe_2018_8954
crossref_primary_10_1007_s00158_020_02589_1
crossref_primary_10_1016_j_ast_2015_08_008
crossref_primary_10_1007_s11831_020_09507_0
Cites_doi 10.1016/0045-7825(87)90098-3
10.2514/6.2005-319
10.1109/4235.996017
10.2514/6.1997-1854
10.2514/2.2509
10.2514/6.2002-144
10.1002/(SICI)1097-0207(20000110/30)47:1/3<629::AID-NME786>3.0.CO;2-Y
10.2514/6.1994-1896
10.1016/S0377-0427(02)00527-7
10.2514/6.1994-4325
10.2514/6.2004-6512
10.2514/6.1997-101
10.2514/6.1994-92
10.1002/nme.1620371304
10.2514/6.2003-298
10.1016/S0045-7930(98)00041-3
10.2514/2.764
10.1007/978-0-85729-345-9_1
10.1016/0021-9991(87)90093-3
10.2514/6.1995-1650
10.2514/6.1993-3933
10.2514/6.1998-222
10.1002/cnm.1630040116
10.2514/6.1996-4170
10.1002/fld.1650200814
10.1016/0013-7944(94)E0062-L
10.1016/S0168-874X(00)00053-6
10.2514/3.47058
10.1016/0045-7825(89)90024-8
10.2514/1.24859
10.1016/j.cam.2008.10.037
10.2514/6.1996-4023
10.1002/(SICI)1097-0363(19990530)30:2<161::AID-FLD831>3.0.CO;2-J
10.2514/6.2002-5548
10.2514/6.1985-18
10.1007/978-3-663-13975-1_34
10.2514/6.2003-3791
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2013.08.015
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
EndPage 312
ExternalDocumentID 10_1016_j_compfluid_2013_08_015
S0045793013003320
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c447t-742634580444cd40224288c61944d6df234f74cdcbc4bfaa4759cc52404ca54b3
IEDL.DBID .~1
ISSN 0045-7930
IngestDate Sun Sep 28 15:50:10 EDT 2025
Thu Oct 02 07:40:00 EDT 2025
Tue Oct 07 09:40:28 EDT 2025
Tue Oct 07 09:39:47 EDT 2025
Wed Oct 01 03:04:21 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Fri Feb 23 02:29:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reconstruction/multi-objective optimization
MOGA
Euler equation
Adaptive remeshing
Shape optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-742634580444cd40224288c61944d6df234f74cdcbc4bfaa4759cc52404ca54b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1530981730
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_1678011683
proquest_miscellaneous_1677977103
proquest_miscellaneous_1541454453
proquest_miscellaneous_1530981730
crossref_citationtrail_10_1016_j_compfluid_2013_08_015
crossref_primary_10_1016_j_compfluid_2013_08_015
elsevier_sciencedirect_doi_10_1016_j_compfluid_2013_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-15
PublicationDateYYYYMMDD 2013-12-15
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Computers & fluids
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Faux, Pratt (b0285) 1987
Lee DS, Bugeda G, Periaux J, Onate E. Robust active shock control bump design optimization using parallel hybrid-MOGA. In: The 23rd international conference on parallel computational fluid dynamics, vol. 211. Barcelona, Spain; 16–20 May, 2011.
Nithiarasu, Zienkiewicz (b0190) 2000; 47
Palmerio B, Dervieux A. Application of a FEM moving node adaptive method to accurate shock capturing. In: Proceeding of first international conference on numerical grid generation in CFD. Landshut, W. Germany; 1986.
Oyama A, Obayashi S, Nakahashi K. Transonic wing optimization using genetic algorithm. In: 13th Computational fluid dynamics conference. AIAA paper 97–1854; June 1997.
Lee DS, Periaux J, Onate E, Gonzalez LF. Advanced computational intelligence system for inverse aeronautical design optimization, International Conference on Advanced Software Engineering (ICASE-11). In: Proceedings of the 9th IEEE international symposium on parallel and distributed processing with applications workshops, ISPAW 2011 - ICASE 2011, SGH 2011, GSDP 2011, ISBN (978-1-4577-0524-3), Busan, Korea; 26–28 May, 2011. p. 299–304.
Crispin Y. Aircraft conceptual optimization using simulated. Evolution; AIAA-94-0092; 1994.
Mavriplis D. Formulation and multigrid solution of the discrete adjoint for optimization problems on unstructured meshes. In: 43th AIAA aerospace sciences meeting and exhibit. Reno, NV; January 2005.
Newman JC, Anderson WK, Whitfield DL. Multidisciplinary sensitivity derivatives using complex variables. MSSU-EIRS-ERC-98-08; 1998.
Obayashi, Nakahashi, Oyama, Yoshino (b0280) 1998
Holst TL. Genetic algorithms apply to multi-objective aerodynamic shape, optimization. In: NASA/TM-05-212846; 2005.
Goldberg (b0265) 1989
Quagliarella D, Chinnici G. Usage of approximation techniques in evolutionary algorithms with application examples to aerodynamic shape design problems. In: Annicchiarico W, Periaux J, Cerrolaza M, Winter G. editors. Evolutionary algorithms and intelligent tools in engineering optimization. CIMNE; 2005. p. 167–89.
Yamamoto K, Inoue O. Applications of genetic algorithm to aerodynamic shape, optimization. AIAA-95-1650-CP; 1995.
Deb, Pratap, Agrawal, Meyarivan (b0075) 2002; 6
Löhner (b0205) 1987; 61
Castro C, Lozano C, Palacios F, Zuazua E. Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. In: AIAA, vol. 45(9). p. 2125.
Nemec M, Zingg DW, Pulliam TH. Multipoint and multi-objective aerodynamic shape optimization. In: 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization. AIAA paper 2002-5548. Atlanta; September 2002.
Quagliarella, Vicini (b0110) 2001; 37
Zienkiewicz, Wu (b0180) 1994; 37
Pironneau (b0015) 1973; 70
Anderson, Venkatakrishnan (b0035) 1999; 28
Reuther J, Jameson A, Alonso JJ, Rimlinger MJ, Saunders D. Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers. AIAA paper 97–0103.
Periaux, Lee, Gonzalez, Srinivas (b0115) 2008; 232
Sobieszczanski-Sobieski J. The case for aerodynamic sensitivity analysis. In: Presented at the NASA/VPI&SU symposium on sensitivity analysis in engineering; 1986. p. 25-6.
Obayashi S. Pareto solutions of multipoint design of supersonic wings using evolutionary algorithms. In: Proc 5th int conf on adaptive computing in design and manufacture. Exeter, Devon, UK; April 2002.
Elliott J, Peraire J. 3-D aerodynamic optimization on unstructured meshes with viscous effects. In: AIAA paper 97–1849; June 1997.
Quagliarella D, Cioppa AD. Genetic algorithms applied to the aerodynamic design of transonic airfoils. AIAA-94-1896-CP; 1994.
Anderson MB. Using pareto genetic algorithms for preliminary subsonic wing design. In: AIAA 1996–4023.
Wang, Periaux, Sefriouib (b0105) 2002; 149
Mavriplis C. A posteriori error estimators for adaptive spectral element techniques. In: Proc 8th GAMM conf num meth fluid mech. NNFM, vol. 29. pp. 333–42, Vieweg.
Vicini, Quagliarella (b0170) 1999; 37
Jacquotte, Cabello (b0200) 1990; 4
Pulliam TH, Nemec M, Holst T, Zingg DW. Comparison of evolutionary (genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimizations. AIAA-03-0298; 2003.
Makino, Aoyama, Iwamiya (b0155) 1999; 36
Löhner (b0245) 1995; 50
Alonso JJ, Kroo IM, Jameson A. Advanced algorithms for design and optimization of quiet supersonic platform. In: 40th AIAA aerospace sciences meeting & exhibit. AIAA paper 2002-0144, Reno, NV; January 2002.
Obayashi (b0275) 1998
Chung H, Choi S, Alonso J. Supersonic business jet design using knowledge-based genetic algorithm with adaptive, unstructured grid methodology. In: 21st AIAA applied aerodynamics conference. AIAA paper 2003-3791. Orlando, FL; June 23–26, 2003.
Periaux J, Mantel B, Sefrioui M, StouUet B, Desideri JA, Lanteri S, et al. Evolutionary computational methods for complex design in aerodynamics. AIAA-98-0222, Reno; 1998.
Bugeda, Oñate (b0225) 1998; 30
Peraire, Vahdati, Morgan, Zienkiewicz (b0185) 1987; 72
Löhner (b0250) 1988; 4
Kroo I, Altus S, Braun R, Gage P, Sobieski I. Multidisciplinary optimization methods for aircraft preliminary design. In: AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization. AIAA 94-4325. Panama City, FL; September 7–9, 1994.
Bugeda, Oñate (b0220) 1995; 20
Flores R, Ortega E, Oñate E. PUMI: an explicit 3D unstructured finite element solver for the Euler equations. Publication CIMNE; 2008; PI 326.
Pulliam TH, Barton JT. Euler computations of AGARD Working Group 07 Airfoil Test Cases. In: AIAA 23rd aerospace summer meeting. AIAA Paper, Reno, NE; 1985; 85–0018.
Crossley, Laananen (b0270) 1996; 3
Löhner (b0215) 1989; 75
Jameson (b0020) 1988; 3
Jameson A, Pierce N, Martinelli L. Optimum aerodynamic design using the Navier–Stokes equations. In: AIAA paper 97–0101, 35th aerospace sciences meeting and exhibit. Reno, Nevada; January 1997.
Gage P, Kroo I. A role for genetic algorithm un a preliminary design environment. In: AIAA 93-3933, AIAA aircraft design, systems and operations meeting. Monterey, CA; August 1993.
10.1016/j.compfluid.2013.08.015_b0065
Periaux (10.1016/j.compfluid.2013.08.015_b0115) 2008; 232
10.1016/j.compfluid.2013.08.015_b0140
10.1016/j.compfluid.2013.08.015_b0025
10.1016/j.compfluid.2013.08.015_b0145
10.1016/j.compfluid.2013.08.015_b0100
10.1016/j.compfluid.2013.08.015_b0060
Löhner (10.1016/j.compfluid.2013.08.015_b0245) 1995; 50
Zienkiewicz (10.1016/j.compfluid.2013.08.015_b0180) 1994; 37
Löhner (10.1016/j.compfluid.2013.08.015_b0215) 1989; 75
Crossley (10.1016/j.compfluid.2013.08.015_b0270) 1996; 3
Obayashi (10.1016/j.compfluid.2013.08.015_b0280) 1998
Löhner (10.1016/j.compfluid.2013.08.015_b0250) 1988; 4
10.1016/j.compfluid.2013.08.015_b0010
10.1016/j.compfluid.2013.08.015_b0175
10.1016/j.compfluid.2013.08.015_b0130
10.1016/j.compfluid.2013.08.015_b0255
10.1016/j.compfluid.2013.08.015_b0210
10.1016/j.compfluid.2013.08.015_b0055
10.1016/j.compfluid.2013.08.015_b0090
Vicini (10.1016/j.compfluid.2013.08.015_b0170) 1999; 37
10.1016/j.compfluid.2013.08.015_b0050
Faux (10.1016/j.compfluid.2013.08.015_b0285) 1987
Obayashi (10.1016/j.compfluid.2013.08.015_b0275) 1998
Peraire (10.1016/j.compfluid.2013.08.015_b0185) 1987; 72
Nithiarasu (10.1016/j.compfluid.2013.08.015_b0190) 2000; 47
Wang (10.1016/j.compfluid.2013.08.015_b0105) 2002; 149
Quagliarella (10.1016/j.compfluid.2013.08.015_b0110) 2001; 37
10.1016/j.compfluid.2013.08.015_b0120
10.1016/j.compfluid.2013.08.015_b0240
10.1016/j.compfluid.2013.08.015_b0085
10.1016/j.compfluid.2013.08.015_b0040
10.1016/j.compfluid.2013.08.015_b0045
10.1016/j.compfluid.2013.08.015_b0165
Pironneau (10.1016/j.compfluid.2013.08.015_b0015) 1973; 70
Anderson (10.1016/j.compfluid.2013.08.015_b0035) 1999; 28
10.1016/j.compfluid.2013.08.015_b0160
10.1016/j.compfluid.2013.08.015_b0080
Jameson (10.1016/j.compfluid.2013.08.015_b0020) 1988; 3
Makino (10.1016/j.compfluid.2013.08.015_b0155) 1999; 36
10.1016/j.compfluid.2013.08.015_b0005
Deb (10.1016/j.compfluid.2013.08.015_b0075) 2002; 6
Goldberg (10.1016/j.compfluid.2013.08.015_b0265) 1989
10.1016/j.compfluid.2013.08.015_b0230
10.1016/j.compfluid.2013.08.015_b0030
10.1016/j.compfluid.2013.08.015_b0195
10.1016/j.compfluid.2013.08.015_b0150
Jacquotte (10.1016/j.compfluid.2013.08.015_b0200) 1990; 4
Bugeda (10.1016/j.compfluid.2013.08.015_b0225) 1998; 30
Bugeda (10.1016/j.compfluid.2013.08.015_b0220) 1995; 20
Löhner (10.1016/j.compfluid.2013.08.015_b0205) 1987; 61
10.1016/j.compfluid.2013.08.015_b0235
References_xml – reference: Lee DS, Bugeda G, Periaux J, Onate E. Robust active shock control bump design optimization using parallel hybrid-MOGA. In: The 23rd international conference on parallel computational fluid dynamics, vol. 211. Barcelona, Spain; 16–20 May, 2011.
– reference: Oyama A, Obayashi S, Nakahashi K. Transonic wing optimization using genetic algorithm. In: 13th Computational fluid dynamics conference. AIAA paper 97–1854; June 1997.
– reference: Lee DS, Periaux J, Onate E, Gonzalez LF. Advanced computational intelligence system for inverse aeronautical design optimization, International Conference on Advanced Software Engineering (ICASE-11). In: Proceedings of the 9th IEEE international symposium on parallel and distributed processing with applications workshops, ISPAW 2011 - ICASE 2011, SGH 2011, GSDP 2011, ISBN (978-1-4577-0524-3), Busan, Korea; 26–28 May, 2011. p. 299–304.
– volume: 149
  start-page: 155
  year: 2002
  end-page: 169
  ident: b0105
  article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering
  publication-title: J Comput Appl Math
– volume: 61
  start-page: 323
  year: 1987
  end-page: 338
  ident: b0205
  article-title: An adaptive finite element scheme for transient problems in CFD
  publication-title: Comput Methods Appl Mech Eng
– reference: Chung H, Choi S, Alonso J. Supersonic business jet design using knowledge-based genetic algorithm with adaptive, unstructured grid methodology. In: 21st AIAA applied aerodynamics conference. AIAA paper 2003-3791. Orlando, FL; June 23–26, 2003.
– reference: Palmerio B, Dervieux A. Application of a FEM moving node adaptive method to accurate shock capturing. In: Proceeding of first international conference on numerical grid generation in CFD. Landshut, W. Germany; 1986.
– reference: Flores R, Ortega E, Oñate E. PUMI: an explicit 3D unstructured finite element solver for the Euler equations. Publication CIMNE; 2008; PI 326.
– reference: Crispin Y. Aircraft conceptual optimization using simulated. Evolution; AIAA-94-0092; 1994.
– volume: 72
  start-page: 449
  year: 1987
  end-page: 466
  ident: b0185
  article-title: Adaptive remeshing for compressible flow computations
  publication-title: J Comput Phys
– reference: Obayashi S. Pareto solutions of multipoint design of supersonic wings using evolutionary algorithms. In: Proc 5th int conf on adaptive computing in design and manufacture. Exeter, Devon, UK; April 2002.
– reference: Mavriplis C. A posteriori error estimators for adaptive spectral element techniques. In: Proc 8th GAMM conf num meth fluid mech. NNFM, vol. 29. pp. 333–42, Vieweg.
– volume: 50
  start-page: 819
  year: 1995
  end-page: 847
  ident: b0245
  article-title: Mesh adaptation in fluid mechanics
  publication-title: Eng Fract Mech
– reference: Pulliam TH, Nemec M, Holst T, Zingg DW. Comparison of evolutionary (genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimizations. AIAA-03-0298; 2003.
– volume: 37
  start-page: 634
  year: 1999
  end-page: 641
  ident: b0170
  article-title: Airfoil and wing design through hybrid optimization strategies
  publication-title: AIAA J
– start-page: 245
  year: 1998
  end-page: 266
  ident: b0275
  article-title: Pareto genetic algorithm for aerodynamic design using the Navier–Stokes equations
  publication-title: Genetic Algorithms Eng Comput Sci
– year: 1998
  ident: b0280
  article-title: Design optimization of supersonic wings using evolutionary algorithms
  publication-title: Proc ECCOMAS 98
– reference: Elliott J, Peraire J. 3-D aerodynamic optimization on unstructured meshes with viscous effects. In: AIAA paper 97–1849; June 1997.
– volume: 30
  start-page: 161
  year: 1998
  end-page: 178
  ident: b0225
  article-title: Optimum aerodynamic shape design for fluid flow problems including mesh adaptivity
  publication-title: Int J Numer Methods Fluid
– reference: Quagliarella D, Cioppa AD. Genetic algorithms applied to the aerodynamic design of transonic airfoils. AIAA-94-1896-CP; 1994.
– reference: Yamamoto K, Inoue O. Applications of genetic algorithm to aerodynamic shape, optimization. AIAA-95-1650-CP; 1995.
– reference: Jameson A, Pierce N, Martinelli L. Optimum aerodynamic design using the Navier–Stokes equations. In: AIAA paper 97–0101, 35th aerospace sciences meeting and exhibit. Reno, Nevada; January 1997.
– volume: 3
  year: 1996
  ident: b0270
  article-title: Conceptual design of helicopters via genetic algorithm
  publication-title: J Aircraft
– volume: 28
  start-page: 443
  year: 1999
  end-page: 480
  ident: b0035
  article-title: Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation
  publication-title: Comput Fluids
– volume: 70
  start-page: 331
  year: 1973
  end-page: 340
  ident: b0015
  article-title: On optimal shapes for Stokes flow
  publication-title: J Fluid Mech
– volume: 75
  start-page: 195
  year: 1989
  end-page: 214
  ident: b0215
  article-title: Adaptive remeshing for transient problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 232
  start-page: 61
  year: 2008
  end-page: 71
  ident: b0115
  article-title: Fast reconstruction of aerodynamic shapes using evolutionary algorithms and virtual Nash strategies in a CFD design environment
  publication-title: J Comput Appl Math
– reference: Sobieszczanski-Sobieski J. The case for aerodynamic sensitivity analysis. In: Presented at the NASA/VPI&SU symposium on sensitivity analysis in engineering; 1986. p. 25-6.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0075
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: IEEE Trans Evol Comput
– reference: Castro C, Lozano C, Palacios F, Zuazua E. Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. In: AIAA, vol. 45(9). p. 2125.
– reference: Mavriplis D. Formulation and multigrid solution of the discrete adjoint for optimization problems on unstructured meshes. In: 43th AIAA aerospace sciences meeting and exhibit. Reno, NV; January 2005.
– reference: Gage P, Kroo I. A role for genetic algorithm un a preliminary design environment. In: AIAA 93-3933, AIAA aircraft design, systems and operations meeting. Monterey, CA; August 1993.
– reference: Anderson MB. Using pareto genetic algorithms for preliminary subsonic wing design. In: AIAA 1996–4023.
– volume: 3
  start-page: 260
  year: 1988
  ident: b0020
  article-title: Aerodynamic design via control theory
  publication-title: J Sci Comput
– reference: Periaux J, Mantel B, Sefrioui M, StouUet B, Desideri JA, Lanteri S, et al. Evolutionary computational methods for complex design in aerodynamics. AIAA-98-0222, Reno; 1998.
– volume: 4
  start-page: 123
  year: 1988
  end-page: 135
  ident: b0250
  article-title: Some useful data structures for the generation of unstructured grids
  publication-title: Comm Appl Num Meth
– reference: Nemec M, Zingg DW, Pulliam TH. Multipoint and multi-objective aerodynamic shape optimization. In: 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization. AIAA paper 2002-5548. Atlanta; September 2002.
– reference: Pulliam TH, Barton JT. Euler computations of AGARD Working Group 07 Airfoil Test Cases. In: AIAA 23rd aerospace summer meeting. AIAA Paper, Reno, NE; 1985; 85–0018.
– reference: Reuther J, Jameson A, Alonso JJ, Rimlinger MJ, Saunders D. Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers. AIAA paper 97–0103.
– volume: 20
  start-page: 915
  year: 1995
  end-page: 934
  ident: b0220
  article-title: Optimum aerodynamic shape design including mesh adaptivity
  publication-title: Int J Numer Methods Fluid
– reference: Newman JC, Anderson WK, Whitfield DL. Multidisciplinary sensitivity derivatives using complex variables. MSSU-EIRS-ERC-98-08; 1998.
– reference: Quagliarella D, Chinnici G. Usage of approximation techniques in evolutionary algorithms with application examples to aerodynamic shape design problems. In: Annicchiarico W, Periaux J, Cerrolaza M, Winter G. editors. Evolutionary algorithms and intelligent tools in engineering optimization. CIMNE; 2005. p. 167–89.
– volume: 37
  start-page: 2189
  year: 1994
  end-page: 2210
  ident: b0180
  article-title: Automatic directional refinement in adaptive analysis of compressible flows
  publication-title: Int J Numer Meth Eng
– reference: Kroo I, Altus S, Braun R, Gage P, Sobieski I. Multidisciplinary optimization methods for aircraft preliminary design. In: AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization. AIAA 94-4325. Panama City, FL; September 7–9, 1994.
– volume: 4
  start-page: 8
  year: 1990
  end-page: 19
  ident: b0200
  article-title: Three-dimensional grid generation method based on a variational principle
  publication-title: La Recherche Aerospatiale
– volume: 37
  start-page: 365
  year: 2001
  end-page: 380
  ident: b0110
  article-title: Viscous single and multicomponent airfoil design with genetic algorithms
  publication-title: Finite Elem Anal Des
– volume: 47
  start-page: 629
  year: 2000
  end-page: 662
  ident: b0190
  article-title: Adaptive mesh generation for fluid mechanics problems
  publication-title: Int J Numer Meth Eng
– reference: Holst TL. Genetic algorithms apply to multi-objective aerodynamic shape, optimization. In: NASA/TM-05-212846; 2005.
– volume: 36
  start-page: 668
  year: 1999
  end-page: 674
  ident: b0155
  article-title: Numerical optimization of fuselage geometry to modify sonic-boom signature
  publication-title: J Aircraft
– year: 1989
  ident: b0265
  article-title: Genetic algorithm in search, optimization and machine learning
– year: 1987
  ident: b0285
  article-title: Computational geometry for design and manufacture
– reference: Alonso JJ, Kroo IM, Jameson A. Advanced algorithms for design and optimization of quiet supersonic platform. In: 40th AIAA aerospace sciences meeting & exhibit. AIAA paper 2002-0144, Reno, NV; January 2002.
– volume: 61
  start-page: 323
  year: 1987
  ident: 10.1016/j.compfluid.2013.08.015_b0205
  article-title: An adaptive finite element scheme for transient problems in CFD
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(87)90098-3
– ident: 10.1016/j.compfluid.2013.08.015_b0050
  doi: 10.2514/6.2005-319
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.compfluid.2013.08.015_b0075
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 10.1016/j.compfluid.2013.08.015_b0145
  doi: 10.2514/6.1997-1854
– volume: 70
  start-page: 331
  issue: 2
  year: 1973
  ident: 10.1016/j.compfluid.2013.08.015_b0015
  article-title: On optimal shapes for Stokes flow
  publication-title: J Fluid Mech
– volume: 36
  start-page: 668
  issue: 4
  year: 1999
  ident: 10.1016/j.compfluid.2013.08.015_b0155
  article-title: Numerical optimization of fuselage geometry to modify sonic-boom signature
  publication-title: J Aircraft
  doi: 10.2514/2.2509
– ident: 10.1016/j.compfluid.2013.08.015_b0160
  doi: 10.2514/6.2002-144
– ident: 10.1016/j.compfluid.2013.08.015_b0230
– volume: 47
  start-page: 629
  year: 2000
  ident: 10.1016/j.compfluid.2013.08.015_b0190
  article-title: Adaptive mesh generation for fluid mechanics problems
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<629::AID-NME786>3.0.CO;2-Y
– ident: 10.1016/j.compfluid.2013.08.015_b0240
– ident: 10.1016/j.compfluid.2013.08.015_b0090
  doi: 10.2514/6.1994-1896
– year: 1998
  ident: 10.1016/j.compfluid.2013.08.015_b0280
  article-title: Design optimization of supersonic wings using evolutionary algorithms
– volume: 4
  start-page: 8
  year: 1990
  ident: 10.1016/j.compfluid.2013.08.015_b0200
  article-title: Three-dimensional grid generation method based on a variational principle
  publication-title: La Recherche Aerospatiale
– volume: 149
  start-page: 155
  issue: 1
  year: 2002
  ident: 10.1016/j.compfluid.2013.08.015_b0105
  article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(02)00527-7
– ident: 10.1016/j.compfluid.2013.08.015_b0150
  doi: 10.2514/6.1994-4325
– ident: 10.1016/j.compfluid.2013.08.015_b0060
  doi: 10.2514/6.2004-6512
– ident: 10.1016/j.compfluid.2013.08.015_b0010
– ident: 10.1016/j.compfluid.2013.08.015_b0025
  doi: 10.2514/6.1997-101
– ident: 10.1016/j.compfluid.2013.08.015_b0165
– ident: 10.1016/j.compfluid.2013.08.015_b0085
  doi: 10.2514/6.1994-92
– volume: 37
  start-page: 2189
  year: 1994
  ident: 10.1016/j.compfluid.2013.08.015_b0180
  article-title: Automatic directional refinement in adaptive analysis of compressible flows
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620371304
– ident: 10.1016/j.compfluid.2013.08.015_b0140
  doi: 10.2514/6.2003-298
– volume: 28
  start-page: 443
  issue: 4
  year: 1999
  ident: 10.1016/j.compfluid.2013.08.015_b0035
  article-title: Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation
  publication-title: Comput Fluids
  doi: 10.1016/S0045-7930(98)00041-3
– volume: 37
  start-page: 634
  issue: 5
  year: 1999
  ident: 10.1016/j.compfluid.2013.08.015_b0170
  article-title: Airfoil and wing design through hybrid optimization strategies
  publication-title: AIAA J
  doi: 10.2514/2.764
– ident: 10.1016/j.compfluid.2013.08.015_b0130
  doi: 10.1007/978-0-85729-345-9_1
– volume: 72
  start-page: 449
  year: 1987
  ident: 10.1016/j.compfluid.2013.08.015_b0185
  article-title: Adaptive remeshing for compressible flow computations
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(87)90093-3
– ident: 10.1016/j.compfluid.2013.08.015_b0120
  doi: 10.2514/6.1995-1650
– year: 1989
  ident: 10.1016/j.compfluid.2013.08.015_b0265
– ident: 10.1016/j.compfluid.2013.08.015_b0080
  doi: 10.2514/6.1993-3933
– ident: 10.1016/j.compfluid.2013.08.015_b0100
  doi: 10.2514/6.1998-222
– ident: 10.1016/j.compfluid.2013.08.015_b0005
– ident: 10.1016/j.compfluid.2013.08.015_b0030
– volume: 3
  start-page: 260
  issue: 233
  year: 1988
  ident: 10.1016/j.compfluid.2013.08.015_b0020
  article-title: Aerodynamic design via control theory
  publication-title: J Sci Comput
– volume: 4
  start-page: 123
  year: 1988
  ident: 10.1016/j.compfluid.2013.08.015_b0250
  article-title: Some useful data structures for the generation of unstructured grids
  publication-title: Comm Appl Num Meth
  doi: 10.1002/cnm.1630040116
– ident: 10.1016/j.compfluid.2013.08.015_b0045
  doi: 10.2514/6.1996-4170
– start-page: 245
  year: 1998
  ident: 10.1016/j.compfluid.2013.08.015_b0275
  article-title: Pareto genetic algorithm for aerodynamic design using the Navier–Stokes equations
  publication-title: Genetic Algorithms Eng Comput Sci
– volume: 20
  start-page: 915
  year: 1995
  ident: 10.1016/j.compfluid.2013.08.015_b0220
  article-title: Optimum aerodynamic shape design including mesh adaptivity
  publication-title: Int J Numer Methods Fluid
  doi: 10.1002/fld.1650200814
– ident: 10.1016/j.compfluid.2013.08.015_b0235
– volume: 50
  start-page: 819
  issue: 5/6
  year: 1995
  ident: 10.1016/j.compfluid.2013.08.015_b0245
  article-title: Mesh adaptation in fluid mechanics
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(94)E0062-L
– volume: 37
  start-page: 365
  issue: 5
  year: 2001
  ident: 10.1016/j.compfluid.2013.08.015_b0110
  article-title: Viscous single and multicomponent airfoil design with genetic algorithms
  publication-title: Finite Elem Anal Des
  doi: 10.1016/S0168-874X(00)00053-6
– ident: 10.1016/j.compfluid.2013.08.015_b0195
– volume: 3
  issue: 6
  year: 1996
  ident: 10.1016/j.compfluid.2013.08.015_b0270
  article-title: Conceptual design of helicopters via genetic algorithm
  publication-title: J Aircraft
  doi: 10.2514/3.47058
– volume: 75
  start-page: 195
  year: 1989
  ident: 10.1016/j.compfluid.2013.08.015_b0215
  article-title: Adaptive remeshing for transient problems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(89)90024-8
– year: 1987
  ident: 10.1016/j.compfluid.2013.08.015_b0285
– ident: 10.1016/j.compfluid.2013.08.015_b0040
  doi: 10.2514/1.24859
– volume: 232
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.compfluid.2013.08.015_b0115
  article-title: Fast reconstruction of aerodynamic shapes using evolutionary algorithms and virtual Nash strategies in a CFD design environment
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.10.037
– ident: 10.1016/j.compfluid.2013.08.015_b0055
  doi: 10.2514/6.1996-4023
– volume: 30
  start-page: 161
  year: 1998
  ident: 10.1016/j.compfluid.2013.08.015_b0225
  article-title: Optimum aerodynamic shape design for fluid flow problems including mesh adaptivity
  publication-title: Int J Numer Methods Fluid
  doi: 10.1002/(SICI)1097-0363(19990530)30:2<161::AID-FLD831>3.0.CO;2-J
– ident: 10.1016/j.compfluid.2013.08.015_b0065
  doi: 10.2514/6.2002-5548
– ident: 10.1016/j.compfluid.2013.08.015_b0255
  doi: 10.2514/6.1985-18
– ident: 10.1016/j.compfluid.2013.08.015_b0210
  doi: 10.1007/978-3-663-13975-1_34
– ident: 10.1016/j.compfluid.2013.08.015_b0175
  doi: 10.2514/6.2003-3791
SSID ssj0004324
Score 2.0616946
Snippet •We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and...
This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 298
SubjectTerms Adaptive remeshing
Aerodynamics
Airfoils
Computational efficiency
Design optimization
Drag
Euler equation
Lift
Mathematical models
MOGA
Reconstruction/multi-objective optimization
Shape optimization
Title Multi-objective aerodynamic shape optimization using MOGA coupled to advanced adaptive mesh refinement
URI https://dx.doi.org/10.1016/j.compfluid.2013.08.015
https://www.proquest.com/docview/1530981730
https://www.proquest.com/docview/1541454453
https://www.proquest.com/docview/1677977103
https://www.proquest.com/docview/1678011683
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AKRWK
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqcoEDYhVlk5G4BpLaTgK3ClEKCLhQqTfLW2irNoloe-XbmcnCJlQO3LLYiTO25zmemTeEnCrAkMTCRHJKMI9rJ7yYFSnDtAU4x2QEGJz88Bj2-vxuIAYNclXHwqBbZaX7S51eaOvqynklzfN8NMIYXy5gdKHpzWesjf_tnEeYxeDs7dPNAxnnSiszUjMy_5uPF7ptJ5PFCClDA1ZweWJ-3N8R6oeuLgCou0HWq5Uj7ZSN2yQNl26RtS98gtskKcJpvUyPSzVGlQP9WOacp7Ohyh3NQEVMq9hLik7vL_Th6aZDTbbIJ87SeUZrtwA4UHnxmKmbDSk0FN6Em4k7pN-9fr7qeVUiBc-AROZehKzsXMTIDWcsR9hux7HBDQxuQ5u0GU8iuGO04TpRCjkAjREA9twowTXbJc00S90eoWhAZkZHjieaKxHqiDkT4Xao1tbaoEXCWnjSVCzjmOxiImt3srH8kLpEqUtMgxmIFvE_KuYl0cbfVS7r3pHfxowEOPi78kndnxJmFJpJVOqyxUwCBvgXcQCqb1kZHnDkMWJLyoRRBKvrwF9eJkZTWMz2__MxB2QVz9DNJhCHpDl_XbgjWCzN9XExG47JSuf2vvf4DrrKFmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHKCHquWhUkprJK6BZD2O094Qgm5hd7mAxM3yK7Bo2UTs7rW_vTN5LA-h3UNvUWInztiesT3ffMPYoUEbknucSMFIEYENMspElTLMejTnlIyAgpP7g7R7Axe38naFnbaxMASrbHR_rdMrbd3cOW6keVwOhxTjCxJHF7neYiE6uG9fA9lRtAM7-vuM8yDKudrNTNyMIn4F8iLcdj6aDYkzNBEVmSclyH3fRL1R1pUFOv_EPjZLR35St-4zWwnjTfbhBaHgFsureNqosA-1HuMmoIKsk87zyb0pAy9QRzw2wZecUO93vH_1-4S7YlaOgufTgre4ALwwZfWaxzC559hQ_BKdJm6zm_Oz69Nu1GRSiByAmkaKaNlBZkQO5zyQ3e5kmaMTDPCpzzsCcoVPnHVgc2OIBNA5idYenJFgxQ5bHRfj8IVx8iALZ1WA3IKRqVUiOEXnodZ675NdlrbC066hGadsFyPd4ske9FzqmqSuKQ9mIndZPK9Y1kwby6v8antHvxo0Gu3B8soHbX9qnFLkJzHjUMwmGo1A_DNLUPctKgMJEJGRWFAmVQqX10m8uExGvrBMfP2fn_nB1rvX_Z7u_Rlc7rENekKYm0R-Y6vTp1nYx5XT1H6vZsY__-oX_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+aerodynamic+shape+optimization+using+MOGA+coupled+to+advanced+adaptive+mesh+refinement&rft.jtitle=Computers+%26+fluids&rft.au=Kouhi%2C+Mohammad&rft.au=Lee%2C+Dong+Seop&rft.au=Bugeda%2C+Gabriel&rft.au=Onate%2C+Eugenio&rft.date=2013-12-15&rft.issn=0045-7930&rft.volume=88&rft.spage=298&rft.epage=312&rft_id=info:doi/10.1016%2Fj.compfluid.2013.08.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon