Multi-objective aerodynamic shape optimization using MOGA coupled to advanced adaptive mesh refinement
•We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and adaptive mesh results are compared.•Adaptive remeshing approach accelerates the optimization process.•Increasing the solution accuracy is another b...
Saved in:
| Published in | Computers & fluids Vol. 88; pp. 298 - 312 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7930 1879-0747 |
| DOI | 10.1016/j.compfluid.2013.08.015 |
Cover
| Abstract | •We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and adaptive mesh results are compared.•Adaptive remeshing approach accelerates the optimization process.•Increasing the solution accuracy is another benefit of adaptive remeshing approach.
This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study the trade-off between the mesh refinement during the optimization process and the improvement of the optimized solution. This subject is investigated in the transonic airfoil design optimization using an Adaptive Mesh Refinement (AMR) technique coupled to Multi-Objective Genetic Algorithm (MOGA) and an Euler aerodynamic analysis tool. The methodology is implemented to solve three practical design problems; the first test case considers a reconstruction design optimization that minimizes the pressure error between a predefined pressure curve and candidate pressure distribution. The second test considers the total drag minimization by designing airfoil shape operating at transonic speeds. For the final test case, a multi-objective design optimization is conducted to maximize both the lift to drag ratio (L/D) and lift coefficient (Cl). The solutions obtained with and without adaptive mesh refinement are compared in terms of solution improvement and computational cost. Numerical results clearly show that the use of adaptive mesh refinement can improve the solution accuracy while reducing significant computational cost in both single- and multi-objective design optimizations. |
|---|---|
| AbstractList | This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study the trade-off between the mesh refinement during the optimization process and the improvement of the optimized solution. This subject is investigated in the transonic airfoil design optimization using an Adaptive Mesh Refinement (AMR) technique coupled to Multi-Objective Genetic Algorithm (MOGA) and an Euler aerodynamic analysis tool. The methodology is implemented to solve three practical design problems; the first test case considers a reconstruction design optimization that minimizes the pressure error between a predefined pressure curve and candidate pressure distribution. The second test considers the total drag minimization by designing airfoil shape operating at transonic speeds. For the final test case, a multi-objective design optimization is conducted to maximize both the lift to drag ratio (L/D) and lift coefficient (Cl). The solutions obtained with and without adaptive mesh refinement are compared in terms of solution improvement and computational cost. Numerical results clearly show that the use of adaptive mesh refinement can improve the solution accuracy while reducing significant computational cost in both single- and multi-objective design optimizations. •We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and adaptive mesh results are compared.•Adaptive remeshing approach accelerates the optimization process.•Increasing the solution accuracy is another benefit of adaptive remeshing approach. This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study the trade-off between the mesh refinement during the optimization process and the improvement of the optimized solution. This subject is investigated in the transonic airfoil design optimization using an Adaptive Mesh Refinement (AMR) technique coupled to Multi-Objective Genetic Algorithm (MOGA) and an Euler aerodynamic analysis tool. The methodology is implemented to solve three practical design problems; the first test case considers a reconstruction design optimization that minimizes the pressure error between a predefined pressure curve and candidate pressure distribution. The second test considers the total drag minimization by designing airfoil shape operating at transonic speeds. For the final test case, a multi-objective design optimization is conducted to maximize both the lift to drag ratio (L/D) and lift coefficient (Cl). The solutions obtained with and without adaptive mesh refinement are compared in terms of solution improvement and computational cost. Numerical results clearly show that the use of adaptive mesh refinement can improve the solution accuracy while reducing significant computational cost in both single- and multi-objective design optimizations. |
| Author | Lee, Dong Seop Bugeda, Gabriel Kouhi, Mohammad Oñate, Eugenio |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Kouhi fullname: Kouhi, Mohammad email: kouhi@cimne.upc.edu organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain – sequence: 2 givenname: Dong Seop surname: Lee fullname: Lee, Dong Seop email: ds.chris.lee@gmail.com organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain – sequence: 3 givenname: Gabriel surname: Bugeda fullname: Bugeda, Gabriel email: bugeda@cimne.upc.edu organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain – sequence: 4 givenname: Eugenio surname: Oñate fullname: Oñate, Eugenio email: onate@cimne.upc.edu organization: International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitan, 08034 Barcelona, Spain |
| BookMark | eNqNksFu3CAURVGVSp2k_Yay7MbuwzwMXnQxitq0UqJs2jViADeMbOMCHin9-ngyVRfZZFaA3rl38Q6X5GKKkyfkI4OaAWs_72sbx7kfluDqBhivQdXAxBuyYUp2FUiUF2QDgKKSHYd35DLnPaxv3uCG9HfLUEIVd3tvSzh4anyK7nEyY7A0P5jZ0ziXMIa_poQ40SWH6Te9u7_ZUhuXefCOlkiNO5jJrnfjzPxcM_r8QJPvw-RHP5X35G1vhuw__DuvyK9vX39ef69u729-XG9vK4soSyWxaTkKBYhoHULTYKOUbVmH6FrXNxx7uU7szuKuNwal6KwVDQJaI3DHr8inU--c4p_F56LHkK0fBjP5uGTNWqmAsVbxc1DZScngDFQgQ4EozkE5dIpJDiv65YTaFHNed6VtKM9bLsmEQTPQR8F6r_8L1kfBGpReBa95-SI_pzCa9HhGcntK-lXFIfiksw3-KDCk9RtoF8OrHU_QW8eH |
| CitedBy_id | crossref_primary_10_1016_j_istruc_2021_04_084 crossref_primary_10_1049_joe_2018_8954 crossref_primary_10_1007_s00158_020_02589_1 crossref_primary_10_1016_j_ast_2015_08_008 crossref_primary_10_1007_s11831_020_09507_0 |
| Cites_doi | 10.1016/0045-7825(87)90098-3 10.2514/6.2005-319 10.1109/4235.996017 10.2514/6.1997-1854 10.2514/2.2509 10.2514/6.2002-144 10.1002/(SICI)1097-0207(20000110/30)47:1/3<629::AID-NME786>3.0.CO;2-Y 10.2514/6.1994-1896 10.1016/S0377-0427(02)00527-7 10.2514/6.1994-4325 10.2514/6.2004-6512 10.2514/6.1997-101 10.2514/6.1994-92 10.1002/nme.1620371304 10.2514/6.2003-298 10.1016/S0045-7930(98)00041-3 10.2514/2.764 10.1007/978-0-85729-345-9_1 10.1016/0021-9991(87)90093-3 10.2514/6.1995-1650 10.2514/6.1993-3933 10.2514/6.1998-222 10.1002/cnm.1630040116 10.2514/6.1996-4170 10.1002/fld.1650200814 10.1016/0013-7944(94)E0062-L 10.1016/S0168-874X(00)00053-6 10.2514/3.47058 10.1016/0045-7825(89)90024-8 10.2514/1.24859 10.1016/j.cam.2008.10.037 10.2514/6.1996-4023 10.1002/(SICI)1097-0363(19990530)30:2<161::AID-FLD831>3.0.CO;2-J 10.2514/6.2002-5548 10.2514/6.1985-18 10.1007/978-3-663-13975-1_34 10.2514/6.2003-3791 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd |
| Copyright_xml | – notice: 2013 Elsevier Ltd |
| DBID | AAYXX CITATION 7UA C1K F1W H96 L.G 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.compfluid.2013.08.015 |
| DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0747 |
| EndPage | 312 |
| ExternalDocumentID | 10_1016_j_compfluid_2013_08_015 S0045793013003320 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7UA C1K F1W H96 L.G 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c447t-742634580444cd40224288c61944d6df234f74cdcbc4bfaa4759cc52404ca54b3 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7930 |
| IngestDate | Sun Sep 28 15:50:10 EDT 2025 Thu Oct 02 07:40:00 EDT 2025 Tue Oct 07 09:40:28 EDT 2025 Tue Oct 07 09:39:47 EDT 2025 Wed Oct 01 03:04:21 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Fri Feb 23 02:29:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reconstruction/multi-objective optimization MOGA Euler equation Adaptive remeshing Shape optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-742634580444cd40224288c61944d6df234f74cdcbc4bfaa4759cc52404ca54b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1530981730 |
| PQPubID | 23462 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1678011683 proquest_miscellaneous_1677977103 proquest_miscellaneous_1541454453 proquest_miscellaneous_1530981730 crossref_citationtrail_10_1016_j_compfluid_2013_08_015 crossref_primary_10_1016_j_compfluid_2013_08_015 elsevier_sciencedirect_doi_10_1016_j_compfluid_2013_08_015 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-12-15 |
| PublicationDateYYYYMMDD | 2013-12-15 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & fluids |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Faux, Pratt (b0285) 1987 Lee DS, Bugeda G, Periaux J, Onate E. Robust active shock control bump design optimization using parallel hybrid-MOGA. In: The 23rd international conference on parallel computational fluid dynamics, vol. 211. Barcelona, Spain; 16–20 May, 2011. Nithiarasu, Zienkiewicz (b0190) 2000; 47 Palmerio B, Dervieux A. Application of a FEM moving node adaptive method to accurate shock capturing. In: Proceeding of first international conference on numerical grid generation in CFD. Landshut, W. Germany; 1986. Oyama A, Obayashi S, Nakahashi K. Transonic wing optimization using genetic algorithm. In: 13th Computational fluid dynamics conference. AIAA paper 97–1854; June 1997. Lee DS, Periaux J, Onate E, Gonzalez LF. Advanced computational intelligence system for inverse aeronautical design optimization, International Conference on Advanced Software Engineering (ICASE-11). In: Proceedings of the 9th IEEE international symposium on parallel and distributed processing with applications workshops, ISPAW 2011 - ICASE 2011, SGH 2011, GSDP 2011, ISBN (978-1-4577-0524-3), Busan, Korea; 26–28 May, 2011. p. 299–304. Crispin Y. Aircraft conceptual optimization using simulated. Evolution; AIAA-94-0092; 1994. Mavriplis D. Formulation and multigrid solution of the discrete adjoint for optimization problems on unstructured meshes. In: 43th AIAA aerospace sciences meeting and exhibit. Reno, NV; January 2005. Newman JC, Anderson WK, Whitfield DL. Multidisciplinary sensitivity derivatives using complex variables. MSSU-EIRS-ERC-98-08; 1998. Obayashi, Nakahashi, Oyama, Yoshino (b0280) 1998 Holst TL. Genetic algorithms apply to multi-objective aerodynamic shape, optimization. In: NASA/TM-05-212846; 2005. Goldberg (b0265) 1989 Quagliarella D, Chinnici G. Usage of approximation techniques in evolutionary algorithms with application examples to aerodynamic shape design problems. In: Annicchiarico W, Periaux J, Cerrolaza M, Winter G. editors. Evolutionary algorithms and intelligent tools in engineering optimization. CIMNE; 2005. p. 167–89. Yamamoto K, Inoue O. Applications of genetic algorithm to aerodynamic shape, optimization. AIAA-95-1650-CP; 1995. Deb, Pratap, Agrawal, Meyarivan (b0075) 2002; 6 Löhner (b0205) 1987; 61 Castro C, Lozano C, Palacios F, Zuazua E. Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. In: AIAA, vol. 45(9). p. 2125. Nemec M, Zingg DW, Pulliam TH. Multipoint and multi-objective aerodynamic shape optimization. In: 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization. AIAA paper 2002-5548. Atlanta; September 2002. Quagliarella, Vicini (b0110) 2001; 37 Zienkiewicz, Wu (b0180) 1994; 37 Pironneau (b0015) 1973; 70 Anderson, Venkatakrishnan (b0035) 1999; 28 Reuther J, Jameson A, Alonso JJ, Rimlinger MJ, Saunders D. Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers. AIAA paper 97–0103. Periaux, Lee, Gonzalez, Srinivas (b0115) 2008; 232 Sobieszczanski-Sobieski J. The case for aerodynamic sensitivity analysis. In: Presented at the NASA/VPI&SU symposium on sensitivity analysis in engineering; 1986. p. 25-6. Obayashi S. Pareto solutions of multipoint design of supersonic wings using evolutionary algorithms. In: Proc 5th int conf on adaptive computing in design and manufacture. Exeter, Devon, UK; April 2002. Elliott J, Peraire J. 3-D aerodynamic optimization on unstructured meshes with viscous effects. In: AIAA paper 97–1849; June 1997. Quagliarella D, Cioppa AD. Genetic algorithms applied to the aerodynamic design of transonic airfoils. AIAA-94-1896-CP; 1994. Anderson MB. Using pareto genetic algorithms for preliminary subsonic wing design. In: AIAA 1996–4023. Wang, Periaux, Sefriouib (b0105) 2002; 149 Mavriplis C. A posteriori error estimators for adaptive spectral element techniques. In: Proc 8th GAMM conf num meth fluid mech. NNFM, vol. 29. pp. 333–42, Vieweg. Vicini, Quagliarella (b0170) 1999; 37 Jacquotte, Cabello (b0200) 1990; 4 Pulliam TH, Nemec M, Holst T, Zingg DW. Comparison of evolutionary (genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimizations. AIAA-03-0298; 2003. Makino, Aoyama, Iwamiya (b0155) 1999; 36 Löhner (b0245) 1995; 50 Alonso JJ, Kroo IM, Jameson A. Advanced algorithms for design and optimization of quiet supersonic platform. In: 40th AIAA aerospace sciences meeting & exhibit. AIAA paper 2002-0144, Reno, NV; January 2002. Obayashi (b0275) 1998 Chung H, Choi S, Alonso J. Supersonic business jet design using knowledge-based genetic algorithm with adaptive, unstructured grid methodology. In: 21st AIAA applied aerodynamics conference. AIAA paper 2003-3791. Orlando, FL; June 23–26, 2003. Periaux J, Mantel B, Sefrioui M, StouUet B, Desideri JA, Lanteri S, et al. Evolutionary computational methods for complex design in aerodynamics. AIAA-98-0222, Reno; 1998. Bugeda, Oñate (b0225) 1998; 30 Peraire, Vahdati, Morgan, Zienkiewicz (b0185) 1987; 72 Löhner (b0250) 1988; 4 Kroo I, Altus S, Braun R, Gage P, Sobieski I. Multidisciplinary optimization methods for aircraft preliminary design. In: AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization. AIAA 94-4325. Panama City, FL; September 7–9, 1994. Bugeda, Oñate (b0220) 1995; 20 Flores R, Ortega E, Oñate E. PUMI: an explicit 3D unstructured finite element solver for the Euler equations. Publication CIMNE; 2008; PI 326. Pulliam TH, Barton JT. Euler computations of AGARD Working Group 07 Airfoil Test Cases. In: AIAA 23rd aerospace summer meeting. AIAA Paper, Reno, NE; 1985; 85–0018. Crossley, Laananen (b0270) 1996; 3 Löhner (b0215) 1989; 75 Jameson (b0020) 1988; 3 Jameson A, Pierce N, Martinelli L. Optimum aerodynamic design using the Navier–Stokes equations. In: AIAA paper 97–0101, 35th aerospace sciences meeting and exhibit. Reno, Nevada; January 1997. Gage P, Kroo I. A role for genetic algorithm un a preliminary design environment. In: AIAA 93-3933, AIAA aircraft design, systems and operations meeting. Monterey, CA; August 1993. 10.1016/j.compfluid.2013.08.015_b0065 Periaux (10.1016/j.compfluid.2013.08.015_b0115) 2008; 232 10.1016/j.compfluid.2013.08.015_b0140 10.1016/j.compfluid.2013.08.015_b0025 10.1016/j.compfluid.2013.08.015_b0145 10.1016/j.compfluid.2013.08.015_b0100 10.1016/j.compfluid.2013.08.015_b0060 Löhner (10.1016/j.compfluid.2013.08.015_b0245) 1995; 50 Zienkiewicz (10.1016/j.compfluid.2013.08.015_b0180) 1994; 37 Löhner (10.1016/j.compfluid.2013.08.015_b0215) 1989; 75 Crossley (10.1016/j.compfluid.2013.08.015_b0270) 1996; 3 Obayashi (10.1016/j.compfluid.2013.08.015_b0280) 1998 Löhner (10.1016/j.compfluid.2013.08.015_b0250) 1988; 4 10.1016/j.compfluid.2013.08.015_b0010 10.1016/j.compfluid.2013.08.015_b0175 10.1016/j.compfluid.2013.08.015_b0130 10.1016/j.compfluid.2013.08.015_b0255 10.1016/j.compfluid.2013.08.015_b0210 10.1016/j.compfluid.2013.08.015_b0055 10.1016/j.compfluid.2013.08.015_b0090 Vicini (10.1016/j.compfluid.2013.08.015_b0170) 1999; 37 10.1016/j.compfluid.2013.08.015_b0050 Faux (10.1016/j.compfluid.2013.08.015_b0285) 1987 Obayashi (10.1016/j.compfluid.2013.08.015_b0275) 1998 Peraire (10.1016/j.compfluid.2013.08.015_b0185) 1987; 72 Nithiarasu (10.1016/j.compfluid.2013.08.015_b0190) 2000; 47 Wang (10.1016/j.compfluid.2013.08.015_b0105) 2002; 149 Quagliarella (10.1016/j.compfluid.2013.08.015_b0110) 2001; 37 10.1016/j.compfluid.2013.08.015_b0120 10.1016/j.compfluid.2013.08.015_b0240 10.1016/j.compfluid.2013.08.015_b0085 10.1016/j.compfluid.2013.08.015_b0040 10.1016/j.compfluid.2013.08.015_b0045 10.1016/j.compfluid.2013.08.015_b0165 Pironneau (10.1016/j.compfluid.2013.08.015_b0015) 1973; 70 Anderson (10.1016/j.compfluid.2013.08.015_b0035) 1999; 28 10.1016/j.compfluid.2013.08.015_b0160 10.1016/j.compfluid.2013.08.015_b0080 Jameson (10.1016/j.compfluid.2013.08.015_b0020) 1988; 3 Makino (10.1016/j.compfluid.2013.08.015_b0155) 1999; 36 10.1016/j.compfluid.2013.08.015_b0005 Deb (10.1016/j.compfluid.2013.08.015_b0075) 2002; 6 Goldberg (10.1016/j.compfluid.2013.08.015_b0265) 1989 10.1016/j.compfluid.2013.08.015_b0230 10.1016/j.compfluid.2013.08.015_b0030 10.1016/j.compfluid.2013.08.015_b0195 10.1016/j.compfluid.2013.08.015_b0150 Jacquotte (10.1016/j.compfluid.2013.08.015_b0200) 1990; 4 Bugeda (10.1016/j.compfluid.2013.08.015_b0225) 1998; 30 Bugeda (10.1016/j.compfluid.2013.08.015_b0220) 1995; 20 Löhner (10.1016/j.compfluid.2013.08.015_b0205) 1987; 61 10.1016/j.compfluid.2013.08.015_b0235 |
| References_xml | – reference: Lee DS, Bugeda G, Periaux J, Onate E. Robust active shock control bump design optimization using parallel hybrid-MOGA. In: The 23rd international conference on parallel computational fluid dynamics, vol. 211. Barcelona, Spain; 16–20 May, 2011. – reference: Oyama A, Obayashi S, Nakahashi K. Transonic wing optimization using genetic algorithm. In: 13th Computational fluid dynamics conference. AIAA paper 97–1854; June 1997. – reference: Lee DS, Periaux J, Onate E, Gonzalez LF. Advanced computational intelligence system for inverse aeronautical design optimization, International Conference on Advanced Software Engineering (ICASE-11). In: Proceedings of the 9th IEEE international symposium on parallel and distributed processing with applications workshops, ISPAW 2011 - ICASE 2011, SGH 2011, GSDP 2011, ISBN (978-1-4577-0524-3), Busan, Korea; 26–28 May, 2011. p. 299–304. – volume: 149 start-page: 155 year: 2002 end-page: 169 ident: b0105 article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering publication-title: J Comput Appl Math – volume: 61 start-page: 323 year: 1987 end-page: 338 ident: b0205 article-title: An adaptive finite element scheme for transient problems in CFD publication-title: Comput Methods Appl Mech Eng – reference: Chung H, Choi S, Alonso J. Supersonic business jet design using knowledge-based genetic algorithm with adaptive, unstructured grid methodology. In: 21st AIAA applied aerodynamics conference. AIAA paper 2003-3791. Orlando, FL; June 23–26, 2003. – reference: Palmerio B, Dervieux A. Application of a FEM moving node adaptive method to accurate shock capturing. In: Proceeding of first international conference on numerical grid generation in CFD. Landshut, W. Germany; 1986. – reference: Flores R, Ortega E, Oñate E. PUMI: an explicit 3D unstructured finite element solver for the Euler equations. Publication CIMNE; 2008; PI 326. – reference: Crispin Y. Aircraft conceptual optimization using simulated. Evolution; AIAA-94-0092; 1994. – volume: 72 start-page: 449 year: 1987 end-page: 466 ident: b0185 article-title: Adaptive remeshing for compressible flow computations publication-title: J Comput Phys – reference: Obayashi S. Pareto solutions of multipoint design of supersonic wings using evolutionary algorithms. In: Proc 5th int conf on adaptive computing in design and manufacture. Exeter, Devon, UK; April 2002. – reference: Mavriplis C. A posteriori error estimators for adaptive spectral element techniques. In: Proc 8th GAMM conf num meth fluid mech. NNFM, vol. 29. pp. 333–42, Vieweg. – volume: 50 start-page: 819 year: 1995 end-page: 847 ident: b0245 article-title: Mesh adaptation in fluid mechanics publication-title: Eng Fract Mech – reference: Pulliam TH, Nemec M, Holst T, Zingg DW. Comparison of evolutionary (genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimizations. AIAA-03-0298; 2003. – volume: 37 start-page: 634 year: 1999 end-page: 641 ident: b0170 article-title: Airfoil and wing design through hybrid optimization strategies publication-title: AIAA J – start-page: 245 year: 1998 end-page: 266 ident: b0275 article-title: Pareto genetic algorithm for aerodynamic design using the Navier–Stokes equations publication-title: Genetic Algorithms Eng Comput Sci – year: 1998 ident: b0280 article-title: Design optimization of supersonic wings using evolutionary algorithms publication-title: Proc ECCOMAS 98 – reference: Elliott J, Peraire J. 3-D aerodynamic optimization on unstructured meshes with viscous effects. In: AIAA paper 97–1849; June 1997. – volume: 30 start-page: 161 year: 1998 end-page: 178 ident: b0225 article-title: Optimum aerodynamic shape design for fluid flow problems including mesh adaptivity publication-title: Int J Numer Methods Fluid – reference: Quagliarella D, Cioppa AD. Genetic algorithms applied to the aerodynamic design of transonic airfoils. AIAA-94-1896-CP; 1994. – reference: Yamamoto K, Inoue O. Applications of genetic algorithm to aerodynamic shape, optimization. AIAA-95-1650-CP; 1995. – reference: Jameson A, Pierce N, Martinelli L. Optimum aerodynamic design using the Navier–Stokes equations. In: AIAA paper 97–0101, 35th aerospace sciences meeting and exhibit. Reno, Nevada; January 1997. – volume: 3 year: 1996 ident: b0270 article-title: Conceptual design of helicopters via genetic algorithm publication-title: J Aircraft – volume: 28 start-page: 443 year: 1999 end-page: 480 ident: b0035 article-title: Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation publication-title: Comput Fluids – volume: 70 start-page: 331 year: 1973 end-page: 340 ident: b0015 article-title: On optimal shapes for Stokes flow publication-title: J Fluid Mech – volume: 75 start-page: 195 year: 1989 end-page: 214 ident: b0215 article-title: Adaptive remeshing for transient problems publication-title: Comput Methods Appl Mech Eng – volume: 232 start-page: 61 year: 2008 end-page: 71 ident: b0115 article-title: Fast reconstruction of aerodynamic shapes using evolutionary algorithms and virtual Nash strategies in a CFD design environment publication-title: J Comput Appl Math – reference: Sobieszczanski-Sobieski J. The case for aerodynamic sensitivity analysis. In: Presented at the NASA/VPI&SU symposium on sensitivity analysis in engineering; 1986. p. 25-6. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0075 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: IEEE Trans Evol Comput – reference: Castro C, Lozano C, Palacios F, Zuazua E. Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. In: AIAA, vol. 45(9). p. 2125. – reference: Mavriplis D. Formulation and multigrid solution of the discrete adjoint for optimization problems on unstructured meshes. In: 43th AIAA aerospace sciences meeting and exhibit. Reno, NV; January 2005. – reference: Gage P, Kroo I. A role for genetic algorithm un a preliminary design environment. In: AIAA 93-3933, AIAA aircraft design, systems and operations meeting. Monterey, CA; August 1993. – reference: Anderson MB. Using pareto genetic algorithms for preliminary subsonic wing design. In: AIAA 1996–4023. – volume: 3 start-page: 260 year: 1988 ident: b0020 article-title: Aerodynamic design via control theory publication-title: J Sci Comput – reference: Periaux J, Mantel B, Sefrioui M, StouUet B, Desideri JA, Lanteri S, et al. Evolutionary computational methods for complex design in aerodynamics. AIAA-98-0222, Reno; 1998. – volume: 4 start-page: 123 year: 1988 end-page: 135 ident: b0250 article-title: Some useful data structures for the generation of unstructured grids publication-title: Comm Appl Num Meth – reference: Nemec M, Zingg DW, Pulliam TH. Multipoint and multi-objective aerodynamic shape optimization. In: 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization. AIAA paper 2002-5548. Atlanta; September 2002. – reference: Pulliam TH, Barton JT. Euler computations of AGARD Working Group 07 Airfoil Test Cases. In: AIAA 23rd aerospace summer meeting. AIAA Paper, Reno, NE; 1985; 85–0018. – reference: Reuther J, Jameson A, Alonso JJ, Rimlinger MJ, Saunders D. Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers. AIAA paper 97–0103. – volume: 20 start-page: 915 year: 1995 end-page: 934 ident: b0220 article-title: Optimum aerodynamic shape design including mesh adaptivity publication-title: Int J Numer Methods Fluid – reference: Newman JC, Anderson WK, Whitfield DL. Multidisciplinary sensitivity derivatives using complex variables. MSSU-EIRS-ERC-98-08; 1998. – reference: Quagliarella D, Chinnici G. Usage of approximation techniques in evolutionary algorithms with application examples to aerodynamic shape design problems. In: Annicchiarico W, Periaux J, Cerrolaza M, Winter G. editors. Evolutionary algorithms and intelligent tools in engineering optimization. CIMNE; 2005. p. 167–89. – volume: 37 start-page: 2189 year: 1994 end-page: 2210 ident: b0180 article-title: Automatic directional refinement in adaptive analysis of compressible flows publication-title: Int J Numer Meth Eng – reference: Kroo I, Altus S, Braun R, Gage P, Sobieski I. Multidisciplinary optimization methods for aircraft preliminary design. In: AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization. AIAA 94-4325. Panama City, FL; September 7–9, 1994. – volume: 4 start-page: 8 year: 1990 end-page: 19 ident: b0200 article-title: Three-dimensional grid generation method based on a variational principle publication-title: La Recherche Aerospatiale – volume: 37 start-page: 365 year: 2001 end-page: 380 ident: b0110 article-title: Viscous single and multicomponent airfoil design with genetic algorithms publication-title: Finite Elem Anal Des – volume: 47 start-page: 629 year: 2000 end-page: 662 ident: b0190 article-title: Adaptive mesh generation for fluid mechanics problems publication-title: Int J Numer Meth Eng – reference: Holst TL. Genetic algorithms apply to multi-objective aerodynamic shape, optimization. In: NASA/TM-05-212846; 2005. – volume: 36 start-page: 668 year: 1999 end-page: 674 ident: b0155 article-title: Numerical optimization of fuselage geometry to modify sonic-boom signature publication-title: J Aircraft – year: 1989 ident: b0265 article-title: Genetic algorithm in search, optimization and machine learning – year: 1987 ident: b0285 article-title: Computational geometry for design and manufacture – reference: Alonso JJ, Kroo IM, Jameson A. Advanced algorithms for design and optimization of quiet supersonic platform. In: 40th AIAA aerospace sciences meeting & exhibit. AIAA paper 2002-0144, Reno, NV; January 2002. – volume: 61 start-page: 323 year: 1987 ident: 10.1016/j.compfluid.2013.08.015_b0205 article-title: An adaptive finite element scheme for transient problems in CFD publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(87)90098-3 – ident: 10.1016/j.compfluid.2013.08.015_b0050 doi: 10.2514/6.2005-319 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.compfluid.2013.08.015_b0075 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – ident: 10.1016/j.compfluid.2013.08.015_b0145 doi: 10.2514/6.1997-1854 – volume: 70 start-page: 331 issue: 2 year: 1973 ident: 10.1016/j.compfluid.2013.08.015_b0015 article-title: On optimal shapes for Stokes flow publication-title: J Fluid Mech – volume: 36 start-page: 668 issue: 4 year: 1999 ident: 10.1016/j.compfluid.2013.08.015_b0155 article-title: Numerical optimization of fuselage geometry to modify sonic-boom signature publication-title: J Aircraft doi: 10.2514/2.2509 – ident: 10.1016/j.compfluid.2013.08.015_b0160 doi: 10.2514/6.2002-144 – ident: 10.1016/j.compfluid.2013.08.015_b0230 – volume: 47 start-page: 629 year: 2000 ident: 10.1016/j.compfluid.2013.08.015_b0190 article-title: Adaptive mesh generation for fluid mechanics problems publication-title: Int J Numer Meth Eng doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<629::AID-NME786>3.0.CO;2-Y – ident: 10.1016/j.compfluid.2013.08.015_b0240 – ident: 10.1016/j.compfluid.2013.08.015_b0090 doi: 10.2514/6.1994-1896 – year: 1998 ident: 10.1016/j.compfluid.2013.08.015_b0280 article-title: Design optimization of supersonic wings using evolutionary algorithms – volume: 4 start-page: 8 year: 1990 ident: 10.1016/j.compfluid.2013.08.015_b0200 article-title: Three-dimensional grid generation method based on a variational principle publication-title: La Recherche Aerospatiale – volume: 149 start-page: 155 issue: 1 year: 2002 ident: 10.1016/j.compfluid.2013.08.015_b0105 article-title: Parallel evolutionary algorithms for optimization problems in aerospace engineering publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(02)00527-7 – ident: 10.1016/j.compfluid.2013.08.015_b0150 doi: 10.2514/6.1994-4325 – ident: 10.1016/j.compfluid.2013.08.015_b0060 doi: 10.2514/6.2004-6512 – ident: 10.1016/j.compfluid.2013.08.015_b0010 – ident: 10.1016/j.compfluid.2013.08.015_b0025 doi: 10.2514/6.1997-101 – ident: 10.1016/j.compfluid.2013.08.015_b0165 – ident: 10.1016/j.compfluid.2013.08.015_b0085 doi: 10.2514/6.1994-92 – volume: 37 start-page: 2189 year: 1994 ident: 10.1016/j.compfluid.2013.08.015_b0180 article-title: Automatic directional refinement in adaptive analysis of compressible flows publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1620371304 – ident: 10.1016/j.compfluid.2013.08.015_b0140 doi: 10.2514/6.2003-298 – volume: 28 start-page: 443 issue: 4 year: 1999 ident: 10.1016/j.compfluid.2013.08.015_b0035 article-title: Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation publication-title: Comput Fluids doi: 10.1016/S0045-7930(98)00041-3 – volume: 37 start-page: 634 issue: 5 year: 1999 ident: 10.1016/j.compfluid.2013.08.015_b0170 article-title: Airfoil and wing design through hybrid optimization strategies publication-title: AIAA J doi: 10.2514/2.764 – ident: 10.1016/j.compfluid.2013.08.015_b0130 doi: 10.1007/978-0-85729-345-9_1 – volume: 72 start-page: 449 year: 1987 ident: 10.1016/j.compfluid.2013.08.015_b0185 article-title: Adaptive remeshing for compressible flow computations publication-title: J Comput Phys doi: 10.1016/0021-9991(87)90093-3 – ident: 10.1016/j.compfluid.2013.08.015_b0120 doi: 10.2514/6.1995-1650 – year: 1989 ident: 10.1016/j.compfluid.2013.08.015_b0265 – ident: 10.1016/j.compfluid.2013.08.015_b0080 doi: 10.2514/6.1993-3933 – ident: 10.1016/j.compfluid.2013.08.015_b0100 doi: 10.2514/6.1998-222 – ident: 10.1016/j.compfluid.2013.08.015_b0005 – ident: 10.1016/j.compfluid.2013.08.015_b0030 – volume: 3 start-page: 260 issue: 233 year: 1988 ident: 10.1016/j.compfluid.2013.08.015_b0020 article-title: Aerodynamic design via control theory publication-title: J Sci Comput – volume: 4 start-page: 123 year: 1988 ident: 10.1016/j.compfluid.2013.08.015_b0250 article-title: Some useful data structures for the generation of unstructured grids publication-title: Comm Appl Num Meth doi: 10.1002/cnm.1630040116 – ident: 10.1016/j.compfluid.2013.08.015_b0045 doi: 10.2514/6.1996-4170 – start-page: 245 year: 1998 ident: 10.1016/j.compfluid.2013.08.015_b0275 article-title: Pareto genetic algorithm for aerodynamic design using the Navier–Stokes equations publication-title: Genetic Algorithms Eng Comput Sci – volume: 20 start-page: 915 year: 1995 ident: 10.1016/j.compfluid.2013.08.015_b0220 article-title: Optimum aerodynamic shape design including mesh adaptivity publication-title: Int J Numer Methods Fluid doi: 10.1002/fld.1650200814 – ident: 10.1016/j.compfluid.2013.08.015_b0235 – volume: 50 start-page: 819 issue: 5/6 year: 1995 ident: 10.1016/j.compfluid.2013.08.015_b0245 article-title: Mesh adaptation in fluid mechanics publication-title: Eng Fract Mech doi: 10.1016/0013-7944(94)E0062-L – volume: 37 start-page: 365 issue: 5 year: 2001 ident: 10.1016/j.compfluid.2013.08.015_b0110 article-title: Viscous single and multicomponent airfoil design with genetic algorithms publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(00)00053-6 – ident: 10.1016/j.compfluid.2013.08.015_b0195 – volume: 3 issue: 6 year: 1996 ident: 10.1016/j.compfluid.2013.08.015_b0270 article-title: Conceptual design of helicopters via genetic algorithm publication-title: J Aircraft doi: 10.2514/3.47058 – volume: 75 start-page: 195 year: 1989 ident: 10.1016/j.compfluid.2013.08.015_b0215 article-title: Adaptive remeshing for transient problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(89)90024-8 – year: 1987 ident: 10.1016/j.compfluid.2013.08.015_b0285 – ident: 10.1016/j.compfluid.2013.08.015_b0040 doi: 10.2514/1.24859 – volume: 232 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.compfluid.2013.08.015_b0115 article-title: Fast reconstruction of aerodynamic shapes using evolutionary algorithms and virtual Nash strategies in a CFD design environment publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.10.037 – ident: 10.1016/j.compfluid.2013.08.015_b0055 doi: 10.2514/6.1996-4023 – volume: 30 start-page: 161 year: 1998 ident: 10.1016/j.compfluid.2013.08.015_b0225 article-title: Optimum aerodynamic shape design for fluid flow problems including mesh adaptivity publication-title: Int J Numer Methods Fluid doi: 10.1002/(SICI)1097-0363(19990530)30:2<161::AID-FLD831>3.0.CO;2-J – ident: 10.1016/j.compfluid.2013.08.015_b0065 doi: 10.2514/6.2002-5548 – ident: 10.1016/j.compfluid.2013.08.015_b0255 doi: 10.2514/6.1985-18 – ident: 10.1016/j.compfluid.2013.08.015_b0210 doi: 10.1007/978-3-663-13975-1_34 – ident: 10.1016/j.compfluid.2013.08.015_b0175 doi: 10.2514/6.2003-3791 |
| SSID | ssj0004324 |
| Score | 2.0616946 |
| Snippet | •We couple MOGA and adaptive remeshing approach.•It is implemented to three practical aerodynamic shape design problems.•The quality of uniform mesh and... This paper demonstrates the big influence of the control of the mesh quality in the final solution of aerodynamic shape optimization problems. It aims to study... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 298 |
| SubjectTerms | Adaptive remeshing Aerodynamics Airfoils Computational efficiency Design optimization Drag Euler equation Lift Mathematical models MOGA Reconstruction/multi-objective optimization Shape optimization |
| Title | Multi-objective aerodynamic shape optimization using MOGA coupled to advanced adaptive mesh refinement |
| URI | https://dx.doi.org/10.1016/j.compfluid.2013.08.015 https://www.proquest.com/docview/1530981730 https://www.proquest.com/docview/1541454453 https://www.proquest.com/docview/1677977103 https://www.proquest.com/docview/1678011683 |
| Volume | 88 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: AKRWK dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWqcoEDYhVlk5G4BpLaTgK3ClEKCLhQqTfLW2irNoloe-XbmcnCJlQO3LLYiTO25zmemTeEnCrAkMTCRHJKMI9rJ7yYFSnDtAU4x2QEGJz88Bj2-vxuIAYNclXHwqBbZaX7S51eaOvqynklzfN8NMIYXy5gdKHpzWesjf_tnEeYxeDs7dPNAxnnSiszUjMy_5uPF7ptJ5PFCClDA1ZweWJ-3N8R6oeuLgCou0HWq5Uj7ZSN2yQNl26RtS98gtskKcJpvUyPSzVGlQP9WOacp7Ohyh3NQEVMq9hLik7vL_Th6aZDTbbIJ87SeUZrtwA4UHnxmKmbDSk0FN6Em4k7pN-9fr7qeVUiBc-AROZehKzsXMTIDWcsR9hux7HBDQxuQ5u0GU8iuGO04TpRCjkAjREA9twowTXbJc00S90eoWhAZkZHjieaKxHqiDkT4Xao1tbaoEXCWnjSVCzjmOxiImt3srH8kLpEqUtMgxmIFvE_KuYl0cbfVS7r3pHfxowEOPi78kndnxJmFJpJVOqyxUwCBvgXcQCqb1kZHnDkMWJLyoRRBKvrwF9eJkZTWMz2__MxB2QVz9DNJhCHpDl_XbgjWCzN9XExG47JSuf2vvf4DrrKFmg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHKCHquWhUkprJK6BZD2O094Qgm5hd7mAxM3yK7Bo2UTs7rW_vTN5LA-h3UNvUWInztiesT3ffMPYoUEbknucSMFIEYENMspElTLMejTnlIyAgpP7g7R7Axe38naFnbaxMASrbHR_rdMrbd3cOW6keVwOhxTjCxJHF7neYiE6uG9fA9lRtAM7-vuM8yDKudrNTNyMIn4F8iLcdj6aDYkzNBEVmSclyH3fRL1R1pUFOv_EPjZLR35St-4zWwnjTfbhBaHgFsureNqosA-1HuMmoIKsk87zyb0pAy9QRzw2wZecUO93vH_1-4S7YlaOgufTgre4ALwwZfWaxzC559hQ_BKdJm6zm_Oz69Nu1GRSiByAmkaKaNlBZkQO5zyQ3e5kmaMTDPCpzzsCcoVPnHVgc2OIBNA5idYenJFgxQ5bHRfj8IVx8iALZ1WA3IKRqVUiOEXnodZ675NdlrbC066hGadsFyPd4ske9FzqmqSuKQ9mIndZPK9Y1kwby6v8antHvxo0Gu3B8soHbX9qnFLkJzHjUMwmGo1A_DNLUPctKgMJEJGRWFAmVQqX10m8uExGvrBMfP2fn_nB1rvX_Z7u_Rlc7rENekKYm0R-Y6vTp1nYx5XT1H6vZsY__-oX_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+aerodynamic+shape+optimization+using+MOGA+coupled+to+advanced+adaptive+mesh+refinement&rft.jtitle=Computers+%26+fluids&rft.au=Kouhi%2C+Mohammad&rft.au=Lee%2C+Dong+Seop&rft.au=Bugeda%2C+Gabriel&rft.au=Onate%2C+Eugenio&rft.date=2013-12-15&rft.issn=0045-7930&rft.volume=88&rft.spage=298&rft.epage=312&rft_id=info:doi/10.1016%2Fj.compfluid.2013.08.015&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |