Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting

Objective. To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting. Design. Trunk muscle forces, spine compression, and coactivity predicted through double linear optimization, EMG-assisted, and EMG ass...

Full description

Saved in:
Bibliographic Details
Published inClinical biomechanics (Bristol) Vol. 16; no. 5; pp. 359 - 372
Main Authors Gagnon, Denis, Larivière, Christian, Loisel, Patrick
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2001
Subjects
Online AccessGet full text
ISSN0268-0033
1879-1271
DOI10.1016/S0268-0033(01)00016-X

Cover

Abstract Objective. To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting. Design. Trunk muscle forces, spine compression, and coactivity predicted through double linear optimization, EMG-assisted, and EMG assisted by optimization approaches were compared. Background. The advantages of EMG-based approaches are known from static task analyses. Limited assessment has been made for dynamic lifting. Methods. Eleven male subjects performed sagittal plane lifting-lowering at fixed cadence from 0° to 45° of trunk flexion with and without an external load of 12 kg. Three-dimensional kinematics and dynamics as well as surface EMG provided inputs to a 12 muscle lumbar spine model. Results. Trunk muscle coactivity was different between the modelling approaches but spine compression was not. Both EMG-based approaches were sensitive to trunk muscle coactivity and imbalance in left-right muscle forces during sagittal plane lifting. Overall, the best correlations between predicted forces and EMG as well as between forces predicted by different modelling approaches were obtained with the EMG-based models. Only the EMG assisted by optimization approach simultaneously satisfied mechanical and physiological validity. Conclusions. Both EMG-based approaches demonstrated their potential to detect individual trunk muscle strategies. A more detailed trunk anatomy representation would improve the EMG-assisted approach and reduce the adjustment to muscle force gain through EMG assisted by optimization. Relevance Injury to the lumbar spine could command alternative strategies of motion to attenuate pain and damage. To understand these strategies, the ideal lumbar spine model should predict individual muscle force patterns and satisfy mechanical equilibrium.
AbstractList Objective. To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting. Design. Trunk muscle forces, spine compression, and coactivity predicted through double linear optimization, EMG-assisted, and EMG assisted by optimization approaches were compared. Background. The advantages of EMG-based approaches are known from static task analyses. Limited assessment has been made for dynamic lifting. Methods. Eleven male subjects performed sagittal plane lifting-lowering at fixed cadence from 0° to 45° of trunk flexion with and without an external load of 12 kg. Three-dimensional kinematics and dynamics as well as surface EMG provided inputs to a 12 muscle lumbar spine model. Results. Trunk muscle coactivity was different between the modelling approaches but spine compression was not. Both EMG-based approaches were sensitive to trunk muscle coactivity and imbalance in left-right muscle forces during sagittal plane lifting. Overall, the best correlations between predicted forces and EMG as well as between forces predicted by different modelling approaches were obtained with the EMG-based models. Only the EMG assisted by optimization approach simultaneously satisfied mechanical and physiological validity. Conclusions. Both EMG-based approaches demonstrated their potential to detect individual trunk muscle strategies. A more detailed trunk anatomy representation would improve the EMG-assisted approach and reduce the adjustment to muscle force gain through EMG assisted by optimization. Relevance Injury to the lumbar spine could command alternative strategies of motion to attenuate pain and damage. To understand these strategies, the ideal lumbar spine model should predict individual muscle force patterns and satisfy mechanical equilibrium.
OBJECTIVE: To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting. DESIGN: Trunk muscle forces, spine compression, and coactivity predicted through double linear optimization, EMG-assisted, and EMG assisted by optimization approaches were compared. Background: The advantages of EMG-based approaches are known from static task analyses. Limited assessment has been made for dynamic lifting. METHODS: Eleven male subjects performed sagittal plane lifting-lowering at fixed cadence from 0 degrees to 45 degrees of trunk flexion with and without an external load of 12 kg. Three-dimensional kinematics and dynamics as well as surface EMG provided inputs to a 12 muscle lumbar spine model. RESULTS: Trunk muscle coactivity was different between the modelling approaches but spine compression was not. Both EMG-based approaches were sensitive to trunk muscle coactivity and imbalance in left-right muscle forces during sagittal plane lifting. Overall, the best correlations between predicted forces and EMG as well as between forces predicted by different modelling approaches were obtained with the EMG-based models. Only the EMG assisted by optimization approach simultaneously satisfied mechanical and physiological validity. CONCLUSIONS: Both EMG-based approaches demonstrated their potential to detect individual trunk muscle strategies. A more detailed trunk anatomy representation would improve the EMG- assisted approach and reduce the adjustment to muscle force gain through EMG assisted by optimization.
To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting.OBJECTIVETo compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting.Trunk muscle forces, spine compression, and coactivity predicted through double linear optimization, EMG-assisted, and EMG assisted by optimization approaches were compared.Background. The advantages of EMG-based approaches are known from static task analyses. Limited assessment has been made for dynamic lifting.DESIGNTrunk muscle forces, spine compression, and coactivity predicted through double linear optimization, EMG-assisted, and EMG assisted by optimization approaches were compared.Background. The advantages of EMG-based approaches are known from static task analyses. Limited assessment has been made for dynamic lifting.Eleven male subjects performed sagittal plane lifting-lowering at fixed cadence from 0 degrees to 45 degrees of trunk flexion with and without an external load of 12 kg. Three-dimensional kinematics and dynamics as well as surface EMG provided inputs to a 12 muscle lumbar spine model.METHODSEleven male subjects performed sagittal plane lifting-lowering at fixed cadence from 0 degrees to 45 degrees of trunk flexion with and without an external load of 12 kg. Three-dimensional kinematics and dynamics as well as surface EMG provided inputs to a 12 muscle lumbar spine model.Trunk muscle coactivity was different between the modelling approaches but spine compression was not. Both EMG-based approaches were sensitive to trunk muscle coactivity and imbalance in left-right muscle forces during sagittal plane lifting. Overall, the best correlations between predicted forces and EMG as well as between forces predicted by different modelling approaches were obtained with the EMG-based models. Only the EMG assisted by optimization approach simultaneously satisfied mechanical and physiological validity.RESULTSTrunk muscle coactivity was different between the modelling approaches but spine compression was not. Both EMG-based approaches were sensitive to trunk muscle coactivity and imbalance in left-right muscle forces during sagittal plane lifting. Overall, the best correlations between predicted forces and EMG as well as between forces predicted by different modelling approaches were obtained with the EMG-based models. Only the EMG assisted by optimization approach simultaneously satisfied mechanical and physiological validity.Both EMG-based approaches demonstrated their potential to detect individual trunk muscle strategies. A more detailed trunk anatomy representation would improve the EMG-assisted approach and reduce the adjustment to muscle force gain through EMG assisted by optimization.CONCLUSIONSBoth EMG-based approaches demonstrated their potential to detect individual trunk muscle strategies. A more detailed trunk anatomy representation would improve the EMG-assisted approach and reduce the adjustment to muscle force gain through EMG assisted by optimization.Injury to the lumbar spine could command alternative strategies of motion to attenuate pain and damage. To understand these strategies, the ideal lumbar spine model should predict individual muscle force patterns and satisfy mechanical equilibrium.RELEVANCEInjury to the lumbar spine could command alternative strategies of motion to attenuate pain and damage. To understand these strategies, the ideal lumbar spine model should predict individual muscle force patterns and satisfy mechanical equilibrium.
To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting. Trunk muscle forces, spine compression, and coactivity predicted through double linear optimization, EMG-assisted, and EMG assisted by optimization approaches were compared.Background. The advantages of EMG-based approaches are known from static task analyses. Limited assessment has been made for dynamic lifting. Eleven male subjects performed sagittal plane lifting-lowering at fixed cadence from 0 degrees to 45 degrees of trunk flexion with and without an external load of 12 kg. Three-dimensional kinematics and dynamics as well as surface EMG provided inputs to a 12 muscle lumbar spine model. Trunk muscle coactivity was different between the modelling approaches but spine compression was not. Both EMG-based approaches were sensitive to trunk muscle coactivity and imbalance in left-right muscle forces during sagittal plane lifting. Overall, the best correlations between predicted forces and EMG as well as between forces predicted by different modelling approaches were obtained with the EMG-based models. Only the EMG assisted by optimization approach simultaneously satisfied mechanical and physiological validity. Both EMG-based approaches demonstrated their potential to detect individual trunk muscle strategies. A more detailed trunk anatomy representation would improve the EMG-assisted approach and reduce the adjustment to muscle force gain through EMG assisted by optimization. Injury to the lumbar spine could command alternative strategies of motion to attenuate pain and damage. To understand these strategies, the ideal lumbar spine model should predict individual muscle force patterns and satisfy mechanical equilibrium.
Author Larivière, Christian
Gagnon, Denis
Loisel, Patrick
Author_xml – sequence: 1
  givenname: Denis
  surname: Gagnon
  fullname: Gagnon, Denis
  email: dgagnon@feps.usherb.ca
  organization: Laboratoire de biomécanique occupationnelle, Faculté d'éducation physique et sportive, Université de Sherbrooke, 2500 Boulevard de l'Universite, Sherbrooke, Que., Canada J1K 2R1
– sequence: 2
  givenname: Christian
  surname: Larivière
  fullname: Larivière, Christian
  organization: Centre de recherche clinique en réadaptation au travail PRÉVICAP, Longueuil, Que., Canada J4K 5G4
– sequence: 3
  givenname: Patrick
  surname: Loisel
  fullname: Loisel, Patrick
  organization: Centre de recherche clinique en réadaptation au travail PRÉVICAP, Longueuil, Que., Canada J4K 5G4
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11390042$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1vFCEUhompsdvqT9Bw5UfSUZiPZTfGGLOp1aTGCzXpHTkDhxbLDFNgmox_yL8ps1t70QvrFYHzvC-c83JA9nrfIyFPOXvNGV---cbK5apgrKpeMv6KsXxWnD0gC74S64KXgu-RxS2yTw5i_JmhumzEI7LPebWeNwvye-O7AQIke40UWutsmqg39PjLyRH1Q7Kd_ZWLvj-i0Gt6MbXBatp5jc7Z_pzCMAQP6gIjTZ4OAbVViaYw9pe0G6NySI0PKpdnuRu7FgKNg-2ROg96ttBj2C5TD51VNMK5TQkcHRzMlDUplx-ThwZcxCc36yH58fH4--ZTcfr15PPmw2mh6lqkQnBWVkqodqWVAA0rXWtsal4iiKbBpmRCcV2tm8aU2DJuaqY5GLbkpqpNBdUhebHzzW1djRiT7GxUudn8Fj9GKQRv8kR5lcnn_ybZmlWlqDP47AYc2w61HILtIEzybwgZeLsDVPAxBjRS2bQdegpgneRMzpHLbeRyzlMyLreRy7Osbu6oby-4R_d-p8M8zmuLQUZlsVc5wYAqSe3tvQ7v7jio_CesAneJ03_o_wD4Sdmk
CitedBy_id crossref_primary_10_1007_s11044_023_09963_z
crossref_primary_10_1016_j_ergon_2011_03_004
crossref_primary_10_1177_0954411920906243
crossref_primary_10_1016_j_jelekin_2014_08_016
crossref_primary_10_1177_0018720819851299
crossref_primary_10_1016_j_clinbiomech_2006_09_005
crossref_primary_10_1016_j_medengphy_2015_05_018
crossref_primary_10_1016_j_jelekin_2011_04_004
crossref_primary_10_1080_10255842_2014_899587
crossref_primary_10_1007_s12206_008_1009_1
crossref_primary_10_1016_j_apergo_2021_103396
crossref_primary_10_1016_j_jbiomech_2007_03_010
crossref_primary_10_1016_j_humov_2011_08_006
crossref_primary_10_3390_app10103522
crossref_primary_10_1016_j_medengphy_2018_04_019
crossref_primary_10_2486_indhealth_MSWBVI_34
crossref_primary_10_1016_j_jmbbm_2017_11_006
crossref_primary_10_1016_j_medengphy_2022_103790
crossref_primary_10_1016_j_gaitpost_2008_01_002
crossref_primary_10_1016_j_imu_2020_100415
crossref_primary_10_3389_fbioe_2022_862804
crossref_primary_10_1080_10255840500445630
crossref_primary_10_1016_j_jbiomech_2015_12_038
crossref_primary_10_3951_sobim_34_73
crossref_primary_10_1016_j_jbiomech_2019_109348
crossref_primary_10_1016_j_medengphy_2010_09_008
crossref_primary_10_1007_s00586_004_0779_0
crossref_primary_10_1016_j_gaitpost_2009_08_239
crossref_primary_10_1186_1475_925X_12_20
crossref_primary_10_1371_journal_pone_0150608
crossref_primary_10_1016_j_jelekin_2017_01_001
crossref_primary_10_1016_j_jbiomech_2018_09_017
crossref_primary_10_1155_2017_3937254
crossref_primary_10_1016_j_jbiomech_2003_12_020
crossref_primary_10_1080_1025584042000327115
crossref_primary_10_1177_0954411912463322
crossref_primary_10_1016_j_clinbiomech_2008_04_004
crossref_primary_10_1016_j_medengphy_2005_10_001
crossref_primary_10_1016_j_jbiomech_2017_04_026
crossref_primary_10_1016_j_jbiomech_2015_01_011
crossref_primary_10_1016_S1050_6411_03_00039_7
crossref_primary_10_1080_00140139_2019_1657183
crossref_primary_10_1016_j_jbiomech_2017_12_028
crossref_primary_10_1016_j_jbiomech_2004_11_030
crossref_primary_10_1097_01_brs_0000229232_66090_58
crossref_primary_10_5100_jje_46_215
crossref_primary_10_1016_j_jbiomech_2011_03_010
crossref_primary_10_1016_j_jelekin_2013_01_013
crossref_primary_10_1080_00140139_2016_1191679
crossref_primary_10_1097_BRS_0b013e3181e45a6e
crossref_primary_10_1016_j_rbmret_2006_05_005
crossref_primary_10_1016_j_medengphy_2011_11_023
crossref_primary_10_1080_00140139_2017_1365950
crossref_primary_10_1097_01_brs_0000146463_05288_0e
crossref_primary_10_1016_j_jbiomech_2016_07_009
crossref_primary_10_1016_j_humov_2019_04_006
crossref_primary_10_1051_sm_2012039
crossref_primary_10_1097_01_brs_0000187907_02910_4f
crossref_primary_10_1016_j_medengphy_2019_09_009
crossref_primary_10_3917_sta_081_0007
crossref_primary_10_1080_00140139_2014_897374
crossref_primary_10_1016_j_jbiomech_2009_09_032
crossref_primary_10_1016_j_jbiomech_2011_03_002
crossref_primary_10_1016_j_jelekin_2006_10_009
crossref_primary_10_1016_j_clinbiomech_2009_05_008
crossref_primary_10_1111_sms_12204
crossref_primary_10_3390_s22010087
Cites_doi 10.1115/1.3120790
10.1016/S0021-9290(98)00055-4
10.1016/S0021-9290(98)00056-6
10.1016/S0021-9290(98)00129-8
10.1016/0021-9290(94)00078-I
10.1123/jab.15.2.191
10.1097/00007632-199502000-00016
10.1097/00007632-199507000-00002
10.1002/jor.1100010111
10.3109/17453678909154177
10.1615/CritRevPhysRehabilMed.v9.i3-4.70
10.1016/0021-9290(95)00003-Z
10.1016/0021-9290(92)90259-4
10.1016/0268-0033(93)90011-6
10.1016/0021-9290(88)90192-3
10.1016/0021-9290(96)84547-7
10.1016/0268-0033(95)00031-3
10.1016/0021-9290(82)90021-5
10.1016/S0021-9290(97)00083-3
10.1080/00140139108967318
10.1080/00140139608964532
10.1123/jab.15.2.120
10.1016/S0268-0033(98)00109-0
10.1016/0268-0033(95)00056-9
10.1016/0268-0033(95)00035-6
10.1123/jab.15.2.182
10.1097/00002517-199212000-00001
10.1016/S0268-0033(97)00063-6
10.1016/0021-9290(79)90148-9
10.1016/S1053-8127(96)00244-8
10.1016/0268-0033(92)90028-3
10.1002/jor.1100090112
10.2106/00004623-198264050-00008
10.1016/0268-0033(95)91394-T
10.1097/00007632-199504150-00006
10.1016/0021-9290(94)90282-8
10.1016/S0268-0033(97)00021-1
10.1115/1.3138507
10.1016/S1050-6411(97)00006-0
10.1016/0021-9290(94)00065-C
10.1016/0021-9290(93)90093-T
10.1016/S0167-9457(99)00003-2
10.1097/00007632-198101000-00017
10.1097/00007632-198609000-00004
10.1016/S0268-0033(05)80009-9
ContentType Journal Article
Copyright 2001 Elsevier Science Ltd
Copyright_xml – notice: 2001 Elsevier Science Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/S0268-0033(01)00016-X
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-1271
EndPage 372
ExternalDocumentID 11390042
10_1016_S0268_0033_01_00016_X
S026800330100016X
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QZG
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UAP
UPT
WH7
WUQ
Z5R
~G-
AACTN
AAIAV
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFLBG
~HD
ID FETCH-LOGICAL-c447t-71023c7cb8dc7ada8d4de5412ea755e5207c1d3955f2eb01f40d1af061f34f3a3
IEDL.DBID AIKHN
ISSN 0268-0033
IngestDate Sun Sep 28 03:45:15 EDT 2025
Sat Sep 27 22:52:15 EDT 2025
Wed Feb 19 01:24:22 EST 2025
Thu Apr 24 23:07:14 EDT 2025
Tue Jul 01 01:24:26 EDT 2025
Tue Jul 16 04:30:27 EDT 2024
Tue Aug 26 19:12:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Lumbar spine
Dynamics
Muscle force
Electromyography
Modelling
Coactivity
Lifting
Optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-71023c7cb8dc7ada8d4de5412ea755e5207c1d3955f2eb01f40d1af061f34f3a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11390042
PQID 70903274
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_771500313
proquest_miscellaneous_70903274
pubmed_primary_11390042
crossref_citationtrail_10_1016_S0268_0033_01_00016_X
crossref_primary_10_1016_S0268_0033_01_00016_X
elsevier_sciencedirect_doi_10_1016_S0268_0033_01_00016_X
elsevier_clinicalkey_doi_10_1016_S0268_0033_01_00016_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-06-01
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 2001-06-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical biomechanics (Bristol)
PublicationTitleAlternate Clin Biomech (Bristol, Avon)
PublicationYear 2001
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chow, Darling, Ehrhardt (BIB47) 1999; 15
Bean, Chaffin, Schultz (BIB19) 1988; 21
Larivière, Gagnon (BIB27) 1999; 18
Kopec JA, Esdaile JM, Abrahamowicz M et al. The Quebec back pain disability scale. Spine 1995;20(3):341–52
McGill, Cholewicki, Peach (BIB40) 1997; 12
Delleman, Drost, Huson (BIB3) 1992; 7
Gagnon, Larivière, Gravel, Arsenault, Dumas, Goyette, Loisel (BIB41) 2000; 108
Zimmerman (BIB1) 1997; 8
Granata, Marras (BIB6) 1995; 20
Schultz, Anderson, Haderspeck, Ortengren, Nordin, Bjork (BIB10) 1982; 15
McGill, Juker, Kropf (BIB42) 1996; 29
Cholewicki, Juluru, McGill (BIB24) 1999; 32
Cholewicki, McGill (BIB15) 1996; 11
Cholewicki, McGill, Norman (BIB22) 1995; 28
McGill (BIB29) 1991; 9
An, Kwak, Chao, Morrey (BIB49) 1984; 106
McGill (BIB16) 1992; 25
McGill, Norman, Cholewicki (BIB33) 1996; 39
Panjabi (BIB25) 1979; 12
Schultz, Andersson, Ortengren, Haderspeck, Nachemson (BIB13) 1982; 64-A
Redfern, Hughes, Chaffin (BIB28) 1993; 8
Chow, Darling, Ehrhardt (BIB48) 1999; 15
Granata, Marras (BIB4) 1993; 26
McGill, Norman (BIB17) 1986; 11
Schultz (BIB9) 1990; 43
O'Sullivan, Twomey, Allison (BIB36) 1997; 9
Gatton, Pearcy (BIB39) 1999; 14
Nussbaum, Chaffin (BIB20) 1998; 31
Nussbaum, Chaffin (BIB45) 1996; 11
McGill, Juker, Kropf (BIB43) 1996; 11
Panjabi (BIB2) 1992; 5
Schultz, Haderspeck, Warwick, Portillo (BIB12) 1983; 1
Zheng, Fleisig, Escamilla, Barrentine (BIB38) 1998; 31
Bergmark (BIB23) 1989; 60
Hughes RE. Empirical evaluation of optimization-based lumbar muscle force prediction models. Ph.D. Dissertation, The University of Michigan, Ann Arbor, MI 1991
Marras, Granata (BIB8) 1997; 7
Marras, Granata (BIB32) 1995; 20
Larivière, Gagnon (BIB30) 1998; 13
Cappozzo, Catani, Della Croce, Leardini (BIB31) 1995; 10
Cholewicki, McGill (BIB21) 1994; 27
Kleinbaum, Kupper, Muller (BIB34) 1988
Thelen DG. A system identification approach to quantifying lumbar trunk loads. Ph.D. Dissertation, University of Michigan, 1992
McGill, Santaguida, Stevens (BIB44) 1993; 8
Nussbaum, Chaffin, Rechtien (BIB46) 1995; 28
Schultz, Andersson (BIB11) 1981; 6
Choi H, Vanderby Jr R. Comparison of biomechanical human neck models: muscle forces and spinal loads at C4/5 level. J Appl Biomech 1999;15(2):120–38
van Dieën (BIB18) 1997; 30
Mirka (BIB35) 1991; 34
Granata, Marras (BIB5) 1995; 28
Nussbaum (10.1016/S0268-0033(01)00016-X_BIB46) 1995; 28
10.1016/S0268-0033(01)00016-X_BIB14
Cholewicki (10.1016/S0268-0033(01)00016-X_BIB21) 1994; 27
Cholewicki (10.1016/S0268-0033(01)00016-X_BIB15) 1996; 11
Gagnon (10.1016/S0268-0033(01)00016-X_BIB41) 2000; 108
McGill (10.1016/S0268-0033(01)00016-X_BIB33) 1996; 39
Marras (10.1016/S0268-0033(01)00016-X_BIB8) 1997; 7
Nussbaum (10.1016/S0268-0033(01)00016-X_BIB45) 1996; 11
Marras (10.1016/S0268-0033(01)00016-X_BIB32) 1995; 20
Schultz (10.1016/S0268-0033(01)00016-X_BIB13) 1982; 64-A
Panjabi (10.1016/S0268-0033(01)00016-X_BIB2) 1992; 5
Granata (10.1016/S0268-0033(01)00016-X_BIB5) 1995; 28
Nussbaum (10.1016/S0268-0033(01)00016-X_BIB20) 1998; 31
Chow (10.1016/S0268-0033(01)00016-X_BIB48) 1999; 15
Delleman (10.1016/S0268-0033(01)00016-X_BIB3) 1992; 7
McGill (10.1016/S0268-0033(01)00016-X_BIB44) 1993; 8
10.1016/S0268-0033(01)00016-X_BIB7
10.1016/S0268-0033(01)00016-X_BIB26
Schultz (10.1016/S0268-0033(01)00016-X_BIB11) 1981; 6
An (10.1016/S0268-0033(01)00016-X_BIB49) 1984; 106
Bean (10.1016/S0268-0033(01)00016-X_BIB19) 1988; 21
van Dieën (10.1016/S0268-0033(01)00016-X_BIB18) 1997; 30
Cholewicki (10.1016/S0268-0033(01)00016-X_BIB24) 1999; 32
Granata (10.1016/S0268-0033(01)00016-X_BIB6) 1995; 20
Kleinbaum (10.1016/S0268-0033(01)00016-X_BIB34) 1988
Panjabi (10.1016/S0268-0033(01)00016-X_BIB25) 1979; 12
Chow (10.1016/S0268-0033(01)00016-X_BIB47) 1999; 15
Mirka (10.1016/S0268-0033(01)00016-X_BIB35) 1991; 34
10.1016/S0268-0033(01)00016-X_BIB37
McGill (10.1016/S0268-0033(01)00016-X_BIB40) 1997; 12
McGill (10.1016/S0268-0033(01)00016-X_BIB16) 1992; 25
Bergmark (10.1016/S0268-0033(01)00016-X_BIB23) 1989; 60
Schultz (10.1016/S0268-0033(01)00016-X_BIB10) 1982; 15
Cappozzo (10.1016/S0268-0033(01)00016-X_BIB31) 1995; 10
Cholewicki (10.1016/S0268-0033(01)00016-X_BIB22) 1995; 28
Redfern (10.1016/S0268-0033(01)00016-X_BIB28) 1993; 8
McGill (10.1016/S0268-0033(01)00016-X_BIB29) 1991; 9
O'Sullivan (10.1016/S0268-0033(01)00016-X_BIB36) 1997; 9
Schultz (10.1016/S0268-0033(01)00016-X_BIB12) 1983; 1
Granata (10.1016/S0268-0033(01)00016-X_BIB4) 1993; 26
McGill (10.1016/S0268-0033(01)00016-X_BIB43) 1996; 11
McGill (10.1016/S0268-0033(01)00016-X_BIB17) 1986; 11
Larivière (10.1016/S0268-0033(01)00016-X_BIB30) 1998; 13
Zimmerman (10.1016/S0268-0033(01)00016-X_BIB1) 1997; 8
Gatton (10.1016/S0268-0033(01)00016-X_BIB39) 1999; 14
Zheng (10.1016/S0268-0033(01)00016-X_BIB38) 1998; 31
McGill (10.1016/S0268-0033(01)00016-X_BIB42) 1996; 29
Larivière (10.1016/S0268-0033(01)00016-X_BIB27) 1999; 18
Schultz (10.1016/S0268-0033(01)00016-X_BIB9) 1990; 43
References_xml – volume: 30
  start-page: 1095
  year: 1997
  end-page: 1100
  ident: BIB18
  article-title: Are recruitment patterns of the trunk musculature compatible with a synergy based on the maximization of endurance
  publication-title: J. Biomech.
– volume: 39
  start-page: 1107
  year: 1996
  end-page: 1118
  ident: BIB33
  article-title: A simple polynomial that predicts low-back compression during complex 3-D tasks
  publication-title: Ergonomics
– reference: Kopec JA, Esdaile JM, Abrahamowicz M et al. The Quebec back pain disability scale. Spine 1995;20(3):341–52
– volume: 106
  start-page: 364
  year: 1984
  end-page: 367
  ident: BIB49
  article-title: Determination of muscle and joint forces: a new technique to solve the indeterminate problem
  publication-title: J. Biomech. Eng.
– reference: Hughes RE. Empirical evaluation of optimization-based lumbar muscle force prediction models. Ph.D. Dissertation, The University of Michigan, Ann Arbor, MI 1991
– volume: 28
  start-page: 1309
  year: 1995
  end-page: 1317
  ident: BIB5
  article-title: An EMG-assisted model of trunk loading during free-dynamic lifting
  publication-title: J. Biomech.
– volume: 28
  start-page: 401
  year: 1995
  end-page: 409
  ident: BIB46
  article-title: Muscle lines-of-action affect predicted forces in optimization-based spine muscle modeling
  publication-title: J. Biomech.
– volume: 7
  start-page: 259
  year: 1997
  end-page: 268
  ident: BIB8
  article-title: The development of an EMG-assisted model to assess spine loading during whole-body free-dynamic lifting
  publication-title: J. Electromyography. Kinesiol.
– volume: 5
  start-page: 383
  year: 1992
  end-page: 389
  ident: BIB2
  article-title: The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement
  publication-title: J. Spinal Disorders
– volume: 8
  start-page: 171
  year: 1993
  end-page: 178
  ident: BIB44
  article-title: Measurement of the trunk musculature from T5 to L5 using MRI scans of 15 young males corrected for muscle fibre orientation
  publication-title: Clin. Biomech.
– volume: 10
  start-page: 171
  year: 1995
  end-page: 178
  ident: BIB31
  article-title: Position and orientation in space of bones during movement: anatomical frame definition and determination
  publication-title: Clin. Biomech.
– volume: 11
  start-page: 1
  year: 1996
  end-page: 15
  ident: BIB15
  article-title: Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain
  publication-title: Clin. Biomech.
– volume: 28
  start-page: 321
  year: 1995
  end-page: 332
  ident: BIB22
  article-title: Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach
  publication-title: J. Biomech.
– volume: 13
  start-page: 36
  year: 1998
  end-page: 47
  ident: BIB30
  article-title: Comparison between two dynamic methods to estimate triaxial net reaction moments at the L5/S1 joint during lifting
  publication-title: Clin. Biomech.
– volume: 1
  start-page: 77
  year: 1983
  end-page: 91
  ident: BIB12
  article-title: Use of lumbar trunk muscles in isometric performance of mechanically complex standing tasks
  publication-title: J. Orthop. Res.
– volume: 25
  start-page: 395
  year: 1992
  end-page: 414
  ident: BIB16
  article-title: A myoelectrically based dynamic three-dimensional model to predict loads on the lumbar spine tissues during lateral bending
  publication-title: J. Biomech.
– volume: 64-A
  start-page: 713
  year: 1982
  end-page: 720
  ident: BIB13
  article-title: Loads on the lumbar spine
  publication-title: J. Bone J. Surg.
– reference: Choi H, Vanderby Jr R. Comparison of biomechanical human neck models: muscle forces and spinal loads at C4/5 level. J Appl Biomech 1999;15(2):120–38
– volume: 11
  start-page: 25
  year: 1996
  end-page: 34
  ident: BIB45
  article-title: Development and evaluation of a scalable and deformable geometric model of the human torso
  publication-title: Clin. Biomech.
– volume: 26
  start-page: 1429
  year: 1993
  end-page: 1438
  ident: BIB4
  article-title: An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions
  publication-title: J. Biomech.
– volume: 8
  start-page: 125
  year: 1997
  end-page: 133
  ident: BIB1
  article-title: A review of utilization of diagnostic imaging in the evaluation of patients with back pain: the when and what of back pain imaging
  publication-title: J. Back Musculoskeletal Rehabilit
– volume: 8
  start-page: 44
  year: 1993
  end-page: 48
  ident: BIB28
  article-title: High-pass filtering to remove electrocardiographic interference from torso EMG recordings
  publication-title: Clin. Biomech.
– year: 1988
  ident: BIB34
  publication-title: Applied regression analysis and other multivariable methods
– volume: 34
  start-page: 343
  year: 1991
  end-page: 352
  ident: BIB35
  article-title: The quantification of EMG normalization error
  publication-title: Ergonomics
– volume: 31
  start-page: 963
  year: 1998
  end-page: 967
  ident: BIB38
  article-title: An analytical model of the knee for estimation of internal forces during exercise
  publication-title: J. Biomech.
– volume: 21
  start-page: 59
  year: 1988
  end-page: 66
  ident: BIB19
  article-title: Biomechanical model calculation of muscle contraction forces: a double linear programming method
  publication-title: J. Biomech.
– volume: 6
  start-page: 76
  year: 1981
  end-page: 82
  ident: BIB11
  article-title: Analysis of loads on the lumbar spine
  publication-title: Spine
– volume: 12
  start-page: 238
  year: 1979
  ident: BIB25
  article-title: Validation of mathematical models
  publication-title: J. Biomech.
– volume: 11
  start-page: 170
  year: 1996
  end-page: 172
  ident: BIB43
  article-title: Quantitative intramuscular myoelectric activity of quadratus lumborum during a wide variety of tasks
  publication-title: Clin. Biomech.
– volume: 43
  start-page: S125
  year: 1990
  end-page: S199
  ident: BIB9
  article-title: Models for analyses of lumbar spine loads
  publication-title: Appl. Mech. Rev.
– volume: 32
  start-page: 13
  year: 1999
  end-page: 18
  ident: BIB24
  article-title: Intra-abdominal pressure mechanism for stabilizing the lumbar spine
  publication-title: J. Biomech.
– volume: 11
  start-page: 666
  year: 1986
  end-page: 678
  ident: BIB17
  article-title: Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting
  publication-title: Spine
– volume: 14
  start-page: 376
  year: 1999
  end-page: 383
  ident: BIB39
  article-title: Kinematics and movement sequencing during flexion of the lumbar spine
  publication-title: Clin. Biomech.
– volume: 20
  start-page: 913
  year: 1995
  end-page: 919
  ident: BIB6
  article-title: The influence of trunk muscle coactivity on dynamic spinal loads
  publication-title: Spine
– volume: 7
  start-page: 138
  year: 1992
  end-page: 148
  ident: BIB3
  article-title: Value of biomechanical macromodels as suitable tools for the prevention of work-related low back problems
  publication-title: Clin. Biomech.
– volume: 15
  start-page: 191
  year: 1999
  end-page: 199
  ident: BIB48
  article-title: Determining the force-length-velocity relations of the quadriceps muscles: II. Maximum muscle stress
  publication-title: J. Appl. Biomech.
– volume: 15
  start-page: 182
  year: 1999
  end-page: 190
  ident: BIB47
  article-title: Determining the force-length-velocity relations of the quadriceps muscles: I. Anatomical and geometric parameters
  publication-title: J. Appl. Biomech.
– volume: 108
  start-page: 190
  year: 2000
  ident: BIB41
  article-title: Assessment of coactivity in torso muscles during sustained static trunk extension efforts
  publication-title: Arch. Physiol. Biochem.
– reference: Thelen DG. A system identification approach to quantifying lumbar trunk loads. Ph.D. Dissertation, University of Michigan, 1992
– volume: 31
  start-page: 667
  year: 1998
  end-page: 672
  ident: BIB20
  article-title: Lumbar muscle force estimation using a subject-invariant 5-parameter EMG-based model
  publication-title: J. Biomech.
– volume: 9
  start-page: 91
  year: 1991
  end-page: 103
  ident: BIB29
  article-title: Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics
  publication-title: J. Orthop. Res.
– volume: 9
  start-page: 315
  year: 1997
  end-page: 330
  ident: BIB36
  article-title: Dynamic stabilization of the lumbar spine
  publication-title: Crit. Rev. Phys. Rehabil. Med.
– volume: 15
  start-page: 669
  year: 1982
  end-page: 675
  ident: BIB10
  article-title: Analysis and measurement of lumbar trunk loads in tasks involving bends and twists
  publication-title: J. Biomech.
– volume: 20
  start-page: 1440
  year: 1995
  end-page: 1451
  ident: BIB32
  article-title: A biomechanical assessment and model of axial twisting in the thoracolumbar spine
  publication-title: Spine
– volume: 12
  start-page: 190
  year: 1997
  end-page: 194
  ident: BIB40
  article-title: Methodological considerations for using inductive sensors (3 space isotrak) to monitor 3-D orthopaedic joint motion
  publication-title: Clin. Biomech.
– volume: 60
  start-page: 1
  year: 1989
  end-page: 54
  ident: BIB23
  article-title: Stability of the lumbar spine: a study in mechanical engineering
  publication-title: ACTA Orthop. Scand.
– volume: 29
  start-page: 1503
  year: 1996
  end-page: 1507
  ident: BIB42
  article-title: Appropriately placed surface EMG electrodes reflect deep muscle activity psoas, quadratus lumborum, abdominal wall in the lumbar spine
  publication-title: J. Biomech.
– volume: 27
  start-page: 1287
  year: 1994
  end-page: 1290
  ident: BIB21
  article-title: EMG assisted optimization: a hybrid approach for estimating muscle force in an indeterminate biomechanical model
  publication-title: J. Biomech.
– volume: 18
  start-page: 573
  year: 1999
  end-page: 587
  ident: BIB27
  article-title: The L5/S1 joint moment sensitivity to measurement errors in dynamic 3D multisegment lifting models
  publication-title: Hum. Move. Sci.
– volume: 43
  start-page: S125
  issue: 5, Part 2
  year: 1990
  ident: 10.1016/S0268-0033(01)00016-X_BIB9
  article-title: Models for analyses of lumbar spine loads
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3120790
– year: 1988
  ident: 10.1016/S0268-0033(01)00016-X_BIB34
– volume: 31
  start-page: 667
  issue: 7
  year: 1998
  ident: 10.1016/S0268-0033(01)00016-X_BIB20
  article-title: Lumbar muscle force estimation using a subject-invariant 5-parameter EMG-based model
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00055-4
– volume: 31
  start-page: 963
  issue: 10
  year: 1998
  ident: 10.1016/S0268-0033(01)00016-X_BIB38
  article-title: An analytical model of the knee for estimation of internal forces during exercise
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00056-6
– volume: 32
  start-page: 13
  issue: 1
  year: 1999
  ident: 10.1016/S0268-0033(01)00016-X_BIB24
  article-title: Intra-abdominal pressure mechanism for stabilizing the lumbar spine
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00129-8
– volume: 28
  start-page: 401
  issue: 4
  year: 1995
  ident: 10.1016/S0268-0033(01)00016-X_BIB46
  article-title: Muscle lines-of-action affect predicted forces in optimization-based spine muscle modeling
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00078-I
– volume: 15
  start-page: 191
  issue: 2
  year: 1999
  ident: 10.1016/S0268-0033(01)00016-X_BIB48
  article-title: Determining the force-length-velocity relations of the quadriceps muscles: II. Maximum muscle stress
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.15.2.191
– ident: 10.1016/S0268-0033(01)00016-X_BIB26
  doi: 10.1097/00007632-199502000-00016
– volume: 20
  start-page: 1440
  issue: 13
  year: 1995
  ident: 10.1016/S0268-0033(01)00016-X_BIB32
  article-title: A biomechanical assessment and model of axial twisting in the thoracolumbar spine
  publication-title: Spine
  doi: 10.1097/00007632-199507000-00002
– volume: 1
  start-page: 77
  issue: 1
  year: 1983
  ident: 10.1016/S0268-0033(01)00016-X_BIB12
  article-title: Use of lumbar trunk muscles in isometric performance of mechanically complex standing tasks
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100010111
– volume: 60
  start-page: 1
  issue: Suppl.230
  year: 1989
  ident: 10.1016/S0268-0033(01)00016-X_BIB23
  article-title: Stability of the lumbar spine: a study in mechanical engineering
  publication-title: ACTA Orthop. Scand.
  doi: 10.3109/17453678909154177
– volume: 9
  start-page: 315
  issue: 3/4
  year: 1997
  ident: 10.1016/S0268-0033(01)00016-X_BIB36
  article-title: Dynamic stabilization of the lumbar spine
  publication-title: Crit. Rev. Phys. Rehabil. Med.
  doi: 10.1615/CritRevPhysRehabilMed.v9.i3-4.70
– volume: 28
  start-page: 1309
  issue: 11
  year: 1995
  ident: 10.1016/S0268-0033(01)00016-X_BIB5
  article-title: An EMG-assisted model of trunk loading during free-dynamic lifting
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00003-Z
– volume: 25
  start-page: 395
  issue: 4
  year: 1992
  ident: 10.1016/S0268-0033(01)00016-X_BIB16
  article-title: A myoelectrically based dynamic three-dimensional model to predict loads on the lumbar spine tissues during lateral bending
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90259-4
– volume: 8
  start-page: 171
  issue: 4
  year: 1993
  ident: 10.1016/S0268-0033(01)00016-X_BIB44
  article-title: Measurement of the trunk musculature from T5 to L5 using MRI scans of 15 young males corrected for muscle fibre orientation
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(93)90011-6
– volume: 21
  start-page: 59
  issue: 1
  year: 1988
  ident: 10.1016/S0268-0033(01)00016-X_BIB19
  article-title: Biomechanical model calculation of muscle contraction forces: a double linear programming method
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(88)90192-3
– volume: 29
  start-page: 1503
  issue: 11
  year: 1996
  ident: 10.1016/S0268-0033(01)00016-X_BIB42
  article-title: Appropriately placed surface EMG electrodes reflect deep muscle activity psoas, quadratus lumborum, abdominal wall in the lumbar spine
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(96)84547-7
– volume: 11
  start-page: 25
  issue: 1
  year: 1996
  ident: 10.1016/S0268-0033(01)00016-X_BIB45
  article-title: Development and evaluation of a scalable and deformable geometric model of the human torso
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)00031-3
– volume: 15
  start-page: 669
  issue: 9
  year: 1982
  ident: 10.1016/S0268-0033(01)00016-X_BIB10
  article-title: Analysis and measurement of lumbar trunk loads in tasks involving bends and twists
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(82)90021-5
– volume: 30
  start-page: 1095
  issue: 11/12
  year: 1997
  ident: 10.1016/S0268-0033(01)00016-X_BIB18
  article-title: Are recruitment patterns of the trunk musculature compatible with a synergy based on the maximization of endurance
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)00083-3
– volume: 34
  start-page: 343
  issue: 3
  year: 1991
  ident: 10.1016/S0268-0033(01)00016-X_BIB35
  article-title: The quantification of EMG normalization error
  publication-title: Ergonomics
  doi: 10.1080/00140139108967318
– volume: 39
  start-page: 1107
  issue: 9
  year: 1996
  ident: 10.1016/S0268-0033(01)00016-X_BIB33
  article-title: A simple polynomial that predicts low-back compression during complex 3-D tasks
  publication-title: Ergonomics
  doi: 10.1080/00140139608964532
– ident: 10.1016/S0268-0033(01)00016-X_BIB37
  doi: 10.1123/jab.15.2.120
– volume: 14
  start-page: 376
  issue: 6
  year: 1999
  ident: 10.1016/S0268-0033(01)00016-X_BIB39
  article-title: Kinematics and movement sequencing during flexion of the lumbar spine
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00109-0
– volume: 11
  start-page: 170
  issue: 3
  year: 1996
  ident: 10.1016/S0268-0033(01)00016-X_BIB43
  article-title: Quantitative intramuscular myoelectric activity of quadratus lumborum during a wide variety of tasks
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)00056-9
– volume: 11
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/S0268-0033(01)00016-X_BIB15
  article-title: Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)00035-6
– volume: 15
  start-page: 182
  issue: 2
  year: 1999
  ident: 10.1016/S0268-0033(01)00016-X_BIB47
  article-title: Determining the force-length-velocity relations of the quadriceps muscles: I. Anatomical and geometric parameters
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.15.2.182
– volume: 5
  start-page: 383
  year: 1992
  ident: 10.1016/S0268-0033(01)00016-X_BIB2
  article-title: The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement
  publication-title: J. Spinal Disorders
  doi: 10.1097/00002517-199212000-00001
– volume: 12
  start-page: 190
  issue: 3
  year: 1997
  ident: 10.1016/S0268-0033(01)00016-X_BIB40
  article-title: Methodological considerations for using inductive sensors (3 space isotrak) to monitor 3-D orthopaedic joint motion
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(97)00063-6
– ident: 10.1016/S0268-0033(01)00016-X_BIB7
– volume: 12
  start-page: 238
  year: 1979
  ident: 10.1016/S0268-0033(01)00016-X_BIB25
  article-title: Validation of mathematical models
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(79)90148-9
– volume: 8
  start-page: 125
  year: 1997
  ident: 10.1016/S0268-0033(01)00016-X_BIB1
  article-title: A review of utilization of diagnostic imaging in the evaluation of patients with back pain: the when and what of back pain imaging
  publication-title: J. Back Musculoskeletal Rehabilit
  doi: 10.1016/S1053-8127(96)00244-8
– volume: 7
  start-page: 138
  year: 1992
  ident: 10.1016/S0268-0033(01)00016-X_BIB3
  article-title: Value of biomechanical macromodels as suitable tools for the prevention of work-related low back problems
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(92)90028-3
– ident: 10.1016/S0268-0033(01)00016-X_BIB14
– volume: 9
  start-page: 91
  issue: 1
  year: 1991
  ident: 10.1016/S0268-0033(01)00016-X_BIB29
  article-title: Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100090112
– volume: 64-A
  start-page: 713
  issue: 5
  year: 1982
  ident: 10.1016/S0268-0033(01)00016-X_BIB13
  article-title: Loads on the lumbar spine
  publication-title: J. Bone J. Surg.
  doi: 10.2106/00004623-198264050-00008
– volume: 10
  start-page: 171
  issue: 4
  year: 1995
  ident: 10.1016/S0268-0033(01)00016-X_BIB31
  article-title: Position and orientation in space of bones during movement: anatomical frame definition and determination
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)91394-T
– volume: 20
  start-page: 913
  issue: 8
  year: 1995
  ident: 10.1016/S0268-0033(01)00016-X_BIB6
  article-title: The influence of trunk muscle coactivity on dynamic spinal loads
  publication-title: Spine
  doi: 10.1097/00007632-199504150-00006
– volume: 27
  start-page: 1287
  issue: 10
  year: 1994
  ident: 10.1016/S0268-0033(01)00016-X_BIB21
  article-title: EMG assisted optimization: a hybrid approach for estimating muscle force in an indeterminate biomechanical model
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90282-8
– volume: 13
  start-page: 36
  issue: 1
  year: 1998
  ident: 10.1016/S0268-0033(01)00016-X_BIB30
  article-title: Comparison between two dynamic methods to estimate triaxial net reaction moments at the L5/S1 joint during lifting
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(97)00021-1
– volume: 106
  start-page: 364
  issue: 4
  year: 1984
  ident: 10.1016/S0268-0033(01)00016-X_BIB49
  article-title: Determination of muscle and joint forces: a new technique to solve the indeterminate problem
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138507
– volume: 7
  start-page: 259
  issue: 4
  year: 1997
  ident: 10.1016/S0268-0033(01)00016-X_BIB8
  article-title: The development of an EMG-assisted model to assess spine loading during whole-body free-dynamic lifting
  publication-title: J. Electromyography. Kinesiol.
  doi: 10.1016/S1050-6411(97)00006-0
– volume: 28
  start-page: 321
  issue: 3
  year: 1995
  ident: 10.1016/S0268-0033(01)00016-X_BIB22
  article-title: Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00065-C
– volume: 26
  start-page: 1429
  year: 1993
  ident: 10.1016/S0268-0033(01)00016-X_BIB4
  article-title: An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90093-T
– volume: 18
  start-page: 573
  year: 1999
  ident: 10.1016/S0268-0033(01)00016-X_BIB27
  article-title: The L5/S1 joint moment sensitivity to measurement errors in dynamic 3D multisegment lifting models
  publication-title: Hum. Move. Sci.
  doi: 10.1016/S0167-9457(99)00003-2
– volume: 6
  start-page: 76
  issue: 1
  year: 1981
  ident: 10.1016/S0268-0033(01)00016-X_BIB11
  article-title: Analysis of loads on the lumbar spine
  publication-title: Spine
  doi: 10.1097/00007632-198101000-00017
– volume: 11
  start-page: 666
  issue: 7
  year: 1986
  ident: 10.1016/S0268-0033(01)00016-X_BIB17
  article-title: Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting
  publication-title: Spine
  doi: 10.1097/00007632-198609000-00004
– volume: 8
  start-page: 44
  issue: 1
  year: 1993
  ident: 10.1016/S0268-0033(01)00016-X_BIB28
  article-title: High-pass filtering to remove electrocardiographic interference from torso EMG recordings
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(05)80009-9
– volume: 108
  start-page: 190
  issue: 1/2
  year: 2000
  ident: 10.1016/S0268-0033(01)00016-X_BIB41
  article-title: Assessment of coactivity in torso muscles during sustained static trunk extension efforts
  publication-title: Arch. Physiol. Biochem.
SSID ssj0004257
Score 1.9161088
Snippet Objective. To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane...
To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane lifting....
To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane...
OBJECTIVE: To compare the ability of three modelling approaches to resolve the muscle and joint forces in a lumbar spine model during dynamic sagittal plane...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 359
SubjectTerms Adult
Coactivity
Dynamics
Electromyography
Humans
Lifting
Lumbar spine
Lumbar Vertebrae - physiology
Male
Modelling
Models, Biological
Muscle force
Muscle, Skeletal - physiology
Optimization
Task Performance and Analysis
Title Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting
URI https://www.clinicalkey.com/#!/content/1-s2.0-S026800330100016X
https://dx.doi.org/10.1016/S0268-0033(01)00016-X
https://www.ncbi.nlm.nih.gov/pubmed/11390042
https://www.proquest.com/docview/70903274
https://www.proquest.com/docview/771500313
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarYS4IGh5bIEyB4RAarpx4myS42rVsoC2F6iUW-RXSsRuEm2yh7307_A3GTtJIw6rIq6WZ-LY45nP9jwIeS8ZmiERZ46Y-r7DlCcdjlbe4TKQQnixx22tw-X1dHHDviZBckDmfSyMcavsdH-r06227lom3WxOqjyffMfTQ2RKkbnUApfkkBx5aO2jETmaffm2uB7CI7uEn9jfMQRDIE_LxDZ-dOkny8dJ9pmofRDUmqKrp-RJhyFh1g7zGTnQxTE5mRV4fl7v4ANYr057XX5MHi27x_MT8ns-ZPqGNj33DsoMLpefz6FE1bHuYjLPgRcKfu5MMBfYUjkmZh369OO6hqaEamMYN9BstsUvWG9rHAogAka9Y8lR6Qm-gbrCb8OqtK760AZFgtoVfJ1LqPlt3iD6h8q43MIqz4wT9nNyc3X5Y75wujoNjmQsbIw7p-fLUIpIyZArHimmdMCop3kYBDrw3FBS5cdBkHlauDRjrqI8QySR-Szzuf-CjIqy0K8IMOFGys1CNJvIgGs8_MTa15LSkIvYFWPC-qVJZZfE3NTSWKWDtxquqMl46qcutU_r0zQZk4t7sqrN4vEQwbRf97QPUUWlmqKdeYgwuif8S47_hfRdL2Ap7nHzcINzX27rNDSXaV7IxgT29QgR2Js0nGPyshXN4T8R45s9cPr_I3tNHreud-by6Q0ZoWTpt4jFGnFGDi_u6Fm34_4A8HIuEg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGJ8EuCDY-Oj72DgiBtNB8OHVyrKqNjq29sEm5RbbjQESbRE166F_Ev8mz46ziUA1xtfxeHD_7vZ_t90HIB0nRDIk4d8Q4CBya-dLhaOUdLkMphB_73NQ6nC_Gszv6LQmTAzLtY2G0W6XV_Z1ON9ratozsbI7qohh9x9NDpEuRuZ4BLskjckh1UesBOZxcXc8Wu_BIm_AT-zuaYBfI0zExjZ9c77Ph4yT7TNQ-CGpM0eUz8tRiSJh0w3xODlR5TE4mJZ6fV1v4CMar01yXH5PHc_t4fkJ-T3eZvqFLz72FKoeL-ddzqFB1rGxM5jnwMoOfWx3MBaZUjo5Zhz79uGqgraBea8YttOtN-QtWmwaHAoiAUe8YclR6gq-hqfHbsKyMqz50QZGQbUu-KiQ0_EfRIvqHWrvcwrLItRP2C3J3eXE7nTm2ToMjKWWtduf0A8mkiDLJeMajjGYKJeErzsJQhb7LpJcFcRjmvhKul1M383iOSCIPaB7w4CUZlFWpXhOgwo0yN2doNpEBV3j4iVWgpOcxLmJXDAntRZNKm8Rc19JYpjtvNZSozngapK5nntbHaTIkX-7J6i6Lx0ME417uaR-iiko1RTvzEGF0T_jXOv4X0rN-gaW4x_XDDc59tWlSpi_TfEaHBPb1YAjsdRrOIXnVLc3dfyLG13vg9P9HdkaezG7nN-nN1eL6DTnq3PD0RdRbMsBVpt4hLmvFe7vv_gAJFC_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+ability+of+EMG%2C+optimization%2C+and+hybrid+modelling+approaches+to+predict+trunk+muscle+forces+and+lumbar+spine+loading+during+dynamic+sagittal+plane+lifting&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Gagnon%2C+D&rft.au=Larivi%C3%A8re%2C+C&rft.au=Loisel%2C+P&rft.date=2001-06-01&rft.issn=0268-0033&rft.volume=16&rft.issue=5&rft.spage=359&rft_id=info:doi/10.1016%2Fs0268-0033%2801%2900016-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-0033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-0033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-0033&client=summon