Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution
•A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging data.•Estimate leaf area index, foliage profile, and leaf angle distribution simultaneously.•MLE estimated more accurate canopy parameters th...
Saved in:
| Published in | Agricultural and forest meteorology Vol. 209-210; pp. 100 - 113 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.09.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-1923 1873-2240 |
| DOI | 10.1016/j.agrformet.2015.03.008 |
Cover
| Abstract | •A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging data.•Estimate leaf area index, foliage profile, and leaf angle distribution simultaneously.•MLE estimated more accurate canopy parameters than classical gap-based algorithms.•Boost confidence use of terrestrial lidar as a versatile tool for ecological studies.
Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem studies, but its actual utility depends largely on efficacies of lidar analysis methods. To improve characterizing forest canopies with TLS, we forged a methodological paradigm that combines physics and statistics to derive foliage profile, leaf area index (LAI), and leaf angle distribution (LAD): We modeled laser–vegetation interactions probabilistically and then developed a maximum likelihood estimator (MLE) of vegetation parameters. Unlike classical gap-based algorithms, MLE explicitly accommodates laser scanning geometries, fully leverages raw laser ranging data, and simultaneously derives foliage profile and LAD. We evaluated MLE using both synthetic lidar data and real TLS scans at sites in Everglades National Park, USA. Estimated LAI differed between algorithms by an average of 26%. Compared to classical gap analyses, MLE derived foliage density profile and LAD more accurately. Also, MLE has a rigorous statistical foundation and generated error intervals better indicative of the true uncertainties of estimated canopy parameters—an aspect often overlooked but essential for credible use of lidar vegetation products. The theoretical justification and experimental evidence converge to suggest that classical gap methods are sub-optimal for exploiting tiny-footprint lidar data and MLE offers a paradigm-shifting alternative. We envision that MLE will further boost confident use of terrestrial lidar as a versatile tool for environmental applications, such as forest survey, ecological conservation, and ecosystem management. |
|---|---|
| AbstractList | •A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging data.•Estimate leaf area index, foliage profile, and leaf angle distribution simultaneously.•MLE estimated more accurate canopy parameters than classical gap-based algorithms.•Boost confidence use of terrestrial lidar as a versatile tool for ecological studies.
Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem studies, but its actual utility depends largely on efficacies of lidar analysis methods. To improve characterizing forest canopies with TLS, we forged a methodological paradigm that combines physics and statistics to derive foliage profile, leaf area index (LAI), and leaf angle distribution (LAD): We modeled laser–vegetation interactions probabilistically and then developed a maximum likelihood estimator (MLE) of vegetation parameters. Unlike classical gap-based algorithms, MLE explicitly accommodates laser scanning geometries, fully leverages raw laser ranging data, and simultaneously derives foliage profile and LAD. We evaluated MLE using both synthetic lidar data and real TLS scans at sites in Everglades National Park, USA. Estimated LAI differed between algorithms by an average of 26%. Compared to classical gap analyses, MLE derived foliage density profile and LAD more accurately. Also, MLE has a rigorous statistical foundation and generated error intervals better indicative of the true uncertainties of estimated canopy parameters—an aspect often overlooked but essential for credible use of lidar vegetation products. The theoretical justification and experimental evidence converge to suggest that classical gap methods are sub-optimal for exploiting tiny-footprint lidar data and MLE offers a paradigm-shifting alternative. We envision that MLE will further boost confident use of terrestrial lidar as a versatile tool for environmental applications, such as forest survey, ecological conservation, and ecosystem management. Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem studies, but its actual utility depends largely on efficacies of lidar analysis methods. To improve characterizing forest canopies with TLS, we forged a methodological paradigm that combines physics and statistics to derive foliage profile, leaf area index (LAI), and leaf angle distribution (LAD): We modeled laser–vegetation interactions probabilistically and then developed a maximum likelihood estimator (MLE) of vegetation parameters. Unlike classical gap-based algorithms, MLE explicitly accommodates laser scanning geometries, fully leverages raw laser ranging data, and simultaneously derives foliage profile and LAD. We evaluated MLE using both synthetic lidar data and real TLS scans at sites in Everglades National Park, USA. Estimated LAI differed between algorithms by an average of 26%. Compared to classical gap analyses, MLE derived foliage density profile and LAD more accurately. Also, MLE has a rigorous statistical foundation and generated error intervals better indicative of the true uncertainties of estimated canopy parameters—an aspect often overlooked but essential for credible use of lidar vegetation products. The theoretical justification and experimental evidence converge to suggest that classical gap methods are sub-optimal for exploiting tiny-footprint lidar data and MLE offers a paradigm-shifting alternative. We envision that MLE will further boost confident use of terrestrial lidar as a versatile tool for environmental applications, such as forest survey, ecological conservation, and ecosystem management. |
| Author | Zhang, Xuesong Guo, Qinghua Zhao, Kaiguang Chen, Gang García, Mariano Meng, Xuelian Zhou, Yuyu Liu, Shu |
| Author_xml | – sequence: 1 givenname: Kaiguang surname: Zhao fullname: Zhao, Kaiguang email: zhao.1423@osu.edu organization: School of Environment and Natural Resources, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, OH 44691, USA – sequence: 2 givenname: Mariano surname: García fullname: García, Mariano organization: Center for Spatial Technologies and Remote Sensing, University of California at Davis, Davis, CA 95616, USA – sequence: 3 givenname: Shu surname: Liu fullname: Liu, Shu organization: School of Environment and Natural Resources, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, OH 44691, USA – sequence: 4 givenname: Qinghua surname: Guo fullname: Guo, Qinghua organization: School of Engineering, University of California at Merced, Merced, CA 95343, USA – sequence: 5 givenname: Gang surname: Chen fullname: Chen, Gang organization: Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA – sequence: 6 givenname: Xuesong surname: Zhang fullname: Zhang, Xuesong organization: Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740, USA – sequence: 7 givenname: Yuyu surname: Zhou fullname: Zhou, Yuyu organization: Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740, USA – sequence: 8 givenname: Xuelian surname: Meng fullname: Meng, Xuelian organization: Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA |
| BookMark | eNqNkUFvFCEcxYmpidvqZ5Cjh84IMzDMmHhomqpNarzsnTDwZ2VlYAXWtB_Bby2TbTz00oYEEvi9xz_vnaOzEAMg9J6SlhI6fNy3apdsTAuUtiOUt6RvCRlfoQ0dRd90HSNnaFPJsaFT179B5znvCaGdENMG_d1CSpBLcspj74xKOMESC-AMIbuww9Hi6l6R_Al_V_duOS4V_AXe_YzR4PrgFlUgr6BWIR4e8CFF6zxcYg_KYpVAYRcM3F9iFczjZdh5wMatP8_H4mJ4i15b5TO8ezwv0PbLzfb6W3P34-vt9dVdoxkTpRm4UMMkOOFcj2KGTjBrequBUjZropjhjCsK3TgME8zc8srMVFUx5fPQX6APJ9s65O9jnV4uLmvwXgWIxyw7UrMZeV3PolSQSfSM1e0FKGViGPoV_XxCdYo5J7BSu6LWBEpSzktK5Nqr3Mv_vcq1V0l6WXutevFEf0i1gfTwAuXVSQk13j8OkszaQdBgXAJdpInuWY9_SC7G1A |
| CitedBy_id | crossref_primary_10_1016_j_jag_2019_101923 crossref_primary_10_1109_TGRS_2024_3353225 crossref_primary_10_3390_ijgi10100665 crossref_primary_10_3390_rs9111187 crossref_primary_10_1109_TGRS_2018_2840725 crossref_primary_10_1016_j_quaint_2019_04_005 crossref_primary_10_3390_rs12203457 crossref_primary_10_1016_j_foreco_2021_119556 crossref_primary_10_1016_j_ecolind_2018_08_004 crossref_primary_10_3390_rs10111739 crossref_primary_10_3390_fractalfract5010014 crossref_primary_10_1016_j_agrformet_2019_06_009 crossref_primary_10_1111_2041_210X_13273 crossref_primary_10_3390_rs11010015 crossref_primary_10_1016_j_ese_2023_100257 crossref_primary_10_1007_s12518_022_00471_x crossref_primary_10_1016_j_agrformet_2016_06_021 crossref_primary_10_1080_15481603_2021_1873588 crossref_primary_10_3390_ijgi6050147 crossref_primary_10_1016_j_isprsjprs_2019_01_005 crossref_primary_10_1016_j_rse_2023_113733 crossref_primary_10_1111_2041_210X_14290 crossref_primary_10_58816_duzceod_1593528 crossref_primary_10_1007_s11355_019_00383_w crossref_primary_10_1016_j_agrformet_2018_10_021 crossref_primary_10_1016_j_agrformet_2020_108238 crossref_primary_10_1029_2018RG000608 crossref_primary_10_1016_j_jag_2017_11_017 crossref_primary_10_3390_rs11212536 crossref_primary_10_3390_rs12152457 crossref_primary_10_1016_j_rse_2020_111932 crossref_primary_10_3390_rs11131580 crossref_primary_10_1016_j_rse_2022_113115 crossref_primary_10_1016_j_isprsjprs_2019_09_015 crossref_primary_10_3390_rs15040946 crossref_primary_10_1109_TGRS_2024_3435004 crossref_primary_10_1016_j_rse_2018_06_024 crossref_primary_10_1016_j_agrformet_2020_108101 crossref_primary_10_1109_TGRS_2020_3032167 crossref_primary_10_3390_app13064005 crossref_primary_10_3390_agronomy11122428 crossref_primary_10_3390_s19183943 crossref_primary_10_3390_rs10101580 crossref_primary_10_1080_01431161_2019_1584929 crossref_primary_10_34133_2021_2708904 crossref_primary_10_1007_s11676_021_01440_7 crossref_primary_10_1016_j_rse_2021_112354 crossref_primary_10_3390_su15129479 crossref_primary_10_1016_j_isprsjprs_2020_11_006 crossref_primary_10_3389_fpls_2023_1087239 crossref_primary_10_1016_j_advwatres_2017_08_004 crossref_primary_10_1016_j_rse_2023_113959 crossref_primary_10_1016_j_jclepro_2024_142038 crossref_primary_10_1016_j_isprsjprs_2017_06_006 crossref_primary_10_1016_j_agrformet_2019_05_025 crossref_primary_10_1016_j_cj_2022_04_003 crossref_primary_10_1016_j_agrformet_2017_07_007 crossref_primary_10_1016_j_rse_2017_09_007 crossref_primary_10_1016_j_agrformet_2017_01_004 crossref_primary_10_1111_nph_20405 crossref_primary_10_3390_rs8110942 crossref_primary_10_3390_rs12182934 crossref_primary_10_3390_rs13061159 crossref_primary_10_1016_j_rse_2020_111836 crossref_primary_10_1016_j_agrformet_2018_11_033 crossref_primary_10_1016_j_foreco_2016_09_003 crossref_primary_10_3390_app10103456 crossref_primary_10_1111_2041_210X_13144 crossref_primary_10_11728_cjss2023_06_2023_0078 crossref_primary_10_1016_j_rsase_2024_101364 |
| Cites_doi | 10.1109/LGRS.2005.856706 10.1016/j.foreco.2008.04.014 10.1109/36.387593 10.1016/j.rse.2010.08.030 10.1007/s00468-011-0566-6 10.1890/070001 10.1016/S0168-1923(99)00114-8 10.1016/0168-1923(87)90078-5 10.1016/j.agrformet.2003.08.027 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 10.1890/12-1705.1 10.1016/j.rse.2010.10.008 10.1007/s10463-008-0186-0 10.1016/j.agrformet.2008.01.020 10.14358/PERS.74.10.1223 10.1007/BF00204336 10.1016/j.agrformet.2012.10.011 10.1016/j.agrformet.2009.02.007 10.1093/treephys/21.12-13.989 10.1111/j.1469-8137.1960.tb06195.x 10.1016/j.rse.2013.01.001 10.1093/biomet/83.4.875 10.3390/s90402719 10.14358/PERS.77.7.733 10.1109/TGRS.2006.881743 10.1016/j.rse.2011.04.001 10.1016/j.rse.2007.06.011 10.1109/TGRS.2012.2205003 10.1016/j.isprsjprs.2013.04.011 10.1007/s10531-013-0600-7 10.1016/j.rse.2013.12.007 10.1016/0168-1923(93)90054-L 10.1016/0002-1571(71)90092-6 10.1016/j.rse.2008.09.009 10.1890/02-5317 10.1016/j.rse.2012.11.024 10.1016/j.rse.2011.01.026 10.1016/j.rse.2015.01.020 10.1016/j.rse.2012.12.026 10.1109/TGRS.2011.2107744 10.1016/j.jqsrt.2008.08.003 10.1109/TGRS.2011.2161613 10.1016/j.isprsjprs.2010.08.003 10.1016/j.rse.2009.03.006 10.1016/j.agrformet.2015.02.012 10.1016/j.agrformet.2006.12.003 10.3390/s130201614 10.1109/36.885208 10.1093/treephys/tpn022 10.1109/LGRS.2010.2079913 10.1016/j.rse.2012.03.018 10.1016/j.rse.2010.03.019 10.1016/j.rse.2012.07.007 10.5589/m03-026 10.1016/S0022-2496(02)00028-7 10.5589/m08-047 10.3390/rs2030833 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION 7ST 7TG 7U6 7UA C1K KL. SOI 8FD FR3 H8D KR7 L7M 7S9 L.6 |
| DOI | 10.1016/j.agrformet.2015.03.008 |
| DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Meteorological & Geoastrophysical Abstracts Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Agriculture Physics |
| EISSN | 1873-2240 |
| EndPage | 113 |
| ExternalDocumentID | 10_1016_j_agrformet_2015_03_008 S0168192315000866 |
| GeographicLocations | USA USA, Florida, Everglades Natl. Park United States |
| GeographicLocations_xml | – name: USA – name: USA, Florida, Everglades Natl. Park – name: United States |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABLJU ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSE SSZ T5K WH7 Y6R ZMT ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- SEP SEW WUQ ~HD 7ST 7TG 7U6 7UA ABUFD C1K KL. SOI 8FD FR3 H8D KR7 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c447t-657a6975055c87be274fd3fce114bc0a4d545a1e28669eb5f5be2b1a44715b63 |
| IEDL.DBID | .~1 |
| ISSN | 0168-1923 |
| IngestDate | Thu Oct 02 10:13:05 EDT 2025 Thu Oct 02 10:18:07 EDT 2025 Tue Oct 07 09:56:19 EDT 2025 Wed Oct 01 05:12:25 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Fri Feb 23 02:34:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Forest canopy Terrestrial laser scanning Leaf angle distribution LAI Ground-based lidar Uncertainty analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-657a6975055c87be274fd3fce114bc0a4d545a1e28669eb5f5be2b1a44715b63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1701476637 |
| PQPubID | 23462 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2000185858 proquest_miscellaneous_1709734497 proquest_miscellaneous_1701476637 crossref_citationtrail_10_1016_j_agrformet_2015_03_008 crossref_primary_10_1016_j_agrformet_2015_03_008 elsevier_sciencedirect_doi_10_1016_j_agrformet_2015_03_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-15 |
| PublicationDateYYYYMMDD | 2015-09-15 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Agricultural and forest meteorology |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ni-Meister, Strahler, Woodcock, Schaaf, Jupp, Yao, Zhao, Yang (bib0155) 2008; 34 Mutlu, Popescu, Zhao (bib0145) 2008; 256 Medhurst, Beadle (bib0130) 2001; 21 Saenger (bib0210) 2002 Popescu, Zhao, Neuenschwander, Lin (bib0195) 2011; 115 Zhao, Popescu (bib0290) 2009; 113 Frazer, Magnussen, Wulder, Niemann (bib0035) 2011; 115 van Aardt, Wynne, Oderwald (bib0230) 2006; 52 Wilson (bib0245) 1960; 59 Dalponte, Bruzzone, Gianelle (bib0030) 2011; 49 Mori, Hagihara (bib0140) 1991; 5 Zellweger, Morsdorf, Purves, Braunisch, Bollmann (bib0270) 2014; 23 Zhao, Strahler, Schaaf, Yao, Yang, Wang, Schull, Román, Woodcock, Olofsson (bib0275) 2012; 125 Chen, Baldocchi, Gong, Dawson (bib0025) 2008; 148 Zheng, Moskal (bib0315) 2009; 9 Gaulton, Danson, Ramirez, Gunawan (bib0045) 2013; 132 Nilson (bib0160) 1971; 8 Wang, Li, Su (bib0240) 2007; 143 Popescu, Zhao (bib0190) 2008; 112 Liang, Hyyppa (bib0115) 2013; 13 Jakubowski, Guo, Kelly (bib0070) 2013; 130 Meng, Currit, Zhao (bib0135) 2010; 2 Rich, Wood, Vieglais, Burek, Webb (bib0200) 1999 Zhao, Jackson (bib0285) 2014; 84 Zhao, Popescu, Zhang (bib0305) 2008; 74 Sun, Ranson (bib0215) 2000; 38 Konishi, Kitagawa (bib0095) 1996; 83 Koetz, Morsdorf, Sun, Ranson, Itten, Allgower (bib0090) 2006; 3 Otto, Trautmann (bib0170) 2008; 109 Jupp, Culvenor, Lovell, Newnham (bib0085) 2005 Tang, Brolly, Zhao, Strahler, Schaaf, Ganguly, Zhang, Dubayah (bib0220) 2014; 143 Jonckheere, Fleck, Nackaerts, Muys, Coppin, Weiss, Baret (bib0075) 2004; 121 Woodgate, Jones, Suarez, Hill, Armston, Wilkes, Soto-Berelov, Haywood, Mellor (bib0250) 2015; 205 Vierling, Vierling, Gould, Martinuzzi, Clawges (bib0235) 2008; 6 García, Popescu, Riaño, Zhao, Neuenschwander, Agca, Chuvieco (bib0040) 2012; 123 Lang (bib0100) 1987; 41 Nilson (bib0165) 1999; 98 Yang, Miller, Montgomery (bib0255) 1993; 67 Hosoi, Omasa (bib0060) 2006; 44 Zhao, Valle, Popescu, Zhang, Mallick (bib0310) 2013; 132 Pisek, Ryu, Alikas (bib0180) 2011; 25 Lin, Hyyppa, Jaakkola (bib0120) 2011; 8 Palace, Sullivan, Ducey, Treuhaft, Herrick, Shimbo, Mota-E-Silva (bib0175) 2015; 161 Lovell, Jupp, Culvenor, Coops (bib0125) 2003; 29 Zhao, Popescu, Nelson (bib0300) 2009; 113 Hurtt, Dubayah, Drake, Moorcroft, Pacala, Blair, Fearon (bib0065) 2004; 14 Zhao, Yang, Schull, Román-Colón, Yao, Wang, Zhang, Jupp, Lovell, Culvenor (bib0280) 2011; 115 Hansen (bib0050) 1999 Myung (bib0150) 2003; 47 Zheng, Moskal, Kim (bib0320) 2013; 51 Campbell, Norman (bib0005) 1989 Jupp, Culvenor, Lovell, Newnham, Strahler, Woodcock (bib0080) 2009; 29 Pisek, Sonnentag, Richardson, Mõttus (bib0185) 2013; 169 Yao, Yang, Zhao, Wang, Zhang, Jupp, Lovell, Culvenor, Newnham, Ni-Meister (bib0260) 2011; 115 Zhao, Popescu, Meng, Pang, Agca (bib0295) 2011; 115 Chen, Hay (bib0015) 2011; 77 Lefsky, Cohen, Parker, Harding (bib0105) 2002; 52 Liang, Litkey, Hyyppa, Kaartinen, Vastaranta, Holopainen (bib0110) 2012; 50 Chen, Cihlar (bib0020) 1995; 33 Hosoi, Nakai, Omasa (bib0055) 2013; 82 Yu, Hyyppä, Vastaranta, Holopainen, Viitala (bib0265) 2011; 66 Casella, Berger (bib0010) 1990 Ueki, Fueda (bib0225) 2010; 62 Richardson, Moskal, Kim (bib0205) 2009; 149 Konishi (10.1016/j.agrformet.2015.03.008_bib0095) 1996; 83 Ni-Meister (10.1016/j.agrformet.2015.03.008_bib0155) 2008; 34 Wilson (10.1016/j.agrformet.2015.03.008_bib0245) 1960; 59 Woodgate (10.1016/j.agrformet.2015.03.008_bib0250) 2015; 205 Chen (10.1016/j.agrformet.2015.03.008_bib0025) 2008; 148 Rich (10.1016/j.agrformet.2015.03.008_bib0200) 1999 Meng (10.1016/j.agrformet.2015.03.008_bib0135) 2010; 2 Koetz (10.1016/j.agrformet.2015.03.008_bib0090) 2006; 3 Liang (10.1016/j.agrformet.2015.03.008_bib0115) 2013; 13 Myung (10.1016/j.agrformet.2015.03.008_bib0150) 2003; 47 Hurtt (10.1016/j.agrformet.2015.03.008_bib0065) 2004; 14 Hansen (10.1016/j.agrformet.2015.03.008_bib0050) 1999 Wang (10.1016/j.agrformet.2015.03.008_bib0240) 2007; 143 Hosoi (10.1016/j.agrformet.2015.03.008_bib0055) 2013; 82 Popescu (10.1016/j.agrformet.2015.03.008_bib0195) 2011; 115 Casella (10.1016/j.agrformet.2015.03.008_bib0010) 1990 Chen (10.1016/j.agrformet.2015.03.008_bib0015) 2011; 77 Jakubowski (10.1016/j.agrformet.2015.03.008_bib0070) 2013; 130 Popescu (10.1016/j.agrformet.2015.03.008_bib0190) 2008; 112 Yu (10.1016/j.agrformet.2015.03.008_bib0265) 2011; 66 Dalponte (10.1016/j.agrformet.2015.03.008_bib0030) 2011; 49 Jonckheere (10.1016/j.agrformet.2015.03.008_bib0075) 2004; 121 Zhao (10.1016/j.agrformet.2015.03.008_bib0290) 2009; 113 García (10.1016/j.agrformet.2015.03.008_bib0040) 2012; 123 Sun (10.1016/j.agrformet.2015.03.008_bib0215) 2000; 38 Palace (10.1016/j.agrformet.2015.03.008_bib0175) 2015; 161 Vierling (10.1016/j.agrformet.2015.03.008_bib0235) 2008; 6 Otto (10.1016/j.agrformet.2015.03.008_bib0170) 2008; 109 Liang (10.1016/j.agrformet.2015.03.008_bib0110) 2012; 50 Zhao (10.1016/j.agrformet.2015.03.008_bib0280) 2011; 115 Lovell (10.1016/j.agrformet.2015.03.008_bib0125) 2003; 29 Ueki (10.1016/j.agrformet.2015.03.008_bib0225) 2010; 62 Zhao (10.1016/j.agrformet.2015.03.008_bib0300) 2009; 113 Mori (10.1016/j.agrformet.2015.03.008_bib0140) 1991; 5 Zellweger (10.1016/j.agrformet.2015.03.008_bib0270) 2014; 23 Zhao (10.1016/j.agrformet.2015.03.008_bib0285) 2014; 84 Lin (10.1016/j.agrformet.2015.03.008_bib0120) 2011; 8 Jupp (10.1016/j.agrformet.2015.03.008_bib0085) 2005 Hosoi (10.1016/j.agrformet.2015.03.008_bib0060) 2006; 44 Frazer (10.1016/j.agrformet.2015.03.008_bib0035) 2011; 115 Pisek (10.1016/j.agrformet.2015.03.008_bib0180) 2011; 25 Pisek (10.1016/j.agrformet.2015.03.008_bib0185) 2013; 169 Jupp (10.1016/j.agrformet.2015.03.008_bib0080) 2009; 29 Zheng (10.1016/j.agrformet.2015.03.008_bib0320) 2013; 51 Gaulton (10.1016/j.agrformet.2015.03.008_bib0045) 2013; 132 Zhao (10.1016/j.agrformet.2015.03.008_bib0295) 2011; 115 Zhao (10.1016/j.agrformet.2015.03.008_bib0310) 2013; 132 Mutlu (10.1016/j.agrformet.2015.03.008_bib0145) 2008; 256 Medhurst (10.1016/j.agrformet.2015.03.008_bib0130) 2001; 21 Lang (10.1016/j.agrformet.2015.03.008_bib0100) 1987; 41 Yang (10.1016/j.agrformet.2015.03.008_bib0255) 1993; 67 Campbell (10.1016/j.agrformet.2015.03.008_bib0005) 1989 Tang (10.1016/j.agrformet.2015.03.008_bib0220) 2014; 143 Nilson (10.1016/j.agrformet.2015.03.008_bib0165) 1999; 98 Lefsky (10.1016/j.agrformet.2015.03.008_bib0105) 2002; 52 Chen (10.1016/j.agrformet.2015.03.008_bib0020) 1995; 33 Richardson (10.1016/j.agrformet.2015.03.008_bib0205) 2009; 149 Saenger (10.1016/j.agrformet.2015.03.008_bib0210) 2002 Nilson (10.1016/j.agrformet.2015.03.008_bib0160) 1971; 8 Zhao (10.1016/j.agrformet.2015.03.008_bib0305) 2008; 74 Zhao (10.1016/j.agrformet.2015.03.008_bib0275) 2012; 125 Yao (10.1016/j.agrformet.2015.03.008_bib0260) 2011; 115 Zheng (10.1016/j.agrformet.2015.03.008_bib0315) 2009; 9 van Aardt (10.1016/j.agrformet.2015.03.008_bib0230) 2006; 52 |
| References_xml | – volume: 82 start-page: 41 year: 2013 end-page: 48 ident: bib0055 article-title: 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 34 start-page: S385 year: 2008 end-page: S397 ident: bib0155 article-title: Modeling the hemispherical scanning: below-canopy lidar and vegetation structure characteristics with a geometric-optical and radiative-transfer model publication-title: Can. J. Remote Sens. – volume: 121 start-page: 19 year: 2004 end-page: 35 ident: bib0075 article-title: Review of methods for in situ leaf area index determination: Part I. Theories: sensors and hemispherical photography publication-title: Agric. For. Meteorol. – volume: 49 start-page: 2479 year: 2011 end-page: 2490 ident: bib0030 article-title: A system for the estimation of single-tree stem diameter and volume using multireturn LIDAR data publication-title: Geosci. Remote Sens. IEEE Trans. – volume: 3 start-page: 49 year: 2006 end-page: 53 ident: bib0090 article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation publication-title: Geosci. Remote Sens. Lett. IEEE – volume: 2 start-page: 833 year: 2010 end-page: 860 ident: bib0135 article-title: Ground filtering algorithms for airborne LiDAR data: a review of critical issues publication-title: Remote Sens. – volume: 256 start-page: 289 year: 2008 end-page: 294 ident: bib0145 article-title: Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps publication-title: For. Ecol. Manage. – volume: 77 start-page: 733 year: 2011 end-page: 741 ident: bib0015 article-title: A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and Quickbird data publication-title: Photogramm. Eng. Remote Sens. – volume: 38 start-page: 2617 year: 2000 end-page: 2626 ident: bib0215 article-title: Modeling lidar returns from forest canopies publication-title: Geosci. Remote Sens. IEEE Trans. – volume: 59 start-page: 1 year: 1960 end-page: 7 ident: bib0245 article-title: Inclined point quadrats publication-title: New Phytol. – start-page: 1 year: 1989 end-page: 19 ident: bib0005 article-title: The description and measurement of plant canopy structure publication-title: Plant Canopies: Their Growth, Form and Function – volume: 50 start-page: 661 year: 2012 end-page: 670 ident: bib0110 article-title: Automatic stem mapping using single-scan terrestrial laser scanning publication-title: Geosci. Remote Sens. IEEE Trans. – volume: 115 start-page: 2965 year: 2011 end-page: 2974 ident: bib0260 article-title: Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar publication-title: Remote Sens. Environ. – volume: 115 start-page: 636 year: 2011 end-page: 649 ident: bib0035 article-title: Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass publication-title: Remote Sens. Environ. – volume: 52 start-page: 19 year: 2002 end-page: 30 ident: bib0105 article-title: Lidar remote sensing for ecosystem studies: lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists publication-title: BioScience – year: 1990 ident: bib0010 article-title: Statistical Inference – volume: 113 start-page: 182 year: 2009 end-page: 196 ident: bib0300 article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers publication-title: Remote Sens. Environ. – volume: 23 start-page: 289 year: 2014 end-page: 307 ident: bib0270 article-title: Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment publication-title: Biodivers. Conserv. – volume: 143 start-page: 131 year: 2014 end-page: 141 ident: bib0220 article-title: Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA publication-title: Remote Sens. Environ. – volume: 21 start-page: 989 year: 2001 end-page: 999 ident: bib0130 article-title: Crown structure and leaf area index development in thinned and unthinned publication-title: Tree Physiol. – volume: 33 start-page: 777 year: 1995 end-page: 787 ident: bib0020 article-title: Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods publication-title: Geosci. Remote Sens. IEEE Trans. – volume: 52 start-page: 636 year: 2006 end-page: 649 ident: bib0230 article-title: Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis publication-title: For. Sci. – volume: 74 start-page: 1223 year: 2008 end-page: 1234 ident: bib0305 article-title: Bayesian learning with Gaussian processes for supervised classification of hyperspectral data publication-title: Photogramm. Eng. Remote Sens. – volume: 132 start-page: 102 year: 2013 end-page: 119 ident: bib0310 article-title: Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection publication-title: Remote Sens. Environ. – volume: 8 start-page: 25 year: 1971 end-page: 38 ident: bib0160 article-title: A theoretical analysis of the frequency of gaps in plant stands publication-title: Agric. Meteorol. – volume: 115 start-page: 1978 year: 2011 end-page: 1996 ident: bib0295 article-title: Characterizing forest canopy structure with lidar composite metrics and machine learning publication-title: Remote Sens. Environ. – year: 2002 ident: bib0210 article-title: Mangrove Ecology, Silviculture and Conservation – volume: 125 start-page: 73 year: 2012 end-page: 79 ident: bib0275 article-title: Measuring gap fraction: element clumping index and LAI in Sierra Forest stands using a full-waveform ground-based lidar publication-title: Remote Sens. Environ. – volume: 112 start-page: 767 year: 2008 end-page: 781 ident: bib0190 article-title: A voxel-based lidar method for estimating crown base height for deciduous and pine trees publication-title: Remote Sens. Environ. – volume: 14 start-page: 873 year: 2004 end-page: 883 ident: bib0065 article-title: Beyond potential vegetation: combining lidar data and a height-structured model for carbon studies publication-title: Ecol. Appl. – volume: 67 start-page: 129 year: 1993 end-page: 146 ident: bib0255 article-title: Vertical distributions of canopy foliage and biologically-active radiation in a defoliated/refoliated hardwood forest publication-title: Agric. For. Meteorol. – volume: 66 start-page: 28 year: 2011 end-page: 37 ident: bib0265 article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 130 start-page: 245 year: 2013 end-page: 253 ident: bib0070 article-title: Tradeoffs between lidar pulse density and forest measurement accuracy publication-title: Remote Sens. Environ. – volume: 143 start-page: 106 year: 2007 end-page: 122 ident: bib0240 article-title: Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage publication-title: Agric. For. Meteorol. – year: 2005 ident: bib0085 article-title: Evaluation and Validation of Canopy Laser Radar (LIDAR) Systems for Native and Plantation Forest Inventory. Final Report Prepared for the Forest and Wood Products Research and Development Corporation (FWPRDC: PN 02.2902) by CSIRO, 20, 150 – volume: 5 start-page: 149 year: 1991 end-page: 152 ident: bib0140 article-title: Crown profile of foliage area characterized with the weibull distribution in a Hinoki ( publication-title: Trees Struct. Funct. – volume: 161 start-page: 1 year: 2015 end-page: 11 ident: bib0175 article-title: Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data publication-title: Remote Sens. Environ. – volume: 115 start-page: 2954 year: 2011 end-page: 2964 ident: bib0280 article-title: Measuring effective leaf area index, foliage profile: and stand height in New England forest stands using a full-waveform ground-based lidar publication-title: Remote Sens. Environ. – volume: 84 start-page: 329 year: 2014 end-page: 353 ident: bib0285 article-title: Biophysical forcings of land-use changes from potential forestry activities in North America publication-title: Ecol. Monogr. – volume: 41 start-page: 179 year: 1987 end-page: 186 ident: bib0100 article-title: Simplified estimate of leaf area index from transmittance of the sun’s beam publication-title: Agric. For. Meteorol. – volume: 25 start-page: 919 year: 2011 end-page: 924 ident: bib0180 article-title: Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies publication-title: Trees – volume: 132 start-page: 32 year: 2013 end-page: 39 ident: bib0045 article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content publication-title: Remote Sens. Environ. – volume: 205 start-page: 83 year: 2015 end-page: 95 ident: bib0250 article-title: Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction: and leaf area index in diverse forest systems publication-title: Agric. For. Meteorol. – volume: 29 start-page: 607 year: 2003 end-page: 622 ident: bib0125 article-title: Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests publication-title: Can. J. Remote Sens. – volume: 44 start-page: 3610 year: 2006 end-page: 3618 ident: bib0060 article-title: Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar publication-title: Geosci. Remote Sens. IEEE Trans. – volume: 29 start-page: 171 year: 2009 end-page: 181 ident: bib0080 article-title: Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna publication-title: Tree Physiol. – volume: 98 start-page: 437 year: 1999 end-page: 448 ident: bib0165 article-title: Inversion of gap frequency data in forest stands publication-title: Agric. For. Meteorol. – volume: 123 start-page: 81 year: 2012 end-page: 89 ident: bib0040 article-title: Characterization of canopy fuels using ICESat/GLAS data publication-title: Remote Sens. Environ. – volume: 115 start-page: 2786 year: 2011 end-page: 2797 ident: bib0195 article-title: Satellite lidar vs: small footprint airborne lidar: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level publication-title: Remote Sens. Environ. – volume: 109 start-page: 2813 year: 2008 end-page: 2819 ident: bib0170 article-title: A note on G-functions within the scope of radiative transfer in turbid vegetation media publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 51 start-page: 777 year: 2013 end-page: 786 ident: bib0320 article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning publication-title: Geosci. Remote Sens. IEEE Trans. – volume: 113 start-page: 1628 year: 2009 end-page: 1645 ident: bib0290 article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA publication-title: Remote Sens. Environ. – volume: 148 start-page: 1005 year: 2008 end-page: 1020 ident: bib0025 article-title: Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities publication-title: Agric. For. Meteorol. – volume: 9 start-page: 2719 year: 2009 end-page: 2745 ident: bib0315 article-title: Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors publication-title: Sensors – start-page: 79 year: 1999 ident: bib0200 article-title: HemiView User Manual, Version 2.1 – volume: 169 start-page: 186 year: 2013 end-page: 194 ident: bib0185 article-title: Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species? publication-title: Agric. For. Meteorol. – volume: 47 start-page: 90 year: 2003 end-page: 100 ident: bib0150 article-title: Tutorial on maximum likelihood estimation publication-title: J. Math. Psychol. – volume: 149 start-page: 1152 year: 2009 end-page: 1160 ident: bib0205 article-title: Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR publication-title: Agric. For. Meteorol. – volume: 13 start-page: 1614 year: 2013 end-page: 1634 ident: bib0115 article-title: Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels publication-title: Sensors – volume: 8 start-page: 426 year: 2011 end-page: 430 ident: bib0120 article-title: Mini-UAV-borne LIDAR for fine-scale mapping publication-title: Geosci. Remote Sens. Lett. IEEE – volume: 62 start-page: 413 year: 2010 end-page: 438 ident: bib0225 article-title: Optimal tuning parameter estimation in maximum penalized likelihood method publication-title: Ann. Inst. Stat. Math. – volume: 6 start-page: 90 year: 2008 end-page: 98 ident: bib0235 article-title: Lidar: shedding new light on habitat characterization and modeling publication-title: Front. Ecol. Environ. – year: 1999 ident: bib0050 article-title: The – volume: 83 start-page: 875 year: 1996 end-page: 890 ident: bib0095 article-title: Generalised information criteria in model selection publication-title: Biometrika – volume: 3 start-page: 49 year: 2006 ident: 10.1016/j.agrformet.2015.03.008_bib0090 article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation publication-title: Geosci. Remote Sens. Lett. IEEE doi: 10.1109/LGRS.2005.856706 – year: 2005 ident: 10.1016/j.agrformet.2015.03.008_bib0085 – volume: 256 start-page: 289 year: 2008 ident: 10.1016/j.agrformet.2015.03.008_bib0145 article-title: Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2008.04.014 – volume: 33 start-page: 777 year: 1995 ident: 10.1016/j.agrformet.2015.03.008_bib0020 article-title: Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/36.387593 – volume: 115 start-page: 2954 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0280 article-title: Measuring effective leaf area index, foliage profile: and stand height in New England forest stands using a full-waveform ground-based lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.030 – volume: 25 start-page: 919 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0180 article-title: Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies publication-title: Trees doi: 10.1007/s00468-011-0566-6 – volume: 6 start-page: 90 year: 2008 ident: 10.1016/j.agrformet.2015.03.008_bib0235 article-title: Lidar: shedding new light on habitat characterization and modeling publication-title: Front. Ecol. Environ. doi: 10.1890/070001 – volume: 98 start-page: 437 year: 1999 ident: 10.1016/j.agrformet.2015.03.008_bib0165 article-title: Inversion of gap frequency data in forest stands publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00114-8 – volume: 41 start-page: 179 year: 1987 ident: 10.1016/j.agrformet.2015.03.008_bib0100 article-title: Simplified estimate of leaf area index from transmittance of the sun’s beam publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(87)90078-5 – volume: 121 start-page: 19 year: 2004 ident: 10.1016/j.agrformet.2015.03.008_bib0075 article-title: Review of methods for in situ leaf area index determination: Part I. Theories: sensors and hemispherical photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2003.08.027 – volume: 52 start-page: 19 year: 2002 ident: 10.1016/j.agrformet.2015.03.008_bib0105 publication-title: BioScience doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 – volume: 84 start-page: 329 year: 2014 ident: 10.1016/j.agrformet.2015.03.008_bib0285 article-title: Biophysical forcings of land-use changes from potential forestry activities in North America publication-title: Ecol. Monogr. doi: 10.1890/12-1705.1 – volume: 115 start-page: 636 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0035 article-title: Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.10.008 – year: 1999 ident: 10.1016/j.agrformet.2015.03.008_bib0050 – volume: 62 start-page: 413 year: 2010 ident: 10.1016/j.agrformet.2015.03.008_bib0225 article-title: Optimal tuning parameter estimation in maximum penalized likelihood method publication-title: Ann. Inst. Stat. Math. doi: 10.1007/s10463-008-0186-0 – start-page: 1 year: 1989 ident: 10.1016/j.agrformet.2015.03.008_bib0005 article-title: The description and measurement of plant canopy structure – volume: 148 start-page: 1005 year: 2008 ident: 10.1016/j.agrformet.2015.03.008_bib0025 article-title: Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.01.020 – volume: 74 start-page: 1223 year: 2008 ident: 10.1016/j.agrformet.2015.03.008_bib0305 article-title: Bayesian learning with Gaussian processes for supervised classification of hyperspectral data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.74.10.1223 – volume: 5 start-page: 149 year: 1991 ident: 10.1016/j.agrformet.2015.03.008_bib0140 article-title: Crown profile of foliage area characterized with the weibull distribution in a Hinoki (Chamaecyparis obtusa) stand publication-title: Trees Struct. Funct. doi: 10.1007/BF00204336 – volume: 169 start-page: 186 year: 2013 ident: 10.1016/j.agrformet.2015.03.008_bib0185 article-title: Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species? publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.10.011 – volume: 149 start-page: 1152 year: 2009 ident: 10.1016/j.agrformet.2015.03.008_bib0205 article-title: Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.02.007 – volume: 21 start-page: 989 year: 2001 ident: 10.1016/j.agrformet.2015.03.008_bib0130 article-title: Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations publication-title: Tree Physiol. doi: 10.1093/treephys/21.12-13.989 – start-page: 79 year: 1999 ident: 10.1016/j.agrformet.2015.03.008_bib0200 – volume: 59 start-page: 1 year: 1960 ident: 10.1016/j.agrformet.2015.03.008_bib0245 article-title: Inclined point quadrats publication-title: New Phytol. doi: 10.1111/j.1469-8137.1960.tb06195.x – volume: 52 start-page: 636 year: 2006 ident: 10.1016/j.agrformet.2015.03.008_bib0230 article-title: Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis publication-title: For. Sci. – year: 1990 ident: 10.1016/j.agrformet.2015.03.008_bib0010 – volume: 132 start-page: 32 year: 2013 ident: 10.1016/j.agrformet.2015.03.008_bib0045 article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.001 – volume: 83 start-page: 875 year: 1996 ident: 10.1016/j.agrformet.2015.03.008_bib0095 article-title: Generalised information criteria in model selection publication-title: Biometrika doi: 10.1093/biomet/83.4.875 – volume: 9 start-page: 2719 year: 2009 ident: 10.1016/j.agrformet.2015.03.008_bib0315 article-title: Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors publication-title: Sensors doi: 10.3390/s90402719 – volume: 77 start-page: 733 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0015 article-title: A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and Quickbird data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.77.7.733 – volume: 44 start-page: 3610 year: 2006 ident: 10.1016/j.agrformet.2015.03.008_bib0060 article-title: Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/TGRS.2006.881743 – volume: 115 start-page: 1978 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0295 article-title: Characterizing forest canopy structure with lidar composite metrics and machine learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.04.001 – volume: 112 start-page: 767 year: 2008 ident: 10.1016/j.agrformet.2015.03.008_bib0190 article-title: A voxel-based lidar method for estimating crown base height for deciduous and pine trees publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.06.011 – volume: 51 start-page: 777 issue: 2 year: 2013 ident: 10.1016/j.agrformet.2015.03.008_bib0320 article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/TGRS.2012.2205003 – year: 2002 ident: 10.1016/j.agrformet.2015.03.008_bib0210 – volume: 82 start-page: 41 year: 2013 ident: 10.1016/j.agrformet.2015.03.008_bib0055 article-title: 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.04.011 – volume: 23 start-page: 289 year: 2014 ident: 10.1016/j.agrformet.2015.03.008_bib0270 article-title: Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment publication-title: Biodivers. Conserv. doi: 10.1007/s10531-013-0600-7 – volume: 143 start-page: 131 year: 2014 ident: 10.1016/j.agrformet.2015.03.008_bib0220 article-title: Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.007 – volume: 67 start-page: 129 year: 1993 ident: 10.1016/j.agrformet.2015.03.008_bib0255 article-title: Vertical distributions of canopy foliage and biologically-active radiation in a defoliated/refoliated hardwood forest publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(93)90054-L – volume: 8 start-page: 25 year: 1971 ident: 10.1016/j.agrformet.2015.03.008_bib0160 article-title: A theoretical analysis of the frequency of gaps in plant stands publication-title: Agric. Meteorol. doi: 10.1016/0002-1571(71)90092-6 – volume: 113 start-page: 182 year: 2009 ident: 10.1016/j.agrformet.2015.03.008_bib0300 article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.009 – volume: 14 start-page: 873 year: 2004 ident: 10.1016/j.agrformet.2015.03.008_bib0065 article-title: Beyond potential vegetation: combining lidar data and a height-structured model for carbon studies publication-title: Ecol. Appl. doi: 10.1890/02-5317 – volume: 130 start-page: 245 year: 2013 ident: 10.1016/j.agrformet.2015.03.008_bib0070 article-title: Tradeoffs between lidar pulse density and forest measurement accuracy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.11.024 – volume: 115 start-page: 2786 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0195 article-title: Satellite lidar vs: small footprint airborne lidar: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.026 – volume: 161 start-page: 1 year: 2015 ident: 10.1016/j.agrformet.2015.03.008_bib0175 article-title: Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.020 – volume: 132 start-page: 102 year: 2013 ident: 10.1016/j.agrformet.2015.03.008_bib0310 article-title: Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.026 – volume: 49 start-page: 2479 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0030 article-title: A system for the estimation of single-tree stem diameter and volume using multireturn LIDAR data publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/TGRS.2011.2107744 – volume: 109 start-page: 2813 year: 2008 ident: 10.1016/j.agrformet.2015.03.008_bib0170 article-title: A note on G-functions within the scope of radiative transfer in turbid vegetation media publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2008.08.003 – volume: 50 start-page: 661 year: 2012 ident: 10.1016/j.agrformet.2015.03.008_bib0110 article-title: Automatic stem mapping using single-scan terrestrial laser scanning publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/TGRS.2011.2161613 – volume: 66 start-page: 28 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0265 article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.003 – volume: 113 start-page: 1628 year: 2009 ident: 10.1016/j.agrformet.2015.03.008_bib0290 article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.03.006 – volume: 205 start-page: 83 year: 2015 ident: 10.1016/j.agrformet.2015.03.008_bib0250 article-title: Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction: and leaf area index in diverse forest systems publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.02.012 – volume: 143 start-page: 106 year: 2007 ident: 10.1016/j.agrformet.2015.03.008_bib0240 article-title: Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.12.003 – volume: 13 start-page: 1614 year: 2013 ident: 10.1016/j.agrformet.2015.03.008_bib0115 article-title: Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels publication-title: Sensors doi: 10.3390/s130201614 – volume: 38 start-page: 2617 year: 2000 ident: 10.1016/j.agrformet.2015.03.008_bib0215 article-title: Modeling lidar returns from forest canopies publication-title: Geosci. Remote Sens. IEEE Trans. doi: 10.1109/36.885208 – volume: 29 start-page: 171 year: 2009 ident: 10.1016/j.agrformet.2015.03.008_bib0080 article-title: Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna®’ publication-title: Tree Physiol. doi: 10.1093/treephys/tpn022 – volume: 8 start-page: 426 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0120 article-title: Mini-UAV-borne LIDAR for fine-scale mapping publication-title: Geosci. Remote Sens. Lett. IEEE doi: 10.1109/LGRS.2010.2079913 – volume: 123 start-page: 81 year: 2012 ident: 10.1016/j.agrformet.2015.03.008_bib0040 article-title: Characterization of canopy fuels using ICESat/GLAS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.03.018 – volume: 115 start-page: 2965 year: 2011 ident: 10.1016/j.agrformet.2015.03.008_bib0260 article-title: Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.03.019 – volume: 125 start-page: 73 year: 2012 ident: 10.1016/j.agrformet.2015.03.008_bib0275 article-title: Measuring gap fraction: element clumping index and LAI in Sierra Forest stands using a full-waveform ground-based lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.07.007 – volume: 29 start-page: 607 year: 2003 ident: 10.1016/j.agrformet.2015.03.008_bib0125 article-title: Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests publication-title: Can. J. Remote Sens. doi: 10.5589/m03-026 – volume: 47 start-page: 90 year: 2003 ident: 10.1016/j.agrformet.2015.03.008_bib0150 article-title: Tutorial on maximum likelihood estimation publication-title: J. Math. Psychol. doi: 10.1016/S0022-2496(02)00028-7 – volume: 34 start-page: S385 year: 2008 ident: 10.1016/j.agrformet.2015.03.008_bib0155 article-title: Modeling the hemispherical scanning: below-canopy lidar and vegetation structure characteristics with a geometric-optical and radiative-transfer model publication-title: Can. J. Remote Sens. doi: 10.5589/m08-047 – volume: 2 start-page: 833 year: 2010 ident: 10.1016/j.agrformet.2015.03.008_bib0135 article-title: Ground filtering algorithms for airborne LiDAR data: a review of critical issues publication-title: Remote Sens. doi: 10.3390/rs2030833 |
| SSID | ssj0012779 |
| Score | 2.4605887 |
| Snippet | •A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging... Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 100 |
| SubjectTerms | Algorithms Canopies ecosystem management ecosystems Foliage Forest canopy forest surveys Forests Ground-based lidar LAI Lasers leaf angle Leaf angle distribution Leaf area index leaves Lidar national parks physics remote sensing Terrestrial laser scanning uncertainty Uncertainty analysis United States Vegetation |
| Title | Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution |
| URI | https://dx.doi.org/10.1016/j.agrformet.2015.03.008 https://www.proquest.com/docview/1701476637 https://www.proquest.com/docview/1709734497 https://www.proquest.com/docview/2000185858 |
| Volume | 209-210 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012779 issn: 0168-1923 databaseCode: AKRWK dateStart: 19840201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqcoEDggIiPCojIU5dks3a--gtiqgCKL0QpN4sP2ajhc1utEmk9sKdf82M441UJNoDx7VmJMvjxzfrz98w9t7hEVuIJMW0xCSYoBgd5ePCRblDdGDdSJRAb4fnl-nsu_hyJa-O2LR_C0O0yrD37_d0v1uHlmEYzeG6qobfEKzkHp9ID8xJdluIjKoYfPx1oHnE42yvt4fGEVnf4njppSfnA5EqYxnUTv91Qv21V_sD6OIJexyQI5_sO_eUHUFzwh5Nll1Qz4ATNpgjBG47_6ecf-DTukI86r-esd8L8HU4aMLxunK64x1gnIBviMPeLHlbcuwmmmzO-VxfV6vdCg1_Ql2R9DEnOY4VIVMyxIC06xseKn6f8Rp0yTUCUO7lF8-4blxobJY1cEf6vKG01nO2uPi0mM6iUIchsjigW2LH6LRAaCGlzTMDmMiWLiktYC5l7EgLhzBMxzDGIBRgZCnRxsQanWNp0uQFO27aBl4yHoNLxiAxa8pAiMTq3JrCakhzYVKwowFL-6FXNmiUU6mMWvVktB_qEDNFMVOjRGHMBmx0cFzvZTrudznvY6tuzTiFh8n9zu_62aBwPdIli26g3W0U6duLDHFcdqdNkSVCFHfY0BOqmC5t81f_09HX7CF9EcMllm_Y8bbbwVuEUVtz6tfJKXsw-fx1dvkHrsshfw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaW5QAcECwgytNIiNOWJo2dx95WFasC271QpL1ZfkyqQJpUaSvBhTv_mhnXqbRI7B44xpmRrIwf38Sfv2HsrcMtthBJimmJSTBBMXqYjws3zB2iA-siUQLdHZ5dpNOv4tOlvDxgk_4uDNEqw9q_W9P9ah1aRuFrjlZVNfqCYCX3-ER6YJ7eYreFHGeUgb3_ted5xNhS7AS-MV1C8yskL73w7HwgVmUsg9zpv7aovxZrvwOdPWD3A3Tkp7vePWQH0Byxe6eLLshnwBEbzBADt53_Vc7f8UldISD1T4_Y7zn4Qhw04nhdOd3xDjBQwNdEYm8WvC05dhNN1id8pn9Uy-0SDb9DXZH2MSc9jiVBUzLEiLSrnzyU_D7mNeiSa0Sg3OsvHnPduNDYLGrgjgR6Q22tx2x-9mE-mQ5DIYahFSLbED1GpwViCyltnhnATLZ0SWkBkyljIy0c4jAdwxijUICRpUQbE2t0jqVJkyfssGkbeMp4DC4Zg8S0KQMhEqtzawqrIc2FScFGA5b2n17ZIFJOtTJq1bPRvql9zBTFTEWJwpgNWLR3XO10Om52Oeljq64MOYW7yc3Ob_rRoHBC0imLbqDdrhUJ3IsMgVx2rU2RJUIU19jQHaqYTm3zZ__T0dfsznQ-O1fnHy8-P2d36Q3RXWL5gh1uui28REy1Ma_8nPkDJdEjFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+lidar+remote+sensing+of+forests%3A+Maximum+likelihood+estimates+of+canopy+profile%2C+leaf+area+index%2C+and+leaf+angle+distribution&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Zhao%2C+Kaiguang&rft.au=Garc%C3%ADa%2C+Mariano&rft.au=Liu%2C+Shu&rft.au=Guo%2C+Qinghua&rft.date=2015-09-15&rft.issn=0168-1923&rft.volume=209-210+p.100-113&rft.spage=100&rft.epage=113&rft_id=info:doi/10.1016%2Fj.agrformet.2015.03.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon |