Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution

•A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging data.•Estimate leaf area index, foliage profile, and leaf angle distribution simultaneously.•MLE estimated more accurate canopy parameters th...

Full description

Saved in:
Bibliographic Details
Published inAgricultural and forest meteorology Vol. 209-210; pp. 100 - 113
Main Authors Zhao, Kaiguang, García, Mariano, Liu, Shu, Guo, Qinghua, Chen, Gang, Zhang, Xuesong, Zhou, Yuyu, Meng, Xuelian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2015
Subjects
Online AccessGet full text
ISSN0168-1923
1873-2240
DOI10.1016/j.agrformet.2015.03.008

Cover

Abstract •A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging data.•Estimate leaf area index, foliage profile, and leaf angle distribution simultaneously.•MLE estimated more accurate canopy parameters than classical gap-based algorithms.•Boost confidence use of terrestrial lidar as a versatile tool for ecological studies. Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem studies, but its actual utility depends largely on efficacies of lidar analysis methods. To improve characterizing forest canopies with TLS, we forged a methodological paradigm that combines physics and statistics to derive foliage profile, leaf area index (LAI), and leaf angle distribution (LAD): We modeled laser–vegetation interactions probabilistically and then developed a maximum likelihood estimator (MLE) of vegetation parameters. Unlike classical gap-based algorithms, MLE explicitly accommodates laser scanning geometries, fully leverages raw laser ranging data, and simultaneously derives foliage profile and LAD. We evaluated MLE using both synthetic lidar data and real TLS scans at sites in Everglades National Park, USA. Estimated LAI differed between algorithms by an average of 26%. Compared to classical gap analyses, MLE derived foliage density profile and LAD more accurately. Also, MLE has a rigorous statistical foundation and generated error intervals better indicative of the true uncertainties of estimated canopy parameters—an aspect often overlooked but essential for credible use of lidar vegetation products. The theoretical justification and experimental evidence converge to suggest that classical gap methods are sub-optimal for exploiting tiny-footprint lidar data and MLE offers a paradigm-shifting alternative. We envision that MLE will further boost confident use of terrestrial lidar as a versatile tool for environmental applications, such as forest survey, ecological conservation, and ecosystem management.
AbstractList •A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging data.•Estimate leaf area index, foliage profile, and leaf angle distribution simultaneously.•MLE estimated more accurate canopy parameters than classical gap-based algorithms.•Boost confidence use of terrestrial lidar as a versatile tool for ecological studies. Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem studies, but its actual utility depends largely on efficacies of lidar analysis methods. To improve characterizing forest canopies with TLS, we forged a methodological paradigm that combines physics and statistics to derive foliage profile, leaf area index (LAI), and leaf angle distribution (LAD): We modeled laser–vegetation interactions probabilistically and then developed a maximum likelihood estimator (MLE) of vegetation parameters. Unlike classical gap-based algorithms, MLE explicitly accommodates laser scanning geometries, fully leverages raw laser ranging data, and simultaneously derives foliage profile and LAD. We evaluated MLE using both synthetic lidar data and real TLS scans at sites in Everglades National Park, USA. Estimated LAI differed between algorithms by an average of 26%. Compared to classical gap analyses, MLE derived foliage density profile and LAD more accurately. Also, MLE has a rigorous statistical foundation and generated error intervals better indicative of the true uncertainties of estimated canopy parameters—an aspect often overlooked but essential for credible use of lidar vegetation products. The theoretical justification and experimental evidence converge to suggest that classical gap methods are sub-optimal for exploiting tiny-footprint lidar data and MLE offers a paradigm-shifting alternative. We envision that MLE will further boost confident use of terrestrial lidar as a versatile tool for environmental applications, such as forest survey, ecological conservation, and ecosystem management.
Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem studies, but its actual utility depends largely on efficacies of lidar analysis methods. To improve characterizing forest canopies with TLS, we forged a methodological paradigm that combines physics and statistics to derive foliage profile, leaf area index (LAI), and leaf angle distribution (LAD): We modeled laser–vegetation interactions probabilistically and then developed a maximum likelihood estimator (MLE) of vegetation parameters. Unlike classical gap-based algorithms, MLE explicitly accommodates laser scanning geometries, fully leverages raw laser ranging data, and simultaneously derives foliage profile and LAD. We evaluated MLE using both synthetic lidar data and real TLS scans at sites in Everglades National Park, USA. Estimated LAI differed between algorithms by an average of 26%. Compared to classical gap analyses, MLE derived foliage density profile and LAD more accurately. Also, MLE has a rigorous statistical foundation and generated error intervals better indicative of the true uncertainties of estimated canopy parameters—an aspect often overlooked but essential for credible use of lidar vegetation products. The theoretical justification and experimental evidence converge to suggest that classical gap methods are sub-optimal for exploiting tiny-footprint lidar data and MLE offers a paradigm-shifting alternative. We envision that MLE will further boost confident use of terrestrial lidar as a versatile tool for environmental applications, such as forest survey, ecological conservation, and ecosystem management.
Author Zhang, Xuesong
Guo, Qinghua
Zhao, Kaiguang
Chen, Gang
García, Mariano
Meng, Xuelian
Zhou, Yuyu
Liu, Shu
Author_xml – sequence: 1
  givenname: Kaiguang
  surname: Zhao
  fullname: Zhao, Kaiguang
  email: zhao.1423@osu.edu
  organization: School of Environment and Natural Resources, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, OH 44691, USA
– sequence: 2
  givenname: Mariano
  surname: García
  fullname: García, Mariano
  organization: Center for Spatial Technologies and Remote Sensing, University of California at Davis, Davis, CA 95616, USA
– sequence: 3
  givenname: Shu
  surname: Liu
  fullname: Liu, Shu
  organization: School of Environment and Natural Resources, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, OH 44691, USA
– sequence: 4
  givenname: Qinghua
  surname: Guo
  fullname: Guo, Qinghua
  organization: School of Engineering, University of California at Merced, Merced, CA 95343, USA
– sequence: 5
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  organization: Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
– sequence: 6
  givenname: Xuesong
  surname: Zhang
  fullname: Zhang, Xuesong
  organization: Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740, USA
– sequence: 7
  givenname: Yuyu
  surname: Zhou
  fullname: Zhou, Yuyu
  organization: Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740, USA
– sequence: 8
  givenname: Xuelian
  surname: Meng
  fullname: Meng, Xuelian
  organization: Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA
BookMark eNqNkUFvFCEcxYmpidvqZ5Cjh84IMzDMmHhomqpNarzsnTDwZ2VlYAXWtB_Bby2TbTz00oYEEvi9xz_vnaOzEAMg9J6SlhI6fNy3apdsTAuUtiOUt6RvCRlfoQ0dRd90HSNnaFPJsaFT179B5znvCaGdENMG_d1CSpBLcspj74xKOMESC-AMIbuww9Hi6l6R_Al_V_duOS4V_AXe_YzR4PrgFlUgr6BWIR4e8CFF6zxcYg_KYpVAYRcM3F9iFczjZdh5wMatP8_H4mJ4i15b5TO8ezwv0PbLzfb6W3P34-vt9dVdoxkTpRm4UMMkOOFcj2KGTjBrequBUjZropjhjCsK3TgME8zc8srMVFUx5fPQX6APJ9s65O9jnV4uLmvwXgWIxyw7UrMZeV3PolSQSfSM1e0FKGViGPoV_XxCdYo5J7BSu6LWBEpSzktK5Nqr3Mv_vcq1V0l6WXutevFEf0i1gfTwAuXVSQk13j8OkszaQdBgXAJdpInuWY9_SC7G1A
CitedBy_id crossref_primary_10_1016_j_jag_2019_101923
crossref_primary_10_1109_TGRS_2024_3353225
crossref_primary_10_3390_ijgi10100665
crossref_primary_10_3390_rs9111187
crossref_primary_10_1109_TGRS_2018_2840725
crossref_primary_10_1016_j_quaint_2019_04_005
crossref_primary_10_3390_rs12203457
crossref_primary_10_1016_j_foreco_2021_119556
crossref_primary_10_1016_j_ecolind_2018_08_004
crossref_primary_10_3390_rs10111739
crossref_primary_10_3390_fractalfract5010014
crossref_primary_10_1016_j_agrformet_2019_06_009
crossref_primary_10_1111_2041_210X_13273
crossref_primary_10_3390_rs11010015
crossref_primary_10_1016_j_ese_2023_100257
crossref_primary_10_1007_s12518_022_00471_x
crossref_primary_10_1016_j_agrformet_2016_06_021
crossref_primary_10_1080_15481603_2021_1873588
crossref_primary_10_3390_ijgi6050147
crossref_primary_10_1016_j_isprsjprs_2019_01_005
crossref_primary_10_1016_j_rse_2023_113733
crossref_primary_10_1111_2041_210X_14290
crossref_primary_10_58816_duzceod_1593528
crossref_primary_10_1007_s11355_019_00383_w
crossref_primary_10_1016_j_agrformet_2018_10_021
crossref_primary_10_1016_j_agrformet_2020_108238
crossref_primary_10_1029_2018RG000608
crossref_primary_10_1016_j_jag_2017_11_017
crossref_primary_10_3390_rs11212536
crossref_primary_10_3390_rs12152457
crossref_primary_10_1016_j_rse_2020_111932
crossref_primary_10_3390_rs11131580
crossref_primary_10_1016_j_rse_2022_113115
crossref_primary_10_1016_j_isprsjprs_2019_09_015
crossref_primary_10_3390_rs15040946
crossref_primary_10_1109_TGRS_2024_3435004
crossref_primary_10_1016_j_rse_2018_06_024
crossref_primary_10_1016_j_agrformet_2020_108101
crossref_primary_10_1109_TGRS_2020_3032167
crossref_primary_10_3390_app13064005
crossref_primary_10_3390_agronomy11122428
crossref_primary_10_3390_s19183943
crossref_primary_10_3390_rs10101580
crossref_primary_10_1080_01431161_2019_1584929
crossref_primary_10_34133_2021_2708904
crossref_primary_10_1007_s11676_021_01440_7
crossref_primary_10_1016_j_rse_2021_112354
crossref_primary_10_3390_su15129479
crossref_primary_10_1016_j_isprsjprs_2020_11_006
crossref_primary_10_3389_fpls_2023_1087239
crossref_primary_10_1016_j_advwatres_2017_08_004
crossref_primary_10_1016_j_rse_2023_113959
crossref_primary_10_1016_j_jclepro_2024_142038
crossref_primary_10_1016_j_isprsjprs_2017_06_006
crossref_primary_10_1016_j_agrformet_2019_05_025
crossref_primary_10_1016_j_cj_2022_04_003
crossref_primary_10_1016_j_agrformet_2017_07_007
crossref_primary_10_1016_j_rse_2017_09_007
crossref_primary_10_1016_j_agrformet_2017_01_004
crossref_primary_10_1111_nph_20405
crossref_primary_10_3390_rs8110942
crossref_primary_10_3390_rs12182934
crossref_primary_10_3390_rs13061159
crossref_primary_10_1016_j_rse_2020_111836
crossref_primary_10_1016_j_agrformet_2018_11_033
crossref_primary_10_1016_j_foreco_2016_09_003
crossref_primary_10_3390_app10103456
crossref_primary_10_1111_2041_210X_13144
crossref_primary_10_11728_cjss2023_06_2023_0078
crossref_primary_10_1016_j_rsase_2024_101364
Cites_doi 10.1109/LGRS.2005.856706
10.1016/j.foreco.2008.04.014
10.1109/36.387593
10.1016/j.rse.2010.08.030
10.1007/s00468-011-0566-6
10.1890/070001
10.1016/S0168-1923(99)00114-8
10.1016/0168-1923(87)90078-5
10.1016/j.agrformet.2003.08.027
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1890/12-1705.1
10.1016/j.rse.2010.10.008
10.1007/s10463-008-0186-0
10.1016/j.agrformet.2008.01.020
10.14358/PERS.74.10.1223
10.1007/BF00204336
10.1016/j.agrformet.2012.10.011
10.1016/j.agrformet.2009.02.007
10.1093/treephys/21.12-13.989
10.1111/j.1469-8137.1960.tb06195.x
10.1016/j.rse.2013.01.001
10.1093/biomet/83.4.875
10.3390/s90402719
10.14358/PERS.77.7.733
10.1109/TGRS.2006.881743
10.1016/j.rse.2011.04.001
10.1016/j.rse.2007.06.011
10.1109/TGRS.2012.2205003
10.1016/j.isprsjprs.2013.04.011
10.1007/s10531-013-0600-7
10.1016/j.rse.2013.12.007
10.1016/0168-1923(93)90054-L
10.1016/0002-1571(71)90092-6
10.1016/j.rse.2008.09.009
10.1890/02-5317
10.1016/j.rse.2012.11.024
10.1016/j.rse.2011.01.026
10.1016/j.rse.2015.01.020
10.1016/j.rse.2012.12.026
10.1109/TGRS.2011.2107744
10.1016/j.jqsrt.2008.08.003
10.1109/TGRS.2011.2161613
10.1016/j.isprsjprs.2010.08.003
10.1016/j.rse.2009.03.006
10.1016/j.agrformet.2015.02.012
10.1016/j.agrformet.2006.12.003
10.3390/s130201614
10.1109/36.885208
10.1093/treephys/tpn022
10.1109/LGRS.2010.2079913
10.1016/j.rse.2012.03.018
10.1016/j.rse.2010.03.019
10.1016/j.rse.2012.07.007
10.5589/m03-026
10.1016/S0022-2496(02)00028-7
10.5589/m08-047
10.3390/rs2030833
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7ST
7TG
7U6
7UA
C1K
KL.
SOI
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.agrformet.2015.03.008
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Meteorological & Geoastrophysical Abstracts
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
Physics
EISSN 1873-2240
EndPage 113
ExternalDocumentID 10_1016_j_agrformet_2015_03_008
S0168192315000866
GeographicLocations USA
USA, Florida, Everglades Natl. Park
United States
GeographicLocations_xml – name: USA
– name: USA, Florida, Everglades Natl. Park
– name: United States
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
Y6R
ZMT
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
WUQ
~HD
7ST
7TG
7U6
7UA
ABUFD
C1K
KL.
SOI
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c447t-657a6975055c87be274fd3fce114bc0a4d545a1e28669eb5f5be2b1a44715b63
IEDL.DBID .~1
ISSN 0168-1923
IngestDate Thu Oct 02 10:13:05 EDT 2025
Thu Oct 02 10:18:07 EDT 2025
Tue Oct 07 09:56:19 EDT 2025
Wed Oct 01 05:12:25 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Fri Feb 23 02:34:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Forest canopy
Terrestrial laser scanning
Leaf angle distribution
LAI
Ground-based lidar
Uncertainty analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-657a6975055c87be274fd3fce114bc0a4d545a1e28669eb5f5be2b1a44715b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1701476637
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_2000185858
proquest_miscellaneous_1709734497
proquest_miscellaneous_1701476637
crossref_citationtrail_10_1016_j_agrformet_2015_03_008
crossref_primary_10_1016_j_agrformet_2015_03_008
elsevier_sciencedirect_doi_10_1016_j_agrformet_2015_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-15
PublicationDateYYYYMMDD 2015-09-15
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Agricultural and forest meteorology
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ni-Meister, Strahler, Woodcock, Schaaf, Jupp, Yao, Zhao, Yang (bib0155) 2008; 34
Mutlu, Popescu, Zhao (bib0145) 2008; 256
Medhurst, Beadle (bib0130) 2001; 21
Saenger (bib0210) 2002
Popescu, Zhao, Neuenschwander, Lin (bib0195) 2011; 115
Zhao, Popescu (bib0290) 2009; 113
Frazer, Magnussen, Wulder, Niemann (bib0035) 2011; 115
van Aardt, Wynne, Oderwald (bib0230) 2006; 52
Wilson (bib0245) 1960; 59
Dalponte, Bruzzone, Gianelle (bib0030) 2011; 49
Mori, Hagihara (bib0140) 1991; 5
Zellweger, Morsdorf, Purves, Braunisch, Bollmann (bib0270) 2014; 23
Zhao, Strahler, Schaaf, Yao, Yang, Wang, Schull, Román, Woodcock, Olofsson (bib0275) 2012; 125
Chen, Baldocchi, Gong, Dawson (bib0025) 2008; 148
Zheng, Moskal (bib0315) 2009; 9
Gaulton, Danson, Ramirez, Gunawan (bib0045) 2013; 132
Nilson (bib0160) 1971; 8
Wang, Li, Su (bib0240) 2007; 143
Popescu, Zhao (bib0190) 2008; 112
Liang, Hyyppa (bib0115) 2013; 13
Jakubowski, Guo, Kelly (bib0070) 2013; 130
Meng, Currit, Zhao (bib0135) 2010; 2
Rich, Wood, Vieglais, Burek, Webb (bib0200) 1999
Zhao, Jackson (bib0285) 2014; 84
Zhao, Popescu, Zhang (bib0305) 2008; 74
Sun, Ranson (bib0215) 2000; 38
Konishi, Kitagawa (bib0095) 1996; 83
Koetz, Morsdorf, Sun, Ranson, Itten, Allgower (bib0090) 2006; 3
Otto, Trautmann (bib0170) 2008; 109
Jupp, Culvenor, Lovell, Newnham (bib0085) 2005
Tang, Brolly, Zhao, Strahler, Schaaf, Ganguly, Zhang, Dubayah (bib0220) 2014; 143
Jonckheere, Fleck, Nackaerts, Muys, Coppin, Weiss, Baret (bib0075) 2004; 121
Woodgate, Jones, Suarez, Hill, Armston, Wilkes, Soto-Berelov, Haywood, Mellor (bib0250) 2015; 205
Vierling, Vierling, Gould, Martinuzzi, Clawges (bib0235) 2008; 6
García, Popescu, Riaño, Zhao, Neuenschwander, Agca, Chuvieco (bib0040) 2012; 123
Lang (bib0100) 1987; 41
Nilson (bib0165) 1999; 98
Yang, Miller, Montgomery (bib0255) 1993; 67
Hosoi, Omasa (bib0060) 2006; 44
Zhao, Valle, Popescu, Zhang, Mallick (bib0310) 2013; 132
Pisek, Ryu, Alikas (bib0180) 2011; 25
Lin, Hyyppa, Jaakkola (bib0120) 2011; 8
Palace, Sullivan, Ducey, Treuhaft, Herrick, Shimbo, Mota-E-Silva (bib0175) 2015; 161
Lovell, Jupp, Culvenor, Coops (bib0125) 2003; 29
Zhao, Popescu, Nelson (bib0300) 2009; 113
Hurtt, Dubayah, Drake, Moorcroft, Pacala, Blair, Fearon (bib0065) 2004; 14
Zhao, Yang, Schull, Román-Colón, Yao, Wang, Zhang, Jupp, Lovell, Culvenor (bib0280) 2011; 115
Hansen (bib0050) 1999
Myung (bib0150) 2003; 47
Zheng, Moskal, Kim (bib0320) 2013; 51
Campbell, Norman (bib0005) 1989
Jupp, Culvenor, Lovell, Newnham, Strahler, Woodcock (bib0080) 2009; 29
Pisek, Sonnentag, Richardson, Mõttus (bib0185) 2013; 169
Yao, Yang, Zhao, Wang, Zhang, Jupp, Lovell, Culvenor, Newnham, Ni-Meister (bib0260) 2011; 115
Zhao, Popescu, Meng, Pang, Agca (bib0295) 2011; 115
Chen, Hay (bib0015) 2011; 77
Lefsky, Cohen, Parker, Harding (bib0105) 2002; 52
Liang, Litkey, Hyyppa, Kaartinen, Vastaranta, Holopainen (bib0110) 2012; 50
Chen, Cihlar (bib0020) 1995; 33
Hosoi, Nakai, Omasa (bib0055) 2013; 82
Yu, Hyyppä, Vastaranta, Holopainen, Viitala (bib0265) 2011; 66
Casella, Berger (bib0010) 1990
Ueki, Fueda (bib0225) 2010; 62
Richardson, Moskal, Kim (bib0205) 2009; 149
Konishi (10.1016/j.agrformet.2015.03.008_bib0095) 1996; 83
Ni-Meister (10.1016/j.agrformet.2015.03.008_bib0155) 2008; 34
Wilson (10.1016/j.agrformet.2015.03.008_bib0245) 1960; 59
Woodgate (10.1016/j.agrformet.2015.03.008_bib0250) 2015; 205
Chen (10.1016/j.agrformet.2015.03.008_bib0025) 2008; 148
Rich (10.1016/j.agrformet.2015.03.008_bib0200) 1999
Meng (10.1016/j.agrformet.2015.03.008_bib0135) 2010; 2
Koetz (10.1016/j.agrformet.2015.03.008_bib0090) 2006; 3
Liang (10.1016/j.agrformet.2015.03.008_bib0115) 2013; 13
Myung (10.1016/j.agrformet.2015.03.008_bib0150) 2003; 47
Hurtt (10.1016/j.agrformet.2015.03.008_bib0065) 2004; 14
Hansen (10.1016/j.agrformet.2015.03.008_bib0050) 1999
Wang (10.1016/j.agrformet.2015.03.008_bib0240) 2007; 143
Hosoi (10.1016/j.agrformet.2015.03.008_bib0055) 2013; 82
Popescu (10.1016/j.agrformet.2015.03.008_bib0195) 2011; 115
Casella (10.1016/j.agrformet.2015.03.008_bib0010) 1990
Chen (10.1016/j.agrformet.2015.03.008_bib0015) 2011; 77
Jakubowski (10.1016/j.agrformet.2015.03.008_bib0070) 2013; 130
Popescu (10.1016/j.agrformet.2015.03.008_bib0190) 2008; 112
Yu (10.1016/j.agrformet.2015.03.008_bib0265) 2011; 66
Dalponte (10.1016/j.agrformet.2015.03.008_bib0030) 2011; 49
Jonckheere (10.1016/j.agrformet.2015.03.008_bib0075) 2004; 121
Zhao (10.1016/j.agrformet.2015.03.008_bib0290) 2009; 113
García (10.1016/j.agrformet.2015.03.008_bib0040) 2012; 123
Sun (10.1016/j.agrformet.2015.03.008_bib0215) 2000; 38
Palace (10.1016/j.agrformet.2015.03.008_bib0175) 2015; 161
Vierling (10.1016/j.agrformet.2015.03.008_bib0235) 2008; 6
Otto (10.1016/j.agrformet.2015.03.008_bib0170) 2008; 109
Liang (10.1016/j.agrformet.2015.03.008_bib0110) 2012; 50
Zhao (10.1016/j.agrformet.2015.03.008_bib0280) 2011; 115
Lovell (10.1016/j.agrformet.2015.03.008_bib0125) 2003; 29
Ueki (10.1016/j.agrformet.2015.03.008_bib0225) 2010; 62
Zhao (10.1016/j.agrformet.2015.03.008_bib0300) 2009; 113
Mori (10.1016/j.agrformet.2015.03.008_bib0140) 1991; 5
Zellweger (10.1016/j.agrformet.2015.03.008_bib0270) 2014; 23
Zhao (10.1016/j.agrformet.2015.03.008_bib0285) 2014; 84
Lin (10.1016/j.agrformet.2015.03.008_bib0120) 2011; 8
Jupp (10.1016/j.agrformet.2015.03.008_bib0085) 2005
Hosoi (10.1016/j.agrformet.2015.03.008_bib0060) 2006; 44
Frazer (10.1016/j.agrformet.2015.03.008_bib0035) 2011; 115
Pisek (10.1016/j.agrformet.2015.03.008_bib0180) 2011; 25
Pisek (10.1016/j.agrformet.2015.03.008_bib0185) 2013; 169
Jupp (10.1016/j.agrformet.2015.03.008_bib0080) 2009; 29
Zheng (10.1016/j.agrformet.2015.03.008_bib0320) 2013; 51
Gaulton (10.1016/j.agrformet.2015.03.008_bib0045) 2013; 132
Zhao (10.1016/j.agrformet.2015.03.008_bib0295) 2011; 115
Zhao (10.1016/j.agrformet.2015.03.008_bib0310) 2013; 132
Mutlu (10.1016/j.agrformet.2015.03.008_bib0145) 2008; 256
Medhurst (10.1016/j.agrformet.2015.03.008_bib0130) 2001; 21
Lang (10.1016/j.agrformet.2015.03.008_bib0100) 1987; 41
Yang (10.1016/j.agrformet.2015.03.008_bib0255) 1993; 67
Campbell (10.1016/j.agrformet.2015.03.008_bib0005) 1989
Tang (10.1016/j.agrformet.2015.03.008_bib0220) 2014; 143
Nilson (10.1016/j.agrformet.2015.03.008_bib0165) 1999; 98
Lefsky (10.1016/j.agrformet.2015.03.008_bib0105) 2002; 52
Chen (10.1016/j.agrformet.2015.03.008_bib0020) 1995; 33
Richardson (10.1016/j.agrformet.2015.03.008_bib0205) 2009; 149
Saenger (10.1016/j.agrformet.2015.03.008_bib0210) 2002
Nilson (10.1016/j.agrformet.2015.03.008_bib0160) 1971; 8
Zhao (10.1016/j.agrformet.2015.03.008_bib0305) 2008; 74
Zhao (10.1016/j.agrformet.2015.03.008_bib0275) 2012; 125
Yao (10.1016/j.agrformet.2015.03.008_bib0260) 2011; 115
Zheng (10.1016/j.agrformet.2015.03.008_bib0315) 2009; 9
van Aardt (10.1016/j.agrformet.2015.03.008_bib0230) 2006; 52
References_xml – volume: 82
  start-page: 41
  year: 2013
  end-page: 48
  ident: bib0055
  article-title: 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 34
  start-page: S385
  year: 2008
  end-page: S397
  ident: bib0155
  article-title: Modeling the hemispherical scanning: below-canopy lidar and vegetation structure characteristics with a geometric-optical and radiative-transfer model
  publication-title: Can. J. Remote Sens.
– volume: 121
  start-page: 19
  year: 2004
  end-page: 35
  ident: bib0075
  article-title: Review of methods for in situ leaf area index determination: Part I. Theories: sensors and hemispherical photography
  publication-title: Agric. For. Meteorol.
– volume: 49
  start-page: 2479
  year: 2011
  end-page: 2490
  ident: bib0030
  article-title: A system for the estimation of single-tree stem diameter and volume using multireturn LIDAR data
  publication-title: Geosci. Remote Sens. IEEE Trans.
– volume: 3
  start-page: 49
  year: 2006
  end-page: 53
  ident: bib0090
  article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation
  publication-title: Geosci. Remote Sens. Lett. IEEE
– volume: 2
  start-page: 833
  year: 2010
  end-page: 860
  ident: bib0135
  article-title: Ground filtering algorithms for airborne LiDAR data: a review of critical issues
  publication-title: Remote Sens.
– volume: 256
  start-page: 289
  year: 2008
  end-page: 294
  ident: bib0145
  article-title: Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps
  publication-title: For. Ecol. Manage.
– volume: 77
  start-page: 733
  year: 2011
  end-page: 741
  ident: bib0015
  article-title: A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and Quickbird data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 38
  start-page: 2617
  year: 2000
  end-page: 2626
  ident: bib0215
  article-title: Modeling lidar returns from forest canopies
  publication-title: Geosci. Remote Sens. IEEE Trans.
– volume: 59
  start-page: 1
  year: 1960
  end-page: 7
  ident: bib0245
  article-title: Inclined point quadrats
  publication-title: New Phytol.
– start-page: 1
  year: 1989
  end-page: 19
  ident: bib0005
  article-title: The description and measurement of plant canopy structure
  publication-title: Plant Canopies: Their Growth, Form and Function
– volume: 50
  start-page: 661
  year: 2012
  end-page: 670
  ident: bib0110
  article-title: Automatic stem mapping using single-scan terrestrial laser scanning
  publication-title: Geosci. Remote Sens. IEEE Trans.
– volume: 115
  start-page: 2965
  year: 2011
  end-page: 2974
  ident: bib0260
  article-title: Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 636
  year: 2011
  end-page: 649
  ident: bib0035
  article-title: Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass
  publication-title: Remote Sens. Environ.
– volume: 52
  start-page: 19
  year: 2002
  end-page: 30
  ident: bib0105
  article-title: Lidar remote sensing for ecosystem studies: lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists
  publication-title: BioScience
– year: 1990
  ident: bib0010
  article-title: Statistical Inference
– volume: 113
  start-page: 182
  year: 2009
  end-page: 196
  ident: bib0300
  article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers
  publication-title: Remote Sens. Environ.
– volume: 23
  start-page: 289
  year: 2014
  end-page: 307
  ident: bib0270
  article-title: Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment
  publication-title: Biodivers. Conserv.
– volume: 143
  start-page: 131
  year: 2014
  end-page: 141
  ident: bib0220
  article-title: Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 989
  year: 2001
  end-page: 999
  ident: bib0130
  article-title: Crown structure and leaf area index development in thinned and unthinned
  publication-title: Tree Physiol.
– volume: 33
  start-page: 777
  year: 1995
  end-page: 787
  ident: bib0020
  article-title: Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods
  publication-title: Geosci. Remote Sens. IEEE Trans.
– volume: 52
  start-page: 636
  year: 2006
  end-page: 649
  ident: bib0230
  article-title: Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis
  publication-title: For. Sci.
– volume: 74
  start-page: 1223
  year: 2008
  end-page: 1234
  ident: bib0305
  article-title: Bayesian learning with Gaussian processes for supervised classification of hyperspectral data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 132
  start-page: 102
  year: 2013
  end-page: 119
  ident: bib0310
  article-title: Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 25
  year: 1971
  end-page: 38
  ident: bib0160
  article-title: A theoretical analysis of the frequency of gaps in plant stands
  publication-title: Agric. Meteorol.
– volume: 115
  start-page: 1978
  year: 2011
  end-page: 1996
  ident: bib0295
  article-title: Characterizing forest canopy structure with lidar composite metrics and machine learning
  publication-title: Remote Sens. Environ.
– year: 2002
  ident: bib0210
  article-title: Mangrove Ecology, Silviculture and Conservation
– volume: 125
  start-page: 73
  year: 2012
  end-page: 79
  ident: bib0275
  article-title: Measuring gap fraction: element clumping index and LAI in Sierra Forest stands using a full-waveform ground-based lidar
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 767
  year: 2008
  end-page: 781
  ident: bib0190
  article-title: A voxel-based lidar method for estimating crown base height for deciduous and pine trees
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 873
  year: 2004
  end-page: 883
  ident: bib0065
  article-title: Beyond potential vegetation: combining lidar data and a height-structured model for carbon studies
  publication-title: Ecol. Appl.
– volume: 67
  start-page: 129
  year: 1993
  end-page: 146
  ident: bib0255
  article-title: Vertical distributions of canopy foliage and biologically-active radiation in a defoliated/refoliated hardwood forest
  publication-title: Agric. For. Meteorol.
– volume: 66
  start-page: 28
  year: 2011
  end-page: 37
  ident: bib0265
  article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 130
  start-page: 245
  year: 2013
  end-page: 253
  ident: bib0070
  article-title: Tradeoffs between lidar pulse density and forest measurement accuracy
  publication-title: Remote Sens. Environ.
– volume: 143
  start-page: 106
  year: 2007
  end-page: 122
  ident: bib0240
  article-title: Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage
  publication-title: Agric. For. Meteorol.
– year: 2005
  ident: bib0085
  article-title: Evaluation and Validation of Canopy Laser Radar (LIDAR) Systems for Native and Plantation Forest Inventory. Final Report Prepared for the Forest and Wood Products Research and Development Corporation (FWPRDC: PN 02.2902) by CSIRO, 20, 150
– volume: 5
  start-page: 149
  year: 1991
  end-page: 152
  ident: bib0140
  article-title: Crown profile of foliage area characterized with the weibull distribution in a Hinoki (
  publication-title: Trees Struct. Funct.
– volume: 161
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib0175
  article-title: Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 2954
  year: 2011
  end-page: 2964
  ident: bib0280
  article-title: Measuring effective leaf area index, foliage profile: and stand height in New England forest stands using a full-waveform ground-based lidar
  publication-title: Remote Sens. Environ.
– volume: 84
  start-page: 329
  year: 2014
  end-page: 353
  ident: bib0285
  article-title: Biophysical forcings of land-use changes from potential forestry activities in North America
  publication-title: Ecol. Monogr.
– volume: 41
  start-page: 179
  year: 1987
  end-page: 186
  ident: bib0100
  article-title: Simplified estimate of leaf area index from transmittance of the sun’s beam
  publication-title: Agric. For. Meteorol.
– volume: 25
  start-page: 919
  year: 2011
  end-page: 924
  ident: bib0180
  article-title: Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies
  publication-title: Trees
– volume: 132
  start-page: 32
  year: 2013
  end-page: 39
  ident: bib0045
  article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content
  publication-title: Remote Sens. Environ.
– volume: 205
  start-page: 83
  year: 2015
  end-page: 95
  ident: bib0250
  article-title: Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction: and leaf area index in diverse forest systems
  publication-title: Agric. For. Meteorol.
– volume: 29
  start-page: 607
  year: 2003
  end-page: 622
  ident: bib0125
  article-title: Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests
  publication-title: Can. J. Remote Sens.
– volume: 44
  start-page: 3610
  year: 2006
  end-page: 3618
  ident: bib0060
  article-title: Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar
  publication-title: Geosci. Remote Sens. IEEE Trans.
– volume: 29
  start-page: 171
  year: 2009
  end-page: 181
  ident: bib0080
  article-title: Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna
  publication-title: Tree Physiol.
– volume: 98
  start-page: 437
  year: 1999
  end-page: 448
  ident: bib0165
  article-title: Inversion of gap frequency data in forest stands
  publication-title: Agric. For. Meteorol.
– volume: 123
  start-page: 81
  year: 2012
  end-page: 89
  ident: bib0040
  article-title: Characterization of canopy fuels using ICESat/GLAS data
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 2786
  year: 2011
  end-page: 2797
  ident: bib0195
  article-title: Satellite lidar vs: small footprint airborne lidar: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level
  publication-title: Remote Sens. Environ.
– volume: 109
  start-page: 2813
  year: 2008
  end-page: 2819
  ident: bib0170
  article-title: A note on G-functions within the scope of radiative transfer in turbid vegetation media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 51
  start-page: 777
  year: 2013
  end-page: 786
  ident: bib0320
  article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning
  publication-title: Geosci. Remote Sens. IEEE Trans.
– volume: 113
  start-page: 1628
  year: 2009
  end-page: 1645
  ident: bib0290
  article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA
  publication-title: Remote Sens. Environ.
– volume: 148
  start-page: 1005
  year: 2008
  end-page: 1020
  ident: bib0025
  article-title: Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities
  publication-title: Agric. For. Meteorol.
– volume: 9
  start-page: 2719
  year: 2009
  end-page: 2745
  ident: bib0315
  article-title: Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors
  publication-title: Sensors
– start-page: 79
  year: 1999
  ident: bib0200
  article-title: HemiView User Manual, Version 2.1
– volume: 169
  start-page: 186
  year: 2013
  end-page: 194
  ident: bib0185
  article-title: Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species?
  publication-title: Agric. For. Meteorol.
– volume: 47
  start-page: 90
  year: 2003
  end-page: 100
  ident: bib0150
  article-title: Tutorial on maximum likelihood estimation
  publication-title: J. Math. Psychol.
– volume: 149
  start-page: 1152
  year: 2009
  end-page: 1160
  ident: bib0205
  article-title: Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR
  publication-title: Agric. For. Meteorol.
– volume: 13
  start-page: 1614
  year: 2013
  end-page: 1634
  ident: bib0115
  article-title: Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels
  publication-title: Sensors
– volume: 8
  start-page: 426
  year: 2011
  end-page: 430
  ident: bib0120
  article-title: Mini-UAV-borne LIDAR for fine-scale mapping
  publication-title: Geosci. Remote Sens. Lett. IEEE
– volume: 62
  start-page: 413
  year: 2010
  end-page: 438
  ident: bib0225
  article-title: Optimal tuning parameter estimation in maximum penalized likelihood method
  publication-title: Ann. Inst. Stat. Math.
– volume: 6
  start-page: 90
  year: 2008
  end-page: 98
  ident: bib0235
  article-title: Lidar: shedding new light on habitat characterization and modeling
  publication-title: Front. Ecol. Environ.
– year: 1999
  ident: bib0050
  article-title: The
– volume: 83
  start-page: 875
  year: 1996
  end-page: 890
  ident: bib0095
  article-title: Generalised information criteria in model selection
  publication-title: Biometrika
– volume: 3
  start-page: 49
  year: 2006
  ident: 10.1016/j.agrformet.2015.03.008_bib0090
  article-title: Inversion of a lidar waveform model for forest biophysical parameter estimation
  publication-title: Geosci. Remote Sens. Lett. IEEE
  doi: 10.1109/LGRS.2005.856706
– year: 2005
  ident: 10.1016/j.agrformet.2015.03.008_bib0085
– volume: 256
  start-page: 289
  year: 2008
  ident: 10.1016/j.agrformet.2015.03.008_bib0145
  article-title: Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2008.04.014
– volume: 33
  start-page: 777
  year: 1995
  ident: 10.1016/j.agrformet.2015.03.008_bib0020
  article-title: Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/36.387593
– volume: 115
  start-page: 2954
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0280
  article-title: Measuring effective leaf area index, foliage profile: and stand height in New England forest stands using a full-waveform ground-based lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.030
– volume: 25
  start-page: 919
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0180
  article-title: Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies
  publication-title: Trees
  doi: 10.1007/s00468-011-0566-6
– volume: 6
  start-page: 90
  year: 2008
  ident: 10.1016/j.agrformet.2015.03.008_bib0235
  article-title: Lidar: shedding new light on habitat characterization and modeling
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/070001
– volume: 98
  start-page: 437
  year: 1999
  ident: 10.1016/j.agrformet.2015.03.008_bib0165
  article-title: Inversion of gap frequency data in forest stands
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00114-8
– volume: 41
  start-page: 179
  year: 1987
  ident: 10.1016/j.agrformet.2015.03.008_bib0100
  article-title: Simplified estimate of leaf area index from transmittance of the sun’s beam
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(87)90078-5
– volume: 121
  start-page: 19
  year: 2004
  ident: 10.1016/j.agrformet.2015.03.008_bib0075
  article-title: Review of methods for in situ leaf area index determination: Part I. Theories: sensors and hemispherical photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2003.08.027
– volume: 52
  start-page: 19
  year: 2002
  ident: 10.1016/j.agrformet.2015.03.008_bib0105
  publication-title: BioScience
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– volume: 84
  start-page: 329
  year: 2014
  ident: 10.1016/j.agrformet.2015.03.008_bib0285
  article-title: Biophysical forcings of land-use changes from potential forestry activities in North America
  publication-title: Ecol. Monogr.
  doi: 10.1890/12-1705.1
– volume: 115
  start-page: 636
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0035
  article-title: Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.10.008
– year: 1999
  ident: 10.1016/j.agrformet.2015.03.008_bib0050
– volume: 62
  start-page: 413
  year: 2010
  ident: 10.1016/j.agrformet.2015.03.008_bib0225
  article-title: Optimal tuning parameter estimation in maximum penalized likelihood method
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/s10463-008-0186-0
– start-page: 1
  year: 1989
  ident: 10.1016/j.agrformet.2015.03.008_bib0005
  article-title: The description and measurement of plant canopy structure
– volume: 148
  start-page: 1005
  year: 2008
  ident: 10.1016/j.agrformet.2015.03.008_bib0025
  article-title: Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.01.020
– volume: 74
  start-page: 1223
  year: 2008
  ident: 10.1016/j.agrformet.2015.03.008_bib0305
  article-title: Bayesian learning with Gaussian processes for supervised classification of hyperspectral data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.74.10.1223
– volume: 5
  start-page: 149
  year: 1991
  ident: 10.1016/j.agrformet.2015.03.008_bib0140
  article-title: Crown profile of foliage area characterized with the weibull distribution in a Hinoki (Chamaecyparis obtusa) stand
  publication-title: Trees Struct. Funct.
  doi: 10.1007/BF00204336
– volume: 169
  start-page: 186
  year: 2013
  ident: 10.1016/j.agrformet.2015.03.008_bib0185
  article-title: Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species?
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.10.011
– volume: 149
  start-page: 1152
  year: 2009
  ident: 10.1016/j.agrformet.2015.03.008_bib0205
  article-title: Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.02.007
– volume: 21
  start-page: 989
  year: 2001
  ident: 10.1016/j.agrformet.2015.03.008_bib0130
  article-title: Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/21.12-13.989
– start-page: 79
  year: 1999
  ident: 10.1016/j.agrformet.2015.03.008_bib0200
– volume: 59
  start-page: 1
  year: 1960
  ident: 10.1016/j.agrformet.2015.03.008_bib0245
  article-title: Inclined point quadrats
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1960.tb06195.x
– volume: 52
  start-page: 636
  year: 2006
  ident: 10.1016/j.agrformet.2015.03.008_bib0230
  article-title: Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis
  publication-title: For. Sci.
– year: 1990
  ident: 10.1016/j.agrformet.2015.03.008_bib0010
– volume: 132
  start-page: 32
  year: 2013
  ident: 10.1016/j.agrformet.2015.03.008_bib0045
  article-title: The potential of dual-wavelength laser scanning for estimating vegetation moisture content
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.001
– volume: 83
  start-page: 875
  year: 1996
  ident: 10.1016/j.agrformet.2015.03.008_bib0095
  article-title: Generalised information criteria in model selection
  publication-title: Biometrika
  doi: 10.1093/biomet/83.4.875
– volume: 9
  start-page: 2719
  year: 2009
  ident: 10.1016/j.agrformet.2015.03.008_bib0315
  article-title: Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors
  publication-title: Sensors
  doi: 10.3390/s90402719
– volume: 77
  start-page: 733
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0015
  article-title: A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and Quickbird data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.77.7.733
– volume: 44
  start-page: 3610
  year: 2006
  ident: 10.1016/j.agrformet.2015.03.008_bib0060
  article-title: Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/TGRS.2006.881743
– volume: 115
  start-page: 1978
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0295
  article-title: Characterizing forest canopy structure with lidar composite metrics and machine learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.04.001
– volume: 112
  start-page: 767
  year: 2008
  ident: 10.1016/j.agrformet.2015.03.008_bib0190
  article-title: A voxel-based lidar method for estimating crown base height for deciduous and pine trees
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.06.011
– volume: 51
  start-page: 777
  issue: 2
  year: 2013
  ident: 10.1016/j.agrformet.2015.03.008_bib0320
  article-title: Retrieval of effective leaf area index in heterogeneous forests with terrestrial laser scanning
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/TGRS.2012.2205003
– year: 2002
  ident: 10.1016/j.agrformet.2015.03.008_bib0210
– volume: 82
  start-page: 41
  year: 2013
  ident: 10.1016/j.agrformet.2015.03.008_bib0055
  article-title: 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.04.011
– volume: 23
  start-page: 289
  year: 2014
  ident: 10.1016/j.agrformet.2015.03.008_bib0270
  article-title: Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-013-0600-7
– volume: 143
  start-page: 131
  year: 2014
  ident: 10.1016/j.agrformet.2015.03.008_bib0220
  article-title: Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.007
– volume: 67
  start-page: 129
  year: 1993
  ident: 10.1016/j.agrformet.2015.03.008_bib0255
  article-title: Vertical distributions of canopy foliage and biologically-active radiation in a defoliated/refoliated hardwood forest
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(93)90054-L
– volume: 8
  start-page: 25
  year: 1971
  ident: 10.1016/j.agrformet.2015.03.008_bib0160
  article-title: A theoretical analysis of the frequency of gaps in plant stands
  publication-title: Agric. Meteorol.
  doi: 10.1016/0002-1571(71)90092-6
– volume: 113
  start-page: 182
  year: 2009
  ident: 10.1016/j.agrformet.2015.03.008_bib0300
  article-title: Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.009
– volume: 14
  start-page: 873
  year: 2004
  ident: 10.1016/j.agrformet.2015.03.008_bib0065
  article-title: Beyond potential vegetation: combining lidar data and a height-structured model for carbon studies
  publication-title: Ecol. Appl.
  doi: 10.1890/02-5317
– volume: 130
  start-page: 245
  year: 2013
  ident: 10.1016/j.agrformet.2015.03.008_bib0070
  article-title: Tradeoffs between lidar pulse density and forest measurement accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.11.024
– volume: 115
  start-page: 2786
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0195
  article-title: Satellite lidar vs: small footprint airborne lidar: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.026
– volume: 161
  start-page: 1
  year: 2015
  ident: 10.1016/j.agrformet.2015.03.008_bib0175
  article-title: Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.020
– volume: 132
  start-page: 102
  year: 2013
  ident: 10.1016/j.agrformet.2015.03.008_bib0310
  article-title: Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.026
– volume: 49
  start-page: 2479
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0030
  article-title: A system for the estimation of single-tree stem diameter and volume using multireturn LIDAR data
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/TGRS.2011.2107744
– volume: 109
  start-page: 2813
  year: 2008
  ident: 10.1016/j.agrformet.2015.03.008_bib0170
  article-title: A note on G-functions within the scope of radiative transfer in turbid vegetation media
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2008.08.003
– volume: 50
  start-page: 661
  year: 2012
  ident: 10.1016/j.agrformet.2015.03.008_bib0110
  article-title: Automatic stem mapping using single-scan terrestrial laser scanning
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/TGRS.2011.2161613
– volume: 66
  start-page: 28
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0265
  article-title: Predicting individual tree attributes from airborne laser point clouds based on the random forests technique
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.003
– volume: 113
  start-page: 1628
  year: 2009
  ident: 10.1016/j.agrformet.2015.03.008_bib0290
  article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.03.006
– volume: 205
  start-page: 83
  year: 2015
  ident: 10.1016/j.agrformet.2015.03.008_bib0250
  article-title: Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction: and leaf area index in diverse forest systems
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.02.012
– volume: 143
  start-page: 106
  year: 2007
  ident: 10.1016/j.agrformet.2015.03.008_bib0240
  article-title: Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.12.003
– volume: 13
  start-page: 1614
  year: 2013
  ident: 10.1016/j.agrformet.2015.03.008_bib0115
  article-title: Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels
  publication-title: Sensors
  doi: 10.3390/s130201614
– volume: 38
  start-page: 2617
  year: 2000
  ident: 10.1016/j.agrformet.2015.03.008_bib0215
  article-title: Modeling lidar returns from forest canopies
  publication-title: Geosci. Remote Sens. IEEE Trans.
  doi: 10.1109/36.885208
– volume: 29
  start-page: 171
  year: 2009
  ident: 10.1016/j.agrformet.2015.03.008_bib0080
  article-title: Estimating forest LAI profiles and structural parameters using a ground-based laser called ‘Echidna®’
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpn022
– volume: 8
  start-page: 426
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0120
  article-title: Mini-UAV-borne LIDAR for fine-scale mapping
  publication-title: Geosci. Remote Sens. Lett. IEEE
  doi: 10.1109/LGRS.2010.2079913
– volume: 123
  start-page: 81
  year: 2012
  ident: 10.1016/j.agrformet.2015.03.008_bib0040
  article-title: Characterization of canopy fuels using ICESat/GLAS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.018
– volume: 115
  start-page: 2965
  year: 2011
  ident: 10.1016/j.agrformet.2015.03.008_bib0260
  article-title: Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.03.019
– volume: 125
  start-page: 73
  year: 2012
  ident: 10.1016/j.agrformet.2015.03.008_bib0275
  article-title: Measuring gap fraction: element clumping index and LAI in Sierra Forest stands using a full-waveform ground-based lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.07.007
– volume: 29
  start-page: 607
  year: 2003
  ident: 10.1016/j.agrformet.2015.03.008_bib0125
  article-title: Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m03-026
– volume: 47
  start-page: 90
  year: 2003
  ident: 10.1016/j.agrformet.2015.03.008_bib0150
  article-title: Tutorial on maximum likelihood estimation
  publication-title: J. Math. Psychol.
  doi: 10.1016/S0022-2496(02)00028-7
– volume: 34
  start-page: S385
  year: 2008
  ident: 10.1016/j.agrformet.2015.03.008_bib0155
  article-title: Modeling the hemispherical scanning: below-canopy lidar and vegetation structure characteristics with a geometric-optical and radiative-transfer model
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m08-047
– volume: 2
  start-page: 833
  year: 2010
  ident: 10.1016/j.agrformet.2015.03.008_bib0135
  article-title: Ground filtering algorithms for airborne LiDAR data: a review of critical issues
  publication-title: Remote Sens.
  doi: 10.3390/rs2030833
SSID ssj0012779
Score 2.4605887
Snippet •A paradigm-shifting analysis of gap and lidar data via MaxLik estimation (MLE).•MLE explicitly considers laser scanning geometry and fully uses laser ranging...
Terrestrial laser scanning (TLS) swings a tiny-footprint laser to resolve 3D structures rapidly and precisely, affording new opportunities for ecosystem...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100
SubjectTerms Algorithms
Canopies
ecosystem management
ecosystems
Foliage
Forest canopy
forest surveys
Forests
Ground-based lidar
LAI
Lasers
leaf angle
Leaf angle distribution
Leaf area index
leaves
Lidar
national parks
physics
remote sensing
Terrestrial laser scanning
uncertainty
Uncertainty analysis
United States
Vegetation
Title Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution
URI https://dx.doi.org/10.1016/j.agrformet.2015.03.008
https://www.proquest.com/docview/1701476637
https://www.proquest.com/docview/1709734497
https://www.proquest.com/docview/2000185858
Volume 209-210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2240
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012779
  issn: 0168-1923
  databaseCode: AKRWK
  dateStart: 19840201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqcoEDggIiPCojIU5dks3a--gtiqgCKL0QpN4sP2ajhc1utEmk9sKdf82M441UJNoDx7VmJMvjxzfrz98w9t7hEVuIJMW0xCSYoBgd5ePCRblDdGDdSJRAb4fnl-nsu_hyJa-O2LR_C0O0yrD37_d0v1uHlmEYzeG6qobfEKzkHp9ID8xJdluIjKoYfPx1oHnE42yvt4fGEVnf4njppSfnA5EqYxnUTv91Qv21V_sD6OIJexyQI5_sO_eUHUFzwh5Nll1Qz4ATNpgjBG47_6ecf-DTukI86r-esd8L8HU4aMLxunK64x1gnIBviMPeLHlbcuwmmmzO-VxfV6vdCg1_Ql2R9DEnOY4VIVMyxIC06xseKn6f8Rp0yTUCUO7lF8-4blxobJY1cEf6vKG01nO2uPi0mM6iUIchsjigW2LH6LRAaCGlzTMDmMiWLiktYC5l7EgLhzBMxzDGIBRgZCnRxsQanWNp0uQFO27aBl4yHoNLxiAxa8pAiMTq3JrCakhzYVKwowFL-6FXNmiUU6mMWvVktB_qEDNFMVOjRGHMBmx0cFzvZTrudznvY6tuzTiFh8n9zu_62aBwPdIli26g3W0U6duLDHFcdqdNkSVCFHfY0BOqmC5t81f_09HX7CF9EcMllm_Y8bbbwVuEUVtz6tfJKXsw-fx1dvkHrsshfw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaW5QAcECwgytNIiNOWJo2dx95WFasC271QpL1ZfkyqQJpUaSvBhTv_mhnXqbRI7B44xpmRrIwf38Sfv2HsrcMtthBJimmJSTBBMXqYjws3zB2iA-siUQLdHZ5dpNOv4tOlvDxgk_4uDNEqw9q_W9P9ah1aRuFrjlZVNfqCYCX3-ER6YJ7eYreFHGeUgb3_ted5xNhS7AS-MV1C8yskL73w7HwgVmUsg9zpv7aovxZrvwOdPWD3A3Tkp7vePWQH0Byxe6eLLshnwBEbzBADt53_Vc7f8UldISD1T4_Y7zn4Qhw04nhdOd3xDjBQwNdEYm8WvC05dhNN1id8pn9Uy-0SDb9DXZH2MSc9jiVBUzLEiLSrnzyU_D7mNeiSa0Sg3OsvHnPduNDYLGrgjgR6Q22tx2x-9mE-mQ5DIYahFSLbED1GpwViCyltnhnATLZ0SWkBkyljIy0c4jAdwxijUICRpUQbE2t0jqVJkyfssGkbeMp4DC4Zg8S0KQMhEqtzawqrIc2FScFGA5b2n17ZIFJOtTJq1bPRvql9zBTFTEWJwpgNWLR3XO10Om52Oeljq64MOYW7yc3Ob_rRoHBC0imLbqDdrhUJ3IsMgVx2rU2RJUIU19jQHaqYTm3zZ__T0dfsznQ-O1fnHy8-P2d36Q3RXWL5gh1uui28REy1Ma_8nPkDJdEjFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+lidar+remote+sensing+of+forests%3A+Maximum+likelihood+estimates+of+canopy+profile%2C+leaf+area+index%2C+and+leaf+angle+distribution&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Zhao%2C+Kaiguang&rft.au=Garc%C3%ADa%2C+Mariano&rft.au=Liu%2C+Shu&rft.au=Guo%2C+Qinghua&rft.date=2015-09-15&rft.issn=0168-1923&rft.volume=209-210+p.100-113&rft.spage=100&rft.epage=113&rft_id=info:doi/10.1016%2Fj.agrformet.2015.03.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon