Longitudinal safety evaluation of connected vehicles’ platooning on expressways

•We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is proposed in order to form platoons in managed lanes.•Surrogate safety measures are considered to evaluate the safety effectiveness of managed lane c...

Full description

Saved in:
Bibliographic Details
Published inAccident analysis and prevention Vol. 117; pp. 381 - 391
Main Authors Rahman, Md Sharikur, Abdel-Aty, Mohamed
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2018
Subjects
Online AccessGet full text
ISSN0001-4575
1879-2057
1879-2057
DOI10.1016/j.aap.2017.12.012

Cover

Abstract •We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is proposed in order to form platoons in managed lanes.•Surrogate safety measures are considered to evaluate the safety effectiveness of managed lane connected vehicle platoons.•Sensitivity analysis are conducted for different time-to-collision.•Results of this study provide useful information for market penetration rate of connected vehicles. Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons.
AbstractList Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons.Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons.
Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons.
•We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is proposed in order to form platoons in managed lanes.•Surrogate safety measures are considered to evaluate the safety effectiveness of managed lane connected vehicle platoons.•Sensitivity analysis are conducted for different time-to-collision.•Results of this study provide useful information for market penetration rate of connected vehicles. Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons.
Author Abdel-Aty, Mohamed
Rahman, Md Sharikur
Author_xml – sequence: 1
  givenname: Md Sharikur
  surname: Rahman
  fullname: Rahman, Md Sharikur
  email: sharikur@knights.ucf.edu
  organization: Department of Civil, Environmental and Construction Engineering University of Central Florida, Orlando, FL 32816, USA
– sequence: 2
  givenname: Mohamed
  surname: Abdel-Aty
  fullname: Abdel-Aty, Mohamed
  email: M.Aty@ucf.edu
  organization: Department of Civil, Environmental and Construction Engineering University of Central Florida, Orlando, FL 32816, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29275900$$D View this record in MEDLINE/PubMed
BookMark eNp9kMFu1DAQQC1URLctH8AF5cglweMktaOeUAUt0koICc7WxJkUr7J2ajsLe-M3-L1-Sd1ue-HQ02ik90aad8KOnHfE2DvgFXA4_7ipEOdKcJAViIqDeMVWoGRXCt7KI7binEPZtLI9ZicxbvIqlWzfsGPRCdl2nK_Y97V3NzYtg3U4FRFHSvuCdjgtmKx3hR8L450jk2godvTLmoni3d9_xTxh8t5Zd1NkjP7MgWL8jft4xl6POEV6-zRP2c8vn39cXpfrb1dfLz-tS9M0MpUtIsdWAQ5KAI7CSNUOAx97RX0eom-wrnn-A3sBRqBqGj6ODVGngOpzVZ-yD4e7c_C3C8WktzYamiZ05JeooVMceC3rLqPvn9Cl39Kg52C3GPb6OUMG5AEwwccYaNTGpscAKaCdNHD9EFxvdA6uH4JrEDoHzyb8Zz4ff8m5ODiU8-wsBR2NJWdosCGH1oO3L9j3ZamaSQ
CitedBy_id crossref_primary_10_1080_19439962_2021_1994683
crossref_primary_10_1109_JIOT_2023_3299934
crossref_primary_10_1016_j_jsr_2020_09_012
crossref_primary_10_1016_j_aap_2022_106724
crossref_primary_10_1016_j_iatssr_2021_06_005
crossref_primary_10_1002_cl2_1367
crossref_primary_10_1080_19439962_2022_2054038
crossref_primary_10_3390_su14137629
crossref_primary_10_1080_03081060_2022_2136177
crossref_primary_10_1139_cjce_2023_0539
crossref_primary_10_1080_15472450_2019_1634560
crossref_primary_10_1016_j_trc_2021_103531
crossref_primary_10_1016_j_energy_2021_120766
crossref_primary_10_1080_19439962_2023_2273545
crossref_primary_10_1016_j_aap_2020_105861
crossref_primary_10_1155_2023_3325530
crossref_primary_10_1007_s40998_022_00534_0
crossref_primary_10_1016_j_physa_2025_130353
crossref_primary_10_1177_0361198119836764
crossref_primary_10_1016_j_aap_2023_107424
crossref_primary_10_1109_ACCESS_2024_3370469
crossref_primary_10_1016_j_physa_2025_130471
crossref_primary_10_1080_15389588_2023_2176711
crossref_primary_10_1016_j_aap_2019_04_019
crossref_primary_10_1016_j_aap_2020_105616
crossref_primary_10_1080_15472450_2021_1993212
crossref_primary_10_1109_TVT_2024_3445958
crossref_primary_10_1155_2023_4116108
crossref_primary_10_1061_JTEPBS_TEENG_7402
crossref_primary_10_1080_21680566_2020_1728591
crossref_primary_10_1109_TITS_2022_3170978
crossref_primary_10_1016_j_aap_2021_106546
crossref_primary_10_1016_j_physa_2023_128725
crossref_primary_10_1109_ACCESS_2021_3108967
crossref_primary_10_1080_17457300_2022_2098343
crossref_primary_10_1016_j_aap_2024_107602
crossref_primary_10_3390_act11120378
crossref_primary_10_3390_s24175539
crossref_primary_10_3390_su141610094
crossref_primary_10_1061_JTEPBS_0000191
crossref_primary_10_1016_j_physa_2020_124829
crossref_primary_10_1016_j_aap_2023_107324
crossref_primary_10_1177_03611981211049147
crossref_primary_10_1016_j_aap_2024_107611
crossref_primary_10_1016_j_aap_2024_107738
crossref_primary_10_1177_09544070241271830
crossref_primary_10_1016_j_trc_2020_102887
crossref_primary_10_1177_03611981231189741
crossref_primary_10_1016_j_aap_2020_105714
crossref_primary_10_1109_TITS_2021_3105518
crossref_primary_10_1016_j_aap_2019_105260
crossref_primary_10_1016_j_physa_2022_127816
crossref_primary_10_1109_TIV_2023_3303408
crossref_primary_10_1016_j_aap_2020_105707
crossref_primary_10_55329_fkix6369
crossref_primary_10_1109_ACCESS_2019_2941496
crossref_primary_10_1109_OJITS_2025_3544374
crossref_primary_10_1016_j_trc_2022_103989
crossref_primary_10_1155_2020_5847814
crossref_primary_10_1111_mice_13371
crossref_primary_10_1016_j_eswa_2022_118972
crossref_primary_10_1007_s42461_025_01219_y
crossref_primary_10_1109_TITS_2023_3306792
crossref_primary_10_1177_0361198120963105
crossref_primary_10_1049_iet_its_2019_0625
crossref_primary_10_3390_su15129345
crossref_primary_10_1016_j_aap_2019_06_001
crossref_primary_10_1016_j_amar_2023_100275
crossref_primary_10_3390_s18093085
crossref_primary_10_1080_15389588_2024_2334402
crossref_primary_10_3390_machines12060371
crossref_primary_10_1049_itr2_12035
crossref_primary_10_3390_su12218941
crossref_primary_10_1016_j_ijtst_2021_03_009
crossref_primary_10_1016_j_simpat_2023_102868
crossref_primary_10_1080_19427867_2022_2074697
crossref_primary_10_1016_j_aap_2023_107191
crossref_primary_10_1016_j_physa_2025_130519
crossref_primary_10_1109_TITS_2019_2935195
crossref_primary_10_1016_j_physa_2024_130117
crossref_primary_10_1016_j_trc_2022_103648
crossref_primary_10_1177_03611981231201107
crossref_primary_10_1016_j_trpro_2021_11_064
crossref_primary_10_1155_2022_7248854
crossref_primary_10_1049_itr2_12145
crossref_primary_10_1016_j_aap_2023_107087
crossref_primary_10_1016_j_trc_2025_105009
crossref_primary_10_2139_ssrn_4117489
crossref_primary_10_1016_j_jsr_2021_09_008
crossref_primary_10_1016_j_trc_2021_103465
crossref_primary_10_1139_cjce_2022_0098
crossref_primary_10_1016_j_ifacol_2023_10_1151
crossref_primary_10_1016_j_trc_2023_104230
crossref_primary_10_1061_JTEPBS_0000782
crossref_primary_10_1080_23249935_2024_2434228
crossref_primary_10_1080_03081060_2022_2093874
crossref_primary_10_1177_0361198120918572
crossref_primary_10_3390_su141912165
crossref_primary_10_1109_TITS_2023_3255868
crossref_primary_10_1177_10775463231223550
crossref_primary_10_1016_j_aap_2019_105345
crossref_primary_10_1016_j_aap_2024_107784
crossref_primary_10_1155_2021_6639649
crossref_primary_10_1016_j_trc_2019_01_029
crossref_primary_10_2139_ssrn_4141262
crossref_primary_10_1061_JTEPBS_TEENG_8224
crossref_primary_10_1177_00187208221088358
crossref_primary_10_1016_j_physa_2023_129195
crossref_primary_10_1080_15472450_2020_1834392
crossref_primary_10_3390_en14123431
crossref_primary_10_1016_j_aap_2018_12_019
crossref_primary_10_1016_j_physa_2023_128556
crossref_primary_10_1016_j_aap_2020_105463
crossref_primary_10_1016_j_measurement_2020_108192
crossref_primary_10_1016_j_aap_2023_106970
crossref_primary_10_1049_itr2_12053
crossref_primary_10_1049_itr2_12295
crossref_primary_10_3390_su14095193
crossref_primary_10_1016_j_trf_2022_08_012
crossref_primary_10_1142_S0129183122500206
crossref_primary_10_1109_ACCESS_2020_2990426
crossref_primary_10_1177_0361198118776113
crossref_primary_10_1680_jtran_22_00038
crossref_primary_10_1016_j_aap_2021_105972
crossref_primary_10_1016_j_trc_2020_102664
crossref_primary_10_3390_wevj14120348
crossref_primary_10_1177_0361198119840611
crossref_primary_10_1016_j_aap_2019_105367
crossref_primary_10_1109_JIOT_2023_3322867
crossref_primary_10_3390_su12187568
crossref_primary_10_1177_0361198118823502
crossref_primary_10_1002_rnc_6412
crossref_primary_10_1016_j_physa_2023_129095
crossref_primary_10_1016_j_trc_2021_103037
crossref_primary_10_1016_j_trc_2021_103276
crossref_primary_10_1371_journal_pone_0295343
crossref_primary_10_1049_iet_its_2020_0146
crossref_primary_10_3390_s23094401
crossref_primary_10_1016_j_aap_2020_105567
crossref_primary_10_1680_jtran_20_00080
crossref_primary_10_1016_j_physa_2023_128452
crossref_primary_10_1016_j_aap_2023_106999
crossref_primary_10_1109_TIV_2023_3250353
crossref_primary_10_3390_systems11070322
crossref_primary_10_1016_j_physa_2019_04_245
crossref_primary_10_1016_j_iatssr_2022_03_001
crossref_primary_10_1109_TVT_2021_3060808
crossref_primary_10_1016_j_aap_2022_106575
crossref_primary_10_1016_j_aap_2021_106157
crossref_primary_10_1177_10775463211002602
crossref_primary_10_1016_j_trip_2024_101213
crossref_primary_10_1080_15389588_2023_2291337
crossref_primary_10_1080_21680566_2024_2439997
crossref_primary_10_1109_ACCESS_2021_3050199
crossref_primary_10_1155_2022_4534692
crossref_primary_10_1016_j_aap_2020_105435
crossref_primary_10_1016_j_aap_2020_105675
crossref_primary_10_1016_j_aap_2020_105796
crossref_primary_10_1016_j_aap_2021_106006
crossref_primary_10_1016_j_aap_2021_106007
crossref_primary_10_1016_j_aap_2019_01_014
crossref_primary_10_1142_S0218126622501808
crossref_primary_10_1109_TITS_2022_3227176
crossref_primary_10_1080_21680566_2024_2441460
crossref_primary_10_1016_j_future_2019_09_054
crossref_primary_10_1155_2021_8888930
crossref_primary_10_1016_j_physa_2022_128181
crossref_primary_10_1016_j_jsr_2019_03_002
crossref_primary_10_1016_j_trc_2020_102934
crossref_primary_10_1049_itr2_12409
crossref_primary_10_1155_2024_6126204
crossref_primary_10_1177_03611981211012422
crossref_primary_10_1109_TITS_2023_3290261
crossref_primary_10_1016_j_aap_2021_106016
crossref_primary_10_1016_j_aap_2019_01_029
crossref_primary_10_1016_j_aap_2023_107225
crossref_primary_10_1109_ACCESS_2025_3539370
crossref_primary_10_1139_cjce_2023_0569
crossref_primary_10_1109_TITS_2023_3287308
crossref_primary_10_3390_electronics7100228
crossref_primary_10_1080_15389588_2018_1527469
crossref_primary_10_1177_03611981211010800
crossref_primary_10_1016_j_physa_2024_129655
crossref_primary_10_1016_j_aap_2019_05_017
crossref_primary_10_1016_j_physa_2024_129539
crossref_primary_10_1016_j_trf_2022_07_006
crossref_primary_10_1108_JICV_10_2020_0011
crossref_primary_10_1016_j_amar_2022_100221
crossref_primary_10_1016_j_trf_2018_12_007
crossref_primary_10_1109_ACCESS_2019_2935423
crossref_primary_10_1080_21680566_2022_2101565
crossref_primary_10_1049_iet_cta_2020_0740
crossref_primary_10_3390_su16010026
crossref_primary_10_1016_j_aap_2024_107766
crossref_primary_10_1016_j_aap_2024_107649
crossref_primary_10_1016_j_amar_2021_100187
crossref_primary_10_1155_2020_8174085
crossref_primary_10_1016_j_aap_2020_105643
crossref_primary_10_1016_j_simpat_2019_04_001
crossref_primary_10_1109_ACCESS_2023_3248628
crossref_primary_10_1016_j_physa_2023_128934
crossref_primary_10_1016_j_aap_2022_106775
crossref_primary_10_1049_itr2_12544
crossref_primary_10_1155_2018_7835010
crossref_primary_10_1016_j_jsr_2019_04_008
crossref_primary_10_1177_03611981211037241
crossref_primary_10_48130_DTS_2023_0017
crossref_primary_10_1016_j_aap_2024_107891
crossref_primary_10_3390_app13064072
crossref_primary_10_1016_j_eswa_2023_120133
crossref_primary_10_1016_j_trc_2021_103188
crossref_primary_10_1016_j_eswa_2024_125561
Cites_doi 10.1080/15389580903370039
10.3141/2635-04
10.1016/j.trc.2015.07.014
10.3141/1840-12
10.1016/j.aap.2016.09.015
10.1016/j.trc.2016.08.009
10.1016/j.trc.2007.12.004
10.1016/j.tra.2003.08.001
10.1080/15389588.2015.1121384
10.1016/j.trc.2016.11.022
10.1098/rsta.2010.0084
10.1016/j.trc.2014.05.016
10.1016/j.trc.2014.09.001
10.1016/j.aap.2017.04.025
10.1016/j.trpro.2015.06.022
10.1016/j.aap.2005.09.009
10.1016/j.trc.2016.07.007
10.1061/(ASCE)TE.1943-5436.0000587
10.1016/S0001-4575(00)00019-1
10.1016/j.aap.2014.06.018
10.1103/PhysRevE.62.1805
10.1016/j.trc.2016.05.013
10.3141/2560-09
ContentType Journal Article
Copyright 2018
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.aap.2017.12.012
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
Public Health
EISSN 1879-2057
EndPage 391
ExternalDocumentID 29275900
10_1016_j_aap_2017_12_012
S0001457517304505
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.~1
0R~
1B1
1RT
1~.
23M
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABDMP
ABFNM
ABIVO
ABJNI
ABLVK
ABMAC
ABMMH
ABMZM
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AHRSL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKURH
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEH
HMK
HMO
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M29
M3W
M3Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSG
SSH
SSO
SSS
SST
SSZ
T5K
VH1
WUQ
XPP
ZCG
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
ID FETCH-LOGICAL-c447t-5aa0a581ad821af2c785dd0fb8ebd0f2b4a330057ab21c2a8440ff4ee981e3683
IEDL.DBID .~1
ISSN 0001-4575
1879-2057
IngestDate Sun Sep 28 04:24:43 EDT 2025
Wed Feb 19 02:42:34 EST 2025
Thu Apr 24 23:11:33 EDT 2025
Wed Oct 01 03:33:18 EDT 2025
Fri Feb 23 02:33:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Managed-lanes
Longitudinal safety
Connected vehicles
Platooning
Surrogate safety measures
Rear-end crashes
Intelligent driver model
Time-to-collision
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-5aa0a581ad821af2c785dd0fb8ebd0f2b4a330057ab21c2a8440ff4ee981e3683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29275900
PQID 1980103739
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1980103739
pubmed_primary_29275900
crossref_citationtrail_10_1016_j_aap_2017_12_012
crossref_primary_10_1016_j_aap_2017_12_012
elsevier_sciencedirect_doi_10_1016_j_aap_2017_12_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Accident analysis and prevention
PublicationTitleAlternate Accid Anal Prev
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kim, Park (bib0065) 2016
Talebpour, Mahmassani (bib0145) 2016; 71
Wu, Sun, Yang (bib0180) 2005
Talebpour, Mahmassani, Hamdar (bib0155) 2015; 7
Nezamuddin, Jiang, Zhang, Waller (bib0110) 2011
Minderhoud, Bovy (bib0105) 2001; 33
American Association of State Highway and Transportation Officials (AASHTO) (bib0010) 2004
Paikari, Tahmasseby, Far (bib0125) 2014
Li, Wang, Wang, Xing, Liu, Wei (bib0090) 2017; 98
Khondaker, Kattan (bib0060) 2015; 58
Li, Li, Wang, Wang, Xing (bib0080) 2017; 104
Tian, Zhou, Wang, Sheng, Xia, Yi (bib0160) 2016; 69
Milanés, Shladover (bib0100) 2014; 48
Woody (bib0175) 2006; 416
Li, Li, Liu, Wang, Xu (bib0095) 2014; 72
Pulugurtha, Bhatt (bib0135) 2010; 11
Gettman, Pu, Sayed, Shelby (bib0020) 2008
Habtemichael, Picado-Santos (bib0035) 2013
Treiber, Hennecke, Helbing (bib0165) 2000; 62
Oh, Park, Ritchie (bib0120) 2006; 38
Gettman, Head (bib0015) 2003; 1840
Jolovic, Stevanovic (bib0045) 2012
Peng, Abdel-Aty, Shi, Yu (bib0130) 2017; 74
NHTSA (bib0115) 2016
Kesting, Treiber, Schönhof, Helbing (bib0055) 2008; 16
Sultan, Brackstone, McDonald (bib0140) 2002
Talebpour, Mahmassani, Bustamante (bib0150) 2016; 2560
Abdel-Aty, Haleem, Cunningham, Gayah (bib0005) 2009
Koppula (bib0070) 2002
Yu, Abdel-Aty (bib0190) 2014; 46
Golob, Recker, Alvarez (bib0030) 2004; 38
Hayward (bib0040) 1972
Li, Wang, Wang, Liu, Xiang (bib0085) 2016; 17
Kesting, Treiber, Helbing (bib0050) 2010; 368
Lee, Park, Yun (bib0075) 2013; 139
Wang, Abdel-Aty, Lee (bib0170) 2017; 2635
Glad (bib0025) 2001
Yang, Guler, Menendez (bib0185) 2016; 72
Peng (10.1016/j.aap.2017.12.012_bib0130) 2017; 74
Abdel-Aty (10.1016/j.aap.2017.12.012_bib0005) 2009
Hayward (10.1016/j.aap.2017.12.012_bib0040) 1972
Minderhoud (10.1016/j.aap.2017.12.012_bib0105) 2001; 33
Li (10.1016/j.aap.2017.12.012_bib0080) 2017; 104
Wu (10.1016/j.aap.2017.12.012_bib0180) 2005
Habtemichael (10.1016/j.aap.2017.12.012_bib0035) 2013
Gettman (10.1016/j.aap.2017.12.012_bib0015) 2003; 1840
Lee (10.1016/j.aap.2017.12.012_bib0075) 2013; 139
American Association of State Highway and Transportation Officials (AASHTO) (10.1016/j.aap.2017.12.012_bib0010) 2004
Wang (10.1016/j.aap.2017.12.012_bib0170) 2017; 2635
Glad (10.1016/j.aap.2017.12.012_bib0025) 2001
Kesting (10.1016/j.aap.2017.12.012_bib0055) 2008; 16
Li (10.1016/j.aap.2017.12.012_bib0095) 2014; 72
Sultan (10.1016/j.aap.2017.12.012_bib0140) 2002
Milanés (10.1016/j.aap.2017.12.012_bib0100) 2014; 48
Oh (10.1016/j.aap.2017.12.012_bib0120) 2006; 38
Talebpour (10.1016/j.aap.2017.12.012_bib0150) 2016; 2560
Yang (10.1016/j.aap.2017.12.012_bib0185) 2016; 72
Yu (10.1016/j.aap.2017.12.012_bib0190) 2014; 46
Khondaker (10.1016/j.aap.2017.12.012_bib0060) 2015; 58
Li (10.1016/j.aap.2017.12.012_bib0090) 2017; 98
NHTSA (10.1016/j.aap.2017.12.012_bib0115) 2016
Jolovic (10.1016/j.aap.2017.12.012_bib0045) 2012
Tian (10.1016/j.aap.2017.12.012_bib0160) 2016; 69
Kim (10.1016/j.aap.2017.12.012_bib0065) 2016
Woody (10.1016/j.aap.2017.12.012_bib0175) 2006; 416
Nezamuddin (10.1016/j.aap.2017.12.012_bib0110) 2011
Gettman (10.1016/j.aap.2017.12.012_bib0020) 2008
Talebpour (10.1016/j.aap.2017.12.012_bib0155) 2015; 7
Treiber (10.1016/j.aap.2017.12.012_bib0165) 2000; 62
Paikari (10.1016/j.aap.2017.12.012_bib0125) 2014
Talebpour (10.1016/j.aap.2017.12.012_bib0145) 2016; 71
Golob (10.1016/j.aap.2017.12.012_bib0030) 2004; 38
Kesting (10.1016/j.aap.2017.12.012_bib0050) 2010; 368
Pulugurtha (10.1016/j.aap.2017.12.012_bib0135) 2010; 11
Li (10.1016/j.aap.2017.12.012_bib0085) 2016; 17
Koppula (10.1016/j.aap.2017.12.012_bib0070) 2002
References_xml – start-page: 1
  year: 2009
  end-page: 13
  ident: bib0005
  article-title: Application of variable speed limits and ramp metering to improve safety and efficiency of freeways
  publication-title: 2nd International Symposium on Freeway and Tollway Operations
– year: 2001
  ident: bib0025
  article-title: Weave Analysis and Performance: The Washington State Case Study
– volume: 2635
  start-page: 28
  year: 2017
  end-page: 35
  ident: bib0170
  article-title: Implementation of active traffic management strategies for safety of a congested expressway weaving segment
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 72
  start-page: 134
  year: 2014
  end-page: 145
  ident: bib0095
  article-title: Development of a variable speed limit strategy to reduce secondary collision risks during inclement weathers
  publication-title: Accid. Anal. Prev.
– year: 2013
  ident: bib0035
  article-title: Sensitivity analysis of VISSIM driver behavior parameters on safety of simulated vehicles and their interaction with operations of simulated traffic
  publication-title: 92nd Annual Meeting of the Transportation Research Board
– start-page: 980
  year: 2014
  end-page: 985
  ident: bib0125
  article-title: A simulation-based benefit analysis of deploying connected vehicles using dedicated short range communication
  publication-title: Intelligent Vehicles Symposium Proceedings, IEEE
– volume: 62
  start-page: 1805
  year: 2000
  end-page: 1824
  ident: bib0165
  article-title: Congested traffic states in empirical observations and microscopic simulations
  publication-title: Phys. Rev. E
– volume: 74
  start-page: 295
  year: 2017
  end-page: 305
  ident: bib0130
  article-title: Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: 2012
  ident: bib0045
  article-title: Evaluation of vissim and freeval to assess an oversaturated freeway weaving segmen
  publication-title: TRB Annual Meeting
– volume: 2560
  start-page: 75
  year: 2016
  end-page: 86
  ident: bib0150
  article-title: Modeling driver behavior in a connected environment
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– year: 2002
  ident: bib0140
  article-title: Parameter analysis for collision avoidance systems
  publication-title: 9th World Congress on Intelligent Transport Systems
– volume: 98
  start-page: 87
  year: 2017
  end-page: 95
  ident: bib0090
  article-title: Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways
  publication-title: Accid. Anal. Prev.
– volume: 1840
  start-page: 104
  year: 2003
  end-page: 115
  ident: bib0015
  article-title: Surrogate safety measures from traffic simulation models
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– year: 2011
  ident: bib0110
  article-title: Traffic Operations and Safety Benefits of Active Traffic Strategies on Txdot Freeways
– volume: 69
  start-page: 36
  year: 2016
  end-page: 59
  ident: bib0160
  article-title: Modeling chain collisions in vehicular networks with variable penetration rates
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 17
  start-page: 597
  year: 2016
  end-page: 603
  ident: bib0085
  article-title: Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system
  publication-title: Traffic Inj. Prev.
– volume: 71
  start-page: 143
  year: 2016
  end-page: 163
  ident: bib0145
  article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: 2008
  ident: bib0020
  article-title: Surrogate Safety Assessment Model and Validation
– year: 2016
  ident: bib0115
  article-title: Vehcile-to-Vehicle Communication Technology for Light Vehicles
– volume: 368
  start-page: 4585
  year: 2010
  end-page: 4605
  ident: bib0050
  article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– year: 2016
  ident: bib0065
  article-title: Safety features of freeway weaving segments with buffer-separated high-occupancy-vehicle (hov) lane
  publication-title: Transportation Research Board 95th Annual Meeting
– year: 2002
  ident: bib0070
  article-title: A comparative analysis of weaving areas in hcm, transims, corsim, vissim and integration
  publication-title: Thesis
– volume: 11
  start-page: 104
  year: 2010
  end-page: 113
  ident: bib0135
  article-title: Evaluating the role of weaving section characteristics and traffic on crashes in weaving areas
  publication-title: Traffic Inj. Prev.
– volume: 104
  start-page: 137
  year: 2017
  end-page: 145
  ident: bib0080
  article-title: Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways
  publication-title: Accid. Anal. Prev.
– volume: 72
  start-page: 109
  year: 2016
  end-page: 129
  ident: bib0185
  article-title: Isolated intersection control for various levels of vehicle technology: conventional, connected, and automated vehicles
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 58
  start-page: 146
  year: 2015
  end-page: 159
  ident: bib0060
  article-title: Variable speed limit: a microscopic analysis in a connected vehicle environment
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 48
  start-page: 285
  year: 2014
  end-page: 300
  ident: bib0100
  article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 38
  start-page: 35
  year: 2004
  end-page: 51
  ident: bib0030
  article-title: Safety aspects of freeway weaving sections
  publication-title: Transp. Res. Part A Policy Pract.
– volume: 38
  start-page: 295
  year: 2006
  end-page: 301
  ident: bib0120
  article-title: A method for identifying rear-end collision risks using inductive loop detectors
  publication-title: Accid. Anal. Prev.
– volume: 33
  start-page: 89
  year: 2001
  end-page: 97
  ident: bib0105
  article-title: Extended time-to-collision measures for road traffic safety assessment
  publication-title: Accid. Anal. Prev.
– volume: 7
  start-page: 420
  year: 2015
  end-page: 440
  ident: bib0155
  article-title: Modeling lane-changing behavior in a connected environment: a game theory approach
  publication-title: Transp. Res. Procedia
– volume: 16
  start-page: 668
  year: 2008
  end-page: 683
  ident: bib0055
  article-title: Adaptive cruise control design for active congestion avoidance
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: 2005
  ident: bib0180
  article-title: Calibration of VISSIM for shanghai expressway using genetic algorithm
  publication-title: Simulation Conference, 2005 Proceedings of the Winter. IEEE
– volume: 139
  start-page: 1020
  year: 2013
  end-page: 1029
  ident: bib0075
  article-title: Cumulative travel-time responsive real-time intersection control algorithm in the connected vehicle environment
  publication-title: J. Transp. Eng.
– volume: 46
  start-page: 235
  year: 2014
  end-page: 246
  ident: bib0190
  article-title: An optimal variable speed limits system to ameliorate traffic safety risk
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: 2004
  ident: bib0010
  article-title: A Policy on Geometric Design of Highways and Streets
– year: 1972
  ident: bib0040
  article-title: Near-Miss Determination Through Use of a Scale of Danger (Traffic Records 384)
– volume: 416
  start-page: 580
  year: 2006
  ident: bib0175
  publication-title: Calibrating Freeway Simulation Models in Vissim
– volume: 11
  start-page: 104
  issue: 1
  year: 2010
  ident: 10.1016/j.aap.2017.12.012_bib0135
  article-title: Evaluating the role of weaving section characteristics and traffic on crashes in weaving areas
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389580903370039
– start-page: 980
  year: 2014
  ident: 10.1016/j.aap.2017.12.012_bib0125
  article-title: A simulation-based benefit analysis of deploying connected vehicles using dedicated short range communication
– year: 2001
  ident: 10.1016/j.aap.2017.12.012_bib0025
– year: 2002
  ident: 10.1016/j.aap.2017.12.012_bib0070
  article-title: A comparative analysis of weaving areas in hcm, transims, corsim, vissim and integration
– volume: 2635
  start-page: 28
  year: 2017
  ident: 10.1016/j.aap.2017.12.012_bib0170
  article-title: Implementation of active traffic management strategies for safety of a congested expressway weaving segment
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2635-04
– volume: 58
  start-page: 146
  year: 2015
  ident: 10.1016/j.aap.2017.12.012_bib0060
  article-title: Variable speed limit: a microscopic analysis in a connected vehicle environment
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2015.07.014
– year: 2012
  ident: 10.1016/j.aap.2017.12.012_bib0045
  article-title: Evaluation of vissim and freeval to assess an oversaturated freeway weaving segmen
– volume: 416
  start-page: 580
  year: 2006
  ident: 10.1016/j.aap.2017.12.012_bib0175
– volume: 1840
  start-page: 104
  year: 2003
  ident: 10.1016/j.aap.2017.12.012_bib0015
  article-title: Surrogate safety measures from traffic simulation models
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/1840-12
– volume: 98
  start-page: 87
  year: 2017
  ident: 10.1016/j.aap.2017.12.012_bib0090
  article-title: Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2016.09.015
– volume: 72
  start-page: 109
  year: 2016
  ident: 10.1016/j.aap.2017.12.012_bib0185
  article-title: Isolated intersection control for various levels of vehicle technology: conventional, connected, and automated vehicles
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2016.08.009
– year: 2005
  ident: 10.1016/j.aap.2017.12.012_bib0180
  article-title: Calibration of VISSIM for shanghai expressway using genetic algorithm
– year: 2016
  ident: 10.1016/j.aap.2017.12.012_bib0115
– year: 2008
  ident: 10.1016/j.aap.2017.12.012_bib0020
– volume: 16
  start-page: 668
  issue: 6
  year: 2008
  ident: 10.1016/j.aap.2017.12.012_bib0055
  article-title: Adaptive cruise control design for active congestion avoidance
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2007.12.004
– volume: 38
  start-page: 35
  issue: 1
  year: 2004
  ident: 10.1016/j.aap.2017.12.012_bib0030
  article-title: Safety aspects of freeway weaving sections
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2003.08.001
– volume: 17
  start-page: 597
  issue: 6
  year: 2016
  ident: 10.1016/j.aap.2017.12.012_bib0085
  article-title: Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system
  publication-title: Traffic Inj. Prev.
  doi: 10.1080/15389588.2015.1121384
– year: 2016
  ident: 10.1016/j.aap.2017.12.012_bib0065
  article-title: Safety features of freeway weaving segments with buffer-separated high-occupancy-vehicle (hov) lane
– volume: 74
  start-page: 295
  year: 2017
  ident: 10.1016/j.aap.2017.12.012_bib0130
  article-title: Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2016.11.022
– volume: 368
  start-page: 4585
  issue: 1928
  year: 2010
  ident: 10.1016/j.aap.2017.12.012_bib0050
  article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2010.0084
– volume: 46
  start-page: 235
  year: 2014
  ident: 10.1016/j.aap.2017.12.012_bib0190
  article-title: An optimal variable speed limits system to ameliorate traffic safety risk
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2014.05.016
– volume: 48
  start-page: 285
  year: 2014
  ident: 10.1016/j.aap.2017.12.012_bib0100
  article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2014.09.001
– year: 2011
  ident: 10.1016/j.aap.2017.12.012_bib0110
– volume: 104
  start-page: 137
  year: 2017
  ident: 10.1016/j.aap.2017.12.012_bib0080
  article-title: Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2017.04.025
– volume: 7
  start-page: 420
  year: 2015
  ident: 10.1016/j.aap.2017.12.012_bib0155
  article-title: Modeling lane-changing behavior in a connected environment: a game theory approach
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2015.06.022
– volume: 38
  start-page: 295
  issue: 2
  year: 2006
  ident: 10.1016/j.aap.2017.12.012_bib0120
  article-title: A method for identifying rear-end collision risks using inductive loop detectors
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2005.09.009
– year: 2004
  ident: 10.1016/j.aap.2017.12.012_bib0010
– volume: 71
  start-page: 143
  year: 2016
  ident: 10.1016/j.aap.2017.12.012_bib0145
  article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2016.07.007
– volume: 139
  start-page: 1020
  issue: 10
  year: 2013
  ident: 10.1016/j.aap.2017.12.012_bib0075
  article-title: Cumulative travel-time responsive real-time intersection control algorithm in the connected vehicle environment
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000587
– volume: 33
  start-page: 89
  issue: 1
  year: 2001
  ident: 10.1016/j.aap.2017.12.012_bib0105
  article-title: Extended time-to-collision measures for road traffic safety assessment
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/S0001-4575(00)00019-1
– volume: 72
  start-page: 134
  year: 2014
  ident: 10.1016/j.aap.2017.12.012_bib0095
  article-title: Development of a variable speed limit strategy to reduce secondary collision risks during inclement weathers
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2014.06.018
– year: 2002
  ident: 10.1016/j.aap.2017.12.012_bib0140
  article-title: Parameter analysis for collision avoidance systems
– volume: 62
  start-page: 1805
  issue: 2
  year: 2000
  ident: 10.1016/j.aap.2017.12.012_bib0165
  article-title: Congested traffic states in empirical observations and microscopic simulations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.1805
– year: 1972
  ident: 10.1016/j.aap.2017.12.012_bib0040
– volume: 69
  start-page: 36
  year: 2016
  ident: 10.1016/j.aap.2017.12.012_bib0160
  article-title: Modeling chain collisions in vehicular networks with variable penetration rates
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2016.05.013
– start-page: 1
  year: 2009
  ident: 10.1016/j.aap.2017.12.012_bib0005
  article-title: Application of variable speed limits and ramp metering to improve safety and efficiency of freeways
– year: 2013
  ident: 10.1016/j.aap.2017.12.012_bib0035
  article-title: Sensitivity analysis of VISSIM driver behavior parameters on safety of simulated vehicles and their interaction with operations of simulated traffic
– volume: 2560
  start-page: 75
  issue: January
  year: 2016
  ident: 10.1016/j.aap.2017.12.012_bib0150
  article-title: Modeling driver behavior in a connected environment
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2560-09
SSID ssj0007875
Score 2.6286006
Snippet •We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is...
Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms Connected vehicles
Intelligent driver model
Longitudinal safety
Managed-lanes
Platooning
Rear-end crashes
Surrogate safety measures
Time-to-collision
Title Longitudinal safety evaluation of connected vehicles’ platooning on expressways
URI https://dx.doi.org/10.1016/j.aap.2017.12.012
https://www.ncbi.nlm.nih.gov/pubmed/29275900
https://www.proquest.com/docview/1980103739
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007875
  issn: 0001-4575
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007875
  issn: 0001-4575
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007875
  issn: 0001-4575
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007875
  issn: 0001-4575
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007875
  issn: 0001-4575
  databaseCode: AKRWK
  dateStart: 19690701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxUxFA6l3Qgitr5urSWCuBDGTjKZm8yyFMvVqwXF0u5Cnlh7uXO5D203xb_h3_OXeE4y0-KiXbiZMCHDhJwk5yTnO-cj5JVEs3cofCFgOcBj6AulmlCAqpbSGRFkiYHCn46Go2Px4bQ-XSMHfSwMwiq7vT_v6Wm37mr2utHcm52dYYwvusRkzSR6-1IeUyEkshi8vbqBecCEzCwGcGzG1r1nM2G8jMGUlUymG0HGb9NNt9meSQcdPiQPOuOR7uf-bZK1MN0i9_PNG80BRVtkJ0fc0pMwiWYe6GvaV7Tz80fk88cWKYpWHumw6MLEsLykNzm_aRupQ_CLA1OU_gjfEmzuz6_fdDaB83m6vKXQLFwkBO1Pc7l4TI4P3309GBUdr0LhYICWRW1MaWrFjFecmcidVLX3ZbQqWCi4FabCLPbSWM4cN0qIMkYRQqNYqIaqekLWp-00PCPUepCTqm2pAmY8j7aRlVPeRe8bC8pxQMp-RLXrko4j98VE9-iy7xqEoFEImnENQhiQN9efzHLGjbsai15M-p9po0Ej3PXZy16kGpYT-kjMNLSrhWaNQuYLWTUD8jTL-roXvOESSVa3_--nz8k9eFMZPbhD1pfzVXgBFs3S7qYpu0s29t-PR0dYjr-cjP8CvMv2yg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOFCpqih9bUvBlaoeKqXEjrN2jhUCbWFBqgQqN8tPlXa1We0DygXxN_h7_JJ64gTUAxx6SSTHViyP7Rl7vpkP4KNAs7fPXcbjcoiPvsukrHwWVbUQVnMvcgwUPjzqD074_ml5ugQ7XSwMwirbvT_t6c1u3ZZst6O5PTk7wxhfdImJkgr09mEe0xVeMoEnsC9X9ziPOCMTjUE8N2P1zrXZgLy0xpyVVDRXgpQ9pJweMj4bJbS3Bs9a65F8TR18Dkt-vA5P09UbSRFF67CRQm7JDz8KeurJJ9IV1NPfL-D7sEaOooVDPiwy08HPL8l90m9SB2IR_WKjLUrO_c8GN3d7fUMmo3hAb25vSazm_zQQ2gt9OXsJJ3u7xzuDrCVWyCznYp6VWue6lFQ7yagOzApZOpcHI72JL2a4LjCNvdCGUcu05DwPgXtfSeqLvixewfK4Hvs3QIyLgpKlyaXHlOfBVKKw0tngXGWiduxB3o2osm3WcSS_GKkOXvZLRSEoFIKiTEUh9ODzXZNJSrnxWGXeiUn9M29UVAmPNfvQiVTF9YROEj329WKmaCWR-kIUVQ9eJ1nf9YJVTCDL6tv_--kWrA6OD4dq-O3o4B08iV9kghJuwPJ8uvDvo3kzN5vN9P0LuOb2vA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+safety+evaluation+of+connected+vehicles%E2%80%99+platooning+on+expressways&rft.jtitle=Accident+analysis+and+prevention&rft.au=Rahman%2C+Md+Sharikur&rft.au=Abdel-Aty%2C+Mohamed&rft.date=2018-08-01&rft.issn=0001-4575&rft.volume=117&rft.spage=381&rft.epage=391&rft_id=info:doi/10.1016%2Fj.aap.2017.12.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aap_2017_12_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4575&client=summon