Longitudinal safety evaluation of connected vehicles’ platooning on expressways
•We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is proposed in order to form platoons in managed lanes.•Surrogate safety measures are considered to evaluate the safety effectiveness of managed lane c...
        Saved in:
      
    
          | Published in | Accident analysis and prevention Vol. 117; pp. 381 - 391 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier Ltd
    
        01.08.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0001-4575 1879-2057 1879-2057  | 
| DOI | 10.1016/j.aap.2017.12.012 | 
Cover
| Abstract | •We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is proposed in order to form platoons in managed lanes.•Surrogate safety measures are considered to evaluate the safety effectiveness of managed lane connected vehicle platoons.•Sensitivity analysis are conducted for different time-to-collision.•Results of this study provide useful information for market penetration rate of connected vehicles.
Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons. | 
    
|---|---|
| AbstractList | Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons.Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons. Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons. •We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is proposed in order to form platoons in managed lanes.•Surrogate safety measures are considered to evaluate the safety effectiveness of managed lane connected vehicle platoons.•Sensitivity analysis are conducted for different time-to-collision.•Results of this study provide useful information for market penetration rate of connected vehicles. Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs popularization associates it with the market penetration rate (MPR). The full market penetration of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning concept were used to regulate the driving behavior of CV platoons with an assumption that the CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a managed-lane was proposed in order to form platoons with three joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic safety. Results of this study provide useful insight for the management of CV MPR as managed-lane CV platoons.  | 
    
| Author | Abdel-Aty, Mohamed Rahman, Md Sharikur  | 
    
| Author_xml | – sequence: 1 givenname: Md Sharikur surname: Rahman fullname: Rahman, Md Sharikur email: sharikur@knights.ucf.edu organization: Department of Civil, Environmental and Construction Engineering University of Central Florida, Orlando, FL 32816, USA – sequence: 2 givenname: Mohamed surname: Abdel-Aty fullname: Abdel-Aty, Mohamed email: M.Aty@ucf.edu organization: Department of Civil, Environmental and Construction Engineering University of Central Florida, Orlando, FL 32816, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29275900$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kMFu1DAQQC1URLctH8AF5cglweMktaOeUAUt0koICc7WxJkUr7J2ajsLe-M3-L1-Sd1ue-HQ02ik90aad8KOnHfE2DvgFXA4_7ipEOdKcJAViIqDeMVWoGRXCt7KI7binEPZtLI9ZicxbvIqlWzfsGPRCdl2nK_Y97V3NzYtg3U4FRFHSvuCdjgtmKx3hR8L450jk2godvTLmoni3d9_xTxh8t5Zd1NkjP7MgWL8jft4xl6POEV6-zRP2c8vn39cXpfrb1dfLz-tS9M0MpUtIsdWAQ5KAI7CSNUOAx97RX0eom-wrnn-A3sBRqBqGj6ODVGngOpzVZ-yD4e7c_C3C8WktzYamiZ05JeooVMceC3rLqPvn9Cl39Kg52C3GPb6OUMG5AEwwccYaNTGpscAKaCdNHD9EFxvdA6uH4JrEDoHzyb8Zz4ff8m5ODiU8-wsBR2NJWdosCGH1oO3L9j3ZamaSQ | 
    
| CitedBy_id | crossref_primary_10_1080_19439962_2021_1994683 crossref_primary_10_1109_JIOT_2023_3299934 crossref_primary_10_1016_j_jsr_2020_09_012 crossref_primary_10_1016_j_aap_2022_106724 crossref_primary_10_1016_j_iatssr_2021_06_005 crossref_primary_10_1002_cl2_1367 crossref_primary_10_1080_19439962_2022_2054038 crossref_primary_10_3390_su14137629 crossref_primary_10_1080_03081060_2022_2136177 crossref_primary_10_1139_cjce_2023_0539 crossref_primary_10_1080_15472450_2019_1634560 crossref_primary_10_1016_j_trc_2021_103531 crossref_primary_10_1016_j_energy_2021_120766 crossref_primary_10_1080_19439962_2023_2273545 crossref_primary_10_1016_j_aap_2020_105861 crossref_primary_10_1155_2023_3325530 crossref_primary_10_1007_s40998_022_00534_0 crossref_primary_10_1016_j_physa_2025_130353 crossref_primary_10_1177_0361198119836764 crossref_primary_10_1016_j_aap_2023_107424 crossref_primary_10_1109_ACCESS_2024_3370469 crossref_primary_10_1016_j_physa_2025_130471 crossref_primary_10_1080_15389588_2023_2176711 crossref_primary_10_1016_j_aap_2019_04_019 crossref_primary_10_1016_j_aap_2020_105616 crossref_primary_10_1080_15472450_2021_1993212 crossref_primary_10_1109_TVT_2024_3445958 crossref_primary_10_1155_2023_4116108 crossref_primary_10_1061_JTEPBS_TEENG_7402 crossref_primary_10_1080_21680566_2020_1728591 crossref_primary_10_1109_TITS_2022_3170978 crossref_primary_10_1016_j_aap_2021_106546 crossref_primary_10_1016_j_physa_2023_128725 crossref_primary_10_1109_ACCESS_2021_3108967 crossref_primary_10_1080_17457300_2022_2098343 crossref_primary_10_1016_j_aap_2024_107602 crossref_primary_10_3390_act11120378 crossref_primary_10_3390_s24175539 crossref_primary_10_3390_su141610094 crossref_primary_10_1061_JTEPBS_0000191 crossref_primary_10_1016_j_physa_2020_124829 crossref_primary_10_1016_j_aap_2023_107324 crossref_primary_10_1177_03611981211049147 crossref_primary_10_1016_j_aap_2024_107611 crossref_primary_10_1016_j_aap_2024_107738 crossref_primary_10_1177_09544070241271830 crossref_primary_10_1016_j_trc_2020_102887 crossref_primary_10_1177_03611981231189741 crossref_primary_10_1016_j_aap_2020_105714 crossref_primary_10_1109_TITS_2021_3105518 crossref_primary_10_1016_j_aap_2019_105260 crossref_primary_10_1016_j_physa_2022_127816 crossref_primary_10_1109_TIV_2023_3303408 crossref_primary_10_1016_j_aap_2020_105707 crossref_primary_10_55329_fkix6369 crossref_primary_10_1109_ACCESS_2019_2941496 crossref_primary_10_1109_OJITS_2025_3544374 crossref_primary_10_1016_j_trc_2022_103989 crossref_primary_10_1155_2020_5847814 crossref_primary_10_1111_mice_13371 crossref_primary_10_1016_j_eswa_2022_118972 crossref_primary_10_1007_s42461_025_01219_y crossref_primary_10_1109_TITS_2023_3306792 crossref_primary_10_1177_0361198120963105 crossref_primary_10_1049_iet_its_2019_0625 crossref_primary_10_3390_su15129345 crossref_primary_10_1016_j_aap_2019_06_001 crossref_primary_10_1016_j_amar_2023_100275 crossref_primary_10_3390_s18093085 crossref_primary_10_1080_15389588_2024_2334402 crossref_primary_10_3390_machines12060371 crossref_primary_10_1049_itr2_12035 crossref_primary_10_3390_su12218941 crossref_primary_10_1016_j_ijtst_2021_03_009 crossref_primary_10_1016_j_simpat_2023_102868 crossref_primary_10_1080_19427867_2022_2074697 crossref_primary_10_1016_j_aap_2023_107191 crossref_primary_10_1016_j_physa_2025_130519 crossref_primary_10_1109_TITS_2019_2935195 crossref_primary_10_1016_j_physa_2024_130117 crossref_primary_10_1016_j_trc_2022_103648 crossref_primary_10_1177_03611981231201107 crossref_primary_10_1016_j_trpro_2021_11_064 crossref_primary_10_1155_2022_7248854 crossref_primary_10_1049_itr2_12145 crossref_primary_10_1016_j_aap_2023_107087 crossref_primary_10_1016_j_trc_2025_105009 crossref_primary_10_2139_ssrn_4117489 crossref_primary_10_1016_j_jsr_2021_09_008 crossref_primary_10_1016_j_trc_2021_103465 crossref_primary_10_1139_cjce_2022_0098 crossref_primary_10_1016_j_ifacol_2023_10_1151 crossref_primary_10_1016_j_trc_2023_104230 crossref_primary_10_1061_JTEPBS_0000782 crossref_primary_10_1080_23249935_2024_2434228 crossref_primary_10_1080_03081060_2022_2093874 crossref_primary_10_1177_0361198120918572 crossref_primary_10_3390_su141912165 crossref_primary_10_1109_TITS_2023_3255868 crossref_primary_10_1177_10775463231223550 crossref_primary_10_1016_j_aap_2019_105345 crossref_primary_10_1016_j_aap_2024_107784 crossref_primary_10_1155_2021_6639649 crossref_primary_10_1016_j_trc_2019_01_029 crossref_primary_10_2139_ssrn_4141262 crossref_primary_10_1061_JTEPBS_TEENG_8224 crossref_primary_10_1177_00187208221088358 crossref_primary_10_1016_j_physa_2023_129195 crossref_primary_10_1080_15472450_2020_1834392 crossref_primary_10_3390_en14123431 crossref_primary_10_1016_j_aap_2018_12_019 crossref_primary_10_1016_j_physa_2023_128556 crossref_primary_10_1016_j_aap_2020_105463 crossref_primary_10_1016_j_measurement_2020_108192 crossref_primary_10_1016_j_aap_2023_106970 crossref_primary_10_1049_itr2_12053 crossref_primary_10_1049_itr2_12295 crossref_primary_10_3390_su14095193 crossref_primary_10_1016_j_trf_2022_08_012 crossref_primary_10_1142_S0129183122500206 crossref_primary_10_1109_ACCESS_2020_2990426 crossref_primary_10_1177_0361198118776113 crossref_primary_10_1680_jtran_22_00038 crossref_primary_10_1016_j_aap_2021_105972 crossref_primary_10_1016_j_trc_2020_102664 crossref_primary_10_3390_wevj14120348 crossref_primary_10_1177_0361198119840611 crossref_primary_10_1016_j_aap_2019_105367 crossref_primary_10_1109_JIOT_2023_3322867 crossref_primary_10_3390_su12187568 crossref_primary_10_1177_0361198118823502 crossref_primary_10_1002_rnc_6412 crossref_primary_10_1016_j_physa_2023_129095 crossref_primary_10_1016_j_trc_2021_103037 crossref_primary_10_1016_j_trc_2021_103276 crossref_primary_10_1371_journal_pone_0295343 crossref_primary_10_1049_iet_its_2020_0146 crossref_primary_10_3390_s23094401 crossref_primary_10_1016_j_aap_2020_105567 crossref_primary_10_1680_jtran_20_00080 crossref_primary_10_1016_j_physa_2023_128452 crossref_primary_10_1016_j_aap_2023_106999 crossref_primary_10_1109_TIV_2023_3250353 crossref_primary_10_3390_systems11070322 crossref_primary_10_1016_j_physa_2019_04_245 crossref_primary_10_1016_j_iatssr_2022_03_001 crossref_primary_10_1109_TVT_2021_3060808 crossref_primary_10_1016_j_aap_2022_106575 crossref_primary_10_1016_j_aap_2021_106157 crossref_primary_10_1177_10775463211002602 crossref_primary_10_1016_j_trip_2024_101213 crossref_primary_10_1080_15389588_2023_2291337 crossref_primary_10_1080_21680566_2024_2439997 crossref_primary_10_1109_ACCESS_2021_3050199 crossref_primary_10_1155_2022_4534692 crossref_primary_10_1016_j_aap_2020_105435 crossref_primary_10_1016_j_aap_2020_105675 crossref_primary_10_1016_j_aap_2020_105796 crossref_primary_10_1016_j_aap_2021_106006 crossref_primary_10_1016_j_aap_2021_106007 crossref_primary_10_1016_j_aap_2019_01_014 crossref_primary_10_1142_S0218126622501808 crossref_primary_10_1109_TITS_2022_3227176 crossref_primary_10_1080_21680566_2024_2441460 crossref_primary_10_1016_j_future_2019_09_054 crossref_primary_10_1155_2021_8888930 crossref_primary_10_1016_j_physa_2022_128181 crossref_primary_10_1016_j_jsr_2019_03_002 crossref_primary_10_1016_j_trc_2020_102934 crossref_primary_10_1049_itr2_12409 crossref_primary_10_1155_2024_6126204 crossref_primary_10_1177_03611981211012422 crossref_primary_10_1109_TITS_2023_3290261 crossref_primary_10_1016_j_aap_2021_106016 crossref_primary_10_1016_j_aap_2019_01_029 crossref_primary_10_1016_j_aap_2023_107225 crossref_primary_10_1109_ACCESS_2025_3539370 crossref_primary_10_1139_cjce_2023_0569 crossref_primary_10_1109_TITS_2023_3287308 crossref_primary_10_3390_electronics7100228 crossref_primary_10_1080_15389588_2018_1527469 crossref_primary_10_1177_03611981211010800 crossref_primary_10_1016_j_physa_2024_129655 crossref_primary_10_1016_j_aap_2019_05_017 crossref_primary_10_1016_j_physa_2024_129539 crossref_primary_10_1016_j_trf_2022_07_006 crossref_primary_10_1108_JICV_10_2020_0011 crossref_primary_10_1016_j_amar_2022_100221 crossref_primary_10_1016_j_trf_2018_12_007 crossref_primary_10_1109_ACCESS_2019_2935423 crossref_primary_10_1080_21680566_2022_2101565 crossref_primary_10_1049_iet_cta_2020_0740 crossref_primary_10_3390_su16010026 crossref_primary_10_1016_j_aap_2024_107766 crossref_primary_10_1016_j_aap_2024_107649 crossref_primary_10_1016_j_amar_2021_100187 crossref_primary_10_1155_2020_8174085 crossref_primary_10_1016_j_aap_2020_105643 crossref_primary_10_1016_j_simpat_2019_04_001 crossref_primary_10_1109_ACCESS_2023_3248628 crossref_primary_10_1016_j_physa_2023_128934 crossref_primary_10_1016_j_aap_2022_106775 crossref_primary_10_1049_itr2_12544 crossref_primary_10_1155_2018_7835010 crossref_primary_10_1016_j_jsr_2019_04_008 crossref_primary_10_1177_03611981211037241 crossref_primary_10_48130_DTS_2023_0017 crossref_primary_10_1016_j_aap_2024_107891 crossref_primary_10_3390_app13064072 crossref_primary_10_1016_j_eswa_2023_120133 crossref_primary_10_1016_j_trc_2021_103188 crossref_primary_10_1016_j_eswa_2024_125561  | 
    
| Cites_doi | 10.1080/15389580903370039 10.3141/2635-04 10.1016/j.trc.2015.07.014 10.3141/1840-12 10.1016/j.aap.2016.09.015 10.1016/j.trc.2016.08.009 10.1016/j.trc.2007.12.004 10.1016/j.tra.2003.08.001 10.1080/15389588.2015.1121384 10.1016/j.trc.2016.11.022 10.1098/rsta.2010.0084 10.1016/j.trc.2014.05.016 10.1016/j.trc.2014.09.001 10.1016/j.aap.2017.04.025 10.1016/j.trpro.2015.06.022 10.1016/j.aap.2005.09.009 10.1016/j.trc.2016.07.007 10.1061/(ASCE)TE.1943-5436.0000587 10.1016/S0001-4575(00)00019-1 10.1016/j.aap.2014.06.018 10.1103/PhysRevE.62.1805 10.1016/j.trc.2016.05.013 10.3141/2560-09  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Copyright © 2017 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2018 – notice: Copyright © 2017 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1016/j.aap.2017.12.012 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Social Welfare & Social Work Public Health  | 
    
| EISSN | 1879-2057 | 
    
| EndPage | 391 | 
    
| ExternalDocumentID | 29275900 10_1016_j_aap_2017_12_012 S0001457517304505  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X ..I .~1 0R~ 1B1 1RT 1~. 23M 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABDMP ABFNM ABIVO ABJNI ABLVK ABMAC ABMMH ABMZM ABNUV ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AHRSL AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKURH AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEH HMK HMO HMY HVGLF HZ~ IHE J1W JJJVA KOM LCYCR M29 M3W M3Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SPC SPCBC SSB SSG SSH SSO SSS SST SSZ T5K VH1 WUQ XPP ZCG ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c447t-5aa0a581ad821af2c785dd0fb8ebd0f2b4a330057ab21c2a8440ff4ee981e3683 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0001-4575 1879-2057  | 
    
| IngestDate | Sun Sep 28 04:24:43 EDT 2025 Wed Feb 19 02:42:34 EST 2025 Thu Apr 24 23:11:33 EDT 2025 Wed Oct 01 03:33:18 EDT 2025 Fri Feb 23 02:33:10 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Managed-lanes Longitudinal safety Connected vehicles Platooning Surrogate safety measures Rear-end crashes Intelligent driver model Time-to-collision  | 
    
| Language | English | 
    
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c447t-5aa0a581ad821af2c785dd0fb8ebd0f2b4a330057ab21c2a8440ff4ee981e3683 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 29275900 | 
    
| PQID | 1980103739 | 
    
| PQPubID | 23479 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_1980103739 pubmed_primary_29275900 crossref_citationtrail_10_1016_j_aap_2017_12_012 crossref_primary_10_1016_j_aap_2017_12_012 elsevier_sciencedirect_doi_10_1016_j_aap_2017_12_012  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-08-01 | 
    
| PublicationDateYYYYMMDD | 2018-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Accident analysis and prevention | 
    
| PublicationTitleAlternate | Accid Anal Prev | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Kim, Park (bib0065) 2016 Talebpour, Mahmassani (bib0145) 2016; 71 Wu, Sun, Yang (bib0180) 2005 Talebpour, Mahmassani, Hamdar (bib0155) 2015; 7 Nezamuddin, Jiang, Zhang, Waller (bib0110) 2011 Minderhoud, Bovy (bib0105) 2001; 33 American Association of State Highway and Transportation Officials (AASHTO) (bib0010) 2004 Paikari, Tahmasseby, Far (bib0125) 2014 Li, Wang, Wang, Xing, Liu, Wei (bib0090) 2017; 98 Khondaker, Kattan (bib0060) 2015; 58 Li, Li, Wang, Wang, Xing (bib0080) 2017; 104 Tian, Zhou, Wang, Sheng, Xia, Yi (bib0160) 2016; 69 Milanés, Shladover (bib0100) 2014; 48 Woody (bib0175) 2006; 416 Li, Li, Liu, Wang, Xu (bib0095) 2014; 72 Pulugurtha, Bhatt (bib0135) 2010; 11 Gettman, Pu, Sayed, Shelby (bib0020) 2008 Habtemichael, Picado-Santos (bib0035) 2013 Treiber, Hennecke, Helbing (bib0165) 2000; 62 Oh, Park, Ritchie (bib0120) 2006; 38 Gettman, Head (bib0015) 2003; 1840 Jolovic, Stevanovic (bib0045) 2012 Peng, Abdel-Aty, Shi, Yu (bib0130) 2017; 74 NHTSA (bib0115) 2016 Kesting, Treiber, Schönhof, Helbing (bib0055) 2008; 16 Sultan, Brackstone, McDonald (bib0140) 2002 Talebpour, Mahmassani, Bustamante (bib0150) 2016; 2560 Abdel-Aty, Haleem, Cunningham, Gayah (bib0005) 2009 Koppula (bib0070) 2002 Yu, Abdel-Aty (bib0190) 2014; 46 Golob, Recker, Alvarez (bib0030) 2004; 38 Hayward (bib0040) 1972 Li, Wang, Wang, Liu, Xiang (bib0085) 2016; 17 Kesting, Treiber, Helbing (bib0050) 2010; 368 Lee, Park, Yun (bib0075) 2013; 139 Wang, Abdel-Aty, Lee (bib0170) 2017; 2635 Glad (bib0025) 2001 Yang, Guler, Menendez (bib0185) 2016; 72 Peng (10.1016/j.aap.2017.12.012_bib0130) 2017; 74 Abdel-Aty (10.1016/j.aap.2017.12.012_bib0005) 2009 Hayward (10.1016/j.aap.2017.12.012_bib0040) 1972 Minderhoud (10.1016/j.aap.2017.12.012_bib0105) 2001; 33 Li (10.1016/j.aap.2017.12.012_bib0080) 2017; 104 Wu (10.1016/j.aap.2017.12.012_bib0180) 2005 Habtemichael (10.1016/j.aap.2017.12.012_bib0035) 2013 Gettman (10.1016/j.aap.2017.12.012_bib0015) 2003; 1840 Lee (10.1016/j.aap.2017.12.012_bib0075) 2013; 139 American Association of State Highway and Transportation Officials (AASHTO) (10.1016/j.aap.2017.12.012_bib0010) 2004 Wang (10.1016/j.aap.2017.12.012_bib0170) 2017; 2635 Glad (10.1016/j.aap.2017.12.012_bib0025) 2001 Kesting (10.1016/j.aap.2017.12.012_bib0055) 2008; 16 Li (10.1016/j.aap.2017.12.012_bib0095) 2014; 72 Sultan (10.1016/j.aap.2017.12.012_bib0140) 2002 Milanés (10.1016/j.aap.2017.12.012_bib0100) 2014; 48 Oh (10.1016/j.aap.2017.12.012_bib0120) 2006; 38 Talebpour (10.1016/j.aap.2017.12.012_bib0150) 2016; 2560 Yang (10.1016/j.aap.2017.12.012_bib0185) 2016; 72 Yu (10.1016/j.aap.2017.12.012_bib0190) 2014; 46 Khondaker (10.1016/j.aap.2017.12.012_bib0060) 2015; 58 Li (10.1016/j.aap.2017.12.012_bib0090) 2017; 98 NHTSA (10.1016/j.aap.2017.12.012_bib0115) 2016 Jolovic (10.1016/j.aap.2017.12.012_bib0045) 2012 Tian (10.1016/j.aap.2017.12.012_bib0160) 2016; 69 Kim (10.1016/j.aap.2017.12.012_bib0065) 2016 Woody (10.1016/j.aap.2017.12.012_bib0175) 2006; 416 Nezamuddin (10.1016/j.aap.2017.12.012_bib0110) 2011 Gettman (10.1016/j.aap.2017.12.012_bib0020) 2008 Talebpour (10.1016/j.aap.2017.12.012_bib0155) 2015; 7 Treiber (10.1016/j.aap.2017.12.012_bib0165) 2000; 62 Paikari (10.1016/j.aap.2017.12.012_bib0125) 2014 Talebpour (10.1016/j.aap.2017.12.012_bib0145) 2016; 71 Golob (10.1016/j.aap.2017.12.012_bib0030) 2004; 38 Kesting (10.1016/j.aap.2017.12.012_bib0050) 2010; 368 Pulugurtha (10.1016/j.aap.2017.12.012_bib0135) 2010; 11 Li (10.1016/j.aap.2017.12.012_bib0085) 2016; 17 Koppula (10.1016/j.aap.2017.12.012_bib0070) 2002  | 
    
| References_xml | – start-page: 1 year: 2009 end-page: 13 ident: bib0005 article-title: Application of variable speed limits and ramp metering to improve safety and efficiency of freeways publication-title: 2nd International Symposium on Freeway and Tollway Operations – year: 2001 ident: bib0025 article-title: Weave Analysis and Performance: The Washington State Case Study – volume: 2635 start-page: 28 year: 2017 end-page: 35 ident: bib0170 article-title: Implementation of active traffic management strategies for safety of a congested expressway weaving segment publication-title: Transp. Res. Rec. J. Transp. Res. Board – volume: 72 start-page: 134 year: 2014 end-page: 145 ident: bib0095 article-title: Development of a variable speed limit strategy to reduce secondary collision risks during inclement weathers publication-title: Accid. Anal. Prev. – year: 2013 ident: bib0035 article-title: Sensitivity analysis of VISSIM driver behavior parameters on safety of simulated vehicles and their interaction with operations of simulated traffic publication-title: 92nd Annual Meeting of the Transportation Research Board – start-page: 980 year: 2014 end-page: 985 ident: bib0125 article-title: A simulation-based benefit analysis of deploying connected vehicles using dedicated short range communication publication-title: Intelligent Vehicles Symposium Proceedings, IEEE – volume: 62 start-page: 1805 year: 2000 end-page: 1824 ident: bib0165 article-title: Congested traffic states in empirical observations and microscopic simulations publication-title: Phys. Rev. E – volume: 74 start-page: 295 year: 2017 end-page: 305 ident: bib0130 article-title: Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures publication-title: Transp. Res. Part C Emerg. Technol. – year: 2012 ident: bib0045 article-title: Evaluation of vissim and freeval to assess an oversaturated freeway weaving segmen publication-title: TRB Annual Meeting – volume: 2560 start-page: 75 year: 2016 end-page: 86 ident: bib0150 article-title: Modeling driver behavior in a connected environment publication-title: Transp. Res. Rec. J. Transp. Res. Board – year: 2002 ident: bib0140 article-title: Parameter analysis for collision avoidance systems publication-title: 9th World Congress on Intelligent Transport Systems – volume: 98 start-page: 87 year: 2017 end-page: 95 ident: bib0090 article-title: Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways publication-title: Accid. Anal. Prev. – volume: 1840 start-page: 104 year: 2003 end-page: 115 ident: bib0015 article-title: Surrogate safety measures from traffic simulation models publication-title: Transp. Res. Rec. J. Transp. Res. Board – year: 2011 ident: bib0110 article-title: Traffic Operations and Safety Benefits of Active Traffic Strategies on Txdot Freeways – volume: 69 start-page: 36 year: 2016 end-page: 59 ident: bib0160 article-title: Modeling chain collisions in vehicular networks with variable penetration rates publication-title: Transp. Res. Part C Emerg. Technol. – volume: 17 start-page: 597 year: 2016 end-page: 603 ident: bib0085 article-title: Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system publication-title: Traffic Inj. Prev. – volume: 71 start-page: 143 year: 2016 end-page: 163 ident: bib0145 article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput publication-title: Transp. Res. Part C Emerg. Technol. – year: 2008 ident: bib0020 article-title: Surrogate Safety Assessment Model and Validation – year: 2016 ident: bib0115 article-title: Vehcile-to-Vehicle Communication Technology for Light Vehicles – volume: 368 start-page: 4585 year: 2010 end-page: 4605 ident: bib0050 article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – year: 2016 ident: bib0065 article-title: Safety features of freeway weaving segments with buffer-separated high-occupancy-vehicle (hov) lane publication-title: Transportation Research Board 95th Annual Meeting – year: 2002 ident: bib0070 article-title: A comparative analysis of weaving areas in hcm, transims, corsim, vissim and integration publication-title: Thesis – volume: 11 start-page: 104 year: 2010 end-page: 113 ident: bib0135 article-title: Evaluating the role of weaving section characteristics and traffic on crashes in weaving areas publication-title: Traffic Inj. Prev. – volume: 104 start-page: 137 year: 2017 end-page: 145 ident: bib0080 article-title: Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways publication-title: Accid. Anal. Prev. – volume: 72 start-page: 109 year: 2016 end-page: 129 ident: bib0185 article-title: Isolated intersection control for various levels of vehicle technology: conventional, connected, and automated vehicles publication-title: Transp. Res. Part C Emerg. Technol. – volume: 58 start-page: 146 year: 2015 end-page: 159 ident: bib0060 article-title: Variable speed limit: a microscopic analysis in a connected vehicle environment publication-title: Transp. Res. Part C Emerg. Technol. – volume: 48 start-page: 285 year: 2014 end-page: 300 ident: bib0100 article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data publication-title: Transp. Res. Part C Emerg. Technol. – volume: 38 start-page: 35 year: 2004 end-page: 51 ident: bib0030 article-title: Safety aspects of freeway weaving sections publication-title: Transp. Res. Part A Policy Pract. – volume: 38 start-page: 295 year: 2006 end-page: 301 ident: bib0120 article-title: A method for identifying rear-end collision risks using inductive loop detectors publication-title: Accid. Anal. Prev. – volume: 33 start-page: 89 year: 2001 end-page: 97 ident: bib0105 article-title: Extended time-to-collision measures for road traffic safety assessment publication-title: Accid. Anal. Prev. – volume: 7 start-page: 420 year: 2015 end-page: 440 ident: bib0155 article-title: Modeling lane-changing behavior in a connected environment: a game theory approach publication-title: Transp. Res. Procedia – volume: 16 start-page: 668 year: 2008 end-page: 683 ident: bib0055 article-title: Adaptive cruise control design for active congestion avoidance publication-title: Transp. Res. Part C Emerg. Technol. – year: 2005 ident: bib0180 article-title: Calibration of VISSIM for shanghai expressway using genetic algorithm publication-title: Simulation Conference, 2005 Proceedings of the Winter. IEEE – volume: 139 start-page: 1020 year: 2013 end-page: 1029 ident: bib0075 article-title: Cumulative travel-time responsive real-time intersection control algorithm in the connected vehicle environment publication-title: J. Transp. Eng. – volume: 46 start-page: 235 year: 2014 end-page: 246 ident: bib0190 article-title: An optimal variable speed limits system to ameliorate traffic safety risk publication-title: Transp. Res. Part C Emerg. Technol. – year: 2004 ident: bib0010 article-title: A Policy on Geometric Design of Highways and Streets – year: 1972 ident: bib0040 article-title: Near-Miss Determination Through Use of a Scale of Danger (Traffic Records 384) – volume: 416 start-page: 580 year: 2006 ident: bib0175 publication-title: Calibrating Freeway Simulation Models in Vissim – volume: 11 start-page: 104 issue: 1 year: 2010 ident: 10.1016/j.aap.2017.12.012_bib0135 article-title: Evaluating the role of weaving section characteristics and traffic on crashes in weaving areas publication-title: Traffic Inj. Prev. doi: 10.1080/15389580903370039 – start-page: 980 year: 2014 ident: 10.1016/j.aap.2017.12.012_bib0125 article-title: A simulation-based benefit analysis of deploying connected vehicles using dedicated short range communication – year: 2001 ident: 10.1016/j.aap.2017.12.012_bib0025 – year: 2002 ident: 10.1016/j.aap.2017.12.012_bib0070 article-title: A comparative analysis of weaving areas in hcm, transims, corsim, vissim and integration – volume: 2635 start-page: 28 year: 2017 ident: 10.1016/j.aap.2017.12.012_bib0170 article-title: Implementation of active traffic management strategies for safety of a congested expressway weaving segment publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2635-04 – volume: 58 start-page: 146 year: 2015 ident: 10.1016/j.aap.2017.12.012_bib0060 article-title: Variable speed limit: a microscopic analysis in a connected vehicle environment publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2015.07.014 – year: 2012 ident: 10.1016/j.aap.2017.12.012_bib0045 article-title: Evaluation of vissim and freeval to assess an oversaturated freeway weaving segmen – volume: 416 start-page: 580 year: 2006 ident: 10.1016/j.aap.2017.12.012_bib0175 – volume: 1840 start-page: 104 year: 2003 ident: 10.1016/j.aap.2017.12.012_bib0015 article-title: Surrogate safety measures from traffic simulation models publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/1840-12 – volume: 98 start-page: 87 year: 2017 ident: 10.1016/j.aap.2017.12.012_bib0090 article-title: Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.09.015 – volume: 72 start-page: 109 year: 2016 ident: 10.1016/j.aap.2017.12.012_bib0185 article-title: Isolated intersection control for various levels of vehicle technology: conventional, connected, and automated vehicles publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2016.08.009 – year: 2005 ident: 10.1016/j.aap.2017.12.012_bib0180 article-title: Calibration of VISSIM for shanghai expressway using genetic algorithm – year: 2016 ident: 10.1016/j.aap.2017.12.012_bib0115 – year: 2008 ident: 10.1016/j.aap.2017.12.012_bib0020 – volume: 16 start-page: 668 issue: 6 year: 2008 ident: 10.1016/j.aap.2017.12.012_bib0055 article-title: Adaptive cruise control design for active congestion avoidance publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2007.12.004 – volume: 38 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.aap.2017.12.012_bib0030 article-title: Safety aspects of freeway weaving sections publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2003.08.001 – volume: 17 start-page: 597 issue: 6 year: 2016 ident: 10.1016/j.aap.2017.12.012_bib0085 article-title: Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system publication-title: Traffic Inj. Prev. doi: 10.1080/15389588.2015.1121384 – year: 2016 ident: 10.1016/j.aap.2017.12.012_bib0065 article-title: Safety features of freeway weaving segments with buffer-separated high-occupancy-vehicle (hov) lane – volume: 74 start-page: 295 year: 2017 ident: 10.1016/j.aap.2017.12.012_bib0130 article-title: Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2016.11.022 – volume: 368 start-page: 4585 issue: 1928 year: 2010 ident: 10.1016/j.aap.2017.12.012_bib0050 article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity publication-title: Philos. Trans. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2010.0084 – volume: 46 start-page: 235 year: 2014 ident: 10.1016/j.aap.2017.12.012_bib0190 article-title: An optimal variable speed limits system to ameliorate traffic safety risk publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2014.05.016 – volume: 48 start-page: 285 year: 2014 ident: 10.1016/j.aap.2017.12.012_bib0100 article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2014.09.001 – year: 2011 ident: 10.1016/j.aap.2017.12.012_bib0110 – volume: 104 start-page: 137 year: 2017 ident: 10.1016/j.aap.2017.12.012_bib0080 article-title: Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.04.025 – volume: 7 start-page: 420 year: 2015 ident: 10.1016/j.aap.2017.12.012_bib0155 article-title: Modeling lane-changing behavior in a connected environment: a game theory approach publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.06.022 – volume: 38 start-page: 295 issue: 2 year: 2006 ident: 10.1016/j.aap.2017.12.012_bib0120 article-title: A method for identifying rear-end collision risks using inductive loop detectors publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.09.009 – year: 2004 ident: 10.1016/j.aap.2017.12.012_bib0010 – volume: 71 start-page: 143 year: 2016 ident: 10.1016/j.aap.2017.12.012_bib0145 article-title: Influence of connected and autonomous vehicles on traffic flow stability and throughput publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2016.07.007 – volume: 139 start-page: 1020 issue: 10 year: 2013 ident: 10.1016/j.aap.2017.12.012_bib0075 article-title: Cumulative travel-time responsive real-time intersection control algorithm in the connected vehicle environment publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000587 – volume: 33 start-page: 89 issue: 1 year: 2001 ident: 10.1016/j.aap.2017.12.012_bib0105 article-title: Extended time-to-collision measures for road traffic safety assessment publication-title: Accid. Anal. Prev. doi: 10.1016/S0001-4575(00)00019-1 – volume: 72 start-page: 134 year: 2014 ident: 10.1016/j.aap.2017.12.012_bib0095 article-title: Development of a variable speed limit strategy to reduce secondary collision risks during inclement weathers publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2014.06.018 – year: 2002 ident: 10.1016/j.aap.2017.12.012_bib0140 article-title: Parameter analysis for collision avoidance systems – volume: 62 start-page: 1805 issue: 2 year: 2000 ident: 10.1016/j.aap.2017.12.012_bib0165 article-title: Congested traffic states in empirical observations and microscopic simulations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.1805 – year: 1972 ident: 10.1016/j.aap.2017.12.012_bib0040 – volume: 69 start-page: 36 year: 2016 ident: 10.1016/j.aap.2017.12.012_bib0160 article-title: Modeling chain collisions in vehicular networks with variable penetration rates publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2016.05.013 – start-page: 1 year: 2009 ident: 10.1016/j.aap.2017.12.012_bib0005 article-title: Application of variable speed limits and ramp metering to improve safety and efficiency of freeways – year: 2013 ident: 10.1016/j.aap.2017.12.012_bib0035 article-title: Sensitivity analysis of VISSIM driver behavior parameters on safety of simulated vehicles and their interaction with operations of simulated traffic – volume: 2560 start-page: 75 issue: January year: 2016 ident: 10.1016/j.aap.2017.12.012_bib0150 article-title: Modeling driver behavior in a connected environment publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2560-09  | 
    
| SSID | ssj0007875 | 
    
| Score | 2.6286006 | 
    
| Snippet | •We evaluate the longitudinal safety of managed lane connected vehicle platoons on expressways.•A high-level control algorithm of connected vehicles is... Connected vehicles (CV) technology has recently drawn an increasing attention from governments, vehicle manufacturers, and researchers. One of the biggest...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 381 | 
    
| SubjectTerms | Connected vehicles Intelligent driver model Longitudinal safety Managed-lanes Platooning Rear-end crashes Surrogate safety measures Time-to-collision  | 
    
| Title | Longitudinal safety evaluation of connected vehicles’ platooning on expressways | 
    
| URI | https://dx.doi.org/10.1016/j.aap.2017.12.012 https://www.ncbi.nlm.nih.gov/pubmed/29275900 https://www.proquest.com/docview/1980103739  | 
    
| Volume | 117 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2057 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: AKRWK dateStart: 19690701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxUxFA6l3Qgitr5urSWCuBDGTjKZm8yyFMvVqwXF0u5Cnlh7uXO5D203xb_h3_OXeE4y0-KiXbiZMCHDhJwk5yTnO-cj5JVEs3cofCFgOcBj6AulmlCAqpbSGRFkiYHCn46Go2Px4bQ-XSMHfSwMwiq7vT_v6Wm37mr2utHcm52dYYwvusRkzSR6-1IeUyEkshi8vbqBecCEzCwGcGzG1r1nM2G8jMGUlUymG0HGb9NNt9meSQcdPiQPOuOR7uf-bZK1MN0i9_PNG80BRVtkJ0fc0pMwiWYe6GvaV7Tz80fk88cWKYpWHumw6MLEsLykNzm_aRupQ_CLA1OU_gjfEmzuz6_fdDaB83m6vKXQLFwkBO1Pc7l4TI4P3309GBUdr0LhYICWRW1MaWrFjFecmcidVLX3ZbQqWCi4FabCLPbSWM4cN0qIMkYRQqNYqIaqekLWp-00PCPUepCTqm2pAmY8j7aRlVPeRe8bC8pxQMp-RLXrko4j98VE9-iy7xqEoFEImnENQhiQN9efzHLGjbsai15M-p9po0Ej3PXZy16kGpYT-kjMNLSrhWaNQuYLWTUD8jTL-roXvOESSVa3_--nz8k9eFMZPbhD1pfzVXgBFs3S7qYpu0s29t-PR0dYjr-cjP8CvMv2yg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOFCpqih9bUvBlaoeKqXEjrN2jhUCbWFBqgQqN8tPlXa1We0DygXxN_h7_JJ64gTUAxx6SSTHViyP7Rl7vpkP4KNAs7fPXcbjcoiPvsukrHwWVbUQVnMvcgwUPjzqD074_ml5ugQ7XSwMwirbvT_t6c1u3ZZst6O5PTk7wxhfdImJkgr09mEe0xVeMoEnsC9X9ziPOCMTjUE8N2P1zrXZgLy0xpyVVDRXgpQ9pJweMj4bJbS3Bs9a65F8TR18Dkt-vA5P09UbSRFF67CRQm7JDz8KeurJJ9IV1NPfL-D7sEaOooVDPiwy08HPL8l90m9SB2IR_WKjLUrO_c8GN3d7fUMmo3hAb25vSazm_zQQ2gt9OXsJJ3u7xzuDrCVWyCznYp6VWue6lFQ7yagOzApZOpcHI72JL2a4LjCNvdCGUcu05DwPgXtfSeqLvixewfK4Hvs3QIyLgpKlyaXHlOfBVKKw0tngXGWiduxB3o2osm3WcSS_GKkOXvZLRSEoFIKiTEUh9ODzXZNJSrnxWGXeiUn9M29UVAmPNfvQiVTF9YROEj329WKmaCWR-kIUVQ9eJ1nf9YJVTCDL6tv_--kWrA6OD4dq-O3o4B08iV9kghJuwPJ8uvDvo3kzN5vN9P0LuOb2vA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+safety+evaluation+of+connected+vehicles%E2%80%99+platooning+on+expressways&rft.jtitle=Accident+analysis+and+prevention&rft.au=Rahman%2C+Md+Sharikur&rft.au=Abdel-Aty%2C+Mohamed&rft.date=2018-08-01&rft.issn=0001-4575&rft.volume=117&rft.spage=381&rft.epage=391&rft_id=info:doi/10.1016%2Fj.aap.2017.12.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aap_2017_12_012 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4575&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4575&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4575&client=summon |