Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence

The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end,...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 9; no. 7; p. 295
Main Authors Daniyan, Michael O., Przyborski, Jude M., Shonhai, Addmore
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 23.07.2019
MDPI AG
Subjects
Online AccessGet full text
ISSN2218-273X
2218-273X
DOI10.3390/biom9070295

Cover

Abstract The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the ‘exportome’ (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
AbstractList The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the ‘exportome’ (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
The survival of the human malaria parasite under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the ‘exportome’ (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
Author Przyborski, Jude M.
Shonhai, Addmore
Daniyan, Michael O.
AuthorAffiliation 2 Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany
3 Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa
1 Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria
AuthorAffiliation_xml – name: 1 Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria
– name: 3 Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa
– name: 2 Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany
Author_xml – sequence: 1
  givenname: Michael O.
  orcidid: 0000-0003-3669-3542
  surname: Daniyan
  fullname: Daniyan, Michael O.
– sequence: 2
  givenname: Jude M.
  surname: Przyborski
  fullname: Przyborski, Jude M.
– sequence: 3
  givenname: Addmore
  orcidid: 0000-0003-3203-0602
  surname: Shonhai
  fullname: Shonhai, Addmore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31340488$$D View this record in MEDLINE/PubMed
BookMark eNptUl1rFDEUDVKxtfbJd8mjIKv5mpnEB0GKtQtVF6ziW8hkbrppZ5I1ySg--8fNdmtpxRDIzcm554R772O0F2IAhJ5S8pJzRV71Pk6KdISp5gE6YIzKBev4t7078T46yvmS1CXrZvwR2ueUCyKkPEC_VyaVACljH_AHn-3ag3uNT-Zgi4_BjPgjlJ8xXWUcHT4FU_DndbRXeJViAR-u4dVo8hQHP0_YmdH6jUk1NGHA52vwCS-DG2cIFnAMuBqa7Avgrz7N4xZ9gh7WtAxHN-ch-nLy7vz4dHH26f3y-O3ZwgrRlYXoG66oYvVCgQs1MNYPyspBQdtWtKG9EoSRXjXOScMbR5pOEOiFAia7nh-i5U53iOZSb5KfTPqlo_H6GojpQtdieDuCBt5KThSn_eCEE1Q61xsneTUB27mt1pud1mbuJxgshJLMeE_0_kvwa30Rf-i2lZR1bRV4fiOQ4vcZctFTrT6MowkQ56wZawVjvOtEpT6763Vr8reLlfBiR7Ap5pzA3VIo0dsx0XfGpLLpP2zri9l2u37Uj__N-QOdYsHZ
CitedBy_id crossref_primary_10_1016_j_crimmu_2021_06_002
crossref_primary_10_1021_acsinfecdis_0c00454
crossref_primary_10_3390_ijms22042226
crossref_primary_10_3390_biom10060856
crossref_primary_10_1080_26895293_2023_2202301
crossref_primary_10_1016_j_csbj_2022_05_017
crossref_primary_10_1016_j_ijbiomac_2021_03_056
crossref_primary_10_3389_fmolb_2022_965569
crossref_primary_10_1038_s41598_020_77881_7
crossref_primary_10_1016_j_bbapap_2023_140942
crossref_primary_10_1038_s41579_019_0321_3
crossref_primary_10_3389_fneur_2020_596528
crossref_primary_10_1038_s41467_021_23434_z
crossref_primary_10_1186_s12936_024_04976_1
crossref_primary_10_1371_journal_ppat_1009394
crossref_primary_10_3390_biom9100543
crossref_primary_10_3390_ijms20235930
crossref_primary_10_1007_s12192_023_01339_8
crossref_primary_10_3389_fgene_2022_824483
crossref_primary_10_1016_j_bbapap_2019_140282
crossref_primary_10_3390_biomedicines13030610
crossref_primary_10_1016_j_heliyon_2020_e04037
crossref_primary_10_1007_s12192_021_01212_6
crossref_primary_10_1016_j_bbamcr_2024_119824
crossref_primary_10_1007_s12551_019_00605_3
crossref_primary_10_3389_fmolb_2022_968248
Cites_doi 10.2987/8756-971X(2006)22[501:IBFMMC]2.0.CO;2
10.1007/s00442-017-4035-9
10.3892/or.2014.3132
10.1016/j.molbiopara.2007.01.009
10.1186/1475-2875-8-113
10.1126/science.1102452
10.1371/journal.pone.0008091
10.1074/jbc.M408349200
10.1038/nrmicro2420
10.2174/138161213804143734
10.1126/science.1215966
10.3390/molecules22122139
10.1186/1475-2875-11-114
10.1126/science.1102737
10.1371/journal.pone.0135326
10.1017/S003118201300228X
10.1126/science.1068408
10.1002/prot.25600
10.1379/1466-1268(2000)005<0347:AOTLOC>2.0.CO;2
10.1016/j.meegid.2018.04.039
10.1016/j.pep.2011.01.005
10.1371/journal.pone.0181656
10.3389/fmolb.2015.00034
10.1038/ncomms11901
10.1074/jbc.271.16.9347
10.1128/mBio.01106-19
10.1128/AAC.01799-17
10.1371/journal.pone.0075446
10.1007/s12192-011-0299-x
10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2
10.1073/pnas.0703433104
10.3390/molecules22071224
10.3201/eid1707.101551
10.1093/femsre/fuw037
10.1083/jcb.132.3.255
10.1186/1475-2875-2-30
10.1016/j.molbiopara.2017.03.003
10.1016/j.cell.2017.06.030
10.1182/blood-2005-11-4624
10.1186/1475-2875-9-236
10.1371/journal.pone.0044605
10.1038/nrmicro2110
10.1038/381571a0
10.1128/EC.00228-14
10.1093/nar/gkn814
10.1073/pnas.91.9.3715
10.1128/mSphere.00363-17
10.1128/mr.57.2.402-414.1993
10.1006/jmbi.2000.3923
10.1091/mbc.12.11.3307
10.2741/3954
10.1074/jbc.M110.155317
10.1111/j.1462-5822.2012.01840.x
10.1128/EC.05155-11
10.1111/j.1574-695X.2009.00639.x
10.1111/mmi.12334
10.2174/187152610791163417
10.1073/pnas.96.10.5452
10.1007/978-1-61779-295-3
10.1073/pnas.81.21.6779
10.1074/jbc.M110.142638
10.1016/j.bmc.2009.01.024
10.1073/pnas.1803208115
10.1186/gb-2003-4-2-r9
10.1371/journal.pone.0157949
10.1371/journal.pone.0129445
10.1096/fj.15-276618
10.1126/science.1260403
10.1128/AAC.01748-15
10.1110/ps.072918107
10.1016/j.febslet.2011.04.042
10.1371/journal.pcbi.0030168
10.1016/j.mib.2013.03.005
10.1021/acs.jmedchem.6b00591
10.1038/nature13574
10.1371/journal.pone.0148517
10.1146/annurev.pharmtox.37.1.297
10.3390/ijms18091978
10.3390/pathogens2010033
10.1371/journal.ppat.1006930
10.1016/j.molcel.2009.09.023
10.1515/bc.2011.040
10.1073/pnas.1600459113
10.1017/S0031182013002084
10.1016/j.biocel.2007.02.011
10.1155/2014/652643
10.1182/blood-2010-04-202911
10.1074/jbc.M100633200
10.1111/j.1462-5822.2010.01477.x
10.1146/annurev.ge.27.120193.002253
10.1007/s12192-016-0678-4
10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2
10.1182/blood-2004-12-4666
10.1038/nature13555
10.1007/s12192-017-0797-6
10.1016/j.biocel.2015.02.008
10.1016/j.jmb.2004.12.040
10.1111/cmi.12261
10.1016/j.pt.2009.10.001
10.1016/bs.acr.2015.08.002
10.1515/hsz-2014-0138
10.1074/jbc.M211309200
10.1016/0166-6851(91)90163-Z
10.3389/fmicb.2018.01737
10.4103/1687-7942.163407
10.1186/gb-2006-7-2-r12
10.1172/JCI33996
10.1242/jcs.02381
10.1016/j.cell.2008.04.051
10.1126/science.aap7847
10.1038/417398a
10.2174/1381612823666170124142439
10.1016/j.chom.2008.10.011
10.1371/journal.pone.0152626
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/biom9070295
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-273X
ExternalDocumentID oai_doaj_org_article_e36830931bdf4f418ffbaf83451ec7fb
PMC6681276
31340488
10_3390_biom9070295
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID 53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EBD
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PJZUB
PPXIY
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c447t-4b5391924471e349d22bd9c8d9e6624451b94020b95ff8a35f05740eb49e287b3
IEDL.DBID M48
ISSN 2218-273X
IngestDate Wed Aug 27 01:31:57 EDT 2025
Thu Aug 21 18:28:49 EDT 2025
Fri Sep 05 04:45:48 EDT 2025
Thu Jan 02 22:59:04 EST 2025
Tue Jul 01 00:43:05 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords functional interplay
Plasmodium falciparum
co-chaperone
chaperone
heat shock proteins
exportome
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-4b5391924471e349d22bd9c8d9e6624451b94020b95ff8a35f05740eb49e287b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3203-0602
0000-0003-3669-3542
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biom9070295
PMID 31340488
PQID 2264223774
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e36830931bdf4f418ffbaf83451ec7fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6681276
proquest_miscellaneous_2264223774
pubmed_primary_31340488
crossref_primary_10_3390_biom9070295
crossref_citationtrail_10_3390_biom9070295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190723
PublicationDateYYYYMMDD 2019-07-23
PublicationDate_xml – month: 7
  year: 2019
  text: 20190723
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Biomolecules (Basel, Switzerland)
PublicationTitleAlternate Biomolecules
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Cui (ref_112) 2012; 5
Kumar (ref_59) 2003; 2
Baker (ref_37) 1984; 81
Charnaud (ref_40) 2012; 14
Kumar (ref_64) 1991; 48
Melnikov (ref_6) 2018; 115
Laufen (ref_45) 1999; 96
Njunge (ref_49) 2015; 62
Boel (ref_2) 2012; 11
Calderwood (ref_103) 2016; 129
Sargeant (ref_78) 2006; 7
Morahan (ref_90) 2011; 10
ref_16
Posfai (ref_110) 2018; 62
Shahinas (ref_27) 2013; 2
Matthews (ref_97) 2019; 10
Spielmann (ref_11) 2010; 26
Njunge (ref_53) 2013; 19
Zininga (ref_117) 2017; 22
Bozdech (ref_9) 2003; 4
Hartl (ref_33) 2002; 295
Fares (ref_7) 2002; 417
Pesce (ref_41) 2014; 141
Zininga (ref_66) 2016; 21
ref_24
Heiny (ref_67) 2012; 23
Corey (ref_28) 2016; 7
Chiang (ref_115) 2009; 17
Zininga (ref_48) 2015; 10
Hennessy (ref_74) 2000; 5
Marti (ref_71) 2004; 306
Knuepfer (ref_81) 2005; 105
Rug (ref_50) 2010; 12
Legge (ref_75) 2000; 300
ref_79
Bushell (ref_83) 2017; 170
Meibalan (ref_89) 2015; 14
Gusarova (ref_120) 2001; 276
Green (ref_60) 2016; 60
Jha (ref_38) 2017; 214
Zhang (ref_85) 2018; 360
Montagna (ref_18) 2012; 17
Wang (ref_58) 2016; 59
Botha (ref_46) 2007; 39
Ma (ref_108) 2014; 31
Mabate (ref_70) 2018; 86
Olshina (ref_4) 2016; 30
Hiller (ref_10) 2004; 306
Petersen (ref_21) 2011; 585
Acharya (ref_39) 2007; 153
Leu (ref_118) 2009; 36
Przyborski (ref_29) 2015; 2
Parsell (ref_35) 1993; 27
Marchand (ref_87) 2011; 17
Chua (ref_42) 2014; 141
Cockburn (ref_121) 2014; 395
Banumathy (ref_56) 2003; 278
Pavithra (ref_47) 2007; 3
Aurrecoechea (ref_54) 2009; 37
Hayes (ref_36) 1996; 132
Gitau (ref_43) 2012; 17
Wiesgigl (ref_61) 2001; 12
Tambini (ref_23) 2009; 8
Cheetham (ref_72) 1998; 3
ref_55
ref_52
Schmitz (ref_5) 2010; 285
Easton (ref_63) 2000; 5
Neckers (ref_104) 2008; 4
Munje (ref_96) 2014; 2014
Cowen (ref_57) 2013; 16
Zhang (ref_82) 2017; 7
Buffet (ref_91) 2011; 117
Mills (ref_84) 2007; 104
Iglesias (ref_8) 2018; 9
Goldberg (ref_3) 2010; 8
Maier (ref_12) 2009; 7
ref_68
Tsai (ref_73) 1996; 271
Borges (ref_76) 2005; 280
ref_65
Woodrow (ref_22) 2017; 41
Pratt (ref_102) 1997; 37
Elsworth (ref_95) 2014; 511
Pallavi (ref_17) 2010; 285
Wu (ref_77) 2005; 346
Hartl (ref_31) 1996; 381
Stephens (ref_51) 2011; 77
Cheeseman (ref_113) 2012; 336
Gupta (ref_88) 1994; 91
Smith (ref_32) 1998; 50
Greenwood (ref_20) 2008; 118
Cockburn (ref_107) 2011; 392
ref_116
ref_119
Maier (ref_13) 2008; 134
Horrocks (ref_80) 2005; 118
Cobb (ref_69) 2017; 2
ref_111
Pallavi (ref_30) 2010; 9
Mok (ref_26) 2015; 347
Craig (ref_34) 1993; 57
Pesce (ref_25) 2010; 10
ref_106
ref_105
ref_109
Matthews (ref_93) 2013; 89
ref_44
ref_100
Gleichsner (ref_86) 2018; 186
ref_101
ref_1
Abaza (ref_92) 2015; 8
Elsworth (ref_15) 2014; 16
Shonhai (ref_62) 2007; 16
Daniyan (ref_14) 2017; 23
Ismail (ref_114) 2016; 113
Rug (ref_99) 2006; 108
Phelan (ref_94) 2018; 62
Beck (ref_98) 2014; 511
Curtis (ref_19) 2006; 22
References_xml – volume: 22
  start-page: 501
  year: 2006
  ident: ref_19
  article-title: Insecticide-treated bed-nets for malaria mosquito control
  publication-title: J. Am. Mosq. Control Assoc.
  doi: 10.2987/8756-971X(2006)22[501:IBFMMC]2.0.CO;2
– volume: 186
  start-page: 555
  year: 2018
  ident: ref_86
  article-title: The influence of related and unrelated co-infections on parasite dynamics and virulence
  publication-title: Oecologia
  doi: 10.1007/s00442-017-4035-9
– volume: 31
  start-page: 2482
  year: 2014
  ident: ref_108
  article-title: Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2014.3132
– volume: 153
  start-page: 85
  year: 2007
  ident: ref_39
  article-title: Chaperoning a cellular upheaval in malaria: Heat shock proteins in Plasmodium falciparum
  publication-title: Mol. Biochem. Parasitol.
  doi: 10.1016/j.molbiopara.2007.01.009
– volume: 8
  start-page: 113
  year: 2009
  ident: ref_23
  article-title: Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells
  publication-title: Malar. J.
  doi: 10.1186/1475-2875-8-113
– volume: 306
  start-page: 1930
  year: 2004
  ident: ref_71
  article-title: Targeting malaria virulence and remodeling proteins to the host erythrocyte
  publication-title: Science
  doi: 10.1126/science.1102452
– ident: ref_100
  doi: 10.1371/journal.pone.0008091
– ident: ref_16
– volume: 280
  start-page: 13671
  year: 2005
  ident: ref_76
  article-title: Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408349200
– volume: 8
  start-page: 617
  year: 2010
  ident: ref_3
  article-title: Moving in and renovating: Exporting proteins from Plasmodium into host erythrocytes
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2420
– ident: ref_1
– volume: 50
  start-page: 493
  year: 1998
  ident: ref_32
  article-title: Molecular chaperones: Biology and prospects for pharmacological intervention
  publication-title: Pharm. Rev.
– volume: 19
  start-page: 1
  year: 2013
  ident: ref_53
  article-title: Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: Structure, function, clinical relevance, and drug targets
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161213804143734
– volume: 336
  start-page: 79
  year: 2012
  ident: ref_113
  article-title: A major genome region underlying artemisinin resistance in malaria
  publication-title: Science
  doi: 10.1126/science.1215966
– ident: ref_116
  doi: 10.3390/molecules22122139
– volume: 11
  start-page: 114
  year: 2012
  ident: ref_2
  article-title: The epidemiology of postpartum malaria: A systematic review
  publication-title: Malar. J.
  doi: 10.1186/1475-2875-11-114
– volume: 306
  start-page: 1934
  year: 2004
  ident: ref_10
  article-title: A host-targeting signal in virulence proteins reveals a secretome in malarial infection
  publication-title: Science
  doi: 10.1126/science.1102737
– volume: 10
  start-page: 1
  year: 2015
  ident: ref_48
  article-title: Plasmodium falciparum hop (PfHop) interacts with the Hsp70 chaperone in a nucleotide-dependent fashion and exhibits ligand selectivity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0135326
– volume: 141
  start-page: 1167
  year: 2014
  ident: ref_41
  article-title: Plasmodial Hsp40 and Hsp70 chaperones: Current and future perspectives
  publication-title: Parasitology
  doi: 10.1017/S003118201300228X
– volume: 295
  start-page: 1852
  year: 2002
  ident: ref_33
  article-title: Molecular chaperones in the cytosol: From nascent chain to folded protein
  publication-title: Science
  doi: 10.1126/science.1068408
– volume: 86
  start-page: 1189
  year: 2018
  ident: ref_70
  article-title: Structural and biochemical characterization of Plasmodium falciparum Hsp70-x reveals functional versatility of its C-terminal EEVN motif
  publication-title: Proteins
  doi: 10.1002/prot.25600
– volume: 5
  start-page: 347
  year: 2000
  ident: ref_74
  article-title: Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(2000)005<0347:AOTLOC>2.0.CO;2
– volume: 62
  start-page: 211
  year: 2018
  ident: ref_94
  article-title: Global analysis of Plasmodium falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole-genome sequencing data and meta-analysis
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2018.04.039
– volume: 77
  start-page: 159
  year: 2011
  ident: ref_51
  article-title: Co-expression of the Plasmodium falciparum molecular chaperone, PfHsp70, improves the heterologous production of the antimalarial drug target GTP cyclohydrolase I., PfGCHI
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2011.01.005
– ident: ref_68
  doi: 10.1371/journal.pone.0181656
– volume: 2
  start-page: 34
  year: 2015
  ident: ref_29
  article-title: Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle
  publication-title: Front Mol. Biosci.
  doi: 10.3389/fmolb.2015.00034
– volume: 7
  start-page: 11901
  year: 2016
  ident: ref_28
  article-title: A broad analysis of resistance development in the malaria parasite
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11901
– volume: 271
  start-page: 9347
  year: 1996
  ident: ref_73
  article-title: A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.16.9347
– volume: 10
  start-page: e01106
  year: 2019
  ident: ref_97
  article-title: Uncoupling the threading and unfoldase actions of Plasmodium HSP101 reveals differences in export between soluble and insoluble proteins
  publication-title: MBio
  doi: 10.1128/mBio.01106-19
– volume: 62
  start-page: e01799-17
  year: 2018
  ident: ref_110
  article-title: Identification of Hsp90 Inhibitors with Anti-Plasmodium activity
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01799-17
– ident: ref_111
  doi: 10.1371/journal.pone.0075446
– volume: 17
  start-page: 191
  year: 2012
  ident: ref_43
  article-title: Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop)
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-011-0299-x
– volume: 5
  start-page: 276
  year: 2000
  ident: ref_63
  article-title: The Hsp110 and Grp170 stress proteins: Newly recognized relatives of the Hsp70s
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2
– volume: 104
  start-page: 9213
  year: 2007
  ident: ref_84
  article-title: Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0703433104
– ident: ref_119
  doi: 10.3390/molecules22071224
– volume: 5
  start-page: 1197
  year: 2012
  ident: ref_112
  article-title: Molecular dynamics simulations of PfAQP from the malarial parasite Plasmodium falciparum
  publication-title: Mol. Med. Rep.
– volume: 17
  start-page: 1232
  year: 2011
  ident: ref_87
  article-title: Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among humans and anopheles dirus mosquitoes, Southern Vietnam
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1707.101551
– volume: 41
  start-page: 34
  year: 2017
  ident: ref_22
  article-title: The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuw037
– volume: 132
  start-page: 255
  year: 1996
  ident: ref_36
  article-title: Mini-Review: Roles of molecular chaperones in protein degradation
  publication-title: Cell
  doi: 10.1083/jcb.132.3.255
– volume: 2
  start-page: 30
  year: 2003
  ident: ref_59
  article-title: The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin
  publication-title: Malar J
  doi: 10.1186/1475-2875-2-30
– volume: 214
  start-page: 10
  year: 2017
  ident: ref_38
  article-title: Plasmodium Hsp40 and human Hsp70: A potential cochaperone-chaperone complex
  publication-title: Mol. Biochem. Parasitol.
  doi: 10.1016/j.molbiopara.2017.03.003
– volume: 170
  start-page: 260
  year: 2017
  ident: ref_83
  article-title: Functional profiling of a Plasmodium genome reveals an abundance of essential genes
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.030
– volume: 108
  start-page: 370
  year: 2006
  ident: ref_99
  article-title: The role of KAHRP domains in knob formation and cytoadherence of P falciparum-infected human erythrocytes
  publication-title: Blood
  doi: 10.1182/blood-2005-11-4624
– volume: 9
  start-page: 236
  year: 2010
  ident: ref_30
  article-title: Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients
  publication-title: Malar. J.
  doi: 10.1186/1475-2875-9-236
– ident: ref_79
  doi: 10.1371/journal.pone.0044605
– volume: 7
  start-page: 341
  year: 2009
  ident: ref_12
  article-title: Malaria parasite proteins that remodel the host erythrocyte
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2110
– volume: 381
  start-page: 571
  year: 1996
  ident: ref_31
  article-title: Molecular chaperones in cellular protein folding
  publication-title: Nature
  doi: 10.1038/381571a0
– volume: 14
  start-page: 371
  year: 2015
  ident: ref_89
  article-title: Host erythrocyte environment influences the localization of exported protein 2, an essential component of the Plasmodium translocon
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00228-14
– volume: 37
  start-page: D539
  year: 2009
  ident: ref_54
  article-title: PlasmoDB: A functional genomic database for malaria parasites
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn814
– volume: 91
  start-page: 3715
  year: 1994
  ident: ref_88
  article-title: Parasite virulence and disease patterns in Plasmodium falciparum malaria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.9.3715
– volume: 2
  start-page: e00363-17
  year: 2017
  ident: ref_69
  article-title: The exported chaperone PfHsp70x is dispensable for the Plasmodium falciparum intraerythrocytic life cycle david
  publication-title: mSphere
  doi: 10.1128/mSphere.00363-17
– volume: 57
  start-page: 402
  year: 1993
  ident: ref_34
  article-title: Heat shock proteins: Molecular chaperones of protein biogenesis
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.57.2.402-414.1993
– volume: 300
  start-page: 805
  year: 2000
  ident: ref_75
  article-title: Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3923
– volume: 12
  start-page: 3307
  year: 2001
  ident: ref_61
  article-title: Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.11.3307
– volume: 17
  start-page: 726
  year: 2012
  ident: ref_18
  article-title: Plasmodium sporozoite motility: An update
  publication-title: Front. Biosci.
  doi: 10.2741/3954
– volume: 285
  start-page: 37964
  year: 2010
  ident: ref_17
  article-title: Heat shock protein 90 as a drug target against protozoan infections: Biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.155317
– volume: 14
  start-page: 1784
  year: 2012
  ident: ref_40
  article-title: P. falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2012.01840.x
– volume: 10
  start-page: 1492
  year: 2011
  ident: ref_90
  article-title: Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.05155-11
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_82
  article-title: Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions
  publication-title: Sci. Rep.
– ident: ref_106
  doi: 10.1111/j.1574-695X.2009.00639.x
– volume: 89
  start-page: 1167
  year: 2013
  ident: ref_93
  article-title: The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12334
– volume: 10
  start-page: 147
  year: 2010
  ident: ref_25
  article-title: Malaria heat shock proteins: Drug targets that chaperone other drug targets
  publication-title: Infect. Disord. Drug Targets
  doi: 10.2174/187152610791163417
– volume: 96
  start-page: 5452
  year: 1999
  ident: ref_45
  article-title: Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.10.5452
– ident: ref_55
  doi: 10.1007/978-1-61779-295-3
– volume: 81
  start-page: 6779
  year: 1984
  ident: ref_37
  article-title: A gene regulating the heat shock response in Escherichia coli also affects proteolysis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.21.6779
– volume: 285
  start-page: 36577
  year: 2010
  ident: ref_5
  article-title: Malaria parasite actin polymerization and filament structure
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.142638
– volume: 17
  start-page: 1527
  year: 2009
  ident: ref_115
  article-title: Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum
  publication-title: Bioorganic Med. Chem.
  doi: 10.1016/j.bmc.2009.01.024
– volume: 115
  start-page: E6245
  year: 2018
  ident: ref_6
  article-title: Error-prone protein synthesis in parasites with the smallest eukaryotic genome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1803208115
– volume: 4
  start-page: R9.1
  year: 2003
  ident: ref_9
  article-title: Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-2-r9
– ident: ref_101
  doi: 10.1371/journal.pone.0157949
– ident: ref_65
  doi: 10.1371/journal.pone.0129445
– volume: 30
  start-page: 405
  year: 2016
  ident: ref_4
  article-title: Plasmodium actin is incompletely folded by heterologous protein-folding machinery and likely requires the native Plasmodium chaperonin complex to enter a mature functional state
  publication-title: FASEB J.
  doi: 10.1096/fj.15-276618
– volume: 347
  start-page: 431
  year: 2015
  ident: ref_26
  article-title: Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
  publication-title: Science
  doi: 10.1126/science.1260403
– volume: 60
  start-page: 1464
  year: 2016
  ident: ref_60
  article-title: Imidazopyridazine inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 also target cyclic GMP-dependent protein kinase and heat shock protein 90 to kill the parasite at different stages of intracellular development
  publication-title: Antimicrob Agents Chemother.
  doi: 10.1128/AAC.01748-15
– volume: 16
  start-page: 1803
  year: 2007
  ident: ref_62
  article-title: The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum
  publication-title: Protein Sci.
  doi: 10.1110/ps.072918107
– volume: 585
  start-page: 1551
  year: 2011
  ident: ref_21
  article-title: Drug-resistant malaria: Molecular mechanisms and implications for public health
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2011.04.042
– volume: 3
  start-page: 1701
  year: 2007
  ident: ref_47
  article-title: Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030168
– volume: 16
  start-page: 377
  year: 2013
  ident: ref_57
  article-title: The fungal Achilles’ heel: Targeting Hsp90 to cripple fungal pathogens
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2013.03.005
– volume: 59
  start-page: 6344
  year: 2016
  ident: ref_58
  article-title: Inhibition of Plasmodium falciparum Hsp90 contributes to the antimalarial activities of aminoalcohol-carbazoles
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00591
– volume: 511
  start-page: 592
  year: 2014
  ident: ref_98
  article-title: PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes
  publication-title: Nature
  doi: 10.1038/nature13574
– ident: ref_44
  doi: 10.1371/journal.pone.0148517
– volume: 37
  start-page: 297
  year: 1997
  ident: ref_102
  article-title: The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase
  publication-title: Annu. Rev. Pharm. Toxicol.
  doi: 10.1146/annurev.pharmtox.37.1.297
– ident: ref_105
  doi: 10.3390/ijms18091978
– volume: 23
  start-page: 91
  year: 2012
  ident: ref_67
  article-title: The apicoplast of the human malaria parasite P. falciparum
  publication-title: J. Endocytobiosis Cell Res.
– volume: 2
  start-page: 33
  year: 2013
  ident: ref_27
  article-title: Targeting Plasmodium falciparum Hsp90: Towards reversing antimalarial resistance
  publication-title: Pathogens
  doi: 10.3390/pathogens2010033
– ident: ref_109
  doi: 10.1371/journal.ppat.1006930
– volume: 36
  start-page: 15
  year: 2009
  ident: ref_118
  article-title: A small molecule inhibitor of inducible heat shock protein 70
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.09.023
– volume: 392
  start-page: 431
  year: 2011
  ident: ref_107
  article-title: Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: Inhibition of the plasmodial chaperone PfHsp70-1
  publication-title: Biol. Chem.
  doi: 10.1515/bc.2011.040
– volume: 113
  start-page: 2080
  year: 2016
  ident: ref_114
  article-title: Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1600459113
– volume: 141
  start-page: 1177
  year: 2014
  ident: ref_42
  article-title: Co-chaperones of Hsp90 in Plasmodium falciparum and their concerted roles in cellular regulation
  publication-title: Parasitology
  doi: 10.1017/S0031182013002084
– volume: 39
  start-page: 1781
  year: 2007
  ident: ref_46
  article-title: The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: Regulating chaperone power in the parasite and the host
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2007.02.011
– volume: 2014
  start-page: 652643
  year: 2014
  ident: ref_96
  article-title: Could upregulated Hsp70 protein compensate for the Hsp90-silence-induced cell death in glioma cells?
  publication-title: Int. J. Brain Sci.
  doi: 10.1155/2014/652643
– volume: 117
  start-page: 381
  year: 2011
  ident: ref_91
  article-title: The pathogenesis of Plasmodium falciparum malaria in humans: Insights from splenic physiology
  publication-title: Blood
  doi: 10.1182/blood-2010-04-202911
– volume: 276
  start-page: 24891
  year: 2001
  ident: ref_120
  article-title: Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100633200
– volume: 12
  start-page: 1398
  year: 2010
  ident: ref_50
  article-title: Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2010.01477.x
– ident: ref_24
– volume: 27
  start-page: 437
  year: 1993
  ident: ref_35
  article-title: The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.ge.27.120193.002253
– volume: 21
  start-page: 499
  year: 2016
  ident: ref_66
  article-title: Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-016-0678-4
– volume: 3
  start-page: 28
  year: 1998
  ident: ref_72
  article-title: Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2
– volume: 105
  start-page: 4078
  year: 2005
  ident: ref_81
  article-title: Trafficking of the major virulence factor to the surface of transfected P. falciparum—Infected erythrocytes
  publication-title: Blood
  doi: 10.1182/blood-2004-12-4666
– volume: 511
  start-page: 587
  year: 2014
  ident: ref_95
  article-title: PTEX is an essential nexus for protein export in malaria parasites
  publication-title: Nature
  doi: 10.1038/nature13555
– volume: 22
  start-page: 707
  year: 2017
  ident: ref_117
  article-title: Polymyxin B inhibits the chaperone activity of Plasmodium falciparum Hsp70
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-017-0797-6
– volume: 62
  start-page: 47
  year: 2015
  ident: ref_49
  article-title: PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2015.02.008
– volume: 346
  start-page: 1005
  year: 2005
  ident: ref_77
  article-title: The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.12.040
– volume: 16
  start-page: 355
  year: 2014
  ident: ref_15
  article-title: Protein export in malaria parasites: An update
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.12261
– volume: 26
  start-page: 6
  year: 2010
  ident: ref_11
  article-title: Protein export in malaria parasites: Do multiple export motifs add up to multiple export pathways?
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2009.10.001
– volume: 129
  start-page: 89
  year: 2016
  ident: ref_103
  article-title: Hsp90 in Cancer: Transcriptional roles in the nucleus
  publication-title: Adv. Cancer Res.
  doi: 10.1016/bs.acr.2015.08.002
– volume: 395
  start-page: 1353
  year: 2014
  ident: ref_121
  article-title: Selective modulation of plasmodial Hsp70s by small molecules with antimalarial activity
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2014-0138
– volume: 278
  start-page: 18336
  year: 2003
  ident: ref_56
  article-title: Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M211309200
– volume: 48
  start-page: 47
  year: 1991
  ident: ref_64
  article-title: Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family
  publication-title: Mol. Biochem. Parasitol.
  doi: 10.1016/0166-6851(91)90163-Z
– volume: 9
  start-page: 1737
  year: 2018
  ident: ref_8
  article-title: Discovering putative prion-Like proteins in Plasmodium falciparum: A computational and experimental analysis
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01737
– volume: 8
  start-page: 14
  year: 2015
  ident: ref_92
  article-title: Heat shock proteins and parasitic diseases: Part II. Protozoa
  publication-title: Parasitol. United J.
  doi: 10.4103/1687-7942.163407
– volume: 7
  start-page: R12
  year: 2006
  ident: ref_78
  article-title: Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-2-r12
– volume: 118
  start-page: 1266
  year: 2008
  ident: ref_20
  article-title: Malaria: Progress, perils, and prospects for eradication
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI33996
– volume: 118
  start-page: 2507
  year: 2005
  ident: ref_80
  article-title: PfEMP1 expression is reduced on the surface of knobless Plasmodium falciparum infected erythrocytes
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02381
– volume: 134
  start-page: 48
  year: 2008
  ident: ref_13
  article-title: Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.051
– volume: 360
  start-page: 1
  year: 2018
  ident: ref_85
  article-title: Uncovering the essential genes of the human malaria parasite
  publication-title: Science
  doi: 10.1126/science.aap7847
– volume: 417
  start-page: 398
  year: 2002
  ident: ref_7
  article-title: Endosymbiotic bacteria: GroEL buffers against deleterious mutations
  publication-title: Nature
  doi: 10.1038/417398a
– volume: 23
  start-page: 4555
  year: 2017
  ident: ref_14
  article-title: Plasmodial Hsp40s: New avenues for antimalarial drug discovery
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612823666170124142439
– volume: 4
  start-page: 519
  year: 2008
  ident: ref_104
  article-title: Molecular chaperones in pathogen virulence: Emerging new targets for therapy
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.10.011
– ident: ref_52
  doi: 10.1371/journal.pone.0152626
SSID ssj0000800823
Score 2.2879755
SecondaryResourceType review_article
Snippet The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the...
The survival of the human malaria parasite under the physiologically distinct environments associated with their development in the cold-blooded invertebrate...
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 295
SubjectTerms Animals
chaperone
co-chaperone
exportome
functional interplay
heat shock proteins
Heat-Shock Proteins - metabolism
Humans
Plasmodium falciparum
Plasmodium falciparum - metabolism
Plasmodium falciparum - pathogenicity
Review
Virulence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15K2_TDbVNUCD0UTGxJlq3ekpBlW0hYaFJyM9JaQ1yyctnsHnLOH--M7F28JdBLb8aWsewZSe9ZM28YOwTQ1uocUlkJkyqZQWoar3DE6wykB6uipc8v9PRKfb8urkelvigmrJcH7j_ckZe6ot263DWgQOUVgLNQSVXkfl6Co9k3M9mITP0acFAlZJ-QJ5HXH1E2OxLBTFAlidESFJX6H4OXf0dJjpadyXP2bMCL_Ljv5wv2xIeXbP84IFde3PPPPEZwxl_j--xhhq8TEM_xNvDzFnlr6-Ern-DS1f_x4xd90Pcd74BPcRbmP25wPuQzEmtoQzw9Qzi96Jp2veBgbynieomHNjT8kvYU-LdNVRPeBY4PtLT9zH-2y3VMX3rFriZnl6fTdCiykM6VKlepcoU0xMJwlfJSmUYI15h51RivtSD5MmeIYzpTAFRWFoAIT2XeKeORbTn5mu2FLvi3jJvKV6ZwrijAIevWpjSFxfsyAd5LEAn7svnu9XxQIKdCGLc1MhEyUj0yUsIOt41_98Ibjzc7IQNum5BadjyBPlQPPlT_y4cS9mlj_hpHF22Z2OC79V1NacYIoBAjJ-xN7w7bR8lcKpr_ElbuOMpOX3avhPYmKnhrUn0r9bv_0fn37CmCOMpES4X8wPZWy7U_QKC0ch_jmPgDSIMU8g
  priority: 102
  providerName: Directory of Open Access Journals
Title Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence
URI https://www.ncbi.nlm.nih.gov/pubmed/31340488
https://www.proquest.com/docview/2264223774
https://pubmed.ncbi.nlm.nih.gov/PMC6681276
https://doaj.org/article/e36830931bdf4f418ffbaf83451ec7fb
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZ2eeEFAeMSBpWRJh6QAm3sODESQhtaVZBWVbCivkVx47MFtQ5LW4k988c5x0mrdeojb5FjK5fjY3-fz42xEwCV56oHoUgjHUrRhVAXVqLGqy4IC7n0kr4YqsFYfpvEkz22LsbZ_sDFTmpH9aTG9ez9n5vbz6jwn4hxImX_QIHqyPG6kY732aE3FJEPX4vzf7WwKI1EE593f8zWjuQT9-9Cm_edJu_sQv1H7GELH_lpI-_HbM-6J-zo1CF1nt_yt9w7dPqT8iP2d4TTwiG846XjFyV-a2nhI-_jTtYcAPJh4wO-4BXwAS7K_Mc1Lo98RLkbSuebR4iu51VRruYc8hk5YNd4mbuCX5KJgX9dFznhleP4wJys0fxnWa98NNNTNu6fX34ZhG3NhXAqZbIMpYmFJlKGm5YVUhdRZAo9TQttlYoom5nRRDmNjgHSXMSAgE92rZHaIvky4hk7cJWzLxjXqU11bEwcg0ESrnSi4xzHdSOwVkAUsHfr_55N24TkVBdjliExISFld4QUsJNN599NHo7d3c5IgJsulDzbN1T1VdbqYmaFSskA3DMFSJC9FMDkkAr8ODtNwATszVr8GSobWVByZ6vVIqOoY8RTCJkD9ryZDptHiZ6QtBwGLNmaKFvvsn3Hldc-obeiJHCJevk_Xv6YPUBMR4FpYSResYNlvbKvETctTYftJ5Okww7Pzoej7x1_-tDxevIPolMe5A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partners+in+Mischief%3A+Functional+Networks+of+Heat+Shock+Proteins+of+Plasmodium+falciparum+and+Their+Influence+on+Parasite+Virulence&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Michael+O.+Daniyan&rft.au=Jude+M.+Przyborski&rft.au=Addmore+Shonhai&rft.date=2019-07-23&rft.pub=MDPI+AG&rft.eissn=2218-273X&rft.volume=9&rft.issue=7&rft.spage=295&rft_id=info:doi/10.3390%2Fbiom9070295&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e36830931bdf4f418ffbaf83451ec7fb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon