Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end,...
Saved in:
Published in | Biomolecules (Basel, Switzerland) Vol. 9; no. 7; p. 295 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
23.07.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 2218-273X 2218-273X |
DOI | 10.3390/biom9070295 |
Cover
Abstract | The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the ‘exportome’ (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies. |
---|---|
AbstractList | The survival of the human malaria parasite
Plasmodium falciparum
under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the ‘exportome’ (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of
P. falciparum
have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies. The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies. The survival of the human malaria parasite under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies. The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the ‘exportome’ (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies. |
Author | Przyborski, Jude M. Shonhai, Addmore Daniyan, Michael O. |
AuthorAffiliation | 2 Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany 3 Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa 1 Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria |
AuthorAffiliation_xml | – name: 1 Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria – name: 3 Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa – name: 2 Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany |
Author_xml | – sequence: 1 givenname: Michael O. orcidid: 0000-0003-3669-3542 surname: Daniyan fullname: Daniyan, Michael O. – sequence: 2 givenname: Jude M. surname: Przyborski fullname: Przyborski, Jude M. – sequence: 3 givenname: Addmore orcidid: 0000-0003-3203-0602 surname: Shonhai fullname: Shonhai, Addmore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31340488$$D View this record in MEDLINE/PubMed |
BookMark | eNptUl1rFDEUDVKxtfbJd8mjIKv5mpnEB0GKtQtVF6ziW8hkbrppZ5I1ySg--8fNdmtpxRDIzcm554R772O0F2IAhJ5S8pJzRV71Pk6KdISp5gE6YIzKBev4t7078T46yvmS1CXrZvwR2ueUCyKkPEC_VyaVACljH_AHn-3ag3uNT-Zgi4_BjPgjlJ8xXWUcHT4FU_DndbRXeJViAR-u4dVo8hQHP0_YmdH6jUk1NGHA52vwCS-DG2cIFnAMuBqa7Avgrz7N4xZ9gh7WtAxHN-ch-nLy7vz4dHH26f3y-O3ZwgrRlYXoG66oYvVCgQs1MNYPyspBQdtWtKG9EoSRXjXOScMbR5pOEOiFAia7nh-i5U53iOZSb5KfTPqlo_H6GojpQtdieDuCBt5KThSn_eCEE1Q61xsneTUB27mt1pud1mbuJxgshJLMeE_0_kvwa30Rf-i2lZR1bRV4fiOQ4vcZctFTrT6MowkQ56wZawVjvOtEpT6763Vr8reLlfBiR7Ap5pzA3VIo0dsx0XfGpLLpP2zri9l2u37Uj__N-QOdYsHZ |
CitedBy_id | crossref_primary_10_1016_j_crimmu_2021_06_002 crossref_primary_10_1021_acsinfecdis_0c00454 crossref_primary_10_3390_ijms22042226 crossref_primary_10_3390_biom10060856 crossref_primary_10_1080_26895293_2023_2202301 crossref_primary_10_1016_j_csbj_2022_05_017 crossref_primary_10_1016_j_ijbiomac_2021_03_056 crossref_primary_10_3389_fmolb_2022_965569 crossref_primary_10_1038_s41598_020_77881_7 crossref_primary_10_1016_j_bbapap_2023_140942 crossref_primary_10_1038_s41579_019_0321_3 crossref_primary_10_3389_fneur_2020_596528 crossref_primary_10_1038_s41467_021_23434_z crossref_primary_10_1186_s12936_024_04976_1 crossref_primary_10_1371_journal_ppat_1009394 crossref_primary_10_3390_biom9100543 crossref_primary_10_3390_ijms20235930 crossref_primary_10_1007_s12192_023_01339_8 crossref_primary_10_3389_fgene_2022_824483 crossref_primary_10_1016_j_bbapap_2019_140282 crossref_primary_10_3390_biomedicines13030610 crossref_primary_10_1016_j_heliyon_2020_e04037 crossref_primary_10_1007_s12192_021_01212_6 crossref_primary_10_1016_j_bbamcr_2024_119824 crossref_primary_10_1007_s12551_019_00605_3 crossref_primary_10_3389_fmolb_2022_968248 |
Cites_doi | 10.2987/8756-971X(2006)22[501:IBFMMC]2.0.CO;2 10.1007/s00442-017-4035-9 10.3892/or.2014.3132 10.1016/j.molbiopara.2007.01.009 10.1186/1475-2875-8-113 10.1126/science.1102452 10.1371/journal.pone.0008091 10.1074/jbc.M408349200 10.1038/nrmicro2420 10.2174/138161213804143734 10.1126/science.1215966 10.3390/molecules22122139 10.1186/1475-2875-11-114 10.1126/science.1102737 10.1371/journal.pone.0135326 10.1017/S003118201300228X 10.1126/science.1068408 10.1002/prot.25600 10.1379/1466-1268(2000)005<0347:AOTLOC>2.0.CO;2 10.1016/j.meegid.2018.04.039 10.1016/j.pep.2011.01.005 10.1371/journal.pone.0181656 10.3389/fmolb.2015.00034 10.1038/ncomms11901 10.1074/jbc.271.16.9347 10.1128/mBio.01106-19 10.1128/AAC.01799-17 10.1371/journal.pone.0075446 10.1007/s12192-011-0299-x 10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2 10.1073/pnas.0703433104 10.3390/molecules22071224 10.3201/eid1707.101551 10.1093/femsre/fuw037 10.1083/jcb.132.3.255 10.1186/1475-2875-2-30 10.1016/j.molbiopara.2017.03.003 10.1016/j.cell.2017.06.030 10.1182/blood-2005-11-4624 10.1186/1475-2875-9-236 10.1371/journal.pone.0044605 10.1038/nrmicro2110 10.1038/381571a0 10.1128/EC.00228-14 10.1093/nar/gkn814 10.1073/pnas.91.9.3715 10.1128/mSphere.00363-17 10.1128/mr.57.2.402-414.1993 10.1006/jmbi.2000.3923 10.1091/mbc.12.11.3307 10.2741/3954 10.1074/jbc.M110.155317 10.1111/j.1462-5822.2012.01840.x 10.1128/EC.05155-11 10.1111/j.1574-695X.2009.00639.x 10.1111/mmi.12334 10.2174/187152610791163417 10.1073/pnas.96.10.5452 10.1007/978-1-61779-295-3 10.1073/pnas.81.21.6779 10.1074/jbc.M110.142638 10.1016/j.bmc.2009.01.024 10.1073/pnas.1803208115 10.1186/gb-2003-4-2-r9 10.1371/journal.pone.0157949 10.1371/journal.pone.0129445 10.1096/fj.15-276618 10.1126/science.1260403 10.1128/AAC.01748-15 10.1110/ps.072918107 10.1016/j.febslet.2011.04.042 10.1371/journal.pcbi.0030168 10.1016/j.mib.2013.03.005 10.1021/acs.jmedchem.6b00591 10.1038/nature13574 10.1371/journal.pone.0148517 10.1146/annurev.pharmtox.37.1.297 10.3390/ijms18091978 10.3390/pathogens2010033 10.1371/journal.ppat.1006930 10.1016/j.molcel.2009.09.023 10.1515/bc.2011.040 10.1073/pnas.1600459113 10.1017/S0031182013002084 10.1016/j.biocel.2007.02.011 10.1155/2014/652643 10.1182/blood-2010-04-202911 10.1074/jbc.M100633200 10.1111/j.1462-5822.2010.01477.x 10.1146/annurev.ge.27.120193.002253 10.1007/s12192-016-0678-4 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2 10.1182/blood-2004-12-4666 10.1038/nature13555 10.1007/s12192-017-0797-6 10.1016/j.biocel.2015.02.008 10.1016/j.jmb.2004.12.040 10.1111/cmi.12261 10.1016/j.pt.2009.10.001 10.1016/bs.acr.2015.08.002 10.1515/hsz-2014-0138 10.1074/jbc.M211309200 10.1016/0166-6851(91)90163-Z 10.3389/fmicb.2018.01737 10.4103/1687-7942.163407 10.1186/gb-2006-7-2-r12 10.1172/JCI33996 10.1242/jcs.02381 10.1016/j.cell.2008.04.051 10.1126/science.aap7847 10.1038/417398a 10.2174/1381612823666170124142439 10.1016/j.chom.2008.10.011 10.1371/journal.pone.0152626 |
ContentType | Journal Article |
Copyright | 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/biom9070295 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-273X |
ExternalDocumentID | oai_doaj_org_article_e36830931bdf4f418ffbaf83451ec7fb PMC6681276 31340488 10_3390_biom9070295 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBD ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM UKHRP 3V. CGR CUY CVF ECM EIF NPM 7X8 PJZUB PPXIY PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c447t-4b5391924471e349d22bd9c8d9e6624451b94020b95ff8a35f05740eb49e287b3 |
IEDL.DBID | M48 |
ISSN | 2218-273X |
IngestDate | Wed Aug 27 01:31:57 EDT 2025 Thu Aug 21 18:28:49 EDT 2025 Fri Sep 05 04:45:48 EDT 2025 Thu Jan 02 22:59:04 EST 2025 Tue Jul 01 00:43:05 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | functional interplay Plasmodium falciparum co-chaperone chaperone heat shock proteins exportome |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-4b5391924471e349d22bd9c8d9e6624451b94020b95ff8a35f05740eb49e287b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3203-0602 0000-0003-3669-3542 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biom9070295 |
PMID | 31340488 |
PQID | 2264223774 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e36830931bdf4f418ffbaf83451ec7fb pubmedcentral_primary_oai_pubmedcentral_nih_gov_6681276 proquest_miscellaneous_2264223774 pubmed_primary_31340488 crossref_primary_10_3390_biom9070295 crossref_citationtrail_10_3390_biom9070295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190723 |
PublicationDateYYYYMMDD | 2019-07-23 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190723 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Biomolecules (Basel, Switzerland) |
PublicationTitleAlternate | Biomolecules |
PublicationYear | 2019 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Cui (ref_112) 2012; 5 Kumar (ref_59) 2003; 2 Baker (ref_37) 1984; 81 Charnaud (ref_40) 2012; 14 Kumar (ref_64) 1991; 48 Melnikov (ref_6) 2018; 115 Laufen (ref_45) 1999; 96 Njunge (ref_49) 2015; 62 Boel (ref_2) 2012; 11 Calderwood (ref_103) 2016; 129 Sargeant (ref_78) 2006; 7 Morahan (ref_90) 2011; 10 ref_16 Posfai (ref_110) 2018; 62 Shahinas (ref_27) 2013; 2 Matthews (ref_97) 2019; 10 Spielmann (ref_11) 2010; 26 Njunge (ref_53) 2013; 19 Zininga (ref_117) 2017; 22 Bozdech (ref_9) 2003; 4 Hartl (ref_33) 2002; 295 Fares (ref_7) 2002; 417 Pesce (ref_41) 2014; 141 Zininga (ref_66) 2016; 21 ref_24 Heiny (ref_67) 2012; 23 Corey (ref_28) 2016; 7 Chiang (ref_115) 2009; 17 Zininga (ref_48) 2015; 10 Hennessy (ref_74) 2000; 5 Marti (ref_71) 2004; 306 Knuepfer (ref_81) 2005; 105 Rug (ref_50) 2010; 12 Legge (ref_75) 2000; 300 ref_79 Bushell (ref_83) 2017; 170 Meibalan (ref_89) 2015; 14 Gusarova (ref_120) 2001; 276 Green (ref_60) 2016; 60 Jha (ref_38) 2017; 214 Zhang (ref_85) 2018; 360 Montagna (ref_18) 2012; 17 Wang (ref_58) 2016; 59 Botha (ref_46) 2007; 39 Ma (ref_108) 2014; 31 Mabate (ref_70) 2018; 86 Olshina (ref_4) 2016; 30 Hiller (ref_10) 2004; 306 Petersen (ref_21) 2011; 585 Acharya (ref_39) 2007; 153 Leu (ref_118) 2009; 36 Przyborski (ref_29) 2015; 2 Parsell (ref_35) 1993; 27 Marchand (ref_87) 2011; 17 Chua (ref_42) 2014; 141 Cockburn (ref_121) 2014; 395 Banumathy (ref_56) 2003; 278 Pavithra (ref_47) 2007; 3 Aurrecoechea (ref_54) 2009; 37 Hayes (ref_36) 1996; 132 Gitau (ref_43) 2012; 17 Wiesgigl (ref_61) 2001; 12 Tambini (ref_23) 2009; 8 Cheetham (ref_72) 1998; 3 ref_55 ref_52 Schmitz (ref_5) 2010; 285 Easton (ref_63) 2000; 5 Neckers (ref_104) 2008; 4 Munje (ref_96) 2014; 2014 Cowen (ref_57) 2013; 16 Zhang (ref_82) 2017; 7 Buffet (ref_91) 2011; 117 Mills (ref_84) 2007; 104 Iglesias (ref_8) 2018; 9 Goldberg (ref_3) 2010; 8 Maier (ref_12) 2009; 7 ref_68 Tsai (ref_73) 1996; 271 Borges (ref_76) 2005; 280 ref_65 Woodrow (ref_22) 2017; 41 Pratt (ref_102) 1997; 37 Elsworth (ref_95) 2014; 511 Pallavi (ref_17) 2010; 285 Wu (ref_77) 2005; 346 Hartl (ref_31) 1996; 381 Stephens (ref_51) 2011; 77 Cheeseman (ref_113) 2012; 336 Gupta (ref_88) 1994; 91 Smith (ref_32) 1998; 50 Greenwood (ref_20) 2008; 118 Cockburn (ref_107) 2011; 392 ref_116 ref_119 Maier (ref_13) 2008; 134 Horrocks (ref_80) 2005; 118 Cobb (ref_69) 2017; 2 ref_111 Pallavi (ref_30) 2010; 9 Mok (ref_26) 2015; 347 Craig (ref_34) 1993; 57 Pesce (ref_25) 2010; 10 ref_106 ref_105 ref_109 Matthews (ref_93) 2013; 89 ref_44 ref_100 Gleichsner (ref_86) 2018; 186 ref_101 ref_1 Abaza (ref_92) 2015; 8 Elsworth (ref_15) 2014; 16 Shonhai (ref_62) 2007; 16 Daniyan (ref_14) 2017; 23 Ismail (ref_114) 2016; 113 Rug (ref_99) 2006; 108 Phelan (ref_94) 2018; 62 Beck (ref_98) 2014; 511 Curtis (ref_19) 2006; 22 |
References_xml | – volume: 22 start-page: 501 year: 2006 ident: ref_19 article-title: Insecticide-treated bed-nets for malaria mosquito control publication-title: J. Am. Mosq. Control Assoc. doi: 10.2987/8756-971X(2006)22[501:IBFMMC]2.0.CO;2 – volume: 186 start-page: 555 year: 2018 ident: ref_86 article-title: The influence of related and unrelated co-infections on parasite dynamics and virulence publication-title: Oecologia doi: 10.1007/s00442-017-4035-9 – volume: 31 start-page: 2482 year: 2014 ident: ref_108 article-title: Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer publication-title: Oncol. Rep. doi: 10.3892/or.2014.3132 – volume: 153 start-page: 85 year: 2007 ident: ref_39 article-title: Chaperoning a cellular upheaval in malaria: Heat shock proteins in Plasmodium falciparum publication-title: Mol. Biochem. Parasitol. doi: 10.1016/j.molbiopara.2007.01.009 – volume: 8 start-page: 113 year: 2009 ident: ref_23 article-title: Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells publication-title: Malar. J. doi: 10.1186/1475-2875-8-113 – volume: 306 start-page: 1930 year: 2004 ident: ref_71 article-title: Targeting malaria virulence and remodeling proteins to the host erythrocyte publication-title: Science doi: 10.1126/science.1102452 – ident: ref_100 doi: 10.1371/journal.pone.0008091 – ident: ref_16 – volume: 280 start-page: 13671 year: 2005 ident: ref_76 article-title: Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408349200 – volume: 8 start-page: 617 year: 2010 ident: ref_3 article-title: Moving in and renovating: Exporting proteins from Plasmodium into host erythrocytes publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2420 – ident: ref_1 – volume: 50 start-page: 493 year: 1998 ident: ref_32 article-title: Molecular chaperones: Biology and prospects for pharmacological intervention publication-title: Pharm. Rev. – volume: 19 start-page: 1 year: 2013 ident: ref_53 article-title: Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: Structure, function, clinical relevance, and drug targets publication-title: Curr. Pharm. Des. doi: 10.2174/138161213804143734 – volume: 336 start-page: 79 year: 2012 ident: ref_113 article-title: A major genome region underlying artemisinin resistance in malaria publication-title: Science doi: 10.1126/science.1215966 – ident: ref_116 doi: 10.3390/molecules22122139 – volume: 11 start-page: 114 year: 2012 ident: ref_2 article-title: The epidemiology of postpartum malaria: A systematic review publication-title: Malar. J. doi: 10.1186/1475-2875-11-114 – volume: 306 start-page: 1934 year: 2004 ident: ref_10 article-title: A host-targeting signal in virulence proteins reveals a secretome in malarial infection publication-title: Science doi: 10.1126/science.1102737 – volume: 10 start-page: 1 year: 2015 ident: ref_48 article-title: Plasmodium falciparum hop (PfHop) interacts with the Hsp70 chaperone in a nucleotide-dependent fashion and exhibits ligand selectivity publication-title: PLoS ONE doi: 10.1371/journal.pone.0135326 – volume: 141 start-page: 1167 year: 2014 ident: ref_41 article-title: Plasmodial Hsp40 and Hsp70 chaperones: Current and future perspectives publication-title: Parasitology doi: 10.1017/S003118201300228X – volume: 295 start-page: 1852 year: 2002 ident: ref_33 article-title: Molecular chaperones in the cytosol: From nascent chain to folded protein publication-title: Science doi: 10.1126/science.1068408 – volume: 86 start-page: 1189 year: 2018 ident: ref_70 article-title: Structural and biochemical characterization of Plasmodium falciparum Hsp70-x reveals functional versatility of its C-terminal EEVN motif publication-title: Proteins doi: 10.1002/prot.25600 – volume: 5 start-page: 347 year: 2000 ident: ref_74 article-title: Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2000)005<0347:AOTLOC>2.0.CO;2 – volume: 62 start-page: 211 year: 2018 ident: ref_94 article-title: Global analysis of Plasmodium falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole-genome sequencing data and meta-analysis publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2018.04.039 – volume: 77 start-page: 159 year: 2011 ident: ref_51 article-title: Co-expression of the Plasmodium falciparum molecular chaperone, PfHsp70, improves the heterologous production of the antimalarial drug target GTP cyclohydrolase I., PfGCHI publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2011.01.005 – ident: ref_68 doi: 10.1371/journal.pone.0181656 – volume: 2 start-page: 34 year: 2015 ident: ref_29 article-title: Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle publication-title: Front Mol. Biosci. doi: 10.3389/fmolb.2015.00034 – volume: 7 start-page: 11901 year: 2016 ident: ref_28 article-title: A broad analysis of resistance development in the malaria parasite publication-title: Nat. Commun. doi: 10.1038/ncomms11901 – volume: 271 start-page: 9347 year: 1996 ident: ref_73 article-title: A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.16.9347 – volume: 10 start-page: e01106 year: 2019 ident: ref_97 article-title: Uncoupling the threading and unfoldase actions of Plasmodium HSP101 reveals differences in export between soluble and insoluble proteins publication-title: MBio doi: 10.1128/mBio.01106-19 – volume: 62 start-page: e01799-17 year: 2018 ident: ref_110 article-title: Identification of Hsp90 Inhibitors with Anti-Plasmodium activity publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01799-17 – ident: ref_111 doi: 10.1371/journal.pone.0075446 – volume: 17 start-page: 191 year: 2012 ident: ref_43 article-title: Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop) publication-title: Cell Stress Chaperones doi: 10.1007/s12192-011-0299-x – volume: 5 start-page: 276 year: 2000 ident: ref_63 article-title: The Hsp110 and Grp170 stress proteins: Newly recognized relatives of the Hsp70s publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2 – volume: 104 start-page: 9213 year: 2007 ident: ref_84 article-title: Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0703433104 – ident: ref_119 doi: 10.3390/molecules22071224 – volume: 5 start-page: 1197 year: 2012 ident: ref_112 article-title: Molecular dynamics simulations of PfAQP from the malarial parasite Plasmodium falciparum publication-title: Mol. Med. Rep. – volume: 17 start-page: 1232 year: 2011 ident: ref_87 article-title: Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among humans and anopheles dirus mosquitoes, Southern Vietnam publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1707.101551 – volume: 41 start-page: 34 year: 2017 ident: ref_22 article-title: The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuw037 – volume: 132 start-page: 255 year: 1996 ident: ref_36 article-title: Mini-Review: Roles of molecular chaperones in protein degradation publication-title: Cell doi: 10.1083/jcb.132.3.255 – volume: 2 start-page: 30 year: 2003 ident: ref_59 article-title: The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin publication-title: Malar J doi: 10.1186/1475-2875-2-30 – volume: 214 start-page: 10 year: 2017 ident: ref_38 article-title: Plasmodium Hsp40 and human Hsp70: A potential cochaperone-chaperone complex publication-title: Mol. Biochem. Parasitol. doi: 10.1016/j.molbiopara.2017.03.003 – volume: 170 start-page: 260 year: 2017 ident: ref_83 article-title: Functional profiling of a Plasmodium genome reveals an abundance of essential genes publication-title: Cell doi: 10.1016/j.cell.2017.06.030 – volume: 108 start-page: 370 year: 2006 ident: ref_99 article-title: The role of KAHRP domains in knob formation and cytoadherence of P falciparum-infected human erythrocytes publication-title: Blood doi: 10.1182/blood-2005-11-4624 – volume: 9 start-page: 236 year: 2010 ident: ref_30 article-title: Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients publication-title: Malar. J. doi: 10.1186/1475-2875-9-236 – ident: ref_79 doi: 10.1371/journal.pone.0044605 – volume: 7 start-page: 341 year: 2009 ident: ref_12 article-title: Malaria parasite proteins that remodel the host erythrocyte publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2110 – volume: 381 start-page: 571 year: 1996 ident: ref_31 article-title: Molecular chaperones in cellular protein folding publication-title: Nature doi: 10.1038/381571a0 – volume: 14 start-page: 371 year: 2015 ident: ref_89 article-title: Host erythrocyte environment influences the localization of exported protein 2, an essential component of the Plasmodium translocon publication-title: Eukaryot. Cell doi: 10.1128/EC.00228-14 – volume: 37 start-page: D539 year: 2009 ident: ref_54 article-title: PlasmoDB: A functional genomic database for malaria parasites publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn814 – volume: 91 start-page: 3715 year: 1994 ident: ref_88 article-title: Parasite virulence and disease patterns in Plasmodium falciparum malaria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.9.3715 – volume: 2 start-page: e00363-17 year: 2017 ident: ref_69 article-title: The exported chaperone PfHsp70x is dispensable for the Plasmodium falciparum intraerythrocytic life cycle david publication-title: mSphere doi: 10.1128/mSphere.00363-17 – volume: 57 start-page: 402 year: 1993 ident: ref_34 article-title: Heat shock proteins: Molecular chaperones of protein biogenesis publication-title: Microbiol. Rev. doi: 10.1128/mr.57.2.402-414.1993 – volume: 300 start-page: 805 year: 2000 ident: ref_75 article-title: Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3923 – volume: 12 start-page: 3307 year: 2001 ident: ref_61 article-title: Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.11.3307 – volume: 17 start-page: 726 year: 2012 ident: ref_18 article-title: Plasmodium sporozoite motility: An update publication-title: Front. Biosci. doi: 10.2741/3954 – volume: 285 start-page: 37964 year: 2010 ident: ref_17 article-title: Heat shock protein 90 as a drug target against protozoan infections: Biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.155317 – volume: 14 start-page: 1784 year: 2012 ident: ref_40 article-title: P. falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2012.01840.x – volume: 10 start-page: 1492 year: 2011 ident: ref_90 article-title: Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes publication-title: Eukaryot. Cell doi: 10.1128/EC.05155-11 – volume: 7 start-page: 1 year: 2017 ident: ref_82 article-title: Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions publication-title: Sci. Rep. – ident: ref_106 doi: 10.1111/j.1574-695X.2009.00639.x – volume: 89 start-page: 1167 year: 2013 ident: ref_93 article-title: The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth publication-title: Mol. Microbiol. doi: 10.1111/mmi.12334 – volume: 10 start-page: 147 year: 2010 ident: ref_25 article-title: Malaria heat shock proteins: Drug targets that chaperone other drug targets publication-title: Infect. Disord. Drug Targets doi: 10.2174/187152610791163417 – volume: 96 start-page: 5452 year: 1999 ident: ref_45 article-title: Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.10.5452 – ident: ref_55 doi: 10.1007/978-1-61779-295-3 – volume: 81 start-page: 6779 year: 1984 ident: ref_37 article-title: A gene regulating the heat shock response in Escherichia coli also affects proteolysis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.81.21.6779 – volume: 285 start-page: 36577 year: 2010 ident: ref_5 article-title: Malaria parasite actin polymerization and filament structure publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.142638 – volume: 17 start-page: 1527 year: 2009 ident: ref_115 article-title: Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum publication-title: Bioorganic Med. Chem. doi: 10.1016/j.bmc.2009.01.024 – volume: 115 start-page: E6245 year: 2018 ident: ref_6 article-title: Error-prone protein synthesis in parasites with the smallest eukaryotic genome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1803208115 – volume: 4 start-page: R9.1 year: 2003 ident: ref_9 article-title: Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray publication-title: Genome Biol. doi: 10.1186/gb-2003-4-2-r9 – ident: ref_101 doi: 10.1371/journal.pone.0157949 – ident: ref_65 doi: 10.1371/journal.pone.0129445 – volume: 30 start-page: 405 year: 2016 ident: ref_4 article-title: Plasmodium actin is incompletely folded by heterologous protein-folding machinery and likely requires the native Plasmodium chaperonin complex to enter a mature functional state publication-title: FASEB J. doi: 10.1096/fj.15-276618 – volume: 347 start-page: 431 year: 2015 ident: ref_26 article-title: Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance publication-title: Science doi: 10.1126/science.1260403 – volume: 60 start-page: 1464 year: 2016 ident: ref_60 article-title: Imidazopyridazine inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 also target cyclic GMP-dependent protein kinase and heat shock protein 90 to kill the parasite at different stages of intracellular development publication-title: Antimicrob Agents Chemother. doi: 10.1128/AAC.01748-15 – volume: 16 start-page: 1803 year: 2007 ident: ref_62 article-title: The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum publication-title: Protein Sci. doi: 10.1110/ps.072918107 – volume: 585 start-page: 1551 year: 2011 ident: ref_21 article-title: Drug-resistant malaria: Molecular mechanisms and implications for public health publication-title: FEBS Lett. doi: 10.1016/j.febslet.2011.04.042 – volume: 3 start-page: 1701 year: 2007 ident: ref_47 article-title: Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030168 – volume: 16 start-page: 377 year: 2013 ident: ref_57 article-title: The fungal Achilles’ heel: Targeting Hsp90 to cripple fungal pathogens publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2013.03.005 – volume: 59 start-page: 6344 year: 2016 ident: ref_58 article-title: Inhibition of Plasmodium falciparum Hsp90 contributes to the antimalarial activities of aminoalcohol-carbazoles publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00591 – volume: 511 start-page: 592 year: 2014 ident: ref_98 article-title: PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes publication-title: Nature doi: 10.1038/nature13574 – ident: ref_44 doi: 10.1371/journal.pone.0148517 – volume: 37 start-page: 297 year: 1997 ident: ref_102 article-title: The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase publication-title: Annu. Rev. Pharm. Toxicol. doi: 10.1146/annurev.pharmtox.37.1.297 – ident: ref_105 doi: 10.3390/ijms18091978 – volume: 23 start-page: 91 year: 2012 ident: ref_67 article-title: The apicoplast of the human malaria parasite P. falciparum publication-title: J. Endocytobiosis Cell Res. – volume: 2 start-page: 33 year: 2013 ident: ref_27 article-title: Targeting Plasmodium falciparum Hsp90: Towards reversing antimalarial resistance publication-title: Pathogens doi: 10.3390/pathogens2010033 – ident: ref_109 doi: 10.1371/journal.ppat.1006930 – volume: 36 start-page: 15 year: 2009 ident: ref_118 article-title: A small molecule inhibitor of inducible heat shock protein 70 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.09.023 – volume: 392 start-page: 431 year: 2011 ident: ref_107 article-title: Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: Inhibition of the plasmodial chaperone PfHsp70-1 publication-title: Biol. Chem. doi: 10.1515/bc.2011.040 – volume: 113 start-page: 2080 year: 2016 ident: ref_114 article-title: Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1600459113 – volume: 141 start-page: 1177 year: 2014 ident: ref_42 article-title: Co-chaperones of Hsp90 in Plasmodium falciparum and their concerted roles in cellular regulation publication-title: Parasitology doi: 10.1017/S0031182013002084 – volume: 39 start-page: 1781 year: 2007 ident: ref_46 article-title: The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: Regulating chaperone power in the parasite and the host publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.02.011 – volume: 2014 start-page: 652643 year: 2014 ident: ref_96 article-title: Could upregulated Hsp70 protein compensate for the Hsp90-silence-induced cell death in glioma cells? publication-title: Int. J. Brain Sci. doi: 10.1155/2014/652643 – volume: 117 start-page: 381 year: 2011 ident: ref_91 article-title: The pathogenesis of Plasmodium falciparum malaria in humans: Insights from splenic physiology publication-title: Blood doi: 10.1182/blood-2010-04-202911 – volume: 276 start-page: 24891 year: 2001 ident: ref_120 article-title: Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100633200 – volume: 12 start-page: 1398 year: 2010 ident: ref_50 article-title: Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2010.01477.x – ident: ref_24 – volume: 27 start-page: 437 year: 1993 ident: ref_35 article-title: The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.ge.27.120193.002253 – volume: 21 start-page: 499 year: 2016 ident: ref_66 article-title: Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion publication-title: Cell Stress Chaperones doi: 10.1007/s12192-016-0678-4 – volume: 3 start-page: 28 year: 1998 ident: ref_72 article-title: Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2 – volume: 105 start-page: 4078 year: 2005 ident: ref_81 article-title: Trafficking of the major virulence factor to the surface of transfected P. falciparum—Infected erythrocytes publication-title: Blood doi: 10.1182/blood-2004-12-4666 – volume: 511 start-page: 587 year: 2014 ident: ref_95 article-title: PTEX is an essential nexus for protein export in malaria parasites publication-title: Nature doi: 10.1038/nature13555 – volume: 22 start-page: 707 year: 2017 ident: ref_117 article-title: Polymyxin B inhibits the chaperone activity of Plasmodium falciparum Hsp70 publication-title: Cell Stress Chaperones doi: 10.1007/s12192-017-0797-6 – volume: 62 start-page: 47 year: 2015 ident: ref_49 article-title: PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2015.02.008 – volume: 346 start-page: 1005 year: 2005 ident: ref_77 article-title: The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.12.040 – volume: 16 start-page: 355 year: 2014 ident: ref_15 article-title: Protein export in malaria parasites: An update publication-title: Cell. Microbiol. doi: 10.1111/cmi.12261 – volume: 26 start-page: 6 year: 2010 ident: ref_11 article-title: Protein export in malaria parasites: Do multiple export motifs add up to multiple export pathways? publication-title: Trends Parasitol. doi: 10.1016/j.pt.2009.10.001 – volume: 129 start-page: 89 year: 2016 ident: ref_103 article-title: Hsp90 in Cancer: Transcriptional roles in the nucleus publication-title: Adv. Cancer Res. doi: 10.1016/bs.acr.2015.08.002 – volume: 395 start-page: 1353 year: 2014 ident: ref_121 article-title: Selective modulation of plasmodial Hsp70s by small molecules with antimalarial activity publication-title: Biol. Chem. doi: 10.1515/hsz-2014-0138 – volume: 278 start-page: 18336 year: 2003 ident: ref_56 article-title: Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211309200 – volume: 48 start-page: 47 year: 1991 ident: ref_64 article-title: Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family publication-title: Mol. Biochem. Parasitol. doi: 10.1016/0166-6851(91)90163-Z – volume: 9 start-page: 1737 year: 2018 ident: ref_8 article-title: Discovering putative prion-Like proteins in Plasmodium falciparum: A computational and experimental analysis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01737 – volume: 8 start-page: 14 year: 2015 ident: ref_92 article-title: Heat shock proteins and parasitic diseases: Part II. Protozoa publication-title: Parasitol. United J. doi: 10.4103/1687-7942.163407 – volume: 7 start-page: R12 year: 2006 ident: ref_78 article-title: Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites publication-title: Genome Biol. doi: 10.1186/gb-2006-7-2-r12 – volume: 118 start-page: 1266 year: 2008 ident: ref_20 article-title: Malaria: Progress, perils, and prospects for eradication publication-title: J. Clin. Invest. doi: 10.1172/JCI33996 – volume: 118 start-page: 2507 year: 2005 ident: ref_80 article-title: PfEMP1 expression is reduced on the surface of knobless Plasmodium falciparum infected erythrocytes publication-title: J. Cell Sci. doi: 10.1242/jcs.02381 – volume: 134 start-page: 48 year: 2008 ident: ref_13 article-title: Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes publication-title: Cell doi: 10.1016/j.cell.2008.04.051 – volume: 360 start-page: 1 year: 2018 ident: ref_85 article-title: Uncovering the essential genes of the human malaria parasite publication-title: Science doi: 10.1126/science.aap7847 – volume: 417 start-page: 398 year: 2002 ident: ref_7 article-title: Endosymbiotic bacteria: GroEL buffers against deleterious mutations publication-title: Nature doi: 10.1038/417398a – volume: 23 start-page: 4555 year: 2017 ident: ref_14 article-title: Plasmodial Hsp40s: New avenues for antimalarial drug discovery publication-title: Curr. Pharm. Des. doi: 10.2174/1381612823666170124142439 – volume: 4 start-page: 519 year: 2008 ident: ref_104 article-title: Molecular chaperones in pathogen virulence: Emerging new targets for therapy publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.10.011 – ident: ref_52 doi: 10.1371/journal.pone.0152626 |
SSID | ssj0000800823 |
Score | 2.2879755 |
SecondaryResourceType | review_article |
Snippet | The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the... The survival of the human malaria parasite under the physiologically distinct environments associated with their development in the cold-blooded invertebrate... The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 295 |
SubjectTerms | Animals chaperone co-chaperone exportome functional interplay heat shock proteins Heat-Shock Proteins - metabolism Humans Plasmodium falciparum Plasmodium falciparum - metabolism Plasmodium falciparum - pathogenicity Review Virulence |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15K2_TDbVNUCD0UTGxJlq3ekpBlW0hYaFJyM9JaQ1yyctnsHnLOH--M7F28JdBLb8aWsewZSe9ZM28YOwTQ1uocUlkJkyqZQWoar3DE6wykB6uipc8v9PRKfb8urkelvigmrJcH7j_ckZe6ot263DWgQOUVgLNQSVXkfl6Co9k3M9mITP0acFAlZJ-QJ5HXH1E2OxLBTFAlidESFJX6H4OXf0dJjpadyXP2bMCL_Ljv5wv2xIeXbP84IFde3PPPPEZwxl_j--xhhq8TEM_xNvDzFnlr6-Ern-DS1f_x4xd90Pcd74BPcRbmP25wPuQzEmtoQzw9Qzi96Jp2veBgbynieomHNjT8kvYU-LdNVRPeBY4PtLT9zH-2y3VMX3rFriZnl6fTdCiykM6VKlepcoU0xMJwlfJSmUYI15h51RivtSD5MmeIYzpTAFRWFoAIT2XeKeORbTn5mu2FLvi3jJvKV6ZwrijAIevWpjSFxfsyAd5LEAn7svnu9XxQIKdCGLc1MhEyUj0yUsIOt41_98Ibjzc7IQNum5BadjyBPlQPPlT_y4cS9mlj_hpHF22Z2OC79V1NacYIoBAjJ-xN7w7bR8lcKpr_ElbuOMpOX3avhPYmKnhrUn0r9bv_0fn37CmCOMpES4X8wPZWy7U_QKC0ch_jmPgDSIMU8g priority: 102 providerName: Directory of Open Access Journals |
Title | Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31340488 https://www.proquest.com/docview/2264223774 https://pubmed.ncbi.nlm.nih.gov/PMC6681276 https://doaj.org/article/e36830931bdf4f418ffbaf83451ec7fb |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZ2eeEFAeMSBpWRJh6QAm3sODESQhtaVZBWVbCivkVx47MFtQ5LW4k988c5x0mrdeojb5FjK5fjY3-fz42xEwCV56oHoUgjHUrRhVAXVqLGqy4IC7n0kr4YqsFYfpvEkz22LsbZ_sDFTmpH9aTG9ez9n5vbz6jwn4hxImX_QIHqyPG6kY732aE3FJEPX4vzf7WwKI1EE593f8zWjuQT9-9Cm_edJu_sQv1H7GELH_lpI-_HbM-6J-zo1CF1nt_yt9w7dPqT8iP2d4TTwiG846XjFyV-a2nhI-_jTtYcAPJh4wO-4BXwAS7K_Mc1Lo98RLkbSuebR4iu51VRruYc8hk5YNd4mbuCX5KJgX9dFznhleP4wJys0fxnWa98NNNTNu6fX34ZhG3NhXAqZbIMpYmFJlKGm5YVUhdRZAo9TQttlYoom5nRRDmNjgHSXMSAgE92rZHaIvky4hk7cJWzLxjXqU11bEwcg0ESrnSi4xzHdSOwVkAUsHfr_55N24TkVBdjliExISFld4QUsJNN599NHo7d3c5IgJsulDzbN1T1VdbqYmaFSskA3DMFSJC9FMDkkAr8ODtNwATszVr8GSobWVByZ6vVIqOoY8RTCJkD9ryZDptHiZ6QtBwGLNmaKFvvsn3Hldc-obeiJHCJevk_Xv6YPUBMR4FpYSResYNlvbKvETctTYftJ5Okww7Pzoej7x1_-tDxevIPolMe5A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partners+in+Mischief%3A+Functional+Networks+of+Heat+Shock+Proteins+of+Plasmodium+falciparum+and+Their+Influence+on+Parasite+Virulence&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Michael+O.+Daniyan&rft.au=Jude+M.+Przyborski&rft.au=Addmore+Shonhai&rft.date=2019-07-23&rft.pub=MDPI+AG&rft.eissn=2218-273X&rft.volume=9&rft.issue=7&rft.spage=295&rft_id=info:doi/10.3390%2Fbiom9070295&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e36830931bdf4f418ffbaf83451ec7fb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon |