Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage

[Display omitted] ► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were compared after a protein-rich meal. ► fPPP procedure recovers more metabolites with varying polarity than cPPP procedure does. ► Markers of...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 718; pp. 47 - 57
Main Authors Barri, Thaer, Holmer-Jensen, Jens, Hermansen, Kjeld, Dragsted, Lars O.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 09.03.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0003-2670
1873-4324
1873-4324
DOI10.1016/j.aca.2011.12.065

Cover

Abstract [Display omitted] ► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were compared after a protein-rich meal. ► fPPP procedure recovers more metabolites with varying polarity than cPPP procedure does. ► Markers of the postprandial plasma samples are aromatic and branched-chain amino acids. Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC–MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.
AbstractList Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC–MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.
Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC-MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2 h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p < 0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p < 0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.
Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC-MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC-MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.
[Display omitted] ► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were compared after a protein-rich meal. ► fPPP procedure recovers more metabolites with varying polarity than cPPP procedure does. ► Markers of the postprandial plasma samples are aromatic and branched-chain amino acids. Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC–MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.
Author Holmer-Jensen, Jens
Hermansen, Kjeld
Dragsted, Lars O.
Barri, Thaer
Author_xml – sequence: 1
  givenname: Thaer
  surname: Barri
  fullname: Barri, Thaer
  email: thbar@life.ku.dk
  organization: Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
– sequence: 2
  givenname: Jens
  surname: Holmer-Jensen
  fullname: Holmer-Jensen, Jens
  organization: Department of Endocrinology and Metabolism MEA, Aarhus University Hospital, Tage-Hansens gade 2, DK-8000 Aarhus C, Denmark
– sequence: 3
  givenname: Kjeld
  surname: Hermansen
  fullname: Hermansen, Kjeld
  organization: Department of Endocrinology and Metabolism MEA, Aarhus University Hospital, Tage-Hansens gade 2, DK-8000 Aarhus C, Denmark
– sequence: 4
  givenname: Lars O.
  surname: Dragsted
  fullname: Dragsted, Lars O.
  organization: Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25646643$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22305897$$D View this record in MEDLINE/PubMed
BookMark eNqNksuOFCEUhokZ41z0AdwYNkY31XIrqiquJhNvyRg3uian4NBDp4pqgZ5kHs83k7ZbTVx0XMEJ33848P-X5CwuEQl5ztmKM67fbFZgYSUY5ysuVky3j8gF7zvZKCnUGblgjMlG6I6dk8ucN7UUnKkn5FwIydp-6C7Ij89YYFymYKkPcY1pm0IsdUcXT-_C-q7xUOh2gjwDzTBvJ8x0mxaLOaOj4wO1GEsKfreGEpbYUIiutppKOtQj7LmqKBhiXdGGbSi_zqjDKUSEUlvmsI7BBwuxUBe8x4Sx3kGrZj5OWLBWfknzQWyXe0ywxqfksYcp47PjekW-vX_39eZjc_vlw6eb69vGKtWVRvVcweC07q2SiLxH7MCNenBOKy2H1qFivdZ2HBVYqxizfhyF5wMyBoOXV-TVoW99y_cd5mLmkC1OE0RcdtkMQgo2yE7-B8nq_4uuq-TrkyTvOBOila2o6IsjuhtndKb6NEN6ML-trMDLIwDZwuQTRBvyX66tz9RqPx0_cDYtOSf0fxDOzD5WZmNqrMw-VoYLU2NVNd0_Gnv0sNocppPKtwclVmvuAyaTbdhb60KNQjFuCSfUPwG5CewZ
CODEN ACACAM
CitedBy_id crossref_primary_10_1002_mnfr_202001049
crossref_primary_10_1038_srep06768
crossref_primary_10_1039_C9AY01137D
crossref_primary_10_1021_pr400257d
crossref_primary_10_1016_j_jchromb_2012_12_005
crossref_primary_10_1007_s11306_014_0668_4
crossref_primary_10_3389_fchem_2024_1461331
crossref_primary_10_1021_acs_analchem_4c03222
crossref_primary_10_1007_s11306_013_0607_9
crossref_primary_10_1002_mnfr_201200571
crossref_primary_10_3945_ajcn_113_076133
crossref_primary_10_1007_s11306_013_0522_0
crossref_primary_10_3390_metabo11010011
crossref_primary_10_1007_s11306_021_01848_6
crossref_primary_10_1007_s11306_013_0534_9
crossref_primary_10_1021_acs_jproteome_7b00039
crossref_primary_10_3390_metabo12121168
crossref_primary_10_1002_hep4_1601
crossref_primary_10_1038_s41564_021_00970_4
crossref_primary_10_1080_17429145_2023_2255039
crossref_primary_10_1021_acs_jcim_4c02179
crossref_primary_10_1021_pr401214w
crossref_primary_10_3389_fnut_2023_1191944
crossref_primary_10_1007_s11306_014_0657_7
crossref_primary_10_1007_s00394_019_02039_9
crossref_primary_10_1016_j_molmet_2020_101103
crossref_primary_10_1021_acs_analchem_5b02287
crossref_primary_10_1016_j_aca_2013_01_015
crossref_primary_10_1016_j_aca_2020_12_025
crossref_primary_10_1002_mnfr_201900977
crossref_primary_10_1007_s00216_013_7498_5
crossref_primary_10_1371_journal_pone_0069589
crossref_primary_10_1007_s11306_015_0934_0
crossref_primary_10_7763_IJMMM_2013_V1_57
crossref_primary_10_1038_s43705_021_00021_3
crossref_primary_10_1007_s11306_013_0525_x
crossref_primary_10_1016_j_chroma_2023_464439
crossref_primary_10_1080_26395940_2018_1563501
crossref_primary_10_1177_1469066720918446
crossref_primary_10_1021_acs_jproteome_6b00635
crossref_primary_10_1021_acs_jafc_1c01155
crossref_primary_10_1021_pr400964s
crossref_primary_10_1039_C5RA22856E
crossref_primary_10_1021_ac302919t
crossref_primary_10_1016_j_chemolab_2021_104271
crossref_primary_10_1038_s41598_018_21851_7
Cites_doi 10.1021/ac8022857
10.1021/ac070843+
10.1002/(SICI)1097-0231(19990730)13:14<1540::AID-RCM688>3.0.CO;2-1
10.1016/j.aca.2009.03.039
10.1002/rcm.748
10.1002/jms.984
10.1002/mas.20298
10.1021/ac0106694
10.1002/rcm.895
10.1021/ac8002402
10.1002/rcm.1268
10.1016/j.jchromb.2006.02.011
10.1021/ac901087t
10.1007/s11306-007-0099-6
10.3945/ajcn.2008.27281
10.1021/pr801045q
10.1021/ac102806p
10.1021/ac9014947
10.1016/S0169-7439(01)00155-1
10.1021/ac051312t
10.1016/j.chroma.2004.08.068
10.1021/pr901094j
10.1016/j.jchromb.2010.10.012
10.1021/ac020309w
10.1186/1471-2105-8-93
10.1021/ac0713510
10.1016/j.chroma.2009.11.060
10.1021/pr900499r
10.1021/ac8024569
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7TG
KL.
DOI 10.1016/j.aca.2011.12.065
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList AGRICOLA
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
EndPage 57
ExternalDocumentID 22305897
25646643
10_1016_j_aca_2011_12_065
S0003267012000062
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
HMU
HVGLF
H~9
MVM
NHB
R2-
SCB
SEW
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7TG
KL.
ID FETCH-LOGICAL-c447t-4814a9d668c43ee18ee7adb69dd646395de40866cbb4acc400cfbb2f19e00a9f3
IEDL.DBID .~1
ISSN 0003-2670
1873-4324
IngestDate Thu Oct 02 12:44:33 EDT 2025
Thu Sep 25 09:03:51 EDT 2025
Thu Oct 02 10:55:52 EDT 2025
Thu Apr 03 07:01:01 EDT 2025
Mon Jul 21 09:14:22 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Oct 01 05:16:59 EDT 2025
Fri Feb 23 02:33:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Plasma protein precipitation
Metabolomics
QTOF/MS
Filtration
Metabolic fingerprinting
Centrifugation
Metabolite
Internal standard
Laboratory
Multivariate analysis
Modeling
Blood plasma
Lipophilic compound
Improvement
Precipitation
Endogenous
Serum
Molecular mass
Quantitative analysis
Coupled method
Sample
Use
Error
Matrix effect
Marker
Protein
Aminoacid
Fingerprint method
Fat
Principal component analysis
Language English
License CC BY 4.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-4814a9d668c43ee18ee7adb69dd646395de40866cbb4acc400cfbb2f19e00a9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22305897
PQID 1710225352
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_923209373
proquest_miscellaneous_920230277
proquest_miscellaneous_1710225352
pubmed_primary_22305897
pascalfrancis_primary_25646643
crossref_primary_10_1016_j_aca_2011_12_065
crossref_citationtrail_10_1016_j_aca_2011_12_065
elsevier_sciencedirect_doi_10_1016_j_aca_2011_12_065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-09
PublicationDateYYYYMMDD 2012-03-09
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-09
  day: 09
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pascoe, Foley, Gusev (bib0040) 2001; 73
Clauwaert, Van Bocxlaer, Major, Claereboudt, Lambert, Van den Eeckhout, Van Peteghem, DeLeenheer (bib0050) 1999; 13
Marvin, Delatour, Tavazzi, Fay, Cupp, Guy (bib0060) 2002; 75
Crews, Wikoff, Patti, Woo, Kalisiak, Heideker, Siuzdak (bib0135) 2009; 81
Little, Wempe, Buchanan (bib0120) 2006; 833
van der Kloet, Bobeldijk, Verheij, Jellema (bib0015) 2009; 8
Liang, Foltz, Meng, Bennett (bib0145) 2003; 17
Sun, Yang, Zhao, Guan, Han, Gross (bib0130) 2007; 79
Want, O’Maille, Smith, Brandon, Uritboonthai, Qin, Trauger, Siuzdak (bib0075) 2006; 78
Castro-Perez, Kamphorst, DeGroot, Lafeber, Goshawk, Yu, Shockcor, Vreeken, Hankemeier (bib0070) 2010; 9
Bruce, Tavazzi, Parisod, Rezzi, Kochhar, Guy (bib0080) 2009; 81
Denery, Nunes, Dickerson (bib0140) 2010; 83
Guan, Uboh, Soma, Luo, Li, Birks, Teleis, Rudy, Tsang (bib0055) 2002; 16
Mortensen, Hartvigsen, Brader, Astrup, Schrezenmeir, Holst, Thomsen, Hermansen (bib0090) 2009; 90
Sysi-Aho, Katajamaa, Yetukuri, Oresic (bib0020) 2007; 8
Calbiani, Careri, Elviri, Mangia, Zagnoni (bib0030) 2006; 41
Barceló-Barrachina, Moyano, Galceran (bib0065) 2004; 1054
Avery (bib0025) 2003; 17
Gosetti, Mazzucco, Zampieri, Gennaro (bib0045) 2010; 1217
Westerhuis, Hoefsloot, Smit, Vis, Smilde, van Velzen, van Duijnhoven, van Dorsten (bib0095) 2008; 4
Wiklund, Johansson, Sjostrom, Mellerowicz, Edlund, Shockcor, Gottfries, Moritz, Trygg (bib0100) 2008; 80
Chen, Wang, Lv, Yin, Zhao, Lu, Zhang, Xu (bib0115) 2009; 650
Ismaiel, Zhang, Jenkins, Karnes (bib0125) 2010; 878
Büscher, Czernik, Ewald, Sauer, Zamboni (bib0005) 2009; 81
Wold, Sjöström, Eriksson (bib0105) 2001; 58
Trufelli, Palma, Famiglini, Cappiello (bib0035) 2011; 30
Wang, Wang, Yao, Zhao, Fritsche, Schmitt-Kopplin, Cai, Wan, Lu, Yang, Gu, Haring, Schleicher, Lehmann, Xu (bib0110) 2008; 80
Michopoulos, Lai, Gika, Theodoridis, Wilson (bib0085) 2009; 8
Mohamed, Varesio, Ivosev, Burton, Bonner, Hopfgartner (bib0010) 2009; 81
Wold (10.1016/j.aca.2011.12.065_bib0105) 2001; 58
Wang (10.1016/j.aca.2011.12.065_bib0110) 2008; 80
Liang (10.1016/j.aca.2011.12.065_bib0145) 2003; 17
Barceló-Barrachina (10.1016/j.aca.2011.12.065_bib0065) 2004; 1054
Ismaiel (10.1016/j.aca.2011.12.065_bib0125) 2010; 878
Sysi-Aho (10.1016/j.aca.2011.12.065_bib0020) 2007; 8
Clauwaert (10.1016/j.aca.2011.12.065_bib0050) 1999; 13
Trufelli (10.1016/j.aca.2011.12.065_bib0035) 2011; 30
Castro-Perez (10.1016/j.aca.2011.12.065_bib0070) 2010; 9
Wiklund (10.1016/j.aca.2011.12.065_bib0100) 2008; 80
Calbiani (10.1016/j.aca.2011.12.065_bib0030) 2006; 41
Michopoulos (10.1016/j.aca.2011.12.065_bib0085) 2009; 8
Mortensen (10.1016/j.aca.2011.12.065_bib0090) 2009; 90
Westerhuis (10.1016/j.aca.2011.12.065_bib0095) 2008; 4
Guan (10.1016/j.aca.2011.12.065_bib0055) 2002; 16
Marvin (10.1016/j.aca.2011.12.065_bib0060) 2002; 75
Pascoe (10.1016/j.aca.2011.12.065_bib0040) 2001; 73
Avery (10.1016/j.aca.2011.12.065_bib0025) 2003; 17
Little (10.1016/j.aca.2011.12.065_bib0120) 2006; 833
Want (10.1016/j.aca.2011.12.065_bib0075) 2006; 78
Chen (10.1016/j.aca.2011.12.065_bib0115) 2009; 650
Denery (10.1016/j.aca.2011.12.065_bib0140) 2010; 83
van der Kloet (10.1016/j.aca.2011.12.065_bib0015) 2009; 8
Mohamed (10.1016/j.aca.2011.12.065_bib0010) 2009; 81
Sun (10.1016/j.aca.2011.12.065_bib0130) 2007; 79
Gosetti (10.1016/j.aca.2011.12.065_bib0045) 2010; 1217
Crews (10.1016/j.aca.2011.12.065_bib0135) 2009; 81
Büscher (10.1016/j.aca.2011.12.065_bib0005) 2009; 81
Bruce (10.1016/j.aca.2011.12.065_bib0080) 2009; 81
References_xml – volume: 81
  start-page: 7677
  year: 2009
  end-page: 7694
  ident: bib0010
  publication-title: Anal. Chem.
– volume: 30
  start-page: 491
  year: 2011
  end-page: 509
  ident: bib0035
  publication-title: Mass Spectrom. Rev.
– volume: 650
  start-page: 3
  year: 2009
  end-page: 9
  ident: bib0115
  publication-title: Anal. Chim. Acta
– volume: 17
  start-page: 2815
  year: 2003
  end-page: 2821
  ident: bib0145
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 17
  start-page: 197
  year: 2003
  end-page: 201
  ident: bib0025
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 81
  start-page: 8538
  year: 2009
  end-page: 8544
  ident: bib0135
  publication-title: Anal. Chem.
– volume: 1054
  start-page: 409
  year: 2004
  end-page: 418
  ident: bib0065
  publication-title: J. Chromatogr. A
– volume: 81
  start-page: 3285
  year: 2009
  end-page: 3296
  ident: bib0080
  publication-title: Anal. Chem.
– volume: 73
  start-page: 6014
  year: 2001
  end-page: 6023
  ident: bib0040
  publication-title: Anal. Chem.
– volume: 1217
  start-page: 3929
  year: 2010
  end-page: 3937
  ident: bib0045
  publication-title: J. Chromatogr. A
– volume: 833
  start-page: 219
  year: 2006
  end-page: 230
  ident: bib0120
  publication-title: J. Chromatogr. B
– volume: 83
  start-page: 1040
  year: 2010
  end-page: 1047
  ident: bib0140
  publication-title: Anal. Chem.
– volume: 78
  start-page: 743
  year: 2006
  end-page: 752
  ident: bib0075
  publication-title: Anal. Chem.
– volume: 13
  start-page: 1540
  year: 1999
  end-page: 1545
  ident: bib0050
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 9
  start-page: 2377
  year: 2010
  end-page: 2389
  ident: bib0070
  publication-title: J. Proteome Res.
– volume: 41
  start-page: 289
  year: 2006
  end-page: 294
  ident: bib0030
  publication-title: J. Mass Spectrom.
– volume: 90
  start-page: 41
  year: 2009
  end-page: 48
  ident: bib0090
  publication-title: Am. J. Clin. Nutr.
– volume: 80
  start-page: 115
  year: 2008
  end-page: 122
  ident: bib0100
  publication-title: Anal. Chem.
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: bib0105
  publication-title: Chemometr. Intell. Lab.
– volume: 79
  start-page: 6629
  year: 2007
  end-page: 6640
  ident: bib0130
  publication-title: Anal. Chem.
– volume: 80
  start-page: 4680
  year: 2008
  end-page: 4688
  ident: bib0110
  publication-title: Anal. Chem.
– volume: 16
  start-page: 1642
  year: 2002
  end-page: 1651
  ident: bib0055
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 81
  start-page: 2135
  year: 2009
  end-page: 2143
  ident: bib0005
  publication-title: Anal. Chem.
– volume: 8
  start-page: 2114
  year: 2009
  end-page: 2121
  ident: bib0085
  publication-title: J. Proteome Res.
– volume: 8
  start-page: 93
  year: 2007
  ident: bib0020
  publication-title: BMC Bioinformatics
– volume: 878
  start-page: 3303
  year: 2010
  end-page: 3316
  ident: bib0125
  publication-title: J. Chromatogr. B
– volume: 75
  start-page: 261
  year: 2002
  end-page: 267
  ident: bib0060
  publication-title: Anal. Chem.
– volume: 8
  start-page: 5132
  year: 2009
  end-page: 5141
  ident: bib0015
  publication-title: J. Proteome Res.
– volume: 4
  start-page: 81
  year: 2008
  end-page: 89
  ident: bib0095
  publication-title: Metabolomics
– volume: 81
  start-page: 2135
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0005
  publication-title: Anal. Chem.
  doi: 10.1021/ac8022857
– volume: 79
  start-page: 6629
  year: 2007
  ident: 10.1016/j.aca.2011.12.065_bib0130
  publication-title: Anal. Chem.
  doi: 10.1021/ac070843+
– volume: 13
  start-page: 1540
  year: 1999
  ident: 10.1016/j.aca.2011.12.065_bib0050
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/(SICI)1097-0231(19990730)13:14<1540::AID-RCM688>3.0.CO;2-1
– volume: 650
  start-page: 3
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0115
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.03.039
– volume: 16
  start-page: 1642
  year: 2002
  ident: 10.1016/j.aca.2011.12.065_bib0055
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.748
– volume: 41
  start-page: 289
  year: 2006
  ident: 10.1016/j.aca.2011.12.065_bib0030
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.984
– volume: 30
  start-page: 491
  year: 2011
  ident: 10.1016/j.aca.2011.12.065_bib0035
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.20298
– volume: 73
  start-page: 6014
  year: 2001
  ident: 10.1016/j.aca.2011.12.065_bib0040
  publication-title: Anal. Chem.
  doi: 10.1021/ac0106694
– volume: 17
  start-page: 197
  year: 2003
  ident: 10.1016/j.aca.2011.12.065_bib0025
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.895
– volume: 80
  start-page: 4680
  year: 2008
  ident: 10.1016/j.aca.2011.12.065_bib0110
  publication-title: Anal. Chem.
  doi: 10.1021/ac8002402
– volume: 17
  start-page: 2815
  year: 2003
  ident: 10.1016/j.aca.2011.12.065_bib0145
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.1268
– volume: 833
  start-page: 219
  year: 2006
  ident: 10.1016/j.aca.2011.12.065_bib0120
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2006.02.011
– volume: 81
  start-page: 7677
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0010
  publication-title: Anal. Chem.
  doi: 10.1021/ac901087t
– volume: 4
  start-page: 81
  year: 2008
  ident: 10.1016/j.aca.2011.12.065_bib0095
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0099-6
– volume: 90
  start-page: 41
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0090
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.2008.27281
– volume: 8
  start-page: 2114
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0085
  publication-title: J. Proteome Res.
  doi: 10.1021/pr801045q
– volume: 83
  start-page: 1040
  year: 2010
  ident: 10.1016/j.aca.2011.12.065_bib0140
  publication-title: Anal. Chem.
  doi: 10.1021/ac102806p
– volume: 81
  start-page: 8538
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0135
  publication-title: Anal. Chem.
  doi: 10.1021/ac9014947
– volume: 58
  start-page: 109
  year: 2001
  ident: 10.1016/j.aca.2011.12.065_bib0105
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 78
  start-page: 743
  year: 2006
  ident: 10.1016/j.aca.2011.12.065_bib0075
  publication-title: Anal. Chem.
  doi: 10.1021/ac051312t
– volume: 1054
  start-page: 409
  year: 2004
  ident: 10.1016/j.aca.2011.12.065_bib0065
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2004.08.068
– volume: 9
  start-page: 2377
  year: 2010
  ident: 10.1016/j.aca.2011.12.065_bib0070
  publication-title: J. Proteome Res.
  doi: 10.1021/pr901094j
– volume: 878
  start-page: 3303
  year: 2010
  ident: 10.1016/j.aca.2011.12.065_bib0125
  publication-title: J. Chromatogr. B
  doi: 10.1016/j.jchromb.2010.10.012
– volume: 75
  start-page: 261
  year: 2002
  ident: 10.1016/j.aca.2011.12.065_bib0060
  publication-title: Anal. Chem.
  doi: 10.1021/ac020309w
– volume: 8
  start-page: 93
  year: 2007
  ident: 10.1016/j.aca.2011.12.065_bib0020
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-93
– volume: 80
  start-page: 115
  year: 2008
  ident: 10.1016/j.aca.2011.12.065_bib0100
  publication-title: Anal. Chem.
  doi: 10.1021/ac0713510
– volume: 1217
  start-page: 3929
  year: 2010
  ident: 10.1016/j.aca.2011.12.065_bib0045
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.11.060
– volume: 8
  start-page: 5132
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0015
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900499r
– volume: 81
  start-page: 3285
  year: 2009
  ident: 10.1016/j.aca.2011.12.065_bib0080
  publication-title: Anal. Chem.
  doi: 10.1021/ac8024569
SSID ssj0002104
Score 2.264098
Snippet [Display omitted] ► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were...
Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms amino acids
Analytical chemistry
blood proteins
Blood Proteins - isolation & purification
blood serum
Centrifugation
Centrifugation - methods
Chemical Precipitation
Chemistry
Exact sciences and technology
fasting
Fasting - blood
Fats - metabolism
Female
Filtration
Filtration - methods
Humans
lipid content
Male
Metabolic fingerprinting
metabolites
Metabolomics
Metabolomics - methods
molecular weight
nutritional intervention
Plasma - metabolism
Plasma protein precipitation
Postprandial Period
QTOF/MS
Title Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage
URI https://dx.doi.org/10.1016/j.aca.2011.12.065
https://www.ncbi.nlm.nih.gov/pubmed/22305897
https://www.proquest.com/docview/1710225352
https://www.proquest.com/docview/920230277
https://www.proquest.com/docview/923209373
Volume 718
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: ACRLP
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AIKHN
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AKRWK
  dateStart: 19930108
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbRQQt_ZpF1U6Kmgxg_5oWNYGrYtyamB3ISexWXjNVnvoZf-t_6zzshSQqDZQ0_GRmPJmvHMJ2kehHxQdWErlTUMriXjLiuZ0k0Gf3zhjRY59zUGJ59f1MtL_vWqutojixQLg26VUfdPOj1o6_jkJM7mydB1GOObAfZoMPoTlS7qYc4brGLw6fedmwcsaXiqmoet08lm8PFSRk1ZPHFHEO3Lv23T00FtYMb8VOriYSwabNLZM3IQwSQ9ncb7nOy5_gV5vEg13F6SP-duBC6vOkN92L_DbTx0dKZrTzFTMfNqpAMg6GtFNwozBW_oMMUOOEv1LxqcNzu__RE4yKjqLbxqFZPtMjSCloZkD10PV2e6IWb9phZD3R1iWYpeIuiTBGykqSQL9EGB5jqOcHQ0JnENxAZdS0HXvSKXZ5-_L5YsFm1gBmZ_ZLzNuRK2rlvDS-fy1rlGWV0La2sOcKiyjsMyqjZac2UMqBDjtS58LlyWKeHL12S_X_fukFCTKzClWrSuMPBaBIOVKWGBVYlSWOFmJEvskiZ-GxbWWMnkuvZTAoclcljmhQQOz8jHW5JhSuexqzFPMiDvyaQEc7OLbH5PXm47AnSJyfzLGXmfBEiCPOAJjerderuROeK9AjPuzAh9oI3Agvd48r6rSVlkgDuhpzeTfN6NAWirVjRH__dtx-QJ3BXBCU-8Jfvjzda9A1Q26nn47ebk0emXb8uLv_e9O1o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigSQrxZHsVInJBCE8d5-IhWVAt0e2ql3iw_UaptNmKzBy78N_4ZM47dqhLdA6dIu3bsZCYzn-2Zbwj5oGpmK5U3GVzLjLu8zJRucvjimTdaFNzXmJy8PK0X5_zbRXWxR-YpFwbDKqPtn2x6sNbxl6P4No-GrsMc3xywR4PZn2h0wQ7f4xVrcAX26fdNnAesaXgqm4fN09FmCPJSRk00nrgliA7m387pwaA28Mr8VOvibjAanNLxI_Iwokn6eZrwY7Ln-ifkYJ6KuD0lf5ZuBDGvOkN92MDDfTyMdKZrT5GqOPNqpANA6CtFNwqpgjd0mJIHnKX6Fw3Rm53f_ggizKjqLdxqFdl2M_SClga2h66HqzPdEGm_qcVcd4dglmKYCAYlgRxpqskCY1DocxVnODoaWVxDZ4OxpWDsnpHz4y9n80UWqzZkhvNmzHhbcCVsXbeGl84VrXONsroW1tYc8FBlHYd1VG205soYsCHGa818IVyeK-HL52S_X_fuJaGmUOBLtWgdM3BbRIOVKWGFVYlSWOFmJE_ikiY-G1bWWMkUu3YpQcISJSwLJkHCM_Lxussw8XnsasyTDshbSinB3-zqdnhLX64HAniJbP7ljLxPCiRBH_CIRvVuvd3IAgEfQ8qdGaF3tBFY8R6P3nc1KVkOwBNGejHp580coG_ViubV_z3bO3KwOFueyJOvp99fk_vwDwsReeIN2R9_bt1bgGijPgyf4F_oFDzv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+fingerprinting+of+high-fat+plasma+samples+processed+by+centrifugation-and+filtration-based+protein+precipitation+delineates+significant+differences+in+metabolite+information+coverage&rft.jtitle=Analytica+chimica+acta&rft.au=BARRI%2C+Thaer&rft.au=HOLMER-JENSEN%2C+Jens&rft.au=HERMANSEN%2C+Kjeld&rft.au=DRAGSTED%2C+Lars+O&rft.date=2012-03-09&rft.pub=Elsevier&rft.issn=0003-2670&rft.volume=718&rft.spage=47&rft.epage=57&rft_id=info:doi/10.1016%2Fj.aca.2011.12.065&rft.externalDBID=n%2Fa&rft.externalDocID=25646643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon