Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage
[Display omitted] ► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were compared after a protein-rich meal. ► fPPP procedure recovers more metabolites with varying polarity than cPPP procedure does. ► Markers of...
        Saved in:
      
    
          | Published in | Analytica chimica acta Vol. 718; pp. 47 - 57 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        09.03.2012
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0003-2670 1873-4324 1873-4324  | 
| DOI | 10.1016/j.aca.2011.12.065 | 
Cover
| Abstract | [Display omitted]
► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were compared after a protein-rich meal. ► fPPP procedure recovers more metabolites with varying polarity than cPPP procedure does. ► Markers of the postprandial plasma samples are aromatic and branched-chain amino acids.
Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC–MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects. | 
    
|---|---|
| AbstractList | Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC–MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects. Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC-MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2 h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p < 0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p < 0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects. Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC-MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC-MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects. [Display omitted] ► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were compared after a protein-rich meal. ► fPPP procedure recovers more metabolites with varying polarity than cPPP procedure does. ► Markers of the postprandial plasma samples are aromatic and branched-chain amino acids. Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous factors. Blood serum or plasma samples are often employed for metabolomics studies. Plasma protein precipitation (PPP) is currently performed in most laboratories before LC–MS analysis. However, the impact of fat content in plasma samples on metabolite coverage has not previously been investigated. Here, we have studied whether PPP procedures influence coverage of plasma metabolites from high-fat plasma samples. An optimized UPLC-QTOF/MS metabolic fingerprinting approach and multivariate modeling (PCA and OPLS-DA) were utilized for finding characteristic metabolite changes induced by two PPP procedures; centrifugation and filtration. We used 12-h fasting samples and postprandial samples collected at 2h after a standardized high-fat protein-rich meal in obese non-diabetic subjects recruited in a dietary intervention. The two PPP procedures as well as external and internal standards (ISs) were used to track errors in response normalization and quantification. Remarkably and sometimes uniquely, the fPPP, but not the cPPP approach, recovered not only high molecular weight (HMW) lipophilic metabolites, but also small molecular weight (SMW) relatively polar metabolites. Characteristic SMW markers of postprandial samples were aromatic and branched-chain amino acids that were elevated (p<0.001) as a consequence of the protein challenge. In contrast, some HMW lipophilic species, e.g. acylcarnitines, were moderately lower (p<0.001) in postprandial samples. LysoPCs were largely unaffected. In conclusion, the fPPP procedure is recommended for processing high-fat plasma samples in metabolomics studies. While method improvements presented here were clear, use of several ISs revealed substantial challenges to untargeted metabolomics due to large and variable matrix effects.  | 
    
| Author | Holmer-Jensen, Jens Hermansen, Kjeld Dragsted, Lars O. Barri, Thaer  | 
    
| Author_xml | – sequence: 1 givenname: Thaer surname: Barri fullname: Barri, Thaer email: thbar@life.ku.dk organization: Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark – sequence: 2 givenname: Jens surname: Holmer-Jensen fullname: Holmer-Jensen, Jens organization: Department of Endocrinology and Metabolism MEA, Aarhus University Hospital, Tage-Hansens gade 2, DK-8000 Aarhus C, Denmark – sequence: 3 givenname: Kjeld surname: Hermansen fullname: Hermansen, Kjeld organization: Department of Endocrinology and Metabolism MEA, Aarhus University Hospital, Tage-Hansens gade 2, DK-8000 Aarhus C, Denmark – sequence: 4 givenname: Lars O. surname: Dragsted fullname: Dragsted, Lars O. organization: Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25646643$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22305897$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqNksuOFCEUhokZ41z0AdwYNkY31XIrqiquJhNvyRg3uian4NBDp4pqgZ5kHs83k7ZbTVx0XMEJ33848P-X5CwuEQl5ztmKM67fbFZgYSUY5ysuVky3j8gF7zvZKCnUGblgjMlG6I6dk8ucN7UUnKkn5FwIydp-6C7Ij89YYFymYKkPcY1pm0IsdUcXT-_C-q7xUOh2gjwDzTBvJ8x0mxaLOaOj4wO1GEsKfreGEpbYUIiutppKOtQj7LmqKBhiXdGGbSi_zqjDKUSEUlvmsI7BBwuxUBe8x4Sx3kGrZj5OWLBWfknzQWyXe0ywxqfksYcp47PjekW-vX_39eZjc_vlw6eb69vGKtWVRvVcweC07q2SiLxH7MCNenBOKy2H1qFivdZ2HBVYqxizfhyF5wMyBoOXV-TVoW99y_cd5mLmkC1OE0RcdtkMQgo2yE7-B8nq_4uuq-TrkyTvOBOila2o6IsjuhtndKb6NEN6ML-trMDLIwDZwuQTRBvyX66tz9RqPx0_cDYtOSf0fxDOzD5WZmNqrMw-VoYLU2NVNd0_Gnv0sNocppPKtwclVmvuAyaTbdhb60KNQjFuCSfUPwG5CewZ | 
    
| CODEN | ACACAM | 
    
| CitedBy_id | crossref_primary_10_1002_mnfr_202001049 crossref_primary_10_1038_srep06768 crossref_primary_10_1039_C9AY01137D crossref_primary_10_1021_pr400257d crossref_primary_10_1016_j_jchromb_2012_12_005 crossref_primary_10_1007_s11306_014_0668_4 crossref_primary_10_3389_fchem_2024_1461331 crossref_primary_10_1021_acs_analchem_4c03222 crossref_primary_10_1007_s11306_013_0607_9 crossref_primary_10_1002_mnfr_201200571 crossref_primary_10_3945_ajcn_113_076133 crossref_primary_10_1007_s11306_013_0522_0 crossref_primary_10_3390_metabo11010011 crossref_primary_10_1007_s11306_021_01848_6 crossref_primary_10_1007_s11306_013_0534_9 crossref_primary_10_1021_acs_jproteome_7b00039 crossref_primary_10_3390_metabo12121168 crossref_primary_10_1002_hep4_1601 crossref_primary_10_1038_s41564_021_00970_4 crossref_primary_10_1080_17429145_2023_2255039 crossref_primary_10_1021_acs_jcim_4c02179 crossref_primary_10_1021_pr401214w crossref_primary_10_3389_fnut_2023_1191944 crossref_primary_10_1007_s11306_014_0657_7 crossref_primary_10_1007_s00394_019_02039_9 crossref_primary_10_1016_j_molmet_2020_101103 crossref_primary_10_1021_acs_analchem_5b02287 crossref_primary_10_1016_j_aca_2013_01_015 crossref_primary_10_1016_j_aca_2020_12_025 crossref_primary_10_1002_mnfr_201900977 crossref_primary_10_1007_s00216_013_7498_5 crossref_primary_10_1371_journal_pone_0069589 crossref_primary_10_1007_s11306_015_0934_0 crossref_primary_10_7763_IJMMM_2013_V1_57 crossref_primary_10_1038_s43705_021_00021_3 crossref_primary_10_1007_s11306_013_0525_x crossref_primary_10_1016_j_chroma_2023_464439 crossref_primary_10_1080_26395940_2018_1563501 crossref_primary_10_1177_1469066720918446 crossref_primary_10_1021_acs_jproteome_6b00635 crossref_primary_10_1021_acs_jafc_1c01155 crossref_primary_10_1021_pr400964s crossref_primary_10_1039_C5RA22856E crossref_primary_10_1021_ac302919t crossref_primary_10_1016_j_chemolab_2021_104271 crossref_primary_10_1038_s41598_018_21851_7  | 
    
| Cites_doi | 10.1021/ac8022857 10.1021/ac070843+ 10.1002/(SICI)1097-0231(19990730)13:14<1540::AID-RCM688>3.0.CO;2-1 10.1016/j.aca.2009.03.039 10.1002/rcm.748 10.1002/jms.984 10.1002/mas.20298 10.1021/ac0106694 10.1002/rcm.895 10.1021/ac8002402 10.1002/rcm.1268 10.1016/j.jchromb.2006.02.011 10.1021/ac901087t 10.1007/s11306-007-0099-6 10.3945/ajcn.2008.27281 10.1021/pr801045q 10.1021/ac102806p 10.1021/ac9014947 10.1016/S0169-7439(01)00155-1 10.1021/ac051312t 10.1016/j.chroma.2004.08.068 10.1021/pr901094j 10.1016/j.jchromb.2010.10.012 10.1021/ac020309w 10.1186/1471-2105-8-93 10.1021/ac0713510 10.1016/j.chroma.2009.11.060 10.1021/pr900499r 10.1021/ac8024569  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS Copyright © 2012 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7TG KL.  | 
    
| DOI | 10.1016/j.aca.2011.12.065 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts  | 
    
| DatabaseTitleList | AGRICOLA Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1873-4324 | 
    
| EndPage | 57 | 
    
| ExternalDocumentID | 22305897 25646643 10_1016_j_aca_2011_12_065 S0003267012000062  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACBEA ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACPRK ACRLP ADBBV ADECG ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W K-O KCYFY KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSJ SSK SSU SSZ T5K TN5 TWZ UPT WH7 YK3 ZMT ~02 ~G- .GJ 3O- 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ACKIV ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FEDTE FGOYB HMU HVGLF H~9 MVM NHB R2- SCB SEW T9H UQL VH1 WUQ XOL XPP ZCG ZXP ZY4 ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7TG KL.  | 
    
| ID | FETCH-LOGICAL-c447t-4814a9d668c43ee18ee7adb69dd646395de40866cbb4acc400cfbb2f19e00a9f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0003-2670 1873-4324  | 
    
| IngestDate | Thu Oct 02 12:44:33 EDT 2025 Thu Sep 25 09:03:51 EDT 2025 Thu Oct 02 10:55:52 EDT 2025 Thu Apr 03 07:01:01 EDT 2025 Mon Jul 21 09:14:22 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Wed Oct 01 05:16:59 EDT 2025 Fri Feb 23 02:33:46 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Plasma protein precipitation Metabolomics QTOF/MS Filtration Metabolic fingerprinting Centrifugation Metabolite Internal standard Laboratory Multivariate analysis Modeling Blood plasma Lipophilic compound Improvement Precipitation Endogenous Serum Molecular mass Quantitative analysis Coupled method Sample Use Error Matrix effect Marker Protein Aminoacid Fingerprint method Fat Principal component analysis  | 
    
| Language | English | 
    
| License | CC BY 4.0 Copyright © 2012 Elsevier B.V. All rights reserved.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c447t-4814a9d668c43ee18ee7adb69dd646395de40866cbb4acc400cfbb2f19e00a9f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 22305897 | 
    
| PQID | 1710225352 | 
    
| PQPubID | 24069 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_923209373 proquest_miscellaneous_920230277 proquest_miscellaneous_1710225352 pubmed_primary_22305897 pascalfrancis_primary_25646643 crossref_primary_10_1016_j_aca_2011_12_065 crossref_citationtrail_10_1016_j_aca_2011_12_065 elsevier_sciencedirect_doi_10_1016_j_aca_2011_12_065  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-03-09 | 
    
| PublicationDateYYYYMMDD | 2012-03-09 | 
    
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-09 day: 09  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands  | 
    
| PublicationTitle | Analytica chimica acta | 
    
| PublicationTitleAlternate | Anal Chim Acta | 
    
| PublicationYear | 2012 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Pascoe, Foley, Gusev (bib0040) 2001; 73 Clauwaert, Van Bocxlaer, Major, Claereboudt, Lambert, Van den Eeckhout, Van Peteghem, DeLeenheer (bib0050) 1999; 13 Marvin, Delatour, Tavazzi, Fay, Cupp, Guy (bib0060) 2002; 75 Crews, Wikoff, Patti, Woo, Kalisiak, Heideker, Siuzdak (bib0135) 2009; 81 Little, Wempe, Buchanan (bib0120) 2006; 833 van der Kloet, Bobeldijk, Verheij, Jellema (bib0015) 2009; 8 Liang, Foltz, Meng, Bennett (bib0145) 2003; 17 Sun, Yang, Zhao, Guan, Han, Gross (bib0130) 2007; 79 Want, O’Maille, Smith, Brandon, Uritboonthai, Qin, Trauger, Siuzdak (bib0075) 2006; 78 Castro-Perez, Kamphorst, DeGroot, Lafeber, Goshawk, Yu, Shockcor, Vreeken, Hankemeier (bib0070) 2010; 9 Bruce, Tavazzi, Parisod, Rezzi, Kochhar, Guy (bib0080) 2009; 81 Denery, Nunes, Dickerson (bib0140) 2010; 83 Guan, Uboh, Soma, Luo, Li, Birks, Teleis, Rudy, Tsang (bib0055) 2002; 16 Mortensen, Hartvigsen, Brader, Astrup, Schrezenmeir, Holst, Thomsen, Hermansen (bib0090) 2009; 90 Sysi-Aho, Katajamaa, Yetukuri, Oresic (bib0020) 2007; 8 Calbiani, Careri, Elviri, Mangia, Zagnoni (bib0030) 2006; 41 Barceló-Barrachina, Moyano, Galceran (bib0065) 2004; 1054 Avery (bib0025) 2003; 17 Gosetti, Mazzucco, Zampieri, Gennaro (bib0045) 2010; 1217 Westerhuis, Hoefsloot, Smit, Vis, Smilde, van Velzen, van Duijnhoven, van Dorsten (bib0095) 2008; 4 Wiklund, Johansson, Sjostrom, Mellerowicz, Edlund, Shockcor, Gottfries, Moritz, Trygg (bib0100) 2008; 80 Chen, Wang, Lv, Yin, Zhao, Lu, Zhang, Xu (bib0115) 2009; 650 Ismaiel, Zhang, Jenkins, Karnes (bib0125) 2010; 878 Büscher, Czernik, Ewald, Sauer, Zamboni (bib0005) 2009; 81 Wold, Sjöström, Eriksson (bib0105) 2001; 58 Trufelli, Palma, Famiglini, Cappiello (bib0035) 2011; 30 Wang, Wang, Yao, Zhao, Fritsche, Schmitt-Kopplin, Cai, Wan, Lu, Yang, Gu, Haring, Schleicher, Lehmann, Xu (bib0110) 2008; 80 Michopoulos, Lai, Gika, Theodoridis, Wilson (bib0085) 2009; 8 Mohamed, Varesio, Ivosev, Burton, Bonner, Hopfgartner (bib0010) 2009; 81 Wold (10.1016/j.aca.2011.12.065_bib0105) 2001; 58 Wang (10.1016/j.aca.2011.12.065_bib0110) 2008; 80 Liang (10.1016/j.aca.2011.12.065_bib0145) 2003; 17 Barceló-Barrachina (10.1016/j.aca.2011.12.065_bib0065) 2004; 1054 Ismaiel (10.1016/j.aca.2011.12.065_bib0125) 2010; 878 Sysi-Aho (10.1016/j.aca.2011.12.065_bib0020) 2007; 8 Clauwaert (10.1016/j.aca.2011.12.065_bib0050) 1999; 13 Trufelli (10.1016/j.aca.2011.12.065_bib0035) 2011; 30 Castro-Perez (10.1016/j.aca.2011.12.065_bib0070) 2010; 9 Wiklund (10.1016/j.aca.2011.12.065_bib0100) 2008; 80 Calbiani (10.1016/j.aca.2011.12.065_bib0030) 2006; 41 Michopoulos (10.1016/j.aca.2011.12.065_bib0085) 2009; 8 Mortensen (10.1016/j.aca.2011.12.065_bib0090) 2009; 90 Westerhuis (10.1016/j.aca.2011.12.065_bib0095) 2008; 4 Guan (10.1016/j.aca.2011.12.065_bib0055) 2002; 16 Marvin (10.1016/j.aca.2011.12.065_bib0060) 2002; 75 Pascoe (10.1016/j.aca.2011.12.065_bib0040) 2001; 73 Avery (10.1016/j.aca.2011.12.065_bib0025) 2003; 17 Little (10.1016/j.aca.2011.12.065_bib0120) 2006; 833 Want (10.1016/j.aca.2011.12.065_bib0075) 2006; 78 Chen (10.1016/j.aca.2011.12.065_bib0115) 2009; 650 Denery (10.1016/j.aca.2011.12.065_bib0140) 2010; 83 van der Kloet (10.1016/j.aca.2011.12.065_bib0015) 2009; 8 Mohamed (10.1016/j.aca.2011.12.065_bib0010) 2009; 81 Sun (10.1016/j.aca.2011.12.065_bib0130) 2007; 79 Gosetti (10.1016/j.aca.2011.12.065_bib0045) 2010; 1217 Crews (10.1016/j.aca.2011.12.065_bib0135) 2009; 81 Büscher (10.1016/j.aca.2011.12.065_bib0005) 2009; 81 Bruce (10.1016/j.aca.2011.12.065_bib0080) 2009; 81  | 
    
| References_xml | – volume: 81 start-page: 7677 year: 2009 end-page: 7694 ident: bib0010 publication-title: Anal. Chem. – volume: 30 start-page: 491 year: 2011 end-page: 509 ident: bib0035 publication-title: Mass Spectrom. Rev. – volume: 650 start-page: 3 year: 2009 end-page: 9 ident: bib0115 publication-title: Anal. Chim. Acta – volume: 17 start-page: 2815 year: 2003 end-page: 2821 ident: bib0145 publication-title: Rapid Commun. Mass Spectrom. – volume: 17 start-page: 197 year: 2003 end-page: 201 ident: bib0025 publication-title: Rapid Commun. Mass Spectrom. – volume: 81 start-page: 8538 year: 2009 end-page: 8544 ident: bib0135 publication-title: Anal. Chem. – volume: 1054 start-page: 409 year: 2004 end-page: 418 ident: bib0065 publication-title: J. Chromatogr. A – volume: 81 start-page: 3285 year: 2009 end-page: 3296 ident: bib0080 publication-title: Anal. Chem. – volume: 73 start-page: 6014 year: 2001 end-page: 6023 ident: bib0040 publication-title: Anal. Chem. – volume: 1217 start-page: 3929 year: 2010 end-page: 3937 ident: bib0045 publication-title: J. Chromatogr. A – volume: 833 start-page: 219 year: 2006 end-page: 230 ident: bib0120 publication-title: J. Chromatogr. B – volume: 83 start-page: 1040 year: 2010 end-page: 1047 ident: bib0140 publication-title: Anal. Chem. – volume: 78 start-page: 743 year: 2006 end-page: 752 ident: bib0075 publication-title: Anal. Chem. – volume: 13 start-page: 1540 year: 1999 end-page: 1545 ident: bib0050 publication-title: Rapid Commun. Mass Spectrom. – volume: 9 start-page: 2377 year: 2010 end-page: 2389 ident: bib0070 publication-title: J. Proteome Res. – volume: 41 start-page: 289 year: 2006 end-page: 294 ident: bib0030 publication-title: J. Mass Spectrom. – volume: 90 start-page: 41 year: 2009 end-page: 48 ident: bib0090 publication-title: Am. J. Clin. Nutr. – volume: 80 start-page: 115 year: 2008 end-page: 122 ident: bib0100 publication-title: Anal. Chem. – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: bib0105 publication-title: Chemometr. Intell. Lab. – volume: 79 start-page: 6629 year: 2007 end-page: 6640 ident: bib0130 publication-title: Anal. Chem. – volume: 80 start-page: 4680 year: 2008 end-page: 4688 ident: bib0110 publication-title: Anal. Chem. – volume: 16 start-page: 1642 year: 2002 end-page: 1651 ident: bib0055 publication-title: Rapid Commun. Mass Spectrom. – volume: 81 start-page: 2135 year: 2009 end-page: 2143 ident: bib0005 publication-title: Anal. Chem. – volume: 8 start-page: 2114 year: 2009 end-page: 2121 ident: bib0085 publication-title: J. Proteome Res. – volume: 8 start-page: 93 year: 2007 ident: bib0020 publication-title: BMC Bioinformatics – volume: 878 start-page: 3303 year: 2010 end-page: 3316 ident: bib0125 publication-title: J. Chromatogr. B – volume: 75 start-page: 261 year: 2002 end-page: 267 ident: bib0060 publication-title: Anal. Chem. – volume: 8 start-page: 5132 year: 2009 end-page: 5141 ident: bib0015 publication-title: J. Proteome Res. – volume: 4 start-page: 81 year: 2008 end-page: 89 ident: bib0095 publication-title: Metabolomics – volume: 81 start-page: 2135 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0005 publication-title: Anal. Chem. doi: 10.1021/ac8022857 – volume: 79 start-page: 6629 year: 2007 ident: 10.1016/j.aca.2011.12.065_bib0130 publication-title: Anal. Chem. doi: 10.1021/ac070843+ – volume: 13 start-page: 1540 year: 1999 ident: 10.1016/j.aca.2011.12.065_bib0050 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/(SICI)1097-0231(19990730)13:14<1540::AID-RCM688>3.0.CO;2-1 – volume: 650 start-page: 3 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0115 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.03.039 – volume: 16 start-page: 1642 year: 2002 ident: 10.1016/j.aca.2011.12.065_bib0055 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.748 – volume: 41 start-page: 289 year: 2006 ident: 10.1016/j.aca.2011.12.065_bib0030 publication-title: J. Mass Spectrom. doi: 10.1002/jms.984 – volume: 30 start-page: 491 year: 2011 ident: 10.1016/j.aca.2011.12.065_bib0035 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20298 – volume: 73 start-page: 6014 year: 2001 ident: 10.1016/j.aca.2011.12.065_bib0040 publication-title: Anal. Chem. doi: 10.1021/ac0106694 – volume: 17 start-page: 197 year: 2003 ident: 10.1016/j.aca.2011.12.065_bib0025 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.895 – volume: 80 start-page: 4680 year: 2008 ident: 10.1016/j.aca.2011.12.065_bib0110 publication-title: Anal. Chem. doi: 10.1021/ac8002402 – volume: 17 start-page: 2815 year: 2003 ident: 10.1016/j.aca.2011.12.065_bib0145 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.1268 – volume: 833 start-page: 219 year: 2006 ident: 10.1016/j.aca.2011.12.065_bib0120 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2006.02.011 – volume: 81 start-page: 7677 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0010 publication-title: Anal. Chem. doi: 10.1021/ac901087t – volume: 4 start-page: 81 year: 2008 ident: 10.1016/j.aca.2011.12.065_bib0095 publication-title: Metabolomics doi: 10.1007/s11306-007-0099-6 – volume: 90 start-page: 41 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0090 publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.2008.27281 – volume: 8 start-page: 2114 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0085 publication-title: J. Proteome Res. doi: 10.1021/pr801045q – volume: 83 start-page: 1040 year: 2010 ident: 10.1016/j.aca.2011.12.065_bib0140 publication-title: Anal. Chem. doi: 10.1021/ac102806p – volume: 81 start-page: 8538 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0135 publication-title: Anal. Chem. doi: 10.1021/ac9014947 – volume: 58 start-page: 109 year: 2001 ident: 10.1016/j.aca.2011.12.065_bib0105 publication-title: Chemometr. Intell. Lab. doi: 10.1016/S0169-7439(01)00155-1 – volume: 78 start-page: 743 year: 2006 ident: 10.1016/j.aca.2011.12.065_bib0075 publication-title: Anal. Chem. doi: 10.1021/ac051312t – volume: 1054 start-page: 409 year: 2004 ident: 10.1016/j.aca.2011.12.065_bib0065 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2004.08.068 – volume: 9 start-page: 2377 year: 2010 ident: 10.1016/j.aca.2011.12.065_bib0070 publication-title: J. Proteome Res. doi: 10.1021/pr901094j – volume: 878 start-page: 3303 year: 2010 ident: 10.1016/j.aca.2011.12.065_bib0125 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2010.10.012 – volume: 75 start-page: 261 year: 2002 ident: 10.1016/j.aca.2011.12.065_bib0060 publication-title: Anal. Chem. doi: 10.1021/ac020309w – volume: 8 start-page: 93 year: 2007 ident: 10.1016/j.aca.2011.12.065_bib0020 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-93 – volume: 80 start-page: 115 year: 2008 ident: 10.1016/j.aca.2011.12.065_bib0100 publication-title: Anal. Chem. doi: 10.1021/ac0713510 – volume: 1217 start-page: 3929 year: 2010 ident: 10.1016/j.aca.2011.12.065_bib0045 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2009.11.060 – volume: 8 start-page: 5132 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0015 publication-title: J. Proteome Res. doi: 10.1021/pr900499r – volume: 81 start-page: 3285 year: 2009 ident: 10.1016/j.aca.2011.12.065_bib0080 publication-title: Anal. Chem. doi: 10.1021/ac8024569  | 
    
| SSID | ssj0002104 | 
    
| Score | 2.264098 | 
    
| Snippet | [Display omitted]
► We compared two PPP procedures for metabolite coverage from high-fat plasma samples. ► Fasted and postprandial high-fat plasma samples were... Metabolomics and metabolic fingerprinting are being extensively employed for improved understanding of biological changes induced by endogenous or exogenous...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 47 | 
    
| SubjectTerms | amino acids Analytical chemistry blood proteins Blood Proteins - isolation & purification blood serum Centrifugation Centrifugation - methods Chemical Precipitation Chemistry Exact sciences and technology fasting Fasting - blood Fats - metabolism Female Filtration Filtration - methods Humans lipid content Male Metabolic fingerprinting metabolites Metabolomics Metabolomics - methods molecular weight nutritional intervention Plasma - metabolism Plasma protein precipitation Postprandial Period QTOF/MS  | 
    
| Title | Metabolic fingerprinting of high-fat plasma samples processed by centrifugation- and filtration-based protein precipitation delineates significant differences in metabolite information coverage | 
    
| URI | https://dx.doi.org/10.1016/j.aca.2011.12.065 https://www.ncbi.nlm.nih.gov/pubmed/22305897 https://www.proquest.com/docview/1710225352 https://www.proquest.com/docview/920230277 https://www.proquest.com/docview/923209373  | 
    
| Volume | 718 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: ACRLP dateStart: 19950110 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: AIKHN dateStart: 19950110 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: AKRWK dateStart: 19930108 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbRQQt_ZpF1U6Kmgxg_5oWNYGrYtyamB3ISexWXjNVnvoZf-t_6zzshSQqDZQ0_GRmPJmvHMJ2kehHxQdWErlTUMriXjLiuZ0k0Gf3zhjRY59zUGJ59f1MtL_vWqutojixQLg26VUfdPOj1o6_jkJM7mydB1GOObAfZoMPoTlS7qYc4brGLw6fedmwcsaXiqmoet08lm8PFSRk1ZPHFHEO3Lv23T00FtYMb8VOriYSwabNLZM3IQwSQ9ncb7nOy5_gV5vEg13F6SP-duBC6vOkN92L_DbTx0dKZrTzFTMfNqpAMg6GtFNwozBW_oMMUOOEv1LxqcNzu__RE4yKjqLbxqFZPtMjSCloZkD10PV2e6IWb9phZD3R1iWYpeIuiTBGykqSQL9EGB5jqOcHQ0JnENxAZdS0HXvSKXZ5-_L5YsFm1gBmZ_ZLzNuRK2rlvDS-fy1rlGWV0La2sOcKiyjsMyqjZac2UMqBDjtS58LlyWKeHL12S_X_fukFCTKzClWrSuMPBaBIOVKWGBVYlSWOFmJEvskiZ-GxbWWMnkuvZTAoclcljmhQQOz8jHW5JhSuexqzFPMiDvyaQEc7OLbH5PXm47AnSJyfzLGXmfBEiCPOAJjerderuROeK9AjPuzAh9oI3Agvd48r6rSVlkgDuhpzeTfN6NAWirVjRH__dtx-QJ3BXBCU-8Jfvjzda9A1Q26nn47ebk0emXb8uLv_e9O1o | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigSQrxZHsVInJBCE8d5-IhWVAt0e2ql3iw_UaptNmKzBy78N_4ZM47dqhLdA6dIu3bsZCYzn-2Zbwj5oGpmK5U3GVzLjLu8zJRucvjimTdaFNzXmJy8PK0X5_zbRXWxR-YpFwbDKqPtn2x6sNbxl6P4No-GrsMc3xywR4PZn2h0wQ7f4xVrcAX26fdNnAesaXgqm4fN09FmCPJSRk00nrgliA7m387pwaA28Mr8VOvibjAanNLxI_Iwokn6eZrwY7Ln-ifkYJ6KuD0lf5ZuBDGvOkN92MDDfTyMdKZrT5GqOPNqpANA6CtFNwqpgjd0mJIHnKX6Fw3Rm53f_ggizKjqLdxqFdl2M_SClga2h66HqzPdEGm_qcVcd4dglmKYCAYlgRxpqskCY1DocxVnODoaWVxDZ4OxpWDsnpHz4y9n80UWqzZkhvNmzHhbcCVsXbeGl84VrXONsroW1tYc8FBlHYd1VG205soYsCHGa818IVyeK-HL52S_X_fuJaGmUOBLtWgdM3BbRIOVKWGFVYlSWOFmJE_ikiY-G1bWWMkUu3YpQcISJSwLJkHCM_Lxussw8XnsasyTDshbSinB3-zqdnhLX64HAniJbP7ljLxPCiRBH_CIRvVuvd3IAgEfQ8qdGaF3tBFY8R6P3nc1KVkOwBNGejHp580coG_ViubV_z3bO3KwOFueyJOvp99fk_vwDwsReeIN2R9_bt1bgGijPgyf4F_oFDzv | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+fingerprinting+of+high-fat+plasma+samples+processed+by+centrifugation-and+filtration-based+protein+precipitation+delineates+significant+differences+in+metabolite+information+coverage&rft.jtitle=Analytica+chimica+acta&rft.au=BARRI%2C+Thaer&rft.au=HOLMER-JENSEN%2C+Jens&rft.au=HERMANSEN%2C+Kjeld&rft.au=DRAGSTED%2C+Lars+O&rft.date=2012-03-09&rft.pub=Elsevier&rft.issn=0003-2670&rft.volume=718&rft.spage=47&rft.epage=57&rft_id=info:doi/10.1016%2Fj.aca.2011.12.065&rft.externalDBID=n%2Fa&rft.externalDocID=25646643 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon |