WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis

Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systemati...

Full description

Saved in:
Bibliographic Details
Published inAnalytica chimica acta Vol. 1061; pp. 60 - 69
Main Authors Deng, Kui, Zhang, Fan, Tan, Qilong, Huang, Yue, Song, Wei, Rong, Zhiwei, Zhu, Zheng-Jiang, Li, Kang, Li, Zhenzi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 11.07.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0003-2670
1873-4324
1873-4324
DOI10.1016/j.aca.2019.02.010

Cover

Abstract Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data. [Display omitted] •Proposing a novel method to remove batch effects for metabolomics data.•The proposed method could efficiently remove batch effects.•The proposed method could reveal more biological information.•The proposed method outperformed other representative methods.•Providing an R package to easily implement this method.
AbstractList Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data. [Display omitted] •Proposing a novel method to remove batch effects for metabolomics data.•The proposed method could efficiently remove batch effects.•The proposed method could reveal more biological information.•The proposed method outperformed other representative methods.•Providing an R package to easily implement this method.
Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data.
Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data.Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data.
Author Li, Zhenzi
Deng, Kui
Li, Kang
Huang, Yue
Rong, Zhiwei
Song, Wei
Zhu, Zheng-Jiang
Tan, Qilong
Zhang, Fan
Author_xml – sequence: 1
  givenname: Kui
  surname: Deng
  fullname: Deng, Kui
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
– sequence: 2
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  organization: Laboratory of Hematology Center, First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
– sequence: 3
  givenname: Qilong
  surname: Tan
  fullname: Tan, Qilong
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
– sequence: 4
  givenname: Yue
  surname: Huang
  fullname: Huang, Yue
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
– sequence: 5
  givenname: Wei
  surname: Song
  fullname: Song, Wei
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
– sequence: 6
  givenname: Zhiwei
  surname: Rong
  fullname: Rong, Zhiwei
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
– sequence: 7
  givenname: Zheng-Jiang
  surname: Zhu
  fullname: Zhu, Zheng-Jiang
  organization: Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
– sequence: 8
  givenname: Kang
  surname: Li
  fullname: Li, Kang
  email: likang@ems.hrbmu.edu.cn
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
– sequence: 9
  givenname: Zhenzi
  surname: Li
  fullname: Li, Zhenzi
  email: zhenzhenlee2014@163.com
  organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30926040$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFD8AFWeLCJWHsZJMsnKqKf1IlLiCO1sQet145cbGdRfvtcbTtpYf6Ys3o92ZG712wsznMxNhbAbUA0X3c16ixliB2NcgaBLxgGzH0TdU2sj1jGwBoKtn1cM4uUtqXUgpoX7HzBnaygxY27PgHD_Tj-uoTv-JzOJDn6G9DdPlu4jnwSFNp8hGzvuNkLemcuA2Re4y3VCWNnvgy57XKZPhEGcfgw-R04gYzFmkq_TDzf2WRp8xxRn9MLr1mLy36RG8e_kv2--uXX9ffq5uf38pBN5Vu2z5XchRGdtutwGZ9qI0cRt1qafrW6q0kIIsjWEMNotxZgTQKHAfcocEORXPJPpzm3sfwd6GU1eSSJu9xprAkJSVAP2yLoQV9_wTdhyWWe1eqATk0gxgK9e6BWsaJjLqPbsJ4VI-mFqA_ATqGlCJZpV3G7MKcIzqvBKg1PrVXJT61xqdAqhJfUYonysfhz2k-nzRUTDw4iippR7Mm42KJS5ngnlH_B1TjsuU
CitedBy_id crossref_primary_10_1080_14789450_2020_1846524
crossref_primary_10_1186_s12859_022_04887_5
crossref_primary_10_1021_jasms_3c00295
crossref_primary_10_3390_molecules29245934
crossref_primary_10_1021_acs_analchem_3c01289
crossref_primary_10_1007_s11306_023_01976_1
crossref_primary_10_1186_s12916_024_03516_7
crossref_primary_10_1021_acs_chemrestox_0c00523
crossref_primary_10_1021_acs_jproteome_2c00371
crossref_primary_10_1093_bioinformatics_btad096
crossref_primary_10_1016_j_ejcped_2023_100123
crossref_primary_10_1007_s11306_023_01973_4
crossref_primary_10_1002_mrc_5350
crossref_primary_10_1038_s41596_024_01046_3
crossref_primary_10_1021_acs_analchem_9b05460
crossref_primary_10_1038_s41467_021_25210_5
crossref_primary_10_1002_pca_3045
crossref_primary_10_1038_s41598_020_70850_0
crossref_primary_10_1039_D4AY01569J
crossref_primary_10_1007_s11306_025_02225_3
crossref_primary_10_1021_acs_analchem_2c05748
crossref_primary_10_1177_15330338211049903
crossref_primary_10_1016_j_eswa_2019_06_016
crossref_primary_10_1038_s41467_024_48177_5
crossref_primary_10_1021_acs_analchem_2c04188
crossref_primary_10_1021_acs_jproteome_1c00392
crossref_primary_10_1016_j_trac_2023_117225
crossref_primary_10_1007_s11306_021_01839_7
crossref_primary_10_1038_s41598_021_84824_3
crossref_primary_10_1093_bib_bbab535
crossref_primary_10_1016_j_trac_2023_117009
crossref_primary_10_1002_mas_21672
crossref_primary_10_1021_acs_analchem_1c05502
crossref_primary_10_1016_j_jad_2024_01_143
crossref_primary_10_1038_s41596_021_00636_9
crossref_primary_10_1016_j_trac_2019_115664
crossref_primary_10_1016_j_trac_2019_115665
crossref_primary_10_3390_metabo13050665
Cites_doi 10.1021/ac502439y
10.1007/s11306-016-1026-5
10.1109/34.192463
10.1021/pr050300l
10.1186/s12859-017-1501-7
10.1016/j.electacta.2012.03.062
10.1021/ac202450g
10.1093/bioinformatics/btn209
10.1038/nprot.2011.335
10.1016/j.phrp.2014.09.002
10.1021/pr900499r
10.1093/biostatistics/kxv027
10.1093/nar/gkp356
10.1093/biostatistics/kxj037
10.1039/C5AN01638J
10.1093/bioinformatics/btp426
10.1021/ac901143w
10.1021/ac201065j
10.1038/tpj.2010.57
10.1164/rccm.201209-1726OC
10.1016/j.tibtech.2017.02.012
10.1021/ac051437y
10.3389/fbioe.2015.00023
10.1038/nm.3466
10.1007/s11306-016-1093-7
10.1016/j.chroma.2015.12.007
10.1186/1471-2105-8-93
10.1093/nar/gkx449
10.1007/s11306-008-0153-z
10.1021/ac051495j
10.1093/bib/bbs037
10.1016/j.media.2015.05.012
10.1039/B910482H
10.1021/ac302748b
10.1021/pr060594q
10.1016/j.chroma.2014.11.050
10.1016/j.ab.2004.04.037
10.1093/bioinformatics/19.2.185
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jul 11, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jul 11, 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7TK
7TM
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.aca.2019.02.010
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
EndPage 69
ExternalDocumentID 30926040
10_1016_j_aca_2019_02_010
S0003267019301849
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
SCB
SEW
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
~HD
AGCQF
AGRNS
NPM
SSH
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7TK
7TM
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c447t-2b1d26551a33333acd28bc4c2d74fc52e0efab0fde3aa29f1aeb1ab8a9ada6a13
IEDL.DBID .~1
ISSN 0003-2670
1873-4324
IngestDate Sun Sep 28 06:07:27 EDT 2025
Wed Aug 13 09:20:26 EDT 2025
Mon Jul 21 05:45:44 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Wed Oct 01 01:57:26 EDT 2025
Fri Feb 23 02:29:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metabolomics
Wavelet transform
Batch effect
Data normalization
Independent component analysis
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-2b1d26551a33333acd28bc4c2d74fc52e0efab0fde3aa29f1aeb1ab8a9ada6a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30926040
PQID 2230283818
PQPubID 2045283
PageCount 10
ParticipantIDs proquest_miscellaneous_2200785101
proquest_journals_2230283818
pubmed_primary_30926040
crossref_citationtrail_10_1016_j_aca_2019_02_010
crossref_primary_10_1016_j_aca_2019_02_010
elsevier_sciencedirect_doi_10_1016_j_aca_2019_02_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-11
PublicationDateYYYYMMDD 2019-07-11
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-11
  day: 11
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Mapstone, Cheema, Fiandaca, Zhong, Mhyre, MacArthur, Hall, Fisher, Peterson, Haley (bib8) 2014; 20
Mallat (bib41) 1989; 11
Goh, Wang, Wong (bib13) 2017; 35
Gullberg, Jonsson, Nordström, Sjöström, Moritz (bib15) 2004; 331
Struzik, Siebes (bib43) 1999
Johnson, Li, Rabinovic (bib30) 2007; 8
Nygaard, Rodland, Hovig (bib31) 2016; 17
Karpievitch, Taverner, Adkins, Callister, Anderson, Smith, Dabney (bib33) 2016; 25
Lai, Michopoulos, Gika, Theodoridis, Wilkinson, Odedra, Wingate, Bonner, Tate, Wilson (bib12) 2009; 6
Von Borries, Pierluissi, Nazeran (bib34) 2006
Armitage, Southam (bib6) 2016; 12
Bolstad, Irizarry, Åstrand, Speed (bib29) 2003; 19
Renard, Branders, Absil (bib32) 2016
Li, Manjunath, Mitra (bib36) 1994
Smith, Want, O'Maille, Ruben Abagyan, Siuzdak (bib38) 2006; 78
Gonzalez, Eveillard, Canlet, Paris, Pineau, Besse, Martin, Déjean (bib45) 2013; 10
Dunn, Broadhurst, Begley, Zelena, Francis-McIntyre, Anderson, Brown, Knowles, Halsall, Haselden (bib21) 2011; 6
Trygg, Holmes, Lundstedt (bib47) 2007; 6
Mickiewicz, Vogel, Wong, Winston (bib4) 2013; 187
Reisetter, Muehlbauer, Bain, Nodzenski, Stevens, Ilkayeva, Metzger, Newgard, Lowe, Scholtens (bib23) 2017; 18
Guo, Sidhu, Ebbels, Rana, Spurgeon, Svendsen, Stürzenbaum, Kille, Morgan, Bundy (bib3) 2009; 5
Strimmer (bib48) 2008; 24
Renard, Absil (bib25) 2017
Lai, Qu, Liu, Guo, Ye, Zhan, Chen (bib37) 2016; 27
Yin, Xu (bib1) 2014; 1374
Livera, Sysi-Aho, Jacob, Gagnon-Bartsch, Castillo, Simpson, Speed (bib19) 2015; 87
Veselkov, Vingara, Masson, Robinette, Want, Li, Barton, Boursier-Neyret, Walther, Ebbels (bib7) 2011; 83
Callister, Barry, Adkins, Johnson, Qian, Webb-Robertson, Smith, Lipton (bib27) 2006; 5
Xia, Psychogios, Young, Wishart (bib28) 2009; 37
Kuligowski, Sánchez-Illana, Sanjuán-Herráez, Vento, Quintás (bib22) 2015; 140
Redestig, Fukushima, Stenlund, Moritz, Arita, Saito, Kusano (bib18) 2009; 81
Van Der Kloet, Bobeldijk, Verheij, Jellema (bib20) 2009; 8
Daubechies (bib40) 2015; 36
Lazar, Meganck, Taminau, Steenhoff, Coletta, Molter, Weiss-Solís, Duque, Bersini, Nowé (bib11) 2012; 14
Tashiro, Imoto (bib5) 2015; 73
Luo, Schumacher, Scherer, Sanoudou, Megherbi, Davison, Shi, Tong, Shi, Hong (bib26) 2010; 10
Buendia, Tarquis, Buendia, Andina (bib42) 2008
Wu, Li (bib14) 2016; 1430
Sysi-Aho, Katajamaa, Yetukuri, Orešič (bib17) 2007; 8
Shen, Gong, Cai, Guo, Tu, Li, Zhang, Wang, Xue, Zhu (bib24) 2016; 12
Kuhl, Tautenhahn, Bottcher, Larson, Neumann (bib39) 2011; 84
Bijlsma, Bobeldijk, Verheij, Ramaker, Kochhar, Macdonald, Van Ommen, Smilde (bib16) 2006; 78
De Livera, Dias, De Souza, Rupasinghe, Pyke, Tull, Roessner, McConville, Speed (bib9) 2012; 84
Homborg, Tinga, Zhang, Westing, Oonincx, Wit, Mol (bib35) 2012; 70
Goh, Wang, Wong (bib10) 2017; 35
Alonso, Marsal, Julià (bib2) 2015; 3
Li, Tang, Yang, Li, Cui, Li, Chen, Xue, Li, Zhu (bib46) 2017; 45
Farhadian, Mahjub, Poorolajal, Moghimbeigi, Mansoorizadeh (bib44) 2014; 5
Johnson (10.1016/j.aca.2019.02.010_bib30) 2007; 8
Karpievitch (10.1016/j.aca.2019.02.010_bib33) 2016; 25
De Livera (10.1016/j.aca.2019.02.010_bib9) 2012; 84
Bolstad (10.1016/j.aca.2019.02.010_bib29) 2003; 19
Goh (10.1016/j.aca.2019.02.010_bib13) 2017; 35
Sysi-Aho (10.1016/j.aca.2019.02.010_bib17) 2007; 8
Mickiewicz (10.1016/j.aca.2019.02.010_bib4) 2013; 187
Gullberg (10.1016/j.aca.2019.02.010_bib15) 2004; 331
Wu (10.1016/j.aca.2019.02.010_bib14) 2016; 1430
Lazar (10.1016/j.aca.2019.02.010_bib11) 2012; 14
Renard (10.1016/j.aca.2019.02.010_bib25) 2017
Tashiro (10.1016/j.aca.2019.02.010_bib5) 2015; 73
Redestig (10.1016/j.aca.2019.02.010_bib18) 2009; 81
Shen (10.1016/j.aca.2019.02.010_bib24) 2016; 12
Lai (10.1016/j.aca.2019.02.010_bib37) 2016; 27
Veselkov (10.1016/j.aca.2019.02.010_bib7) 2011; 83
Xia (10.1016/j.aca.2019.02.010_bib28) 2009; 37
Trygg (10.1016/j.aca.2019.02.010_bib47) 2007; 6
Kuligowski (10.1016/j.aca.2019.02.010_bib22) 2015; 140
Struzik (10.1016/j.aca.2019.02.010_bib43) 1999
Buendia (10.1016/j.aca.2019.02.010_bib42) 2008
Li (10.1016/j.aca.2019.02.010_bib36) 1994
Von Borries (10.1016/j.aca.2019.02.010_bib34) 2006
Daubechies (10.1016/j.aca.2019.02.010_bib40) 2015; 36
Li (10.1016/j.aca.2019.02.010_bib46) 2017; 45
Dunn (10.1016/j.aca.2019.02.010_bib21) 2011; 6
Gonzalez (10.1016/j.aca.2019.02.010_bib45) 2013; 10
Mallat (10.1016/j.aca.2019.02.010_bib41) 1989; 11
Armitage (10.1016/j.aca.2019.02.010_bib6) 2016; 12
Van Der Kloet (10.1016/j.aca.2019.02.010_bib20) 2009; 8
Alonso (10.1016/j.aca.2019.02.010_bib2) 2015; 3
Smith (10.1016/j.aca.2019.02.010_bib38) 2006; 78
Goh (10.1016/j.aca.2019.02.010_bib10) 2017; 35
Farhadian (10.1016/j.aca.2019.02.010_bib44) 2014; 5
Reisetter (10.1016/j.aca.2019.02.010_bib23) 2017; 18
Kuhl (10.1016/j.aca.2019.02.010_bib39) 2011; 84
Bijlsma (10.1016/j.aca.2019.02.010_bib16) 2006; 78
Renard (10.1016/j.aca.2019.02.010_bib32) 2016
Mapstone (10.1016/j.aca.2019.02.010_bib8) 2014; 20
Livera (10.1016/j.aca.2019.02.010_bib19) 2015; 87
Luo (10.1016/j.aca.2019.02.010_bib26) 2010; 10
Callister (10.1016/j.aca.2019.02.010_bib27) 2006; 5
Nygaard (10.1016/j.aca.2019.02.010_bib31) 2016; 17
Strimmer (10.1016/j.aca.2019.02.010_bib48) 2008; 24
Homborg (10.1016/j.aca.2019.02.010_bib35) 2012; 70
Yin (10.1016/j.aca.2019.02.010_bib1) 2014; 1374
Lai (10.1016/j.aca.2019.02.010_bib12) 2009; 6
Guo (10.1016/j.aca.2019.02.010_bib3) 2009; 5
References_xml – volume: 8
  start-page: 93
  year: 2007
  ident: bib17
  article-title: Normalization method for metabolomics data using optimal selection of multiple internal standards
  publication-title: BMC Bioinf.
– start-page: 235
  year: 1994
  end-page: 245
  ident: bib36
  article-title: Multi-sensor image fusion using the wavelet transform, image processing
  publication-title: Proceedings. ICIP-94., IEEE International Conference, 2002
– start-page: 12
  year: 1999
  end-page: 22
  ident: bib43
  article-title: The Haar Wavelet Transform in the Time Series Similarity Paradigm, European Conference on Principles of Data Mining and Knowledge Discovery
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  ident: bib30
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
– volume: 6
  start-page: 108
  year: 2009
  end-page: 120
  ident: bib12
  article-title: Methodological considerations in the development of HPLC-MS methods for the analysis of rodent plasma for metabonomic studies
  publication-title: Mol. Biosyst.
– start-page: 69
  year: 2008
  end-page: 73
  ident: bib42
  article-title: Feature extraction via multiresolution MODWT analysis in a rainfall forecast system, Wmsci 2008
  publication-title: 12th World Multi-Conference on Systemics, Cybernetics and Informatics
– volume: 1430
  start-page: 80
  year: 2016
  end-page: 95
  ident: bib14
  article-title: Sample normalization methods in quantitative metabolomics
  publication-title: J. Chromatogr. A
– volume: 70
  start-page: 199
  year: 2012
  end-page: 209
  ident: bib35
  article-title: Time–frequency methods for trend removal in electrochemical noise data
  publication-title: Electrochim. Acta
– volume: 84
  start-page: 283
  year: 2011
  end-page: 289
  ident: bib39
  article-title: CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets
  publication-title: Anal. Chem.
– volume: 87
  start-page: 3606
  year: 2015
  end-page: 3615
  ident: bib19
  article-title: Statistical methods for handling unwanted variation in metabolomics data
  publication-title: Anal. Chem.
– volume: 6
  start-page: 1060
  year: 2011
  ident: bib21
  article-title: Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry
  publication-title: Nat. Protoc.
– volume: 10
  start-page: 61
  year: 2013
  end-page: 79
  ident: bib45
  article-title: Selecting the good level of details in undecimated wavelet transform improves the classification of samples from metabolomic data
  publication-title: JP J. Biostat.
– volume: 1374
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib1
  article-title: Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications
  publication-title: J. Chromatogr. A
– volume: 45
  start-page: W162
  year: 2017
  end-page: W170
  ident: bib46
  article-title: NOREVA: normalization and evaluation of MS-based metabolomics data
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 72
  year: 2009
  end-page: 83
  ident: bib3
  article-title: Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus
  publication-title: Metabolomics
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: bib41
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 73
  start-page: 1268
  year: 2015
  end-page: 1272
  ident: bib5
  article-title: Metabolomics and molecular targeted therapy of cancer, Nihon rinsho
  publication-title: Jpn. J. Clin. Med.
– volume: 187
  start-page: 967
  year: 2013
  end-page: 976
  ident: bib4
  article-title: Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 6
  start-page: 469
  year: 2007
  end-page: 479
  ident: bib47
  article-title: Chemometrics in metabonomics
  publication-title: J. Proteome Res.
– volume: 37
  start-page: W652
  year: 2009
  end-page: W660
  ident: bib28
  article-title: MetaboAnalyst: a web server for metabolomic data analysis and interpretation
  publication-title: Nucleic Acids Res.
– volume: 83
  start-page: 5864
  year: 2011
  end-page: 5872
  ident: bib7
  article-title: Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery
  publication-title: Anal. Chem.
– volume: 14
  start-page: 469
  year: 2012
  end-page: 490
  ident: bib11
  article-title: Batch effect removal methods for microarray gene expression data integration: a survey
  publication-title: Briefings Bioinf.
– volume: 5
  start-page: 324
  year: 2014
  end-page: 332
  ident: bib44
  article-title: Predicting 5-year survival status of patients with breast cancer based on supervised wavelet method
  publication-title: Osong Publ Health Res. Perspect.
– volume: 8
  start-page: 5132
  year: 2009
  end-page: 5141
  ident: bib20
  article-title: Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping
  publication-title: J. Proteome Res.
– volume: 17
  start-page: 29
  year: 2016
  end-page: 39
  ident: bib31
  article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses
  publication-title: Biostatistics
– volume: 36
  start-page: 961
  year: 2015
  end-page: 1005
  ident: bib40
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: J. Renew. Sustain. Energy
– volume: 78
  start-page: 779
  year: 2006
  end-page: 787
  ident: bib38
  article-title: XCMS:  processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
  publication-title: Anal. Chem.
– volume: 3
  start-page: 23
  year: 2015
  ident: bib2
  article-title: Analytical methods in untargeted metabolomics: state of the art in 2015
  publication-title: Front. Bioeng. Biotechnol.
– volume: 331
  start-page: 283
  year: 2004
  end-page: 295
  ident: bib15
  article-title: Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry
  publication-title: Anal. Biochem.
– volume: 12
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib6
  article-title: Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics
  publication-title: Metabolomics
– volume: 18
  start-page: 84
  year: 2017
  ident: bib23
  article-title: Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data
  publication-title: BMC Bioinf.
– volume: 81
  start-page: 7974
  year: 2009
  end-page: 7980
  ident: bib18
  article-title: Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data
  publication-title: Anal. Chem.
– volume: 35
  start-page: 498
  year: 2017
  end-page: 507
  ident: bib13
  article-title: Why batch effects matter in omics data, and how to avoid them
  publication-title: Trends Biotechnol.
– volume: 20
  start-page: 415
  year: 2014
  ident: bib8
  article-title: Plasma phospholipids identify antecedent memory impairment in older adults
  publication-title: Nat. Med.
– volume: 78
  start-page: 567
  year: 2006
  end-page: 574
  ident: bib16
  article-title: Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation
  publication-title: Anal. Chem.
– volume: 19
  start-page: 185
  year: 2003
  end-page: 193
  ident: bib29
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
  publication-title: Bioinformatics
– volume: 24
  start-page: 1461
  year: 2008
  end-page: 1462
  ident: bib48
  article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
  publication-title: Bioinformatics
– start-page: 3891
  year: 2006
  end-page: 3894
  ident: bib34
  article-title: Wavelet Transform-Based ECG Baseline Drift Removal for Body Surface Potential Mapping, Engineering in Medicine and Biology Society, 2005
  publication-title: IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE
– volume: 35
  start-page: 498
  year: 2017
  end-page: 507
  ident: bib10
  article-title: Why batch effects matter in omics data, and how to avoid them
  publication-title: Trends Biotechnol.
– volume: 12
  start-page: 89
  year: 2016
  ident: bib24
  article-title: Normalization and integration of large-scale metabolomics data using support vector regression
  publication-title: Metabolomics
– start-page: 281
  year: 2016
  end-page: 292
  ident: bib32
  article-title: Independent component analysis to remove batch effects from merged microarray datasets
  publication-title: International Workshop on Algorithms in Bioinformatics
– volume: 27
  start-page: 93
  year: 2016
  end-page: 104
  ident: bib37
  article-title: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform
  publication-title: Med. Image Anal.
– start-page: 1530
  year: 2017
  end-page: 1537
  ident: bib25
  article-title: Comparison of location-scale and matrix factorization batch effect removal methods on gene expression datasets
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2017
– volume: 25
  start-page: 2573
  year: 2016
  end-page: 2580
  ident: bib33
  article-title: Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition
  publication-title: Bioinformatics
– volume: 84
  start-page: 10768
  year: 2012
  end-page: 10776
  ident: bib9
  article-title: Normalizing and integrating metabolomics data
  publication-title: Anal. Chem.
– volume: 140
  start-page: 7810
  year: 2015
  end-page: 7817
  ident: bib22
  article-title: Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC)
  publication-title: Analyst
– volume: 5
  start-page: 277
  year: 2006
  end-page: 286
  ident: bib27
  article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics
  publication-title: J. Proteome Res.
– volume: 10
  start-page: 278
  year: 2010
  end-page: 291
  ident: bib26
  article-title: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data
  publication-title: Pharmacogenomics J.
– volume: 87
  start-page: 3606
  issue: 7
  year: 2015
  ident: 10.1016/j.aca.2019.02.010_bib19
  article-title: Statistical methods for handling unwanted variation in metabolomics data
  publication-title: Anal. Chem.
  doi: 10.1021/ac502439y
– volume: 12
  start-page: 89
  issue: 5
  year: 2016
  ident: 10.1016/j.aca.2019.02.010_bib24
  article-title: Normalization and integration of large-scale metabolomics data using support vector regression
  publication-title: Metabolomics
  doi: 10.1007/s11306-016-1026-5
– volume: 11
  start-page: 674
  issue: 7
  year: 1989
  ident: 10.1016/j.aca.2019.02.010_bib41
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– start-page: 12
  year: 1999
  ident: 10.1016/j.aca.2019.02.010_bib43
– volume: 5
  start-page: 277
  issue: 2
  year: 2006
  ident: 10.1016/j.aca.2019.02.010_bib27
  article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr050300l
– volume: 18
  start-page: 84
  issue: 1
  year: 2017
  ident: 10.1016/j.aca.2019.02.010_bib23
  article-title: Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1501-7
– volume: 70
  start-page: 199
  issue: 6
  year: 2012
  ident: 10.1016/j.aca.2019.02.010_bib35
  article-title: Time–frequency methods for trend removal in electrochemical noise data
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.062
– volume: 84
  start-page: 283
  issue: 1
  year: 2011
  ident: 10.1016/j.aca.2019.02.010_bib39
  article-title: CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets
  publication-title: Anal. Chem.
  doi: 10.1021/ac202450g
– volume: 24
  start-page: 1461
  issue: 12
  year: 2008
  ident: 10.1016/j.aca.2019.02.010_bib48
  article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn209
– start-page: 3891
  year: 2006
  ident: 10.1016/j.aca.2019.02.010_bib34
  article-title: Wavelet Transform-Based ECG Baseline Drift Removal for Body Surface Potential Mapping, Engineering in Medicine and Biology Society, 2005
– volume: 73
  start-page: 1268
  issue: 8
  year: 2015
  ident: 10.1016/j.aca.2019.02.010_bib5
  article-title: Metabolomics and molecular targeted therapy of cancer, Nihon rinsho
  publication-title: Jpn. J. Clin. Med.
– volume: 6
  start-page: 1060
  issue: 7
  year: 2011
  ident: 10.1016/j.aca.2019.02.010_bib21
  article-title: Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.335
– volume: 5
  start-page: 324
  issue: 6
  year: 2014
  ident: 10.1016/j.aca.2019.02.010_bib44
  article-title: Predicting 5-year survival status of patients with breast cancer based on supervised wavelet method
  publication-title: Osong Publ Health Res. Perspect.
  doi: 10.1016/j.phrp.2014.09.002
– volume: 8
  start-page: 5132
  issue: 11
  year: 2009
  ident: 10.1016/j.aca.2019.02.010_bib20
  article-title: Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900499r
– volume: 17
  start-page: 29
  issue: 1
  year: 2016
  ident: 10.1016/j.aca.2019.02.010_bib31
  article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxv027
– volume: 37
  start-page: W652
  issue: suppl_2
  year: 2009
  ident: 10.1016/j.aca.2019.02.010_bib28
  article-title: MetaboAnalyst: a web server for metabolomic data analysis and interpretation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp356
– volume: 8
  start-page: 118
  issue: 1
  year: 2007
  ident: 10.1016/j.aca.2019.02.010_bib30
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– start-page: 281
  year: 2016
  ident: 10.1016/j.aca.2019.02.010_bib32
  article-title: Independent component analysis to remove batch effects from merged microarray datasets
– volume: 140
  start-page: 7810
  issue: 22
  year: 2015
  ident: 10.1016/j.aca.2019.02.010_bib22
  article-title: Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC)
  publication-title: Analyst
  doi: 10.1039/C5AN01638J
– volume: 25
  start-page: 2573
  issue: 19
  year: 2016
  ident: 10.1016/j.aca.2019.02.010_bib33
  article-title: Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp426
– volume: 81
  start-page: 7974
  issue: 19
  year: 2009
  ident: 10.1016/j.aca.2019.02.010_bib18
  article-title: Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data
  publication-title: Anal. Chem.
  doi: 10.1021/ac901143w
– volume: 83
  start-page: 5864
  issue: 15
  year: 2011
  ident: 10.1016/j.aca.2019.02.010_bib7
  article-title: Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery
  publication-title: Anal. Chem.
  doi: 10.1021/ac201065j
– volume: 10
  start-page: 278
  issue: 4
  year: 2010
  ident: 10.1016/j.aca.2019.02.010_bib26
  article-title: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data
  publication-title: Pharmacogenomics J.
  doi: 10.1038/tpj.2010.57
– volume: 187
  start-page: 967
  issue: 9
  year: 2013
  ident: 10.1016/j.aca.2019.02.010_bib4
  article-title: Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201209-1726OC
– volume: 35
  start-page: 498
  issue: 6
  year: 2017
  ident: 10.1016/j.aca.2019.02.010_bib10
  article-title: Why batch effects matter in omics data, and how to avoid them
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.02.012
– volume: 78
  start-page: 779
  issue: 3
  year: 2006
  ident: 10.1016/j.aca.2019.02.010_bib38
  article-title: XCMS:  processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
  publication-title: Anal. Chem.
  doi: 10.1021/ac051437y
– volume: 3
  start-page: 23
  year: 2015
  ident: 10.1016/j.aca.2019.02.010_bib2
  article-title: Analytical methods in untargeted metabolomics: state of the art in 2015
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00023
– volume: 36
  start-page: 961
  issue: 5
  year: 2015
  ident: 10.1016/j.aca.2019.02.010_bib40
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: J. Renew. Sustain. Energy
– volume: 20
  start-page: 415
  issue: 4
  year: 2014
  ident: 10.1016/j.aca.2019.02.010_bib8
  article-title: Plasma phospholipids identify antecedent memory impairment in older adults
  publication-title: Nat. Med.
  doi: 10.1038/nm.3466
– volume: 12
  start-page: 1
  issue: 9
  year: 2016
  ident: 10.1016/j.aca.2019.02.010_bib6
  article-title: Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics
  publication-title: Metabolomics
  doi: 10.1007/s11306-016-1093-7
– volume: 1430
  start-page: 80
  year: 2016
  ident: 10.1016/j.aca.2019.02.010_bib14
  article-title: Sample normalization methods in quantitative metabolomics
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2015.12.007
– volume: 35
  start-page: 498
  issue: 6
  year: 2017
  ident: 10.1016/j.aca.2019.02.010_bib13
  article-title: Why batch effects matter in omics data, and how to avoid them
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.02.012
– volume: 8
  start-page: 93
  issue: 1
  year: 2007
  ident: 10.1016/j.aca.2019.02.010_bib17
  article-title: Normalization method for metabolomics data using optimal selection of multiple internal standards
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-8-93
– volume: 45
  start-page: W162
  issue: W1
  year: 2017
  ident: 10.1016/j.aca.2019.02.010_bib46
  article-title: NOREVA: normalization and evaluation of MS-based metabolomics data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx449
– start-page: 69
  year: 2008
  ident: 10.1016/j.aca.2019.02.010_bib42
  article-title: Feature extraction via multiresolution MODWT analysis in a rainfall forecast system, Wmsci 2008
– volume: 5
  start-page: 72
  issue: 1
  year: 2009
  ident: 10.1016/j.aca.2019.02.010_bib3
  article-title: Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0153-z
– volume: 78
  start-page: 567
  issue: 2
  year: 2006
  ident: 10.1016/j.aca.2019.02.010_bib16
  article-title: Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation
  publication-title: Anal. Chem.
  doi: 10.1021/ac051495j
– volume: 14
  start-page: 469
  issue: 4
  year: 2012
  ident: 10.1016/j.aca.2019.02.010_bib11
  article-title: Batch effect removal methods for microarray gene expression data integration: a survey
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbs037
– volume: 27
  start-page: 93
  year: 2016
  ident: 10.1016/j.aca.2019.02.010_bib37
  article-title: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.05.012
– volume: 6
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.aca.2019.02.010_bib12
  article-title: Methodological considerations in the development of HPLC-MS methods for the analysis of rodent plasma for metabonomic studies
  publication-title: Mol. Biosyst.
  doi: 10.1039/B910482H
– start-page: 1530
  year: 2017
  ident: 10.1016/j.aca.2019.02.010_bib25
  article-title: Comparison of location-scale and matrix factorization batch effect removal methods on gene expression datasets
– volume: 84
  start-page: 10768
  issue: 24
  year: 2012
  ident: 10.1016/j.aca.2019.02.010_bib9
  article-title: Normalizing and integrating metabolomics data
  publication-title: Anal. Chem.
  doi: 10.1021/ac302748b
– volume: 10
  start-page: 61
  issue: 2
  year: 2013
  ident: 10.1016/j.aca.2019.02.010_bib45
  article-title: Selecting the good level of details in undecimated wavelet transform improves the classification of samples from metabolomic data
  publication-title: JP J. Biostat.
– volume: 6
  start-page: 469
  issue: 2
  year: 2007
  ident: 10.1016/j.aca.2019.02.010_bib47
  article-title: Chemometrics in metabonomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060594q
– volume: 1374
  start-page: 1
  year: 2014
  ident: 10.1016/j.aca.2019.02.010_bib1
  article-title: Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.11.050
– start-page: 235
  year: 1994
  ident: 10.1016/j.aca.2019.02.010_bib36
  article-title: Multi-sensor image fusion using the wavelet transform, image processing
– volume: 331
  start-page: 283
  issue: 2
  year: 2004
  ident: 10.1016/j.aca.2019.02.010_bib15
  article-title: Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.04.037
– volume: 19
  start-page: 185
  issue: 2
  year: 2003
  ident: 10.1016/j.aca.2019.02.010_bib29
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
SSID ssj0002104
Score 2.4842792
Snippet Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms Algorithms
Batch effect
Biomarkers
Correlation coefficient
Correlation coefficients
Data normalization
Feature extraction
Independent component analysis
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Metabolomics
Multiscale analysis
Pathogenesis
Quality control
Statistical analysis
Statistical methods
Wavelet analysis
Wavelet transform
Wavelet transforms
Title WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis
URI https://dx.doi.org/10.1016/j.aca.2019.02.010
https://www.ncbi.nlm.nih.gov/pubmed/30926040
https://www.proquest.com/docview/2230283818
https://www.proquest.com/docview/2200785101
Volume 1061
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: ACRLP
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AIKHN
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AKRWK
  dateStart: 19930108
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL4s3SUg0SJ6TQPJzdhNtqRbUF0RMVvVlje0JbZZOqm23Fhd_OTOIsQoIeyC2JHVn-JjOf7Xko9TazhXWJzSLUbhZpKvPIxlhGNi0r9JVmoyhbA19OpstT_eksP9tRizEWRtwqg-4fdHqvrcOTwzCbh1cXFxLjGzP3kHTiLKSFliA-rWdSxeD9z99uHryk0WPVPGk9nmz2Pl7oJPVQUvZpOyWI9u-26V_cs7dBR4_Uw0AeYT6M77HaoeaJur8Ya7Y9VT--4Q0dL-YfYA5Ne0M1YP295fX_-Qq6Fq5pxQ_Bsvo9h-DJAcxaoRZ_8GjNeBFsmsE7nDysqGMZqSVweQ3iSwpi9Dy0DdyiVKzoAENSk2fq9Ojj18UyCsUVIsez1EWpTXw6Zb6EmVzofMqoaZf6ma5cnlJMFdq48pQhMnAJslZHW2CJHqeYZM_VbtM29FJBTlmWonUz70q2iVQWhc9z_tKUfEoeJyoep9W4kHlcCmDUZnQxuzSMhBEkTJwaRmKi3m27XA1pN-5qrEeszB-yY9gs3NVtf8TVhB93bZgtCeNiGjNRb7avGUU5R8GG2o20EWIlymyiXgzysB1kFpe8QtTxq_8b0556IHeyeZwk-2q3u97Qa2Y9nT3oxfpA3Zsff16e_AKTkwIP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQLojwXSjESJ6TQxHE2MbfVqtUW2p5a0Zs1fqRdlE2q3WwRF347M4mzCKn0QI6OHVn-JjOf7Xkw9iE1hbGJSSOQNo-kV1lkYlCREaoEV0o0inQ0cHo2nl3IL5fZ5RabDrEw5FYZdH-v0zttHVoOwmoe3MznFOMbI_egdOIopIVUD9hDmYmcdmCffv3x88A9jRzK5lH34Wqzc_ICS7mHEtXl7aQo2ruN07_IZ2eEjp6wx4E98kk_wV225eunbGc6FG17xn5-g1t_PJ185hNeN7e-4lBdNct5e73gbcOXfoGN3KD-vebBlYMjbeUVOYRHKwTM83Xdu4d7xxe-RSGpKHJ5xcmZlJPVc7yp-Q-gkhUth5DV5Dm7ODo8n86iUF0hslLmbSRM4sQYCROk9IB1AmGTVrhcljYTPvYlmLh0PgVA5BJAtQ6mAAUOxpCkL9h23dT-FeOZT1MBxubOKjSKXhWFyzL80tg74R2MWDwsq7Yh9ThVwKj04GP2XSMSmpDQsdCIxIh93Ay56fNu3NdZDljpv4RHo124b9jegKsOf-5KI10iyoU8ZsTeb14jinSRArVv1tSHmBVpsxF72cvDZpJprHCLKOPX_zend2xndn56ok-Oz76-YY_oDZ0kJ8ke226Xa_8WKVBr9jsR_w17bgOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WaveICA%3A+A+novel+algorithm+to+remove+batch+effects+for+large-scale+untargeted+metabolomics+data+based+on+wavelet+analysis&rft.jtitle=Analytica+chimica+acta&rft.au=Deng%2C+Kui&rft.au=Zhang%2C+Fan&rft.au=Tan%2C+Qilong&rft.au=Huang%2C+Yue&rft.date=2019-07-11&rft.pub=Elsevier+B.V&rft.issn=0003-2670&rft.eissn=1873-4324&rft.volume=1061&rft.spage=60&rft.epage=69&rft_id=info:doi/10.1016%2Fj.aca.2019.02.010&rft.externalDocID=S0003267019301849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon