WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis
Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systemati...
Saved in:
| Published in | Analytica chimica acta Vol. 1061; pp. 60 - 69 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
11.07.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-2670 1873-4324 1873-4324 |
| DOI | 10.1016/j.aca.2019.02.010 |
Cover
| Abstract | Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data.
[Display omitted]
•Proposing a novel method to remove batch effects for metabolomics data.•The proposed method could efficiently remove batch effects.•The proposed method could reveal more biological information.•The proposed method outperformed other representative methods.•Providing an R package to easily implement this method. |
|---|---|
| AbstractList | Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data.
[Display omitted]
•Proposing a novel method to remove batch effects for metabolomics data.•The proposed method could efficiently remove batch effects.•The proposed method could reveal more biological information.•The proposed method outperformed other representative methods.•Providing an R package to easily implement this method. Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data. Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data.Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically analyzed using a liquid chromatography-mass spectrometry platform in several batches. Batch effects that are caused by non-biological systematic biases are unavoidable in large-scale metabolomics studies, even with properly designed experiments. The statistical analysis of large-scale metabolomics data without managing batch effects will yield misleading results. In this study, we propose a novel algorithm, called WaveICA, which is based on the wavelet transform method with independent component analysis, as the threshold processing method to capture and remove batch effects for large-scale metabolomics data. The WaveICA method uses the time trend of samples over the injection order, decomposes the original data into multi-scale data with different features, extracts and removes the batch effect information in multi-scale data, and obtains clean data. The WaveICA method was tested on real metabolomics data. After applying the WaveICA method, scattered quality control samples (QCS) and subject samples in a PCA score plot of the original data were closely clustered, respectively. The average Pearson correlation coefficients for all peaks of the QCS increased from 0.872 to 0.972. Additionally, WaveICA significantly improved the classification accuracy for metabolomics data. The method was compared with three representative methods, and outperformed all of them. To conclude, WaveICA can efficiently remove batch effects while revealing more biological information. This method can be used in large-scale untargeted metabolomics studies to preprocess raw metabolomics data. |
| Author | Li, Zhenzi Deng, Kui Li, Kang Huang, Yue Rong, Zhiwei Song, Wei Zhu, Zheng-Jiang Tan, Qilong Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Kui surname: Deng fullname: Deng, Kui organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China – sequence: 2 givenname: Fan surname: Zhang fullname: Zhang, Fan organization: Laboratory of Hematology Center, First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China – sequence: 3 givenname: Qilong surname: Tan fullname: Tan, Qilong organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China – sequence: 4 givenname: Yue surname: Huang fullname: Huang, Yue organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China – sequence: 5 givenname: Wei surname: Song fullname: Song, Wei organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China – sequence: 6 givenname: Zhiwei surname: Rong fullname: Rong, Zhiwei organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China – sequence: 7 givenname: Zheng-Jiang surname: Zhu fullname: Zhu, Zheng-Jiang organization: Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China – sequence: 8 givenname: Kang surname: Li fullname: Li, Kang email: likang@ems.hrbmu.edu.cn organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China – sequence: 9 givenname: Zhenzi surname: Li fullname: Li, Zhenzi email: zhenzhenlee2014@163.com organization: Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30926040$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1URLeFD8AFWeLCJWHsZJMsnKqKf1IlLiCO1sQet145cbGdRfvtcbTtpYf6Ys3o92ZG712wsznMxNhbAbUA0X3c16ixliB2NcgaBLxgGzH0TdU2sj1jGwBoKtn1cM4uUtqXUgpoX7HzBnaygxY27PgHD_Tj-uoTv-JzOJDn6G9DdPlu4jnwSFNp8hGzvuNkLemcuA2Re4y3VCWNnvgy57XKZPhEGcfgw-R04gYzFmkq_TDzf2WRp8xxRn9MLr1mLy36RG8e_kv2--uXX9ffq5uf38pBN5Vu2z5XchRGdtutwGZ9qI0cRt1qafrW6q0kIIsjWEMNotxZgTQKHAfcocEORXPJPpzm3sfwd6GU1eSSJu9xprAkJSVAP2yLoQV9_wTdhyWWe1eqATk0gxgK9e6BWsaJjLqPbsJ4VI-mFqA_ATqGlCJZpV3G7MKcIzqvBKg1PrVXJT61xqdAqhJfUYonysfhz2k-nzRUTDw4iippR7Mm42KJS5ngnlH_B1TjsuU |
| CitedBy_id | crossref_primary_10_1080_14789450_2020_1846524 crossref_primary_10_1186_s12859_022_04887_5 crossref_primary_10_1021_jasms_3c00295 crossref_primary_10_3390_molecules29245934 crossref_primary_10_1021_acs_analchem_3c01289 crossref_primary_10_1007_s11306_023_01976_1 crossref_primary_10_1186_s12916_024_03516_7 crossref_primary_10_1021_acs_chemrestox_0c00523 crossref_primary_10_1021_acs_jproteome_2c00371 crossref_primary_10_1093_bioinformatics_btad096 crossref_primary_10_1016_j_ejcped_2023_100123 crossref_primary_10_1007_s11306_023_01973_4 crossref_primary_10_1002_mrc_5350 crossref_primary_10_1038_s41596_024_01046_3 crossref_primary_10_1021_acs_analchem_9b05460 crossref_primary_10_1038_s41467_021_25210_5 crossref_primary_10_1002_pca_3045 crossref_primary_10_1038_s41598_020_70850_0 crossref_primary_10_1039_D4AY01569J crossref_primary_10_1007_s11306_025_02225_3 crossref_primary_10_1021_acs_analchem_2c05748 crossref_primary_10_1177_15330338211049903 crossref_primary_10_1016_j_eswa_2019_06_016 crossref_primary_10_1038_s41467_024_48177_5 crossref_primary_10_1021_acs_analchem_2c04188 crossref_primary_10_1021_acs_jproteome_1c00392 crossref_primary_10_1016_j_trac_2023_117225 crossref_primary_10_1007_s11306_021_01839_7 crossref_primary_10_1038_s41598_021_84824_3 crossref_primary_10_1093_bib_bbab535 crossref_primary_10_1016_j_trac_2023_117009 crossref_primary_10_1002_mas_21672 crossref_primary_10_1021_acs_analchem_1c05502 crossref_primary_10_1016_j_jad_2024_01_143 crossref_primary_10_1038_s41596_021_00636_9 crossref_primary_10_1016_j_trac_2019_115664 crossref_primary_10_1016_j_trac_2019_115665 crossref_primary_10_3390_metabo13050665 |
| Cites_doi | 10.1021/ac502439y 10.1007/s11306-016-1026-5 10.1109/34.192463 10.1021/pr050300l 10.1186/s12859-017-1501-7 10.1016/j.electacta.2012.03.062 10.1021/ac202450g 10.1093/bioinformatics/btn209 10.1038/nprot.2011.335 10.1016/j.phrp.2014.09.002 10.1021/pr900499r 10.1093/biostatistics/kxv027 10.1093/nar/gkp356 10.1093/biostatistics/kxj037 10.1039/C5AN01638J 10.1093/bioinformatics/btp426 10.1021/ac901143w 10.1021/ac201065j 10.1038/tpj.2010.57 10.1164/rccm.201209-1726OC 10.1016/j.tibtech.2017.02.012 10.1021/ac051437y 10.3389/fbioe.2015.00023 10.1038/nm.3466 10.1007/s11306-016-1093-7 10.1016/j.chroma.2015.12.007 10.1186/1471-2105-8-93 10.1093/nar/gkx449 10.1007/s11306-008-0153-z 10.1021/ac051495j 10.1093/bib/bbs037 10.1016/j.media.2015.05.012 10.1039/B910482H 10.1021/ac302748b 10.1021/pr060594q 10.1016/j.chroma.2014.11.050 10.1016/j.ab.2004.04.037 10.1093/bioinformatics/19.2.185 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jul 11, 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jul 11, 2019 |
| DBID | AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7TK 7TM 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1016/j.aca.2019.02.010 |
| DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-4324 |
| EndPage | 69 |
| ExternalDocumentID | 30926040 10_1016_j_aca_2019_02_010 S0003267019301849 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABYKQ ACBEA ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSJ SSK SSU SSZ T5K TN5 TWZ UPT WH7 YK3 ZMT ~02 ~G- .GJ 3O- 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FEDTE FGOYB HMU HVGLF HZ~ H~9 MVM NHB R2- SCB SEW T9H UQL VH1 WUQ XOL XPP ZCG ZXP ZY4 ~HD AGCQF AGRNS NPM SSH 7QF 7QO 7QP 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7TK 7TM 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c447t-2b1d26551a33333acd28bc4c2d74fc52e0efab0fde3aa29f1aeb1ab8a9ada6a13 |
| IEDL.DBID | .~1 |
| ISSN | 0003-2670 1873-4324 |
| IngestDate | Sun Sep 28 06:07:27 EDT 2025 Wed Aug 13 09:20:26 EDT 2025 Mon Jul 21 05:45:44 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Wed Oct 01 01:57:26 EDT 2025 Fri Feb 23 02:29:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metabolomics Wavelet transform Batch effect Data normalization Independent component analysis |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-2b1d26551a33333acd28bc4c2d74fc52e0efab0fde3aa29f1aeb1ab8a9ada6a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30926040 |
| PQID | 2230283818 |
| PQPubID | 2045283 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2200785101 proquest_journals_2230283818 pubmed_primary_30926040 crossref_citationtrail_10_1016_j_aca_2019_02_010 crossref_primary_10_1016_j_aca_2019_02_010 elsevier_sciencedirect_doi_10_1016_j_aca_2019_02_010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-11 |
| PublicationDateYYYYMMDD | 2019-07-11 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Analytica chimica acta |
| PublicationTitleAlternate | Anal Chim Acta |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Mapstone, Cheema, Fiandaca, Zhong, Mhyre, MacArthur, Hall, Fisher, Peterson, Haley (bib8) 2014; 20 Mallat (bib41) 1989; 11 Goh, Wang, Wong (bib13) 2017; 35 Gullberg, Jonsson, Nordström, Sjöström, Moritz (bib15) 2004; 331 Struzik, Siebes (bib43) 1999 Johnson, Li, Rabinovic (bib30) 2007; 8 Nygaard, Rodland, Hovig (bib31) 2016; 17 Karpievitch, Taverner, Adkins, Callister, Anderson, Smith, Dabney (bib33) 2016; 25 Lai, Michopoulos, Gika, Theodoridis, Wilkinson, Odedra, Wingate, Bonner, Tate, Wilson (bib12) 2009; 6 Von Borries, Pierluissi, Nazeran (bib34) 2006 Armitage, Southam (bib6) 2016; 12 Bolstad, Irizarry, Åstrand, Speed (bib29) 2003; 19 Renard, Branders, Absil (bib32) 2016 Li, Manjunath, Mitra (bib36) 1994 Smith, Want, O'Maille, Ruben Abagyan, Siuzdak (bib38) 2006; 78 Gonzalez, Eveillard, Canlet, Paris, Pineau, Besse, Martin, Déjean (bib45) 2013; 10 Dunn, Broadhurst, Begley, Zelena, Francis-McIntyre, Anderson, Brown, Knowles, Halsall, Haselden (bib21) 2011; 6 Trygg, Holmes, Lundstedt (bib47) 2007; 6 Mickiewicz, Vogel, Wong, Winston (bib4) 2013; 187 Reisetter, Muehlbauer, Bain, Nodzenski, Stevens, Ilkayeva, Metzger, Newgard, Lowe, Scholtens (bib23) 2017; 18 Guo, Sidhu, Ebbels, Rana, Spurgeon, Svendsen, Stürzenbaum, Kille, Morgan, Bundy (bib3) 2009; 5 Strimmer (bib48) 2008; 24 Renard, Absil (bib25) 2017 Lai, Qu, Liu, Guo, Ye, Zhan, Chen (bib37) 2016; 27 Yin, Xu (bib1) 2014; 1374 Livera, Sysi-Aho, Jacob, Gagnon-Bartsch, Castillo, Simpson, Speed (bib19) 2015; 87 Veselkov, Vingara, Masson, Robinette, Want, Li, Barton, Boursier-Neyret, Walther, Ebbels (bib7) 2011; 83 Callister, Barry, Adkins, Johnson, Qian, Webb-Robertson, Smith, Lipton (bib27) 2006; 5 Xia, Psychogios, Young, Wishart (bib28) 2009; 37 Kuligowski, Sánchez-Illana, Sanjuán-Herráez, Vento, Quintás (bib22) 2015; 140 Redestig, Fukushima, Stenlund, Moritz, Arita, Saito, Kusano (bib18) 2009; 81 Van Der Kloet, Bobeldijk, Verheij, Jellema (bib20) 2009; 8 Daubechies (bib40) 2015; 36 Lazar, Meganck, Taminau, Steenhoff, Coletta, Molter, Weiss-Solís, Duque, Bersini, Nowé (bib11) 2012; 14 Tashiro, Imoto (bib5) 2015; 73 Luo, Schumacher, Scherer, Sanoudou, Megherbi, Davison, Shi, Tong, Shi, Hong (bib26) 2010; 10 Buendia, Tarquis, Buendia, Andina (bib42) 2008 Wu, Li (bib14) 2016; 1430 Sysi-Aho, Katajamaa, Yetukuri, Orešič (bib17) 2007; 8 Shen, Gong, Cai, Guo, Tu, Li, Zhang, Wang, Xue, Zhu (bib24) 2016; 12 Kuhl, Tautenhahn, Bottcher, Larson, Neumann (bib39) 2011; 84 Bijlsma, Bobeldijk, Verheij, Ramaker, Kochhar, Macdonald, Van Ommen, Smilde (bib16) 2006; 78 De Livera, Dias, De Souza, Rupasinghe, Pyke, Tull, Roessner, McConville, Speed (bib9) 2012; 84 Homborg, Tinga, Zhang, Westing, Oonincx, Wit, Mol (bib35) 2012; 70 Goh, Wang, Wong (bib10) 2017; 35 Alonso, Marsal, Julià (bib2) 2015; 3 Li, Tang, Yang, Li, Cui, Li, Chen, Xue, Li, Zhu (bib46) 2017; 45 Farhadian, Mahjub, Poorolajal, Moghimbeigi, Mansoorizadeh (bib44) 2014; 5 Johnson (10.1016/j.aca.2019.02.010_bib30) 2007; 8 Karpievitch (10.1016/j.aca.2019.02.010_bib33) 2016; 25 De Livera (10.1016/j.aca.2019.02.010_bib9) 2012; 84 Bolstad (10.1016/j.aca.2019.02.010_bib29) 2003; 19 Goh (10.1016/j.aca.2019.02.010_bib13) 2017; 35 Sysi-Aho (10.1016/j.aca.2019.02.010_bib17) 2007; 8 Mickiewicz (10.1016/j.aca.2019.02.010_bib4) 2013; 187 Gullberg (10.1016/j.aca.2019.02.010_bib15) 2004; 331 Wu (10.1016/j.aca.2019.02.010_bib14) 2016; 1430 Lazar (10.1016/j.aca.2019.02.010_bib11) 2012; 14 Renard (10.1016/j.aca.2019.02.010_bib25) 2017 Tashiro (10.1016/j.aca.2019.02.010_bib5) 2015; 73 Redestig (10.1016/j.aca.2019.02.010_bib18) 2009; 81 Shen (10.1016/j.aca.2019.02.010_bib24) 2016; 12 Lai (10.1016/j.aca.2019.02.010_bib37) 2016; 27 Veselkov (10.1016/j.aca.2019.02.010_bib7) 2011; 83 Xia (10.1016/j.aca.2019.02.010_bib28) 2009; 37 Trygg (10.1016/j.aca.2019.02.010_bib47) 2007; 6 Kuligowski (10.1016/j.aca.2019.02.010_bib22) 2015; 140 Struzik (10.1016/j.aca.2019.02.010_bib43) 1999 Buendia (10.1016/j.aca.2019.02.010_bib42) 2008 Li (10.1016/j.aca.2019.02.010_bib36) 1994 Von Borries (10.1016/j.aca.2019.02.010_bib34) 2006 Daubechies (10.1016/j.aca.2019.02.010_bib40) 2015; 36 Li (10.1016/j.aca.2019.02.010_bib46) 2017; 45 Dunn (10.1016/j.aca.2019.02.010_bib21) 2011; 6 Gonzalez (10.1016/j.aca.2019.02.010_bib45) 2013; 10 Mallat (10.1016/j.aca.2019.02.010_bib41) 1989; 11 Armitage (10.1016/j.aca.2019.02.010_bib6) 2016; 12 Van Der Kloet (10.1016/j.aca.2019.02.010_bib20) 2009; 8 Alonso (10.1016/j.aca.2019.02.010_bib2) 2015; 3 Smith (10.1016/j.aca.2019.02.010_bib38) 2006; 78 Goh (10.1016/j.aca.2019.02.010_bib10) 2017; 35 Farhadian (10.1016/j.aca.2019.02.010_bib44) 2014; 5 Reisetter (10.1016/j.aca.2019.02.010_bib23) 2017; 18 Kuhl (10.1016/j.aca.2019.02.010_bib39) 2011; 84 Bijlsma (10.1016/j.aca.2019.02.010_bib16) 2006; 78 Renard (10.1016/j.aca.2019.02.010_bib32) 2016 Mapstone (10.1016/j.aca.2019.02.010_bib8) 2014; 20 Livera (10.1016/j.aca.2019.02.010_bib19) 2015; 87 Luo (10.1016/j.aca.2019.02.010_bib26) 2010; 10 Callister (10.1016/j.aca.2019.02.010_bib27) 2006; 5 Nygaard (10.1016/j.aca.2019.02.010_bib31) 2016; 17 Strimmer (10.1016/j.aca.2019.02.010_bib48) 2008; 24 Homborg (10.1016/j.aca.2019.02.010_bib35) 2012; 70 Yin (10.1016/j.aca.2019.02.010_bib1) 2014; 1374 Lai (10.1016/j.aca.2019.02.010_bib12) 2009; 6 Guo (10.1016/j.aca.2019.02.010_bib3) 2009; 5 |
| References_xml | – volume: 8 start-page: 93 year: 2007 ident: bib17 article-title: Normalization method for metabolomics data using optimal selection of multiple internal standards publication-title: BMC Bioinf. – start-page: 235 year: 1994 end-page: 245 ident: bib36 article-title: Multi-sensor image fusion using the wavelet transform, image processing publication-title: Proceedings. ICIP-94., IEEE International Conference, 2002 – start-page: 12 year: 1999 end-page: 22 ident: bib43 article-title: The Haar Wavelet Transform in the Time Series Similarity Paradigm, European Conference on Principles of Data Mining and Knowledge Discovery – volume: 8 start-page: 118 year: 2007 end-page: 127 ident: bib30 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics – volume: 6 start-page: 108 year: 2009 end-page: 120 ident: bib12 article-title: Methodological considerations in the development of HPLC-MS methods for the analysis of rodent plasma for metabonomic studies publication-title: Mol. Biosyst. – start-page: 69 year: 2008 end-page: 73 ident: bib42 article-title: Feature extraction via multiresolution MODWT analysis in a rainfall forecast system, Wmsci 2008 publication-title: 12th World Multi-Conference on Systemics, Cybernetics and Informatics – volume: 1430 start-page: 80 year: 2016 end-page: 95 ident: bib14 article-title: Sample normalization methods in quantitative metabolomics publication-title: J. Chromatogr. A – volume: 70 start-page: 199 year: 2012 end-page: 209 ident: bib35 article-title: Time–frequency methods for trend removal in electrochemical noise data publication-title: Electrochim. Acta – volume: 84 start-page: 283 year: 2011 end-page: 289 ident: bib39 article-title: CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets publication-title: Anal. Chem. – volume: 87 start-page: 3606 year: 2015 end-page: 3615 ident: bib19 article-title: Statistical methods for handling unwanted variation in metabolomics data publication-title: Anal. Chem. – volume: 6 start-page: 1060 year: 2011 ident: bib21 article-title: Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry publication-title: Nat. Protoc. – volume: 10 start-page: 61 year: 2013 end-page: 79 ident: bib45 article-title: Selecting the good level of details in undecimated wavelet transform improves the classification of samples from metabolomic data publication-title: JP J. Biostat. – volume: 1374 start-page: 1 year: 2014 end-page: 13 ident: bib1 article-title: Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications publication-title: J. Chromatogr. A – volume: 45 start-page: W162 year: 2017 end-page: W170 ident: bib46 article-title: NOREVA: normalization and evaluation of MS-based metabolomics data publication-title: Nucleic Acids Res. – volume: 5 start-page: 72 year: 2009 end-page: 83 ident: bib3 article-title: Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus publication-title: Metabolomics – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: bib41 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 73 start-page: 1268 year: 2015 end-page: 1272 ident: bib5 article-title: Metabolomics and molecular targeted therapy of cancer, Nihon rinsho publication-title: Jpn. J. Clin. Med. – volume: 187 start-page: 967 year: 2013 end-page: 976 ident: bib4 article-title: Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality publication-title: Am. J. Respir. Crit. Care Med. – volume: 6 start-page: 469 year: 2007 end-page: 479 ident: bib47 article-title: Chemometrics in metabonomics publication-title: J. Proteome Res. – volume: 37 start-page: W652 year: 2009 end-page: W660 ident: bib28 article-title: MetaboAnalyst: a web server for metabolomic data analysis and interpretation publication-title: Nucleic Acids Res. – volume: 83 start-page: 5864 year: 2011 end-page: 5872 ident: bib7 article-title: Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery publication-title: Anal. Chem. – volume: 14 start-page: 469 year: 2012 end-page: 490 ident: bib11 article-title: Batch effect removal methods for microarray gene expression data integration: a survey publication-title: Briefings Bioinf. – volume: 5 start-page: 324 year: 2014 end-page: 332 ident: bib44 article-title: Predicting 5-year survival status of patients with breast cancer based on supervised wavelet method publication-title: Osong Publ Health Res. Perspect. – volume: 8 start-page: 5132 year: 2009 end-page: 5141 ident: bib20 article-title: Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping publication-title: J. Proteome Res. – volume: 17 start-page: 29 year: 2016 end-page: 39 ident: bib31 article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses publication-title: Biostatistics – volume: 36 start-page: 961 year: 2015 end-page: 1005 ident: bib40 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: J. Renew. Sustain. Energy – volume: 78 start-page: 779 year: 2006 end-page: 787 ident: bib38 article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification publication-title: Anal. Chem. – volume: 3 start-page: 23 year: 2015 ident: bib2 article-title: Analytical methods in untargeted metabolomics: state of the art in 2015 publication-title: Front. Bioeng. Biotechnol. – volume: 331 start-page: 283 year: 2004 end-page: 295 ident: bib15 article-title: Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry publication-title: Anal. Biochem. – volume: 12 start-page: 1 year: 2016 end-page: 15 ident: bib6 article-title: Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics publication-title: Metabolomics – volume: 18 start-page: 84 year: 2017 ident: bib23 article-title: Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data publication-title: BMC Bioinf. – volume: 81 start-page: 7974 year: 2009 end-page: 7980 ident: bib18 article-title: Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data publication-title: Anal. Chem. – volume: 35 start-page: 498 year: 2017 end-page: 507 ident: bib13 article-title: Why batch effects matter in omics data, and how to avoid them publication-title: Trends Biotechnol. – volume: 20 start-page: 415 year: 2014 ident: bib8 article-title: Plasma phospholipids identify antecedent memory impairment in older adults publication-title: Nat. Med. – volume: 78 start-page: 567 year: 2006 end-page: 574 ident: bib16 article-title: Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation publication-title: Anal. Chem. – volume: 19 start-page: 185 year: 2003 end-page: 193 ident: bib29 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics – volume: 24 start-page: 1461 year: 2008 end-page: 1462 ident: bib48 article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates publication-title: Bioinformatics – start-page: 3891 year: 2006 end-page: 3894 ident: bib34 article-title: Wavelet Transform-Based ECG Baseline Drift Removal for Body Surface Potential Mapping, Engineering in Medicine and Biology Society, 2005 publication-title: IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE – volume: 35 start-page: 498 year: 2017 end-page: 507 ident: bib10 article-title: Why batch effects matter in omics data, and how to avoid them publication-title: Trends Biotechnol. – volume: 12 start-page: 89 year: 2016 ident: bib24 article-title: Normalization and integration of large-scale metabolomics data using support vector regression publication-title: Metabolomics – start-page: 281 year: 2016 end-page: 292 ident: bib32 article-title: Independent component analysis to remove batch effects from merged microarray datasets publication-title: International Workshop on Algorithms in Bioinformatics – volume: 27 start-page: 93 year: 2016 end-page: 104 ident: bib37 article-title: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform publication-title: Med. Image Anal. – start-page: 1530 year: 2017 end-page: 1537 ident: bib25 article-title: Comparison of location-scale and matrix factorization batch effect removal methods on gene expression datasets publication-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2017 – volume: 25 start-page: 2573 year: 2016 end-page: 2580 ident: bib33 article-title: Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition publication-title: Bioinformatics – volume: 84 start-page: 10768 year: 2012 end-page: 10776 ident: bib9 article-title: Normalizing and integrating metabolomics data publication-title: Anal. Chem. – volume: 140 start-page: 7810 year: 2015 end-page: 7817 ident: bib22 article-title: Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC) publication-title: Analyst – volume: 5 start-page: 277 year: 2006 end-page: 286 ident: bib27 article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics publication-title: J. Proteome Res. – volume: 10 start-page: 278 year: 2010 end-page: 291 ident: bib26 article-title: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data publication-title: Pharmacogenomics J. – volume: 87 start-page: 3606 issue: 7 year: 2015 ident: 10.1016/j.aca.2019.02.010_bib19 article-title: Statistical methods for handling unwanted variation in metabolomics data publication-title: Anal. Chem. doi: 10.1021/ac502439y – volume: 12 start-page: 89 issue: 5 year: 2016 ident: 10.1016/j.aca.2019.02.010_bib24 article-title: Normalization and integration of large-scale metabolomics data using support vector regression publication-title: Metabolomics doi: 10.1007/s11306-016-1026-5 – volume: 11 start-page: 674 issue: 7 year: 1989 ident: 10.1016/j.aca.2019.02.010_bib41 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – start-page: 12 year: 1999 ident: 10.1016/j.aca.2019.02.010_bib43 – volume: 5 start-page: 277 issue: 2 year: 2006 ident: 10.1016/j.aca.2019.02.010_bib27 article-title: Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics publication-title: J. Proteome Res. doi: 10.1021/pr050300l – volume: 18 start-page: 84 issue: 1 year: 2017 ident: 10.1016/j.aca.2019.02.010_bib23 article-title: Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data publication-title: BMC Bioinf. doi: 10.1186/s12859-017-1501-7 – volume: 70 start-page: 199 issue: 6 year: 2012 ident: 10.1016/j.aca.2019.02.010_bib35 article-title: Time–frequency methods for trend removal in electrochemical noise data publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.062 – volume: 84 start-page: 283 issue: 1 year: 2011 ident: 10.1016/j.aca.2019.02.010_bib39 article-title: CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets publication-title: Anal. Chem. doi: 10.1021/ac202450g – volume: 24 start-page: 1461 issue: 12 year: 2008 ident: 10.1016/j.aca.2019.02.010_bib48 article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn209 – start-page: 3891 year: 2006 ident: 10.1016/j.aca.2019.02.010_bib34 article-title: Wavelet Transform-Based ECG Baseline Drift Removal for Body Surface Potential Mapping, Engineering in Medicine and Biology Society, 2005 – volume: 73 start-page: 1268 issue: 8 year: 2015 ident: 10.1016/j.aca.2019.02.010_bib5 article-title: Metabolomics and molecular targeted therapy of cancer, Nihon rinsho publication-title: Jpn. J. Clin. Med. – volume: 6 start-page: 1060 issue: 7 year: 2011 ident: 10.1016/j.aca.2019.02.010_bib21 article-title: Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.335 – volume: 5 start-page: 324 issue: 6 year: 2014 ident: 10.1016/j.aca.2019.02.010_bib44 article-title: Predicting 5-year survival status of patients with breast cancer based on supervised wavelet method publication-title: Osong Publ Health Res. Perspect. doi: 10.1016/j.phrp.2014.09.002 – volume: 8 start-page: 5132 issue: 11 year: 2009 ident: 10.1016/j.aca.2019.02.010_bib20 article-title: Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping publication-title: J. Proteome Res. doi: 10.1021/pr900499r – volume: 17 start-page: 29 issue: 1 year: 2016 ident: 10.1016/j.aca.2019.02.010_bib31 article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses publication-title: Biostatistics doi: 10.1093/biostatistics/kxv027 – volume: 37 start-page: W652 issue: suppl_2 year: 2009 ident: 10.1016/j.aca.2019.02.010_bib28 article-title: MetaboAnalyst: a web server for metabolomic data analysis and interpretation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp356 – volume: 8 start-page: 118 issue: 1 year: 2007 ident: 10.1016/j.aca.2019.02.010_bib30 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics doi: 10.1093/biostatistics/kxj037 – start-page: 281 year: 2016 ident: 10.1016/j.aca.2019.02.010_bib32 article-title: Independent component analysis to remove batch effects from merged microarray datasets – volume: 140 start-page: 7810 issue: 22 year: 2015 ident: 10.1016/j.aca.2019.02.010_bib22 article-title: Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC) publication-title: Analyst doi: 10.1039/C5AN01638J – volume: 25 start-page: 2573 issue: 19 year: 2016 ident: 10.1016/j.aca.2019.02.010_bib33 article-title: Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp426 – volume: 81 start-page: 7974 issue: 19 year: 2009 ident: 10.1016/j.aca.2019.02.010_bib18 article-title: Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data publication-title: Anal. Chem. doi: 10.1021/ac901143w – volume: 83 start-page: 5864 issue: 15 year: 2011 ident: 10.1016/j.aca.2019.02.010_bib7 article-title: Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery publication-title: Anal. Chem. doi: 10.1021/ac201065j – volume: 10 start-page: 278 issue: 4 year: 2010 ident: 10.1016/j.aca.2019.02.010_bib26 article-title: A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data publication-title: Pharmacogenomics J. doi: 10.1038/tpj.2010.57 – volume: 187 start-page: 967 issue: 9 year: 2013 ident: 10.1016/j.aca.2019.02.010_bib4 article-title: Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201209-1726OC – volume: 35 start-page: 498 issue: 6 year: 2017 ident: 10.1016/j.aca.2019.02.010_bib10 article-title: Why batch effects matter in omics data, and how to avoid them publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.02.012 – volume: 78 start-page: 779 issue: 3 year: 2006 ident: 10.1016/j.aca.2019.02.010_bib38 article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification publication-title: Anal. Chem. doi: 10.1021/ac051437y – volume: 3 start-page: 23 year: 2015 ident: 10.1016/j.aca.2019.02.010_bib2 article-title: Analytical methods in untargeted metabolomics: state of the art in 2015 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00023 – volume: 36 start-page: 961 issue: 5 year: 2015 ident: 10.1016/j.aca.2019.02.010_bib40 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: J. Renew. Sustain. Energy – volume: 20 start-page: 415 issue: 4 year: 2014 ident: 10.1016/j.aca.2019.02.010_bib8 article-title: Plasma phospholipids identify antecedent memory impairment in older adults publication-title: Nat. Med. doi: 10.1038/nm.3466 – volume: 12 start-page: 1 issue: 9 year: 2016 ident: 10.1016/j.aca.2019.02.010_bib6 article-title: Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics publication-title: Metabolomics doi: 10.1007/s11306-016-1093-7 – volume: 1430 start-page: 80 year: 2016 ident: 10.1016/j.aca.2019.02.010_bib14 article-title: Sample normalization methods in quantitative metabolomics publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2015.12.007 – volume: 35 start-page: 498 issue: 6 year: 2017 ident: 10.1016/j.aca.2019.02.010_bib13 article-title: Why batch effects matter in omics data, and how to avoid them publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.02.012 – volume: 8 start-page: 93 issue: 1 year: 2007 ident: 10.1016/j.aca.2019.02.010_bib17 article-title: Normalization method for metabolomics data using optimal selection of multiple internal standards publication-title: BMC Bioinf. doi: 10.1186/1471-2105-8-93 – volume: 45 start-page: W162 issue: W1 year: 2017 ident: 10.1016/j.aca.2019.02.010_bib46 article-title: NOREVA: normalization and evaluation of MS-based metabolomics data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx449 – start-page: 69 year: 2008 ident: 10.1016/j.aca.2019.02.010_bib42 article-title: Feature extraction via multiresolution MODWT analysis in a rainfall forecast system, Wmsci 2008 – volume: 5 start-page: 72 issue: 1 year: 2009 ident: 10.1016/j.aca.2019.02.010_bib3 article-title: Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus publication-title: Metabolomics doi: 10.1007/s11306-008-0153-z – volume: 78 start-page: 567 issue: 2 year: 2006 ident: 10.1016/j.aca.2019.02.010_bib16 article-title: Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation publication-title: Anal. Chem. doi: 10.1021/ac051495j – volume: 14 start-page: 469 issue: 4 year: 2012 ident: 10.1016/j.aca.2019.02.010_bib11 article-title: Batch effect removal methods for microarray gene expression data integration: a survey publication-title: Briefings Bioinf. doi: 10.1093/bib/bbs037 – volume: 27 start-page: 93 year: 2016 ident: 10.1016/j.aca.2019.02.010_bib37 article-title: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.05.012 – volume: 6 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.aca.2019.02.010_bib12 article-title: Methodological considerations in the development of HPLC-MS methods for the analysis of rodent plasma for metabonomic studies publication-title: Mol. Biosyst. doi: 10.1039/B910482H – start-page: 1530 year: 2017 ident: 10.1016/j.aca.2019.02.010_bib25 article-title: Comparison of location-scale and matrix factorization batch effect removal methods on gene expression datasets – volume: 84 start-page: 10768 issue: 24 year: 2012 ident: 10.1016/j.aca.2019.02.010_bib9 article-title: Normalizing and integrating metabolomics data publication-title: Anal. Chem. doi: 10.1021/ac302748b – volume: 10 start-page: 61 issue: 2 year: 2013 ident: 10.1016/j.aca.2019.02.010_bib45 article-title: Selecting the good level of details in undecimated wavelet transform improves the classification of samples from metabolomic data publication-title: JP J. Biostat. – volume: 6 start-page: 469 issue: 2 year: 2007 ident: 10.1016/j.aca.2019.02.010_bib47 article-title: Chemometrics in metabonomics publication-title: J. Proteome Res. doi: 10.1021/pr060594q – volume: 1374 start-page: 1 year: 2014 ident: 10.1016/j.aca.2019.02.010_bib1 article-title: Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.11.050 – start-page: 235 year: 1994 ident: 10.1016/j.aca.2019.02.010_bib36 article-title: Multi-sensor image fusion using the wavelet transform, image processing – volume: 331 start-page: 283 issue: 2 year: 2004 ident: 10.1016/j.aca.2019.02.010_bib15 article-title: Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry publication-title: Anal. Biochem. doi: 10.1016/j.ab.2004.04.037 – volume: 19 start-page: 185 issue: 2 year: 2003 ident: 10.1016/j.aca.2019.02.010_bib29 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 |
| SSID | ssj0002104 |
| Score | 2.4842792 |
| Snippet | Metabolomics provides new insights into disease pathogenesis and biomarker discovery. Samples from large-scale untargeted metabolomics studies are typically... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 60 |
| SubjectTerms | Algorithms Batch effect Biomarkers Correlation coefficient Correlation coefficients Data normalization Feature extraction Independent component analysis Liquid chromatography Mass spectrometry Mass spectroscopy Metabolomics Multiscale analysis Pathogenesis Quality control Statistical analysis Statistical methods Wavelet analysis Wavelet transform Wavelet transforms |
| Title | WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis |
| URI | https://dx.doi.org/10.1016/j.aca.2019.02.010 https://www.ncbi.nlm.nih.gov/pubmed/30926040 https://www.proquest.com/docview/2230283818 https://www.proquest.com/docview/2200785101 |
| Volume | 1061 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: ACRLP dateStart: 19950110 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: AIKHN dateStart: 19950110 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: AKRWK dateStart: 19930108 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL4s3SUg0SJ6TQPJzdhNtqRbUF0RMVvVlje0JbZZOqm23Fhd_OTOIsQoIeyC2JHVn-JjOf7Xko9TazhXWJzSLUbhZpKvPIxlhGNi0r9JVmoyhbA19OpstT_eksP9tRizEWRtwqg-4fdHqvrcOTwzCbh1cXFxLjGzP3kHTiLKSFliA-rWdSxeD9z99uHryk0WPVPGk9nmz2Pl7oJPVQUvZpOyWI9u-26V_cs7dBR4_Uw0AeYT6M77HaoeaJur8Ya7Y9VT--4Q0dL-YfYA5Ne0M1YP295fX_-Qq6Fq5pxQ_Bsvo9h-DJAcxaoRZ_8GjNeBFsmsE7nDysqGMZqSVweQ3iSwpi9Dy0DdyiVKzoAENSk2fq9Ojj18UyCsUVIsez1EWpTXw6Zb6EmVzofMqoaZf6ma5cnlJMFdq48pQhMnAJslZHW2CJHqeYZM_VbtM29FJBTlmWonUz70q2iVQWhc9z_tKUfEoeJyoep9W4kHlcCmDUZnQxuzSMhBEkTJwaRmKi3m27XA1pN-5qrEeszB-yY9gs3NVtf8TVhB93bZgtCeNiGjNRb7avGUU5R8GG2o20EWIlymyiXgzysB1kFpe8QtTxq_8b0556IHeyeZwk-2q3u97Qa2Y9nT3oxfpA3Zsff16e_AKTkwIP |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQLojwXSjESJ6TQxHE2MbfVqtUW2p5a0Zs1fqRdlE2q3WwRF347M4mzCKn0QI6OHVn-JjOf7Xkw9iE1hbGJSSOQNo-kV1lkYlCREaoEV0o0inQ0cHo2nl3IL5fZ5RabDrEw5FYZdH-v0zttHVoOwmoe3MznFOMbI_egdOIopIVUD9hDmYmcdmCffv3x88A9jRzK5lH34Wqzc_ICS7mHEtXl7aQo2ruN07_IZ2eEjp6wx4E98kk_wV225eunbGc6FG17xn5-g1t_PJ185hNeN7e-4lBdNct5e73gbcOXfoGN3KD-vebBlYMjbeUVOYRHKwTM83Xdu4d7xxe-RSGpKHJ5xcmZlJPVc7yp-Q-gkhUth5DV5Dm7ODo8n86iUF0hslLmbSRM4sQYCROk9IB1AmGTVrhcljYTPvYlmLh0PgVA5BJAtQ6mAAUOxpCkL9h23dT-FeOZT1MBxubOKjSKXhWFyzL80tg74R2MWDwsq7Yh9ThVwKj04GP2XSMSmpDQsdCIxIh93Ay56fNu3NdZDljpv4RHo124b9jegKsOf-5KI10iyoU8ZsTeb14jinSRArVv1tSHmBVpsxF72cvDZpJprHCLKOPX_zend2xndn56ok-Oz76-YY_oDZ0kJ8ke226Xa_8WKVBr9jsR_w17bgOk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WaveICA%3A+A+novel+algorithm+to+remove+batch+effects+for+large-scale+untargeted+metabolomics+data+based+on+wavelet+analysis&rft.jtitle=Analytica+chimica+acta&rft.au=Deng%2C+Kui&rft.au=Zhang%2C+Fan&rft.au=Tan%2C+Qilong&rft.au=Huang%2C+Yue&rft.date=2019-07-11&rft.pub=Elsevier+B.V&rft.issn=0003-2670&rft.eissn=1873-4324&rft.volume=1061&rft.spage=60&rft.epage=69&rft_id=info:doi/10.1016%2Fj.aca.2019.02.010&rft.externalDocID=S0003267019301849 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon |