Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms

The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms have been published. The majority of these algorithms use fitness assignment based on Pareto-domination: Nondominated sorting, dominance coun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 7; no. 5; pp. 503 - 515
Main Author Jensen, M.T.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2003.817234

Cover

Abstract The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms have been published. The majority of these algorithms use fitness assignment based on Pareto-domination: Nondominated sorting, dominance counting, or identification of the nondominated solutions. The success of these algorithms indicates that this type of fitness is suitable for multiobjective problems, but so far the use of Pareto-based fitness has lead to program run times in O(GMN/sup 2/), where G is the number of generations, M is the number of objectives, and N is the population size. The N/sup 2/ factor should be reduced if possible, since it leads to long processing times for large population sizes. This paper presents a new and efficient algorithm for nondominated sorting, which can speed up the processing time of some multiobjective evolutionary algorithms (MOEAs) substantially. The new algorithm is incorporated into the nondominated sorting genetic algorithm II (NSGA-II) and reduces the overall run-time complexity of this algorithm to O(GN log/sup M-1/N), much faster than the O(GMN/sup 2/) complexity published by Deb et al. (2002). Experiments demonstrate that the improved version of the algorithm is indeed much faster than the previous one. The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved significantly in terms of running time by using efficient algorithms known from computer science instead of inefficient O(MN/sup 2/) algorithms.
AbstractList The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms have been published. The majority of these algorithms use fitness assignment based on Pareto-domination: Nondominated sorting, dominance counting, or identification of the nondominated solutions. The success of these algorithms indicates that this type of fitness is suitable for multiobjective problems, but so far the use of Pareto-based fitness has lead to program run times in O(GMN/sup 2/), where G is the number of generations, M is the number of objectives, and N is the population size. The N/sup 2/ factor should be reduced if possible, since it leads to long processing times for large population sizes. This paper presents a new and efficient algorithm for nondominated sorting, which can speed up the processing time of some multiobjective evolutionary algorithms (MOEAs) substantially. The new algorithm is incorporated into the nondominated sorting genetic algorithm II (NSGA-II) and reduces the overall run-time complexity of this algorithm to O(GN log/sup M-1/N), much faster than the O(GMN/sup 2/) complexity published by Deb et al. (2002). Experiments demonstrate that the improved version of the algorithm is indeed much faster than the previous one. The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved significantly in terms of running time by using efficient algorithms known from computer science instead of inefficient O(MN/sup 2/) algorithms.
The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved significantly in terms of running time by using efficient algorithms known from computer science instead of inefficient O(MN2) algorithms.
The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms have been published. The majority of these algorithms use fitness assignment based on Pareto-domination: Nondominated sorting, dominance counting, or identification of the nondominated solutions. The success of these algorithms indicates that this type of fitness is suitable for multiobjective problems, but so far the use of Pareto-based fitness has lead to program run times in O(GMN(2)), where G is the number of generations, M is the number of objectives, and N is the population size. The N(2) factor should be reduced if possible, since it leads to long processing times for large population sizes. This paper presents a new and efficient algorithm for nondominated sorting, which can speed up the processing time of some multiobjective evolutionary algorithms (MOEAs) substantially. The new algorithm is incorporated into the nondominated sorting genetic algorithm II (NSGA-II) and reduces the overall run-time complexity of this algorithm to O(GN log/M-1/N), much faster than the O(GMN(2)) complexity published by Deb et al. (2002). Experiments demonstrate that the improved version of the algorithm is indeed much faster than the previous one. The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved significantly in terms of running time by using efficient algorithms known from computer science instead of inefficient O(MN(2)) algorithms.
The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms have been published. The majority of these algorithms use fitness assignment based on Pareto-domination: Nondominated sorting, dominance counting, or identification of the nondominated solutions. The success of these algorithms indicates that this type of fitness is suitable for multiobjective problems, but so far the use of Pareto-based fitness has lead to program run times in O(GMN super(2)), where G is the number of generations, M is the number of objectives, and N is the population size. The N super(2) factor should be reduced if possible, since it leads to long processing times for large population sizes. This paper presents a new and efficient algorithm for nondominated sorting, which can speed up the processing time of some multiobjective evolutionary algorithms (MOEAs) substantially. The new algorithm is incorporated into the nondominated sorting genetic algorithm II (NSGA-II) and reduces the overall run-time complexity of this algorithm to O(GN log super(M-1)N), much faster than the O(GMN super(2)) complexity published by Deb et al. (2002). Experiments demonstrate that the improved version of the algorithm is indeed much faster than the previous one. The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved significantly in terms of running time by using efficient algorithms known from computer science instead of inefficient O(MN super(2)) algorithms.
Author Jensen, M.T.
Author_xml – sequence: 1
  givenname: M.T.
  surname: Jensen
  fullname: Jensen, M.T.
  organization: EVALife Group, Univ. of Aarhus, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15200657$$DView record in Pascal Francis
BookMark eNp9kU1rGzEQQJeSQpO090IvotDmtK6-Vh-9GeOmhtBC65bcFlkeJTK7kiNpS_PvI-NAIIecNIf3ZhDvrDkJMUDTvCd4RgjWX9bLv4sZxZjNFJGU8VfNKdGctBhTcVJnrHQrpbp-05zlvMOY8I7o0-b6F2wn68MNKreA0hTa4kdANo77Af77co-iQ-M0FB83O7DF_wO0nOevaF3xH78v5-1qhUzYolj9hMxwE5Mvt2N-27x2Zsjw7vE9b_58W64X39urn5erxfyqtZzL0lKGFePSbhzvGDZUKsM7Ca4TGCg4aR2A4oJuhbTKCeW43egt3nRghNbasvPm4rh3n-LdBLn0o88WhsEEiFPuNSZCSUVpJT-_SFLVyY4oVsGPz8BdnFKov-iV4lRjRnCFPj1CJlszuGSC9bnfJz-adN-TrrYQnawcPnI2xZwTuCcE94dy_aFcfyjXH8tVRTxTrC-mFgglGT-8JH44ih4Anu5QJokQ7AGAGKYO
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TNNLS_2015_2466686
crossref_primary_10_1016_j_apm_2014_06_005
crossref_primary_10_1016_j_ins_2010_09_007
crossref_primary_10_1016_j_eswa_2021_114737
crossref_primary_10_1016_j_enconman_2009_11_022
crossref_primary_10_1016_j_simpat_2024_102927
crossref_primary_10_1109_JIOT_2022_3170482
crossref_primary_10_1017_aer_2021_19
crossref_primary_10_1002_nme_2909
crossref_primary_10_1016_j_asoc_2022_109293
crossref_primary_10_1016_j_jocs_2017_09_015
crossref_primary_10_1142_S0218213016500214
crossref_primary_10_1016_j_swevo_2018_08_011
crossref_primary_10_1109_JESTPE_2023_3348206
crossref_primary_10_1016_j_asoc_2017_06_038
crossref_primary_10_1109_TEVC_2014_2366498
crossref_primary_10_1080_0305215X_2025_2460509
crossref_primary_10_1155_2017_5342727
crossref_primary_10_1080_15502287_2021_1916696
crossref_primary_10_1016_j_ins_2019_07_011
crossref_primary_10_1016_j_ejor_2009_11_003
crossref_primary_10_1093_bioinformatics_btq439
crossref_primary_10_1007_s00521_021_06459_9
crossref_primary_10_1162_evco_a_00204
crossref_primary_10_1007_s00778_024_00835_2
crossref_primary_10_1016_j_neucom_2019_08_104
crossref_primary_10_1080_00207543_2011_613866
crossref_primary_10_1007_s10852_005_2582_2
crossref_primary_10_1016_j_asoc_2025_112989
crossref_primary_10_3390_electronics10040494
crossref_primary_10_1186_s43093_024_00397_3
crossref_primary_10_1109_ACCESS_2021_3065384
crossref_primary_10_3934_mbe_2023117
crossref_primary_10_1016_j_aeue_2017_03_017
crossref_primary_10_1016_j_asoc_2012_07_023
crossref_primary_10_1049_iet_gtd_2019_0679
crossref_primary_10_1016_j_asoc_2016_11_010
crossref_primary_10_1137_17M1121184
crossref_primary_10_1109_TEVC_2010_2041060
crossref_primary_10_1016_j_eswa_2017_09_050
crossref_primary_10_1371_journal_pone_0285601
crossref_primary_10_1016_j_eswa_2019_05_032
crossref_primary_10_1007_s10489_014_0619_9
crossref_primary_10_1016_j_ijepes_2014_02_017
crossref_primary_10_4018_jaec_2010040104
crossref_primary_10_1016_j_epsr_2014_09_010
crossref_primary_10_1016_j_ijepes_2012_06_034
crossref_primary_10_1038_s41524_024_01294_7
crossref_primary_10_1109_TEVC_2018_2866927
crossref_primary_10_3390_su12218971
crossref_primary_10_1080_00207543_2013_853890
crossref_primary_10_1109_TEVC_2023_3269348
crossref_primary_10_1109_TPWRD_2007_905412
crossref_primary_10_1016_j_isatra_2012_09_004
crossref_primary_10_1016_j_scico_2021_102643
crossref_primary_10_1002_stc_2454
crossref_primary_10_1109_ACCESS_2021_3086559
crossref_primary_10_1109_TEVC_2018_2799684
crossref_primary_10_1109_TCYB_2016_2621008
crossref_primary_10_1016_j_sysarc_2010_03_005
crossref_primary_10_1007_s10589_009_9241_x
crossref_primary_10_1016_j_mejo_2024_106244
crossref_primary_10_1007_s00366_009_0138_1
crossref_primary_10_1007_s11227_016_1862_0
crossref_primary_10_1016_j_ins_2019_05_028
crossref_primary_10_1016_j_swevo_2019_100580
crossref_primary_10_1016_j_procs_2015_05_489
crossref_primary_10_1016_j_ijleo_2014_03_004
crossref_primary_10_1007_s10489_017_0929_9
crossref_primary_10_1109_ACCESS_2020_2985168
crossref_primary_10_1007_s10845_011_0617_2
crossref_primary_10_1016_j_ejor_2004_08_027
crossref_primary_10_1109_TKDE_2013_131
crossref_primary_10_3233_JIFS_182627
crossref_primary_10_1016_j_knosys_2023_111027
crossref_primary_10_1109_ACCESS_2020_3010339
crossref_primary_10_1016_j_cor_2012_07_014
crossref_primary_10_1109_TCBB_2013_2
crossref_primary_10_1016_j_amc_2004_10_080
crossref_primary_10_1109_JSEN_2018_2850847
crossref_primary_10_4018_jncr_2012100102
crossref_primary_10_1016_j_engappai_2024_108127
crossref_primary_10_1016_j_asoc_2009_08_018
crossref_primary_10_1016_j_comgeo_2011_08_001
crossref_primary_10_1016_j_jmsy_2013_12_001
crossref_primary_10_3390_app10196858
crossref_primary_10_1016_j_buildenv_2024_111269
crossref_primary_10_1109_TCOMM_2023_3240697
crossref_primary_10_1007_s13218_013_0263_2
crossref_primary_10_1016_j_swevo_2015_01_002
crossref_primary_10_1007_s10696_017_9296_4
crossref_primary_10_1007_s40747_017_0057_5
crossref_primary_10_1016_j_desal_2015_11_030
crossref_primary_10_1016_j_asoc_2021_108146
crossref_primary_10_1111_mice_12385
crossref_primary_10_1155_ES_2006_54074
crossref_primary_10_21468_SciPostPhysProc_8_173
crossref_primary_10_1007_s10489_022_03883_9
crossref_primary_10_1007_s10479_006_0061_4
crossref_primary_10_1007_s10710_024_09487_1
crossref_primary_10_1002_ente_201700600
crossref_primary_10_1080_00207721_2012_745023
crossref_primary_10_1016_j_jfranklin_2019_03_035
crossref_primary_10_1109_TEVC_2005_857073
crossref_primary_10_1109_TEVC_2018_2865590
crossref_primary_10_1093_imaman_dpv010
crossref_primary_10_1109_TCYB_2020_2988896
crossref_primary_10_1016_j_swevo_2018_06_003
crossref_primary_10_1016_j_comcom_2021_01_022
crossref_primary_10_1109_TEVC_2007_904345
crossref_primary_10_1162_evco_2008_16_2_185
crossref_primary_10_1016_j_eswa_2013_11_044
crossref_primary_10_1016_j_actaastro_2017_02_023
crossref_primary_10_1002_asi_21320
crossref_primary_10_1109_TCYB_2017_2789158
crossref_primary_10_1109_TSMCA_2008_923082
crossref_primary_10_1007_s00500_023_07978_4
crossref_primary_10_1109_TEVC_2005_851274
crossref_primary_10_1007_JHEP07_2021_070
crossref_primary_10_1109_TCE_2023_3240249
crossref_primary_10_1080_03052150500035658
crossref_primary_10_1007_s00500_020_05450_1
crossref_primary_10_1007_s10586_014_0409_5
crossref_primary_10_1109_TEVC_2008_920677
crossref_primary_10_1016_j_comnet_2012_06_012
crossref_primary_10_1016_j_swevo_2017_08_003
crossref_primary_10_1109_TEVC_2023_3314152
crossref_primary_10_1109_MCI_2006_1597059
crossref_primary_10_1007_s11227_020_03183_4
crossref_primary_10_1016_j_scient_2011_08_017
crossref_primary_10_3724_SP_J_1001_2009_00305
crossref_primary_10_1007_s11704_009_0005_7
crossref_primary_10_1109_TCCN_2021_3137519
crossref_primary_10_1109_ACCESS_2020_3040752
crossref_primary_10_1162_evco_2009_17_4_17403
crossref_primary_10_3390_math12182951
crossref_primary_10_1016_j_cor_2019_01_009
crossref_primary_10_1016_j_asoc_2015_11_012
crossref_primary_10_1016_j_na_2016_03_023
crossref_primary_10_1016_j_asoc_2015_11_010
crossref_primary_10_1016_j_cor_2010_10_008
crossref_primary_10_3390_a17040135
crossref_primary_10_1080_00207721_2012_724095
crossref_primary_10_1109_TEVC_2014_2308305
crossref_primary_10_1109_TWC_2004_837447
crossref_primary_10_3233_JIFS_212242
crossref_primary_10_1016_j_energy_2017_02_174
crossref_primary_10_1109_TEVC_2016_2587808
crossref_primary_10_1007_s00521_018_3898_y
crossref_primary_10_1109_TCYB_2014_2363878
crossref_primary_10_1155_2018_9697104
crossref_primary_10_1080_23302674_2023_2235814
crossref_primary_10_1109_TSC_2021_3094322
crossref_primary_10_1109_TSMC_2015_2497250
crossref_primary_10_1109_JSEN_2013_2287915
crossref_primary_10_1109_TNNLS_2015_2418739
crossref_primary_10_1109_TIP_2014_2378057
crossref_primary_10_1016_j_ress_2005_11_018
crossref_primary_10_1016_j_seppur_2024_126579
crossref_primary_10_1007_s00500_022_07358_4
crossref_primary_10_1016_j_actamat_2025_120945
crossref_primary_10_1016_j_asoc_2022_109466
crossref_primary_10_1016_j_neucom_2019_12_095
crossref_primary_10_4236_iim_2012_46036
crossref_primary_10_5004_dwt_2020_26229
crossref_primary_10_1109_TASE_2022_3148459
crossref_primary_10_1162_EVCO_a_00041
crossref_primary_10_1109_TASE_2023_3312173
crossref_primary_10_1016_j_asoc_2017_07_052
crossref_primary_10_1016_j_pmcj_2015_06_002
crossref_primary_10_1016_j_renene_2020_10_125
crossref_primary_10_1080_01605682_2024_2391516
crossref_primary_10_1007_s10732_019_09407_y
crossref_primary_10_1016_j_ins_2016_06_007
crossref_primary_10_1016_j_swevo_2021_100915
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1080_17517575_2019_1605001
crossref_primary_10_1016_j_asoc_2019_105684
crossref_primary_10_1007_s11277_015_2860_x
crossref_primary_10_1364_OE_471998
crossref_primary_10_1007_s11859_007_0096_7
crossref_primary_10_1080_13675567_2015_1059411
crossref_primary_10_1109_TEVC_2016_2567648
crossref_primary_10_3390_drones8060247
crossref_primary_10_1007_s10898_016_0468_7
crossref_primary_10_1016_j_est_2024_110756
crossref_primary_10_1109_TITS_2024_3515997
crossref_primary_10_1140_epjp_s13360_020_00964_x
crossref_primary_10_1016_j_ins_2020_11_025
crossref_primary_10_1007_s11047_015_9529_y
crossref_primary_10_1016_j_engappai_2025_110444
crossref_primary_10_5004_dwt_2018_23233
crossref_primary_10_1007_s11042_020_09471_8
crossref_primary_10_1162_EVCO_a_00024
crossref_primary_10_1049_iet_gtd_2015_0367
crossref_primary_10_1007_s10489_006_0009_z
crossref_primary_10_1007_s12065_013_0103_1
crossref_primary_10_1007_s10898_018_0669_3
crossref_primary_10_1016_j_cie_2023_109258
crossref_primary_10_1016_j_jocs_2015_08_009
crossref_primary_10_1109_TEVC_2005_860766
crossref_primary_10_1109_TWC_2009_071351
crossref_primary_10_1162_evco_2008_16_3_355
crossref_primary_10_1109_TEVC_2005_860762
crossref_primary_10_1155_2013_815193
crossref_primary_10_1137_130940657
crossref_primary_10_1016_j_neucom_2016_08_032
crossref_primary_10_1109_TEVC_2004_837108
crossref_primary_10_1007_s12046_019_1200_3
crossref_primary_10_1016_j_ifacol_2019_11_308
crossref_primary_10_1016_j_ijleo_2012_08_034
crossref_primary_10_3390_app10134571
crossref_primary_10_1016_j_asoc_2017_05_012
crossref_primary_10_1115_1_4026509
crossref_primary_10_1007_s00500_016_2207_x
Cites_doi 10.1109/ICEC.1994.350037
10.1145/321906.321910
10.1007/3-540-36605-9_25
10.1007/978-3-642-79034-8
10.1109/CEC.2002.1007032
10.1109/cec.2002.1004489
10.1109/4235.797969
10.1109/CEC.2002.1007035
10.1016/S0022-0000(73)80033-9
10.1145/358841.358850
10.1007/3-540-45356-3_82
10.1162/106365600568167
10.1016/0196-6774(80)90005-X
10.1162/106365600568202
10.1007/BF01840386
10.1109/4235.996017
10.1007/BF03325101
10.1109/CEC.2000.870313
10.1109/CEC.2001.934295
ContentType Journal Article
Copyright 2003 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
Copyright_xml – notice: 2003 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2003.817234
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 515
ExternalDocumentID 2429414951
15200657
10_1109_TEVC_2003_817234
1237166
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c447t-2308347cbf4530a278a457ef560e2ef7cfee8462d67c8f68f4cb9d0b5ea6999c3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Thu Oct 02 11:48:19 EDT 2025
Sun Sep 28 10:09:00 EDT 2025
Fri Jul 25 05:53:42 EDT 2025
Mon Jul 21 09:12:41 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Wed Oct 01 06:33:20 EDT 2025
Tue Aug 26 16:38:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Pareto optimum
Evolutionary algorithm
Evolutionary computation
Multiobjective programming
run-time complexity
multiobjective evolutionary algorithms (MOEAs)
Optimization
Genetic algorithm
Algorithm complexity
Pareto optimality
Optimality criterion
Data structure
Time complexity
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-2308347cbf4530a278a457ef560e2ef7cfee8462d67c8f68f4cb9d0b5ea6999c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 884290310
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_28575183
pascalfrancis_primary_15200657
proquest_miscellaneous_901687822
proquest_journals_884290310
crossref_primary_10_1109_TEVC_2003_817234
ieee_primary_1237166
crossref_citationtrail_10_1109_TEVC_2003_817234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-10-01
PublicationDateYYYYMMDD 2003-10-01
PublicationDate_xml – month: 10
  year: 2003
  text: 2003-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2003
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
Mulmuley (ref24) 1994
ref11
ref10
Fonseca (ref13)
Zitzler (ref27)
ref1
ref17
ref19
Fisher (ref12) 1963
ref18
Thomson (ref25); 1
Balling (ref2)
Jin (ref16)
ref23
ref26
ref20
ref22
Deb (ref9) 2001
ref21
ref28
ref8
ref7
ref4
Bäck (ref3) 1997
ref6
ref5
References_xml – ident: ref14
  doi: 10.1109/ICEC.1994.350037
– volume-title: Proc. 5th Int. Conf. Genetic Algorithms
  ident: ref13
  article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
– ident: ref19
  doi: 10.1145/321906.321910
– ident: ref15
  doi: 10.1007/3-540-36605-9_25
– start-page: 1042
  volume-title: Proc. Genetic and Evolutionary Computation Conf., GECCO-2001
  ident: ref16
  article-title: Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?
– volume-title: Computational Geometry: An Introduction Through Randomized Algorithms
  year: 1994
  ident: ref24
– ident: ref5
  doi: 10.1007/978-3-642-79034-8
– ident: ref11
  doi: 10.1109/CEC.2002.1007032
– ident: ref20
  doi: 10.1109/cec.2002.1004489
– ident: ref28
  doi: 10.1109/4235.797969
– volume: 1
  start-page: 37
  volume-title: Proc. 2002 Congress on Evolutionary Computation
  ident: ref25
  article-title: An evolutionary algorithm for the multi-objective optimization of VLSI primitive operator filters
– ident: ref23
  doi: 10.1109/CEC.2002.1007035
– start-page: 1079
  volume-title: Proc. GECCO 2001
  ident: ref2
  article-title: The maximin fitness function for multi-objective evolutionary computation: Application to city planning
– ident: ref6
  doi: 10.1016/S0022-0000(73)80033-9
– ident: ref4
  doi: 10.1145/358841.358850
– ident: ref8
  doi: 10.1007/3-540-45356-3_82
– ident: ref17
  doi: 10.1162/106365600568167
– ident: ref22
  doi: 10.1016/0196-6774(80)90005-X
– ident: ref26
  doi: 10.1162/106365600568202
– volume-title: IOP and Oxford Univ. Press
  year: 1997
  ident: ref3
– start-page: 225
  volume-title: Industrial Scheduling
  year: 1963
  ident: ref12
  article-title: Probabilistic learning combinations of local job-shop scheduling rules
– ident: ref21
  doi: 10.1007/BF01840386
– ident: ref10
  doi: 10.1109/4235.996017
– volume-title: Multi-Objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: ref9
– start-page: 95
  volume-title: Proc. EUROGEN 2001—Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems
  ident: ref27
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization
– ident: ref7
  doi: 10.1007/BF03325101
– ident: ref18
  doi: 10.1109/CEC.2000.870313
– ident: ref1
  doi: 10.1109/CEC.2001.934295
SSID ssj0014519
Score 2.3073504
Snippet The last decade has seen a surge of research activity on multiobjective optimization using evolutionary computation and a number of well performing algorithms...
The paper also points out that multiobjective EAs using fitness based on dominance counting and identification of nondominated solutions can be improved...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 503
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Complexity
Computer science
Computer science; control theory; systems
Councils
Counting
Data structures
Dominance
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Fitness
Genetic algorithms
Heuristic algorithms
Nearest neighbor searches
Run time (computers)
Runtime
Sorting
Studies
Surges
Theoretical computing
Title Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms
URI https://ieeexplore.ieee.org/document/1237166
https://www.proquest.com/docview/884290310
https://www.proquest.com/docview/28575183
https://www.proquest.com/docview/901687822
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQgsiLRQfuCCR3Wzi2A63VbWlRaIHaNHeItuxy6NN0CaREL-esZ3sUl7iZsmO5GQe_iYz_gbguVIzzTRXMcYCzAUoRSylZhjz5FonM4XuwbN9nrPTS_pmmS-34OX6LowxxhefmYkb-lx-1eje_SqbopdFeM-2YZsLFu5qrTMGjiYlFNMXiBjFckxJJsX0YvHh2DN_TgQe1xm9dQT5niquIlK2-FFs6Gbxm2P2p83JLrwd9xmKTL5M-k5N9PdfKBz_90Xuw70BdpJ50JMHsGXqPdgdWzqQwcL34O5P_IT7sHzniF1xSBAmklVfx64VPfFl6OYb4nfSWOJLEhv1OXhOspi3rwgqHzl__3oen50RWVfEX_Mi8vqqWX3qPt60D-HyZHFxfBoPrRhiTSnvYgxUREa5VpbmWSJTLiTNubGIl0xqLNfWGEQyacW4FpYJS7UqqkTlRjKEoDp7BDt1U5vHQGxKmWA5r5jWtJJKKFol1UzZmZRCZEkE01E6pR54yl27jOvSxytJUTp5uvaZWRnkGcGL9RNfA0fHP9buO3Fs1gVJRHB0SwE2846WCncbweGoEeVg5W0pBJ7mjls1gmfrWTRPl3ORtWn6tkyFT2xlEZC_rEBAxoTDaQd_3toh3NkUED6BnW7Vm6cIhDp15C3gB2gNBME
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoqQmnrAxcksptNHMfhtqq23YV2D7BFe4tsx-ZVErRJJMSvZ-wku215iJslO5KTefibzPgbgBdSjhRTifQxFmA2QEl9IRTDmCdWKhhJdA-O7XPOppf0zTJebsGr9V0YrbUrPtMDO3S5_LxUjf1VNkQvi_Ce3YG7MaU0bm9rrXMGliilLadPETPyZZ-UDNLhYvLhxHF_Djge2BG9cQi5riq2JlJU-FlM28_iN9fszpvTHbjod9qWmXwdNLUcqJ-3SBz_91UewcMOeJJxqymPYUsXu7DTN3UgnY3vwoNrDIV7sHxnqV1xSBAoklVT-LYZPXGF6PoHInhSGuKKEkv5pfWdZDKuXhNUPzJ_fzb2ZzMiipy4i15EXH0sV5_rT9-qJ3B5OlmcTP2uGYOvKE1qH0MVHtFESUPjKBBhwgWNE20QMelQm0QZrRHLhDlLFDeMG6pkmgcy1oIhCFXRPmwXZaGfAjEhZZzFSc6UormQXNI8yEfSjITgPAo8GPbSyVTHVG4bZlxlLmIJ0szK0zbQjLJWnh68XD_xvWXp-MfaPSuOzbpWEh4c3VCAzbwlpsLdenDQa0TW2XmVcY7nuWVX9eB4PYsGarMuotBlU2Uhd6mtyAPylxUIyRi3SO3Zn7d2DPemi4vz7Hw2f3sA9zflhM9hu141-hBhUS2PnDX8Ai0WCA4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+Run-Time+Complexity+of+Multiobjective+EAs%3A+The+NSGA-II+and+Other+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Jensen%2C+M.T.&rft.date=2003-10-01&rft.issn=1089-778X&rft.volume=7&rft.issue=5&rft.spage=503&rft.epage=515&rft_id=info:doi/10.1109%2FTEVC.2003.817234&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2003_817234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon