Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism
Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classica...
Saved in:
Published in | The Journal of biological chemistry Vol. 293; no. 20; pp. 7508 - 7516 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.05.2018
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X 1083-351X |
DOI | 10.1074/jbc.TM117.000258 |
Cover
Abstract | Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease. |
---|---|
AbstractList | Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD
/NADH and NADP
/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators
drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome,
the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate
hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease. Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease. Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD + /NADH and NADP + /NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease. Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease. |
Author | Mootha, Vamsi K. Calvo, Sarah E. Goodman, Russell P. |
Author_xml | – sequence: 1 givenname: Russell P. surname: Goodman fullname: Goodman, Russell P. email: rpgoodman@mgh.harvard.edu organization: Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02114 – sequence: 2 givenname: Sarah E. surname: Calvo fullname: Calvo, Sarah E. organization: Howard Hughes Medical Institute, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 – sequence: 3 givenname: Vamsi K. surname: Mootha fullname: Mootha, Vamsi K. email: vamsi@hms.harvard.edu organization: Howard Hughes Medical Institute, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29514978$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtv1DAQtlAR3RbunFCOXLLMJE6ccECqCmWRykOiSNwsxx5TV0kcbG8l-uvxdlsESHDyeOZ7jOY7Ygezn4mxpwhrBMFfXA16ffEeUawBoGq6B2yF0NVl3eDXA7bKPSz73D9kRzFeZQzwHh-xw6pvkPeiW7HN50Ul5xNNiw9qLLSfFhXSRHNSo7vZzebC2-KSdjhdfDh5vSnUbHbFp00xUVKDH12cHrOHVo2Rnty9x-zL2ZuL0015_vHtu9OT81JzLlKJxtpG9JUh1UHbaotQ88EMVvQKiIvWWtHVwAelIP-xAoskDAdum06buj5mr_a6y3aYyOi8aN5bLsFNKvyQXjn552R2l_Kbv5ZN32YvyALP7wSC_76lmOTkoqZxVDP5bZQVYIXY8r7L0Ge_e_0yuT9fBrR7gA4-xkBWapdub5at3SgR5C4nmXOStznJfU6ZCH8R77X_Q3m5p1C-7rWjIKN2NGsyLpBO0nj3b_JPAPWqRg |
CitedBy_id | crossref_primary_10_1016_j_bbabio_2018_11_014 crossref_primary_10_1038_s41401_021_00705_5 crossref_primary_10_3390_antiox9100915 crossref_primary_10_2139_ssrn_4199881 crossref_primary_10_1002_jimd_12711 crossref_primary_10_3390_antiox8010024 crossref_primary_10_1016_j_heliyon_2022_e12294 crossref_primary_10_2174_0929866528666210816114032 crossref_primary_10_3389_fcvm_2023_1232681 crossref_primary_10_1074_jbc_TM118_003170 crossref_primary_10_3390_ijms22094890 crossref_primary_10_1016_j_celrep_2020_108207 crossref_primary_10_3390_cells11152416 crossref_primary_10_3389_fgene_2023_1002157 crossref_primary_10_1016_j_celrep_2022_110607 crossref_primary_10_1021_acs_jproteome_8b00800 crossref_primary_10_3390_ijms22116085 crossref_primary_10_3390_metabo11100658 crossref_primary_10_1038_s41598_023_48566_8 crossref_primary_10_3390_cells11132045 crossref_primary_10_1093_plphys_kiae112 crossref_primary_10_1152_ajpcell_00460_2020 crossref_primary_10_1016_j_celrep_2020_108371 crossref_primary_10_1016_j_jpha_2023_04_007 crossref_primary_10_1038_s41594_024_01310_w crossref_primary_10_1089_ars_2021_0111 crossref_primary_10_3390_ijms22020967 crossref_primary_10_1038_s41401_020_00609_w crossref_primary_10_1093_plphys_kiaf083 crossref_primary_10_1073_pnas_1913712117 crossref_primary_10_3390_cancers13071691 crossref_primary_10_1016_j_tem_2023_12_010 crossref_primary_10_1021_acs_analchem_4c03404 crossref_primary_10_1038_s41401_021_00838_7 crossref_primary_10_1039_D3TB02124F crossref_primary_10_31857_S0041377123060032 crossref_primary_10_1039_C9SC02648G crossref_primary_10_1172_JCI174824 crossref_primary_10_3390_cimb47020083 crossref_primary_10_1089_ars_2023_0295 crossref_primary_10_1016_j_fbio_2024_105517 crossref_primary_10_1016_j_bbabio_2018_05_002 crossref_primary_10_1021_acs_chemrev_2c00397 crossref_primary_10_3389_fonc_2023_1152553 crossref_primary_10_3390_antiox13070820 crossref_primary_10_1016_j_expneurol_2020_113218 crossref_primary_10_1093_plphys_kiac161 crossref_primary_10_1016_j_cej_2020_127659 crossref_primary_10_7554_eLife_49178 crossref_primary_10_1021_acs_analchem_0c00242 crossref_primary_10_1038_s44161_024_00542_9 crossref_primary_10_1155_2022_9196232 crossref_primary_10_3389_fcvm_2023_1212174 crossref_primary_10_1016_j_cmet_2018_05_010 crossref_primary_10_1016_j_ijbiomac_2023_124718 crossref_primary_10_1177_1759091418818261 crossref_primary_10_1016_j_ymgme_2024_108520 crossref_primary_10_1080_10409238_2021_1893641 crossref_primary_10_3390_ijms20040974 crossref_primary_10_1126_science_abd5491 crossref_primary_10_1111_febs_14694 crossref_primary_10_1177_1535370220919076 crossref_primary_10_1016_j_ejpsy_2023_100233 crossref_primary_10_1038_s41467_024_50157_8 crossref_primary_10_1002_jimd_12402 crossref_primary_10_1089_ars_2023_0349 crossref_primary_10_1038_s41589_023_01460_w crossref_primary_10_1177_15353702211009228 crossref_primary_10_1039_D4OB01866D crossref_primary_10_18097_pbmc20236902104 crossref_primary_10_1021_acsabm_4c01294 crossref_primary_10_1016_j_isci_2024_111196 crossref_primary_10_1016_j_cmet_2023_11_010 crossref_primary_10_1016_j_mad_2022_111657 crossref_primary_10_14814_phy2_14151 crossref_primary_10_1021_acs_jafc_3c05369 crossref_primary_10_1002_btm2_10184 crossref_primary_10_1016_j_scitotenv_2023_165659 crossref_primary_10_1038_s42003_024_06123_7 crossref_primary_10_3390_nu11030504 crossref_primary_10_1038_s42255_021_00374_y crossref_primary_10_1016_j_molmet_2022_101562 crossref_primary_10_1134_S1990519X23700025 crossref_primary_10_1088_2050_6120_ab93de crossref_primary_10_1074_jbc_RA119_010571 crossref_primary_10_1016_j_celrep_2023_113043 crossref_primary_10_1126_sciadv_abg6383 crossref_primary_10_1038_s41586_020_2337_2 |
Cites_doi | 10.1042/bj2450263 10.1038/ncomms2262 10.1074/jbc.M509406200 10.1093/nar/gkv1344 10.1016/0006-291X(63)90024-X 10.1093/nar/28.1.27 10.1016/j.cmet.2011.09.004 10.1074/jbc.M704442200 10.1126/science.1171641 10.1073/pnas.1417290112 10.1186/1471-2105-10-421 10.1093/nar/gkw1108 10.1016/j.cmet.2011.08.014 10.1093/nar/30.1.207 10.1111/j.1530-0277.1986.tb05182.x 10.1083/jcb.201607091 10.1016/j.cell.2009.02.026 10.1126/science.aad4017 10.1074/mcp.M112.024919 10.1016/j.bbagen.2013.11.018 10.1093/nar/gkw1107 10.1042/bj1150609a 10.1016/S0891-5849(99)00138-0 10.1042/bj0610381 10.1002/hep.28245 10.1016/S0955-0674(03)00006-1 10.1016/0304-4165(70)90410-1 10.1016/j.cmet.2011.08.012 10.1042/bj1030514 10.1101/gad.1650608 10.1186/1745-7580-4-5 10.1016/0306-4522(94)E0200-N 10.1006/bbrc.2001.5735 10.1093/nar/gkw1092 10.1016/S0021-9258(19)85887-8 10.1091/mbc.E16-07-0479 10.1093/nar/gkv1157 10.1152/ajpgi.00093.2017 10.1093/nar/gkv1070 10.1016/j.jhep.2014.04.013 10.1042/bj1660225 10.1038/nature03354 10.1074/jbc.M115.668699 10.1038/nchembio.2454 10.1042/bj3480607 10.4161/cc.5.8.2690 10.1371/journal.pgen.1000442 10.1007/s11010-010-0391-z 10.1074/jbc.M101053200 10.1042/BST0350109 10.1136/gutjnl-2015-310798 10.1093/abbs/gmp029 10.1056/NEJM196402202700806 10.1364/BOE.2.001030 10.1038/ng.2653 10.1038/nature13270 10.1073/pnas.1408886111 10.1038/nature08778 10.1038/75556 10.1172/JCI6223 10.1042/bj1080513 10.1016/j.febslet.2006.03.050 10.1016/S0021-9258(19)81269-3 10.1126/science.1060698 10.1124/dmd.112.048991 10.1073/pnas.1609227113 10.1038/nmeth.2640 10.1056/NEJM196402132700707 10.1074/jbc.M502475200 10.1126/science.aal3321 10.1016/j.cmet.2015.04.009 10.1038/nmeth.4306 10.1093/nar/gku1055 10.1016/j.cmet.2012.06.016 10.1073/pnas.0909591106 10.1042/bj1260059 10.1126/science.aad5168 10.1210/er.2009-0026 10.1073/pnas.1509428113 10.1021/ja01624a085 10.1016/j.bbabio.2006.03.010 10.1073/pnas.221444598 10.1074/jbc.275.1.223 |
ContentType | Journal Article |
Copyright | 2018 © 2018 by The American Society for Biochemistry and Molecular Biology, Inc. 2018 by The American Society for Biochemistry and Molecular Biology, Inc. 2018 by The American Society for Biochemistry and Molecular Biology, Inc. 2018 The American Society for Biochemistry and Molecular Biology, Inc. |
Copyright_xml | – notice: 2018 © 2018 by The American Society for Biochemistry and Molecular Biology, Inc. – notice: 2018 by The American Society for Biochemistry and Molecular Biology, Inc. – notice: 2018 by The American Society for Biochemistry and Molecular Biology, Inc. 2018 The American Society for Biochemistry and Molecular Biology, Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.TM117.000258 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | THEMATIC MINIREVIEW: Compartmentalization of hepatic NAD(P)H |
EISSN | 1083-351X |
EndPage | 7516 |
ExternalDocumentID | PMC5961030 29514978 10_1074_jbc_TM117_000258 S0021925820369519 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK043351 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0R~ 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM ADVLN AENEX AEXQZ AFFNX AFOSN AFPKN AI. AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F5P FA8 FDB FRP GROUPED_DOAJ GX1 H13 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 W8F WH7 WHG WOQ X7M XJT XSW Y6R YQT YSK YWH YYP YZZ ZE2 ZGI ZY4 ~02 ~KM .7T AALRI AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-1dff5792dea8066cf1034bdbf79a0e476ff78304baa00e4120f1e7d404f58cd33 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 13:49:05 EDT 2025 Fri Sep 05 14:34:58 EDT 2025 Mon Jul 21 05:45:17 EDT 2025 Tue Jul 01 04:11:39 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Sun Apr 06 06:54:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | nicotinamide adenine dinucleotide (NADH) hepatocyte nicotinamide adenine dinucleotide (NAD) liver NAD biosynthesis oxidation-reduction (redox) liver metabolism cell metabolism NAD(P)ome intermediary metabolism hepatic metabolism |
Language | English |
License | This is an open access article under the CC BY license. 2018 by The American Society for Biochemistry and Molecular Biology, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-1dff5792dea8066cf1034bdbf79a0e476ff78304baa00e4120f1e7d404f58cd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by Ruma Banerjee |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.TM117.000258 |
PMID | 29514978 |
PQID | 2012116498 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5961030 proquest_miscellaneous_2012116498 pubmed_primary_29514978 crossref_citationtrail_10_1074_jbc_TM117_000258 crossref_primary_10_1074_jbc_TM117_000258 elsevier_sciencedirect_doi_10_1074_jbc_TM117_000258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-18 |
PublicationDateYYYYMMDD | 2018-05-18 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2018 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Davis, Bremer, Akerman (bib23) 1980; 255 Kanehisa, Goto (bib39) 2000; 28 Vollmers, Gill, DiTacchio, Pulivarthy, Le, Panda (bib55) 2009; 106 Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig, Harris, Hill, Issel-Tarver, Kasarskis, Lewis (bib45) 2000; 25 Madsen, Andersen, Daoud, Anderson, Laursen, Chakladar, Huynh, Colaço, Backos, Fristrup, Hirschey, Olsen (bib31) 2016; 291 Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib34) 2005; 434 Kanehisa, Furumichi, Tanabe, Sato, Morishima (bib41) 2017; 45 Shimoyama, Ohota, Kakehi, Ueda (bib36) 1970; 215 El-Mir, Nogueira, Fontaine, Avéret, Rigoulet, Leverve (bib13) 2000; 275 van Diepen, Jansen, Ballak, Hijmans, Hooiveld, Rommelaere, Galland, Naquet, Rutjes, Mensink, Schrauwen, Tack, Netea, Kersten, Schalkwijk, Stienstra (bib56) 2014; 61 Isselbacher, Greenberger (bib10) 1964; 270 Madiraju, Erion, Rahimi, Zhang, Braddock, Albright, Prigaro, Wood, Bhanot, MacDonald, Jurczak, Camporez, Lee, Cline, Samuel (bib15) 2014; 510 Schägger, Cramer, von Jagow (bib25) 1994; 217 Hayashida, Arimoto, Kuramoto, Kozako, Honda, Shimeno, Soeda (bib33) 2010; 339 Kersten, Seydoux, Peters, Gonzalez, Desvergne, Wahli (bib9) 1999; 103 Masia, McCarty, Lahmann, Luther, Chung, Yarmush, Yellen (bib69) 2018; 314 Thul, Åkesson, Wiking, Mahdessian, Geladaki, Ait Blal, Alm, Asplund, Björk, Breckels, Bäckström, Danielsson, Fagerberg, Fall, Gatto (bib46) 2017; 356 Aguilar-Arnal, Ranjit, Stringari, Orozco-Solis, Gratton, Sassone-Corsi (bib53) 2016; 113 Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva, Stevens, Li, Saha, Ruderman, Bain, Newgard (bib3) 2010; 464 Lin, Guarente (bib8) 2003; 15 Glock, Mclean (bib27) 1955; 61 Gaikwad, Long, Stringer, Jaiswal (bib28) 2001; 276 Veech, Eggleston, Krebs (bib16) 1969; 115 The Gene Ontology Consortium (bib44) 2017; 45 Tao, Zhao, Chu, Wang, Zhu, Chen, Zou, Shi, Liu, Su, Du, Zhou, Zhu, Qian, Liu, Loscalzo, Yang (bib51) 2017; 14 Geiger, Velic, Macek, Lundberg, Kampf, Nagaraj, Uhlen, Cox, Mann (bib86) 2013; 12 Zhao, Hu, Cheng, Su, Wang, Zou, Hu, Chen, Zhou, Huang, Yang, Zhu, Wang, Yi, Zhu (bib52) 2015; 21 Lattin, Schroder, Su, Walker, Zhang, Wiltshire, Saijo, Glass, Hume, Kellie, Sweet (bib71) 2008; 4 Isselbacher, Greenberger (bib11) 1964; 270 Edgar, Domrachev, Lash (bib72) 2002; 30 Ohashi, Kawai, Murata (bib65) 2012; 3 Nakagawa, Lomb, Haigis, Guarente (bib4) 2009; 137 Siess, Brocks, Lattke, Wieland (bib20) 1977; 166 Langdon (bib21) 1955; 77 Chen, Bruno, Easlon, Lin, Cheng, Alt, Guarente (bib29) 2008; 22 Fliegert, Gasser, Guse (bib6) 2007; 35 Tucker, Cavolo, Levitan (bib48) 2016; 27 Camacho, Coulouris, Avagyan, Ma, Papadopoulos, Bealer, Madden (bib82) 2009; 10 Wasmuth, Lima (bib83) 2017; 45 Riddick, Ding, Wolf, Porter, Pandey, Zhang, Gu, Finn, Ronseaux, McLaughlin, Henderson, Zou, Flück (bib12) 2013; 41 Cracan, Titov, Shen, Grabarek, Mootha (bib74) 2017; 13 Rothe, Brosz, Storm-Mathisen (bib24) 1995; 64 Shi, Li, Li, Wang (bib63) 2009; 41 Bilan, Matlashov, Gorokhovatsky, Schultz, Enikolopov, Belousov (bib68) 2014; 1840 Yates, Akanni, Amode, Barrell, Billis, Carvalho-Silva, Cummins, Clapham, Fitzgerald, Gil, Girón, Gordon, Hourlier, Hunt, Janacek (bib85) 2016; 44 Koch-Nolte, Haag, Guse, Lund, Ziegler (bib7) 2009; 2 Hung, Albeck, Tantama, Yellen (bib67) 2011; 14 Grunnet, Kondrup (bib79) 1986; 10 Chambon, Weill, Mandel (bib1) 1963; 11 Love, Pollak, Dölle, Niere, Chen, Oliveri, Amaya, Patel, Ziegler (bib62) 2015; 112 Glantz, Carpenter, Melkonian, Gardner, Boyden, Wong, Chow (bib75) 2016; 113 Bai, Cantó (bib5) 2012; 16 Yoshino, Mills, Yoon, Imai (bib80) 2011; 14 Krebs, Gascoyne (bib18) 1968; 108 Cambronne, Stewart, Kim, Jones-Brunette, Morgan, Farrens, Cohen, Goodman (bib70) 2016; 352 Montagner, Polizzi, Fouché, Ducheix, Lippi, Lasserre, Barquissau, Régnier, Lukowicz, Benhamed, Iroz, Bertrand-Michel, Al Saati, Cano, Mselli-Lakhal (bib54) 2016; 65 Rydström (bib26) 2006; 1757 Finn, Attwood, Babbitt, Bateman, Bork, Bridge, Chang, Dosztányi, El-Gebali, Fraser, Gough, Haft, Holliday, Huang, Huang (bib43) 2017; 45 LaNoue, Tischler (bib22) 1974; 249 Stubbs, Veech, Krebs (bib19) 1972; 126 Kolthur-Seetharam, Dantzer, McBurney, de Murcia, Sassone-Corsi (bib32) 2006; 5 Hughes, DiTacchio, Hayes, Vollmers, Pulivarthy, Baggs, Panda, Hogenesch (bib57) 2009; 5 Palero, Bader, de Bruijn, der Ploeg van den Heuvel, Sterenborg, Gerritsen (bib37) 2011; 2 Williamson, Lund, Krebs (bib17) 1967; 103 Csala, Bánhegyi, Benedetti (bib49) 2006; 580 Houtkooper, Cantó, Wanders, Auwerx (bib30) 2010; 31 Bailey, Pietsch, Cunningham (bib77) 1999; 27 Titov, Cracan, Goodman, Peng, Grabarek, Mootha (bib73) 2016; 352 Gariani, Menzies, Ryu, Wegner, Wang, Ropelle, Moullan, Zhang, Perino, Lemos, Kim, Park, Piersigilli, Pham, Yang (bib78) 2016; 63 Takamura-Enya, Watanabe, Totsuka, Kanazawa, Matsushima-Hibiya, Koyama, Sugimura, Wakabayashi (bib2) 2001; 98 Kanehisa, Sato, Kawashima, Furumichi, Tanabe (bib40) 2016; 44 Piccirella, Czegle, Lizák, Margittai, Senesi, Papp, Csala, Fulceri, Csermely, Mandl, Benedetti, Bánhegyi (bib50) 2006; 281 Ramsey, Yoshino, Brace, Abrassart, Kobayashi, Marcheva, Hong, Chong, Buhr, Lee, Takahashi, Imai, Bass (bib60) 2009; 324 Bublitz, Lawler (bib47) 1987; 245 GTEx Consortium (bib84) 2013; 45 Zhang, Lahens, Ballance, Hughes, Hogenesch (bib58) 2014; 111 Pollak, Niere, Ziegler (bib64) 2007; 282 Brown, Hem, Katz, Ovetsky, Wallin, Ermolaeva, Tolstoy, Tatusova, Pruitt, Maglott, Murphy (bib81) 2015; 43 Rutter, Reick, Wu, McKnight (bib59) 2001; 293 Lerner, Niere, Ludwig, Ziegler (bib61) 2001; 288 Zhao, Jin, Hu, Zhou, Yi, Yu, Xu, Wang, Yang, Loscalzo (bib66) 2011; 14 Sando, Baumgaertel, Pieraut, Torabi-Rander, Wandless, Mayford, Maximov (bib76) 2013; 10 Owen, Doran, Halestrap (bib14) 2000; 348 Finn, Coggill, Eberhardt, Eddy, Mistry, Mitchell, Potter, Punta, Qureshi, Sangrador-Vegas, Salazar, Tate, Bateman (bib42) 2016; 44 Qiao, Jin, Pang, Moskophidis, Mivechi (bib35) 2017; 216 Vishwasrao, Heikal, Kasischke, Webb (bib38) 2005; 280 Yoshino (10.1074/jbc.TM117.000258_bib80) 2011; 14 Ramsey (10.1074/jbc.TM117.000258_bib60) 2009; 324 Sando (10.1074/jbc.TM117.000258_bib76) 2013; 10 Nakagawa (10.1074/jbc.TM117.000258_bib4) 2009; 137 Madiraju (10.1074/jbc.TM117.000258_bib15) 2014; 510 Cracan (10.1074/jbc.TM117.000258_bib74) 2017; 13 Houtkooper (10.1074/jbc.TM117.000258_bib30) 2010; 31 Edgar (10.1074/jbc.TM117.000258_bib72) 2002; 30 Krebs (10.1074/jbc.TM117.000258_bib18) 1968; 108 Kersten (10.1074/jbc.TM117.000258_bib9) 1999; 103 Masia (10.1074/jbc.TM117.000258_bib69) 2018; 314 Chambon (10.1074/jbc.TM117.000258_bib1) 1963; 11 Lin (10.1074/jbc.TM117.000258_bib8) 2003; 15 Zhang (10.1074/jbc.TM117.000258_bib58) 2014; 111 Grunnet (10.1074/jbc.TM117.000258_bib79) 1986; 10 Brown (10.1074/jbc.TM117.000258_bib81) 2015; 43 Veech (10.1074/jbc.TM117.000258_bib16) 1969; 115 Zhao (10.1074/jbc.TM117.000258_bib52) 2015; 21 Lattin (10.1074/jbc.TM117.000258_bib71) 2008; 4 Hughes (10.1074/jbc.TM117.000258_bib57) 2009; 5 Gariani (10.1074/jbc.TM117.000258_bib78) 2016; 63 Langdon (10.1074/jbc.TM117.000258_bib21) 1955; 77 Kolthur-Seetharam (10.1074/jbc.TM117.000258_bib32) 2006; 5 Pollak (10.1074/jbc.TM117.000258_bib64) 2007; 282 Glantz (10.1074/jbc.TM117.000258_bib75) 2016; 113 Ohashi (10.1074/jbc.TM117.000258_bib65) 2012; 3 Aguilar-Arnal (10.1074/jbc.TM117.000258_bib53) 2016; 113 Davis (10.1074/jbc.TM117.000258_bib23) 1980; 255 Glock (10.1074/jbc.TM117.000258_bib27) 1955; 61 Tucker (10.1074/jbc.TM117.000258_bib48) 2016; 27 Tao (10.1074/jbc.TM117.000258_bib51) 2017; 14 Yates (10.1074/jbc.TM117.000258_bib85) 2016; 44 Love (10.1074/jbc.TM117.000258_bib62) 2015; 112 Vishwasrao (10.1074/jbc.TM117.000258_bib38) 2005; 280 Koch-Nolte (10.1074/jbc.TM117.000258_bib7) 2009; 2 Hung (10.1074/jbc.TM117.000258_bib67) 2011; 14 Thul (10.1074/jbc.TM117.000258_bib46) 2017; 356 Stubbs (10.1074/jbc.TM117.000258_bib19) 1972; 126 Isselbacher (10.1074/jbc.TM117.000258_bib11) 1964; 270 Geiger (10.1074/jbc.TM117.000258_bib86) 2013; 12 Siess (10.1074/jbc.TM117.000258_bib20) 1977; 166 The Gene Ontology Consortium (10.1074/jbc.TM117.000258_bib44) 2017; 45 Takamura-Enya (10.1074/jbc.TM117.000258_bib2) 2001; 98 Kanehisa (10.1074/jbc.TM117.000258_bib39) 2000; 28 Cambronne (10.1074/jbc.TM117.000258_bib70) 2016; 352 El-Mir (10.1074/jbc.TM117.000258_bib13) 2000; 275 Hayashida (10.1074/jbc.TM117.000258_bib33) 2010; 339 Hirschey (10.1074/jbc.TM117.000258_bib3) 2010; 464 Rydström (10.1074/jbc.TM117.000258_bib26) 2006; 1757 Bilan (10.1074/jbc.TM117.000258_bib68) 2014; 1840 Montagner (10.1074/jbc.TM117.000258_bib54) 2016; 65 Schägger (10.1074/jbc.TM117.000258_bib25) 1994; 217 Csala (10.1074/jbc.TM117.000258_bib49) 2006; 580 Zhao (10.1074/jbc.TM117.000258_bib66) 2011; 14 Finn (10.1074/jbc.TM117.000258_bib42) 2016; 44 GTEx Consortium (10.1074/jbc.TM117.000258_bib84) 2013; 45 Piccirella (10.1074/jbc.TM117.000258_bib50) 2006; 281 Chen (10.1074/jbc.TM117.000258_bib29) 2008; 22 Kanehisa (10.1074/jbc.TM117.000258_bib40) 2016; 44 Vollmers (10.1074/jbc.TM117.000258_bib55) 2009; 106 Rodgers (10.1074/jbc.TM117.000258_bib34) 2005; 434 Camacho (10.1074/jbc.TM117.000258_bib82) 2009; 10 Madsen (10.1074/jbc.TM117.000258_bib31) 2016; 291 Owen (10.1074/jbc.TM117.000258_bib14) 2000; 348 van Diepen (10.1074/jbc.TM117.000258_bib56) 2014; 61 Bai (10.1074/jbc.TM117.000258_bib5) 2012; 16 Isselbacher (10.1074/jbc.TM117.000258_bib10) 1964; 270 Riddick (10.1074/jbc.TM117.000258_bib12) 2013; 41 Williamson (10.1074/jbc.TM117.000258_bib17) 1967; 103 Kanehisa (10.1074/jbc.TM117.000258_bib41) 2017; 45 Bublitz (10.1074/jbc.TM117.000258_bib47) 1987; 245 Rothe (10.1074/jbc.TM117.000258_bib24) 1995; 64 Shi (10.1074/jbc.TM117.000258_bib63) 2009; 41 Lerner (10.1074/jbc.TM117.000258_bib61) 2001; 288 Fliegert (10.1074/jbc.TM117.000258_bib6) 2007; 35 Gaikwad (10.1074/jbc.TM117.000258_bib28) 2001; 276 Titov (10.1074/jbc.TM117.000258_bib73) 2016; 352 Wasmuth (10.1074/jbc.TM117.000258_bib83) 2017; 45 LaNoue (10.1074/jbc.TM117.000258_bib22) 1974; 249 Rutter (10.1074/jbc.TM117.000258_bib59) 2001; 293 Palero (10.1074/jbc.TM117.000258_bib37) 2011; 2 Qiao (10.1074/jbc.TM117.000258_bib35) 2017; 216 Shimoyama (10.1074/jbc.TM117.000258_bib36) 1970; 215 Ashburner (10.1074/jbc.TM117.000258_bib45) 2000; 25 Finn (10.1074/jbc.TM117.000258_bib43) 2017; 45 Bailey (10.1074/jbc.TM117.000258_bib77) 1999; 27 |
References_xml | – volume: 44 start-page: D279 year: 2016 end-page: D285 ident: bib42 article-title: The Pfam protein families database: towards a more sustainable future publication-title: Nucleic Acids Res – volume: 113 start-page: 12715 year: 2016 end-page: 12720 ident: bib53 article-title: Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 45 start-page: D331 year: 2017 end-page: D338 ident: bib44 article-title: Expansion of the gene ontology knowledgebase and resources publication-title: Nucleic Acids Res – volume: 356 start-page: eaal3321 year: 2017 ident: bib46 article-title: A subcellular map of the human proteome publication-title: Science – volume: 16 start-page: 290 year: 2012 end-page: 295 ident: bib5 article-title: The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease publication-title: Cell Metab – volume: 352 start-page: 231 year: 2016 end-page: 235 ident: bib73 article-title: Complementation of mitochondrial electron transport chain by manipulation of the NAD publication-title: Science – volume: 111 start-page: 16219 year: 2014 end-page: 16224 ident: bib58 article-title: A circadian gene expression atlas in mammals: implications for biology and medicine publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 98 start-page: 12414 year: 2001 end-page: 12419 ident: bib2 article-title: Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 275 start-page: 223 year: 2000 end-page: 228 ident: bib13 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem – volume: 45 start-page: 1 year: 2017 end-page: 12 ident: bib83 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res – volume: 216 start-page: 723 year: 2017 end-page: 741 ident: bib35 article-title: The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis publication-title: J. Cell Biol – volume: 65 start-page: 1202 year: 2016 end-page: 1214 ident: bib54 article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD publication-title: Gut – volume: 45 start-page: D353 year: 2017 end-page: D361 ident: bib41 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res – volume: 5 start-page: 873 year: 2006 end-page: 877 ident: bib32 article-title: Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage publication-title: Cell Cycle – volume: 2 start-page: mr1 year: 2009 ident: bib7 article-title: Emerging roles of NAD publication-title: Sci. Signal – volume: 77 start-page: 5190 year: 1955 end-page: 5192 ident: bib21 article-title: The requirement of triphosphopyridine nucleotide in fatty acid synthesis publication-title: J. Am. Chem. Soc – volume: 27 start-page: 3214 year: 2016 end-page: 3220 ident: bib48 article-title: Elevated mitochondria-coupled NAD(P)H in endoplasmic reticulum of dopamine neurons publication-title: Mol. Biol. Cell – volume: 14 start-page: 528 year: 2011 end-page: 536 ident: bib80 article-title: Nicotinamide mononucleotide, a key NAD publication-title: Cell Metab – volume: 31 start-page: 194 year: 2010 end-page: 223 ident: bib30 article-title: The secret life of NAD publication-title: Endocr. Rev – volume: 21 start-page: 777 year: 2015 end-page: 789 ident: bib52 article-title: SoNar, a highly responsive NAD publication-title: Cell Metab – volume: 10 start-page: 421 year: 2009 ident: bib82 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics – volume: 217 start-page: 220 year: 1994 end-page: 230 ident: bib25 article-title: Physiological roles of nicotinamide nucleotide transhydrogenase publication-title: Anal. Biochem – volume: 3 start-page: 1248 year: 2012 ident: bib65 article-title: Identification and characterization of a human mitochondrial NAD kinase publication-title: Nat. Commun – volume: 281 start-page: 4671 year: 2006 end-page: 4677 ident: bib50 article-title: Uncoupled redox systems in the lumen of the endoplasmic reticulum: pyridine nucleotides stay reduced in an oxidative environment publication-title: J. Biol. Chem – volume: 115 start-page: 609 year: 1969 end-page: 619 ident: bib16 article-title: The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver publication-title: Biochem. J – volume: 41 start-page: 352 year: 2009 end-page: 361 ident: bib63 article-title: Molecular properties, functions, and potential applications of NAD kinases publication-title: Acta Biochim. Biophys. Sin – volume: 44 start-page: D457 year: 2016 end-page: D462 ident: bib40 article-title: KEGG as a reference resource for gene and protein annotation publication-title: Nucleic Acids Res – volume: 12 start-page: 1709 year: 2013 end-page: 1722 ident: bib86 article-title: Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse publication-title: Mol. Cell. Proteomics – volume: 215 start-page: 207 year: 1970 end-page: 209 ident: bib36 article-title: Increase of NAD glycohydrolase activity and decrease of NAD concentration in rat liver during fasting publication-title: Biochim. Biophys. Acta – volume: 166 start-page: 225 year: 1977 end-page: 235 ident: bib20 article-title: Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate publication-title: Biochem. J – volume: 464 start-page: 121 year: 2010 end-page: 125 ident: bib3 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature – volume: 28 start-page: 27 year: 2000 end-page: 30 ident: bib39 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res – volume: 14 start-page: 555 year: 2011 end-page: 566 ident: bib66 article-title: Genetically encoded fluorescent sensors for intracellular NADH detection publication-title: Cell Metab – volume: 63 start-page: 1190 year: 2016 end-page: 1204 ident: bib78 article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice publication-title: Hepatology – volume: 108 start-page: 513 year: 1968 end-page: 520 ident: bib18 article-title: The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates publication-title: Biochem. J – volume: 103 start-page: 514 year: 1967 end-page: 527 ident: bib17 article-title: The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver publication-title: Biochem. J – volume: 291 start-page: 7128 year: 2016 end-page: 7141 ident: bib31 article-title: Investigating the sensitivity of NAD publication-title: J. Biol. Chem – volume: 30 start-page: 207 year: 2002 end-page: 210 ident: bib72 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res – volume: 41 start-page: 12 year: 2013 end-page: 23 ident: bib12 article-title: NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology publication-title: Drug Metab. Dispos – volume: 510 start-page: 542 year: 2014 end-page: 546 ident: bib15 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature – volume: 126 start-page: 59 year: 1972 end-page: 65 ident: bib19 article-title: Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm publication-title: Biochem. J – volume: 11 start-page: 39 year: 1963 end-page: 43 ident: bib1 article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme publication-title: Biochem. Biophys. Res. Commun – volume: 15 start-page: 241 year: 2003 end-page: 246 ident: bib8 article-title: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease publication-title: Curr. Opin. Cell Biol – volume: 2 start-page: 1030 year: 2011 end-page: 1039 ident: bib37 article-title: monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy publication-title: Biomed. Opt. Express – volume: 13 start-page: 1088 year: 2017 end-page: 1095 ident: bib74 article-title: A genetically encoded tool for manipulation of NADP publication-title: Nat. Chem. Biol – volume: 10 start-page: 1085 year: 2013 end-page: 1088 ident: bib76 article-title: Inducible control of gene expression with destabilized Cre publication-title: Nat. Methods – volume: 280 start-page: 25119 year: 2005 end-page: 25126 ident: bib38 article-title: Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy publication-title: J. Biol. Chem – volume: 270 start-page: 403 year: 1964 end-page: 410 ident: bib11 article-title: Metabolic effects of alcohol on the liver publication-title: N. Engl. J. Med – volume: 282 start-page: 33562 year: 2007 end-page: 33571 ident: bib64 article-title: NAD kinase levels control the NADPH concentration in human cells publication-title: J. Biol. Chem – volume: 293 start-page: 510 year: 2001 end-page: 514 ident: bib59 article-title: Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors publication-title: Science – volume: 434 start-page: 113 year: 2005 end-page: 118 ident: bib34 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 publication-title: Nature – volume: 45 start-page: D190 year: 2017 end-page: D199 ident: bib43 article-title: InterPro in 2017-beyond protein family and domain annotations publication-title: Nucleic Acids Res – volume: 27 start-page: 891 year: 1999 end-page: 900 ident: bib77 article-title: Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III publication-title: Free Radic. Biol. Med – volume: 270 start-page: 351 year: 1964 end-page: 356 ident: bib10 article-title: Metabolic effects of alcohol on the live publication-title: N. Engl. J. Med – volume: 352 start-page: 1474 year: 2016 end-page: 1477 ident: bib70 article-title: Biosensor reveals multiple sources for mitochondrial NAD publication-title: Science – volume: 1757 start-page: 721 year: 2006 end-page: 726 ident: bib26 article-title: Mitochondrial NADPH, transhydrogenase and disease publication-title: Biochim. Biophys. Acta – volume: 61 start-page: 381 year: 1955 end-page: 388 ident: bib27 article-title: The determination of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues publication-title: Biochem. J – volume: 245 start-page: 263 year: 1987 end-page: 267 ident: bib47 article-title: The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase publication-title: Biochem. J – volume: 5 start-page: e1000442 year: 2009 ident: bib57 article-title: Harmonics of circadian gene transcription in mammals publication-title: PLoS Genet – volume: 103 start-page: 1489 year: 1999 end-page: 1498 ident: bib9 article-title: Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting publication-title: J. Clin. Invest – volume: 112 start-page: 1 year: 2015 end-page: 2 ident: bib62 article-title: NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 22 start-page: 1753 year: 2008 end-page: 1757 ident: bib29 article-title: Tissue-specific regulation of SIRT1 by calorie restriction publication-title: Genes Dev – volume: 35 start-page: 109 year: 2007 end-page: 114 ident: bib6 article-title: Regulation of calcium signalling by adenine-based second messengers publication-title: Biochem. Soc. Trans – volume: 580 start-page: 2160 year: 2006 end-page: 2165 ident: bib49 article-title: Endoplasmic reticulum: a metabolic compartment publication-title: FEBS Lett – volume: 339 start-page: 285 year: 2010 end-page: 292 ident: bib33 article-title: Fasting promotes the expression of SIRT1, an NAD publication-title: Mol. Cell. Biochem – volume: 4 start-page: 1 year: 2008 end-page: 13 ident: bib71 article-title: Expression analysis of G protein-coupled receptors in mouse macrophages publication-title: Immunome Res – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: bib45 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet – volume: 14 start-page: 720 year: 2017 end-page: 728 ident: bib51 article-title: Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism publication-title: Nat. Methods – volume: 255 start-page: 2277 year: 1980 end-page: 2283 ident: bib23 article-title: Thermodynamic aspects of translocation of reducing equivalents by mitochondria publication-title: J. Biol. Chem – volume: 249 start-page: 7522 year: 1974 end-page: 7528 ident: bib22 article-title: Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter publication-title: J. Biol. Chem – volume: 106 start-page: 21453 year: 2009 end-page: 21458 ident: bib55 article-title: Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 1840 start-page: 951 year: 2014 end-page: 957 ident: bib68 article-title: Genetically encoded fluorescent indicator for imaging NAD publication-title: Biochim. Biophys. Acta – volume: 64 start-page: iii year: 1995 end-page: xvi ident: bib24 article-title: Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex publication-title: Neuroscience – volume: 314 start-page: G97 year: 2018 end-page: G108 ident: bib69 article-title: Live cell imaging of cytosolic NADH/NAD publication-title: Am. J. Physiol. Gastrointest. Liver Physiol – volume: 288 start-page: 69 year: 2001 end-page: 74 ident: bib61 article-title: Structural and functional characterization of human NAD kinase publication-title: Biochem. Biophys. Res. Commun – volume: 14 start-page: 545 year: 2011 end-page: 554 ident: bib67 article-title: Imaging cytosolic NADH-NAD publication-title: Cell Metab – volume: 113 start-page: E1442 year: 2016 end-page: E1451 ident: bib75 article-title: Functional and topological diversity of LOV domain photoreceptors publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 276 start-page: 22559 year: 2001 end-page: 22564 ident: bib28 article-title: role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue publication-title: J. Biol. Chem – volume: 137 start-page: 560 year: 2009 end-page: 570 ident: bib4 article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell – volume: 43 start-page: D36 year: 2015 end-page: D42 ident: bib81 article-title: Gene: a gene-centered information resource at NCBI publication-title: Nucleic Acids Res – volume: 45 start-page: 580 year: 2013 end-page: 585 ident: bib84 article-title: The genotype-tissue expression (GTEx) project publication-title: Nat. Genet – volume: 61 start-page: 366 year: 2014 end-page: 372 ident: bib56 article-title: PPAR-α dependent regulation of vanin-1 mediates hepatic lipid metabolism publication-title: J. Hepatol – volume: 324 start-page: 651 year: 2009 end-page: 654 ident: bib60 article-title: Circadian clock feedback cycle through NAMPT-mediated NAD publication-title: Science – volume: 10 start-page: 64S year: 1986 end-page: 68S ident: bib79 article-title: The effect of ethanol on the β-oxidation of fatty acids publication-title: Alcohol. Clin. Exp. Res – volume: 348 start-page: 607 year: 2000 end-page: 614 ident: bib14 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J – volume: 44 start-page: D710 year: 2016 end-page: D716 ident: bib85 article-title: Ensembl 2016 publication-title: Nucleic Acids Res – volume: 245 start-page: 263 year: 1987 ident: 10.1074/jbc.TM117.000258_bib47 article-title: The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase publication-title: Biochem. J doi: 10.1042/bj2450263 – volume: 3 start-page: 1248 year: 2012 ident: 10.1074/jbc.TM117.000258_bib65 article-title: Identification and characterization of a human mitochondrial NAD kinase publication-title: Nat. Commun doi: 10.1038/ncomms2262 – volume: 281 start-page: 4671 year: 2006 ident: 10.1074/jbc.TM117.000258_bib50 article-title: Uncoupled redox systems in the lumen of the endoplasmic reticulum: pyridine nucleotides stay reduced in an oxidative environment publication-title: J. Biol. Chem doi: 10.1074/jbc.M509406200 – volume: 44 start-page: D279 year: 2016 ident: 10.1074/jbc.TM117.000258_bib42 article-title: The Pfam protein families database: towards a more sustainable future publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1344 – volume: 11 start-page: 39 year: 1963 ident: 10.1074/jbc.TM117.000258_bib1 article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme publication-title: Biochem. Biophys. Res. Commun doi: 10.1016/0006-291X(63)90024-X – volume: 28 start-page: 27 year: 2000 ident: 10.1074/jbc.TM117.000258_bib39 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 14 start-page: 555 year: 2011 ident: 10.1074/jbc.TM117.000258_bib66 article-title: Genetically encoded fluorescent sensors for intracellular NADH detection publication-title: Cell Metab doi: 10.1016/j.cmet.2011.09.004 – volume: 282 start-page: 33562 year: 2007 ident: 10.1074/jbc.TM117.000258_bib64 article-title: NAD kinase levels control the NADPH concentration in human cells publication-title: J. Biol. Chem doi: 10.1074/jbc.M704442200 – volume: 324 start-page: 651 year: 2009 ident: 10.1074/jbc.TM117.000258_bib60 article-title: Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis publication-title: Science doi: 10.1126/science.1171641 – volume: 112 start-page: 1 year: 2015 ident: 10.1074/jbc.TM117.000258_bib62 article-title: NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1417290112 – volume: 10 start-page: 421 year: 2009 ident: 10.1074/jbc.TM117.000258_bib82 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 45 start-page: D331 year: 2017 ident: 10.1074/jbc.TM117.000258_bib44 article-title: Expansion of the gene ontology knowledgebase and resources publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1108 – volume: 14 start-page: 528 year: 2011 ident: 10.1074/jbc.TM117.000258_bib80 article-title: Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice publication-title: Cell Metab doi: 10.1016/j.cmet.2011.08.014 – volume: 30 start-page: 207 year: 2002 ident: 10.1074/jbc.TM117.000258_bib72 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.207 – volume: 2 start-page: mr1 year: 2009 ident: 10.1074/jbc.TM117.000258_bib7 article-title: Emerging roles of NAD+ and its metabolites in cell signaling publication-title: Sci. Signal – volume: 10 start-page: 64S year: 1986 ident: 10.1074/jbc.TM117.000258_bib79 article-title: The effect of ethanol on the β-oxidation of fatty acids publication-title: Alcohol. Clin. Exp. Res doi: 10.1111/j.1530-0277.1986.tb05182.x – volume: 216 start-page: 723 year: 2017 ident: 10.1074/jbc.TM117.000258_bib35 article-title: The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis publication-title: J. Cell Biol doi: 10.1083/jcb.201607091 – volume: 137 start-page: 560 year: 2009 ident: 10.1074/jbc.TM117.000258_bib4 article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell doi: 10.1016/j.cell.2009.02.026 – volume: 352 start-page: 231 year: 2016 ident: 10.1074/jbc.TM117.000258_bib73 article-title: Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio publication-title: Science doi: 10.1126/science.aad4017 – volume: 12 start-page: 1709 year: 2013 ident: 10.1074/jbc.TM117.000258_bib86 article-title: Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M112.024919 – volume: 1840 start-page: 951 year: 2014 ident: 10.1074/jbc.TM117.000258_bib68 article-title: Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2013.11.018 – volume: 45 start-page: D190 year: 2017 ident: 10.1074/jbc.TM117.000258_bib43 article-title: InterPro in 2017-beyond protein family and domain annotations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1107 – volume: 115 start-page: 609 year: 1969 ident: 10.1074/jbc.TM117.000258_bib16 article-title: The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver publication-title: Biochem. J doi: 10.1042/bj1150609a – volume: 27 start-page: 891 year: 1999 ident: 10.1074/jbc.TM117.000258_bib77 article-title: Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III publication-title: Free Radic. Biol. Med doi: 10.1016/S0891-5849(99)00138-0 – volume: 61 start-page: 381 year: 1955 ident: 10.1074/jbc.TM117.000258_bib27 article-title: The determination of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues publication-title: Biochem. J doi: 10.1042/bj0610381 – volume: 63 start-page: 1190 year: 2016 ident: 10.1074/jbc.TM117.000258_bib78 article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice publication-title: Hepatology doi: 10.1002/hep.28245 – volume: 15 start-page: 241 year: 2003 ident: 10.1074/jbc.TM117.000258_bib8 article-title: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease publication-title: Curr. Opin. Cell Biol doi: 10.1016/S0955-0674(03)00006-1 – volume: 215 start-page: 207 year: 1970 ident: 10.1074/jbc.TM117.000258_bib36 article-title: Increase of NAD glycohydrolase activity and decrease of NAD concentration in rat liver during fasting publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4165(70)90410-1 – volume: 14 start-page: 545 year: 2011 ident: 10.1074/jbc.TM117.000258_bib67 article-title: Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor Yin publication-title: Cell Metab doi: 10.1016/j.cmet.2011.08.012 – volume: 103 start-page: 514 year: 1967 ident: 10.1074/jbc.TM117.000258_bib17 article-title: The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver publication-title: Biochem. J doi: 10.1042/bj1030514 – volume: 22 start-page: 1753 year: 2008 ident: 10.1074/jbc.TM117.000258_bib29 article-title: Tissue-specific regulation of SIRT1 by calorie restriction publication-title: Genes Dev doi: 10.1101/gad.1650608 – volume: 4 start-page: 1 year: 2008 ident: 10.1074/jbc.TM117.000258_bib71 article-title: Expression analysis of G protein-coupled receptors in mouse macrophages publication-title: Immunome Res doi: 10.1186/1745-7580-4-5 – volume: 64 start-page: iii year: 1995 ident: 10.1074/jbc.TM117.000258_bib24 article-title: Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex publication-title: Neuroscience doi: 10.1016/0306-4522(94)E0200-N – volume: 288 start-page: 69 year: 2001 ident: 10.1074/jbc.TM117.000258_bib61 article-title: Structural and functional characterization of human NAD kinase publication-title: Biochem. Biophys. Res. Commun doi: 10.1006/bbrc.2001.5735 – volume: 45 start-page: D353 year: 2017 ident: 10.1074/jbc.TM117.000258_bib41 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – volume: 255 start-page: 2277 year: 1980 ident: 10.1074/jbc.TM117.000258_bib23 article-title: Thermodynamic aspects of translocation of reducing equivalents by mitochondria publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(19)85887-8 – volume: 27 start-page: 3214 year: 2016 ident: 10.1074/jbc.TM117.000258_bib48 article-title: Elevated mitochondria-coupled NAD(P)H in endoplasmic reticulum of dopamine neurons publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E16-07-0479 – volume: 44 start-page: D710 year: 2016 ident: 10.1074/jbc.TM117.000258_bib85 article-title: Ensembl 2016 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1157 – volume: 314 start-page: G97 year: 2018 ident: 10.1074/jbc.TM117.000258_bib69 article-title: Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices publication-title: Am. J. Physiol. Gastrointest. Liver Physiol doi: 10.1152/ajpgi.00093.2017 – volume: 44 start-page: D457 year: 2016 ident: 10.1074/jbc.TM117.000258_bib40 article-title: KEGG as a reference resource for gene and protein annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1070 – volume: 61 start-page: 366 year: 2014 ident: 10.1074/jbc.TM117.000258_bib56 article-title: PPAR-α dependent regulation of vanin-1 mediates hepatic lipid metabolism publication-title: J. Hepatol doi: 10.1016/j.jhep.2014.04.013 – volume: 166 start-page: 225 year: 1977 ident: 10.1074/jbc.TM117.000258_bib20 article-title: Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate publication-title: Biochem. J doi: 10.1042/bj1660225 – volume: 434 start-page: 113 year: 2005 ident: 10.1074/jbc.TM117.000258_bib34 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 publication-title: Nature doi: 10.1038/nature03354 – volume: 291 start-page: 7128 year: 2016 ident: 10.1074/jbc.TM117.000258_bib31 article-title: Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH publication-title: J. Biol. Chem doi: 10.1074/jbc.M115.668699 – volume: 13 start-page: 1088 year: 2017 ident: 10.1074/jbc.TM117.000258_bib74 article-title: A genetically encoded tool for manipulation of NADP+/NADPH in living cells publication-title: Nat. Chem. Biol doi: 10.1038/nchembio.2454 – volume: 348 start-page: 607 year: 2000 ident: 10.1074/jbc.TM117.000258_bib14 article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain publication-title: Biochem. J doi: 10.1042/bj3480607 – volume: 5 start-page: 873 year: 2006 ident: 10.1074/jbc.TM117.000258_bib32 article-title: Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage publication-title: Cell Cycle doi: 10.4161/cc.5.8.2690 – volume: 5 start-page: e1000442 year: 2009 ident: 10.1074/jbc.TM117.000258_bib57 article-title: Harmonics of circadian gene transcription in mammals publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000442 – volume: 339 start-page: 285 year: 2010 ident: 10.1074/jbc.TM117.000258_bib33 article-title: Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARα in mice publication-title: Mol. Cell. Biochem doi: 10.1007/s11010-010-0391-z – volume: 276 start-page: 22559 year: 2001 ident: 10.1074/jbc.TM117.000258_bib28 article-title: In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue publication-title: J. Biol. Chem doi: 10.1074/jbc.M101053200 – volume: 35 start-page: 109 year: 2007 ident: 10.1074/jbc.TM117.000258_bib6 article-title: Regulation of calcium signalling by adenine-based second messengers publication-title: Biochem. Soc. Trans doi: 10.1042/BST0350109 – volume: 65 start-page: 1202 year: 2016 ident: 10.1074/jbc.TM117.000258_bib54 article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD publication-title: Gut doi: 10.1136/gutjnl-2015-310798 – volume: 41 start-page: 352 year: 2009 ident: 10.1074/jbc.TM117.000258_bib63 article-title: Molecular properties, functions, and potential applications of NAD kinases publication-title: Acta Biochim. Biophys. Sin doi: 10.1093/abbs/gmp029 – volume: 270 start-page: 403 year: 1964 ident: 10.1074/jbc.TM117.000258_bib11 article-title: Metabolic effects of alcohol on the liver publication-title: N. Engl. J. Med doi: 10.1056/NEJM196402202700806 – volume: 2 start-page: 1030 year: 2011 ident: 10.1074/jbc.TM117.000258_bib37 article-title: In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.001030 – volume: 45 start-page: 580 year: 2013 ident: 10.1074/jbc.TM117.000258_bib84 article-title: The genotype-tissue expression (GTEx) project publication-title: Nat. Genet doi: 10.1038/ng.2653 – volume: 510 start-page: 542 year: 2014 ident: 10.1074/jbc.TM117.000258_bib15 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature doi: 10.1038/nature13270 – volume: 111 start-page: 16219 year: 2014 ident: 10.1074/jbc.TM117.000258_bib58 article-title: A circadian gene expression atlas in mammals: implications for biology and medicine publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1408886111 – volume: 464 start-page: 121 year: 2010 ident: 10.1074/jbc.TM117.000258_bib3 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature doi: 10.1038/nature08778 – volume: 25 start-page: 25 year: 2000 ident: 10.1074/jbc.TM117.000258_bib45 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet doi: 10.1038/75556 – volume: 103 start-page: 1489 year: 1999 ident: 10.1074/jbc.TM117.000258_bib9 article-title: Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting publication-title: J. Clin. Invest doi: 10.1172/JCI6223 – volume: 108 start-page: 513 year: 1968 ident: 10.1074/jbc.TM117.000258_bib18 article-title: The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates publication-title: Biochem. J doi: 10.1042/bj1080513 – volume: 580 start-page: 2160 year: 2006 ident: 10.1074/jbc.TM117.000258_bib49 article-title: Endoplasmic reticulum: a metabolic compartment publication-title: FEBS Lett doi: 10.1016/j.febslet.2006.03.050 – volume: 249 start-page: 7522 year: 1974 ident: 10.1074/jbc.TM117.000258_bib22 article-title: Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(19)81269-3 – volume: 293 start-page: 510 year: 2001 ident: 10.1074/jbc.TM117.000258_bib59 article-title: Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors publication-title: Science doi: 10.1126/science.1060698 – volume: 41 start-page: 12 year: 2013 ident: 10.1074/jbc.TM117.000258_bib12 article-title: NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology publication-title: Drug Metab. Dispos doi: 10.1124/dmd.112.048991 – volume: 113 start-page: 12715 year: 2016 ident: 10.1074/jbc.TM117.000258_bib53 article-title: Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1609227113 – volume: 10 start-page: 1085 year: 2013 ident: 10.1074/jbc.TM117.000258_bib76 article-title: Inducible control of gene expression with destabilized Cre publication-title: Nat. Methods doi: 10.1038/nmeth.2640 – volume: 270 start-page: 351 year: 1964 ident: 10.1074/jbc.TM117.000258_bib10 article-title: Metabolic effects of alcohol on the live publication-title: N. Engl. J. Med doi: 10.1056/NEJM196402132700707 – volume: 217 start-page: 220 year: 1994 ident: 10.1074/jbc.TM117.000258_bib25 article-title: Physiological roles of nicotinamide nucleotide transhydrogenase publication-title: Anal. Biochem – volume: 280 start-page: 25119 year: 2005 ident: 10.1074/jbc.TM117.000258_bib38 article-title: Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy publication-title: J. Biol. Chem doi: 10.1074/jbc.M502475200 – volume: 356 start-page: eaal3321 year: 2017 ident: 10.1074/jbc.TM117.000258_bib46 article-title: A subcellular map of the human proteome publication-title: Science doi: 10.1126/science.aal3321 – volume: 21 start-page: 777 year: 2015 ident: 10.1074/jbc.TM117.000258_bib52 article-title: SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents publication-title: Cell Metab doi: 10.1016/j.cmet.2015.04.009 – volume: 14 start-page: 720 year: 2017 ident: 10.1074/jbc.TM117.000258_bib51 article-title: Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism publication-title: Nat. Methods doi: 10.1038/nmeth.4306 – volume: 43 start-page: D36 year: 2015 ident: 10.1074/jbc.TM117.000258_bib81 article-title: Gene: a gene-centered information resource at NCBI publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1055 – volume: 16 start-page: 290 year: 2012 ident: 10.1074/jbc.TM117.000258_bib5 article-title: The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease publication-title: Cell Metab doi: 10.1016/j.cmet.2012.06.016 – volume: 106 start-page: 21453 year: 2009 ident: 10.1074/jbc.TM117.000258_bib55 article-title: Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0909591106 – volume: 45 start-page: 1 year: 2017 ident: 10.1074/jbc.TM117.000258_bib83 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res – volume: 126 start-page: 59 year: 1972 ident: 10.1074/jbc.TM117.000258_bib19 article-title: Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm publication-title: Biochem. J doi: 10.1042/bj1260059 – volume: 352 start-page: 1474 year: 2016 ident: 10.1074/jbc.TM117.000258_bib70 article-title: Biosensor reveals multiple sources for mitochondrial NAD+ publication-title: Science doi: 10.1126/science.aad5168 – volume: 31 start-page: 194 year: 2010 ident: 10.1074/jbc.TM117.000258_bib30 article-title: The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways publication-title: Endocr. Rev doi: 10.1210/er.2009-0026 – volume: 113 start-page: E1442 year: 2016 ident: 10.1074/jbc.TM117.000258_bib75 article-title: Functional and topological diversity of LOV domain photoreceptors publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1509428113 – volume: 77 start-page: 5190 year: 1955 ident: 10.1074/jbc.TM117.000258_bib21 article-title: The requirement of triphosphopyridine nucleotide in fatty acid synthesis publication-title: J. Am. Chem. Soc doi: 10.1021/ja01624a085 – volume: 1757 start-page: 721 year: 2006 ident: 10.1074/jbc.TM117.000258_bib26 article-title: Mitochondrial NADPH, transhydrogenase and disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2006.03.010 – volume: 98 start-page: 12414 year: 2001 ident: 10.1074/jbc.TM117.000258_bib2 article-title: Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.221444598 – volume: 275 start-page: 223 year: 2000 ident: 10.1074/jbc.TM117.000258_bib13 article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I publication-title: J. Biol. Chem doi: 10.1074/jbc.275.1.223 |
SSID | ssj0000491 |
Score | 2.566783 |
SecondaryResourceType | review_article |
Snippet | Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a... Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD /NADH and NADP /NADPH with a... Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD + /NADH and NADP + /NADPH with... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7508 |
SubjectTerms | Animals cell metabolism Cytosol - metabolism Energy Metabolism hepatic metabolism hepatocyte Homeostasis Humans intermediary metabolism liver Liver - metabolism Metabolic Networks and Pathways Mitochondria - metabolism NAD - metabolism NAD biosynthesis NAD(P)ome NADP - metabolism nicotinamide adenine dinucleotide (NAD) nicotinamide adenine dinucleotide (NADH) Oxidation-Reduction oxidation-reduction (redox) Oxidative Stress Spatio-Temporal Analysis Thematic Minireviews |
Title | Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism |
URI | https://dx.doi.org/10.1074/jbc.TM117.000258 https://www.ncbi.nlm.nih.gov/pubmed/29514978 https://www.proquest.com/docview/2012116498 https://pubmed.ncbi.nlm.nih.gov/PMC5961030 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgPMALgo1LuclICAlN6WLHiZ3HagxFoE5cOrS3KIltMdQlE02R4NdzfEnSbGOCvURpLrXl89X97HPOdxB6JYRMNJFhoFTMApZGZQAsQQewFKkUBYIulMl3nh8m2RF7fxwfD_HzNrukLafV70vzSq5jVbgGdjVZsv9h2f5L4QKcg33hCBaG4z_Z-IsNh_bqUksfT946uX6fX-nI4JnVZT2cvc2sswBOPmameDQgYNlpCH4fcLPBUp1Ik5MR6WrD9TE7TSP9Burn9WpldwGng1Nj-bPp95x3D_ob8wbAYSnr1-J0dbL7Ybq580CEcZr7ydJuh3UpMaOITRfzQZ0eezfFUlcF0WOJhhszJjAWsfHvy2OXenlhZgeqY2b2spou5oRY3cmukbFetnE_E9MB42IF_pjeRLcoB2JlPPafBil5WBq5coq-v96HDe3snW_lb5zl4prkfGjtBldZ3EN3vfnwzCHmPrqh6m20M6uLtjn9hV9jG_Zr_Snb6PZ-Z9YdlI0BhS8DFG409oDCBlAYAIUtoPAAqAfo6N3BYj8LfKmNoGKMtwGRWsc8pVIVAkhopUkYsVKWmqdFqBhPtOYiCllZFCF8JjTURHHJQqZjUckoeoi26qZWjxGmsgLSWxh3eswKHpeJcfXRStCCiKqUE7TXDWZeeR16Uw5lmdt4CM5yGP7cDn_uhn-C3vRvnDkNliuejTr75J5DOm6YA5CueOtlZ8ochtz4zIpaNetVTq0GYsJSeOaRM23fBwroMgUaJ4iPjN4_YKTbx3fqk29Wwj1OE1Pf78m1evsU3Rl-js_QVvtjrZ4DNW7LFxbifwAehriA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+compartmentalization+of+hepatic+NADH+and+NADPH+metabolism&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Goodman%2C+Russell+P.&rft.au=Calvo%2C+Sarah+E.&rft.au=Mootha%2C+Vamsi+K.&rft.date=2018-05-18&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.volume=293&rft.issue=20&rft.spage=7508&rft.epage=7516&rft_id=info:doi/10.1074%2Fjbc.TM117.000258&rft.externalDocID=S0021925820369519 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |