Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism

Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classica...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 293; no. 20; pp. 7508 - 7516
Main Authors Goodman, Russell P., Calvo, Sarah E., Mootha, Vamsi K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.05.2018
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1074/jbc.TM117.000258

Cover

Abstract Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.
AbstractList Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD /NADH and NADP /NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.
Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.
Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD + /NADH and NADP + /NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.
Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a focus on the liver, an organ that experiences the extremes of biochemical physiology each day. Historical studies of the liver, using classical biochemical fractionation and measurements of redox-coupled metabolites, have given rise to the prevailing view that mitochondrial NAD(H) pools tend to be oxidized and important for energy homeostasis, whereas cytosolic NADP(H) pools tend to be highly reduced for reductive biosynthesis. Despite this textbook view, many questions still remain as to the relative size of these subcellular pools and their redox ratios in different physiological states, and to what extent such redox ratios are simply indicators versus drivers of metabolism. By performing a bioinformatic survey, we find that the liver expresses 352 known or predicted enzymes composing the hepatic NAD(P)ome, i.e. the union of all predicted enzymes producing or consuming NADP(H) or NAD(H) or using them as a redox co-factor. Notably, less than half are predicted to be localized within the cytosol or mitochondria, and a very large fraction of these genes exhibit gene expression patterns that vary during the time of day or in response to fasting or feeding. A future challenge lies in applying emerging new genetic tools to measure and manipulate in vivo hepatic NADP(H) and NAD(H) with subcellular and temporal resolution. Insights from such fundamental studies will be crucial in deciphering the pathogenesis of very common diseases known to involve alterations in hepatic NAD(P)H, such as diabetes and fatty liver disease.
Author Mootha, Vamsi K.
Calvo, Sarah E.
Goodman, Russell P.
Author_xml – sequence: 1
  givenname: Russell P.
  surname: Goodman
  fullname: Goodman, Russell P.
  email: rpgoodman@mgh.harvard.edu
  organization: Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02114
– sequence: 2
  givenname: Sarah E.
  surname: Calvo
  fullname: Calvo, Sarah E.
  organization: Howard Hughes Medical Institute, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
– sequence: 3
  givenname: Vamsi K.
  surname: Mootha
  fullname: Mootha, Vamsi K.
  email: vamsi@hms.harvard.edu
  organization: Howard Hughes Medical Institute, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29514978$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtv1DAQtlAR3RbunFCOXLLMJE6ccECqCmWRykOiSNwsxx5TV0kcbG8l-uvxdlsESHDyeOZ7jOY7Ygezn4mxpwhrBMFfXA16ffEeUawBoGq6B2yF0NVl3eDXA7bKPSz73D9kRzFeZQzwHh-xw6pvkPeiW7HN50Ul5xNNiw9qLLSfFhXSRHNSo7vZzebC2-KSdjhdfDh5vSnUbHbFp00xUVKDH12cHrOHVo2Rnty9x-zL2ZuL0015_vHtu9OT81JzLlKJxtpG9JUh1UHbaotQ88EMVvQKiIvWWtHVwAelIP-xAoskDAdum06buj5mr_a6y3aYyOi8aN5bLsFNKvyQXjn552R2l_Kbv5ZN32YvyALP7wSC_76lmOTkoqZxVDP5bZQVYIXY8r7L0Ge_e_0yuT9fBrR7gA4-xkBWapdub5at3SgR5C4nmXOStznJfU6ZCH8R77X_Q3m5p1C-7rWjIKN2NGsyLpBO0nj3b_JPAPWqRg
CitedBy_id crossref_primary_10_1016_j_bbabio_2018_11_014
crossref_primary_10_1038_s41401_021_00705_5
crossref_primary_10_3390_antiox9100915
crossref_primary_10_2139_ssrn_4199881
crossref_primary_10_1002_jimd_12711
crossref_primary_10_3390_antiox8010024
crossref_primary_10_1016_j_heliyon_2022_e12294
crossref_primary_10_2174_0929866528666210816114032
crossref_primary_10_3389_fcvm_2023_1232681
crossref_primary_10_1074_jbc_TM118_003170
crossref_primary_10_3390_ijms22094890
crossref_primary_10_1016_j_celrep_2020_108207
crossref_primary_10_3390_cells11152416
crossref_primary_10_3389_fgene_2023_1002157
crossref_primary_10_1016_j_celrep_2022_110607
crossref_primary_10_1021_acs_jproteome_8b00800
crossref_primary_10_3390_ijms22116085
crossref_primary_10_3390_metabo11100658
crossref_primary_10_1038_s41598_023_48566_8
crossref_primary_10_3390_cells11132045
crossref_primary_10_1093_plphys_kiae112
crossref_primary_10_1152_ajpcell_00460_2020
crossref_primary_10_1016_j_celrep_2020_108371
crossref_primary_10_1016_j_jpha_2023_04_007
crossref_primary_10_1038_s41594_024_01310_w
crossref_primary_10_1089_ars_2021_0111
crossref_primary_10_3390_ijms22020967
crossref_primary_10_1038_s41401_020_00609_w
crossref_primary_10_1093_plphys_kiaf083
crossref_primary_10_1073_pnas_1913712117
crossref_primary_10_3390_cancers13071691
crossref_primary_10_1016_j_tem_2023_12_010
crossref_primary_10_1021_acs_analchem_4c03404
crossref_primary_10_1038_s41401_021_00838_7
crossref_primary_10_1039_D3TB02124F
crossref_primary_10_31857_S0041377123060032
crossref_primary_10_1039_C9SC02648G
crossref_primary_10_1172_JCI174824
crossref_primary_10_3390_cimb47020083
crossref_primary_10_1089_ars_2023_0295
crossref_primary_10_1016_j_fbio_2024_105517
crossref_primary_10_1016_j_bbabio_2018_05_002
crossref_primary_10_1021_acs_chemrev_2c00397
crossref_primary_10_3389_fonc_2023_1152553
crossref_primary_10_3390_antiox13070820
crossref_primary_10_1016_j_expneurol_2020_113218
crossref_primary_10_1093_plphys_kiac161
crossref_primary_10_1016_j_cej_2020_127659
crossref_primary_10_7554_eLife_49178
crossref_primary_10_1021_acs_analchem_0c00242
crossref_primary_10_1038_s44161_024_00542_9
crossref_primary_10_1155_2022_9196232
crossref_primary_10_3389_fcvm_2023_1212174
crossref_primary_10_1016_j_cmet_2018_05_010
crossref_primary_10_1016_j_ijbiomac_2023_124718
crossref_primary_10_1177_1759091418818261
crossref_primary_10_1016_j_ymgme_2024_108520
crossref_primary_10_1080_10409238_2021_1893641
crossref_primary_10_3390_ijms20040974
crossref_primary_10_1126_science_abd5491
crossref_primary_10_1111_febs_14694
crossref_primary_10_1177_1535370220919076
crossref_primary_10_1016_j_ejpsy_2023_100233
crossref_primary_10_1038_s41467_024_50157_8
crossref_primary_10_1002_jimd_12402
crossref_primary_10_1089_ars_2023_0349
crossref_primary_10_1038_s41589_023_01460_w
crossref_primary_10_1177_15353702211009228
crossref_primary_10_1039_D4OB01866D
crossref_primary_10_18097_pbmc20236902104
crossref_primary_10_1021_acsabm_4c01294
crossref_primary_10_1016_j_isci_2024_111196
crossref_primary_10_1016_j_cmet_2023_11_010
crossref_primary_10_1016_j_mad_2022_111657
crossref_primary_10_14814_phy2_14151
crossref_primary_10_1021_acs_jafc_3c05369
crossref_primary_10_1002_btm2_10184
crossref_primary_10_1016_j_scitotenv_2023_165659
crossref_primary_10_1038_s42003_024_06123_7
crossref_primary_10_3390_nu11030504
crossref_primary_10_1038_s42255_021_00374_y
crossref_primary_10_1016_j_molmet_2022_101562
crossref_primary_10_1134_S1990519X23700025
crossref_primary_10_1088_2050_6120_ab93de
crossref_primary_10_1074_jbc_RA119_010571
crossref_primary_10_1016_j_celrep_2023_113043
crossref_primary_10_1126_sciadv_abg6383
crossref_primary_10_1038_s41586_020_2337_2
Cites_doi 10.1042/bj2450263
10.1038/ncomms2262
10.1074/jbc.M509406200
10.1093/nar/gkv1344
10.1016/0006-291X(63)90024-X
10.1093/nar/28.1.27
10.1016/j.cmet.2011.09.004
10.1074/jbc.M704442200
10.1126/science.1171641
10.1073/pnas.1417290112
10.1186/1471-2105-10-421
10.1093/nar/gkw1108
10.1016/j.cmet.2011.08.014
10.1093/nar/30.1.207
10.1111/j.1530-0277.1986.tb05182.x
10.1083/jcb.201607091
10.1016/j.cell.2009.02.026
10.1126/science.aad4017
10.1074/mcp.M112.024919
10.1016/j.bbagen.2013.11.018
10.1093/nar/gkw1107
10.1042/bj1150609a
10.1016/S0891-5849(99)00138-0
10.1042/bj0610381
10.1002/hep.28245
10.1016/S0955-0674(03)00006-1
10.1016/0304-4165(70)90410-1
10.1016/j.cmet.2011.08.012
10.1042/bj1030514
10.1101/gad.1650608
10.1186/1745-7580-4-5
10.1016/0306-4522(94)E0200-N
10.1006/bbrc.2001.5735
10.1093/nar/gkw1092
10.1016/S0021-9258(19)85887-8
10.1091/mbc.E16-07-0479
10.1093/nar/gkv1157
10.1152/ajpgi.00093.2017
10.1093/nar/gkv1070
10.1016/j.jhep.2014.04.013
10.1042/bj1660225
10.1038/nature03354
10.1074/jbc.M115.668699
10.1038/nchembio.2454
10.1042/bj3480607
10.4161/cc.5.8.2690
10.1371/journal.pgen.1000442
10.1007/s11010-010-0391-z
10.1074/jbc.M101053200
10.1042/BST0350109
10.1136/gutjnl-2015-310798
10.1093/abbs/gmp029
10.1056/NEJM196402202700806
10.1364/BOE.2.001030
10.1038/ng.2653
10.1038/nature13270
10.1073/pnas.1408886111
10.1038/nature08778
10.1038/75556
10.1172/JCI6223
10.1042/bj1080513
10.1016/j.febslet.2006.03.050
10.1016/S0021-9258(19)81269-3
10.1126/science.1060698
10.1124/dmd.112.048991
10.1073/pnas.1609227113
10.1038/nmeth.2640
10.1056/NEJM196402132700707
10.1074/jbc.M502475200
10.1126/science.aal3321
10.1016/j.cmet.2015.04.009
10.1038/nmeth.4306
10.1093/nar/gku1055
10.1016/j.cmet.2012.06.016
10.1073/pnas.0909591106
10.1042/bj1260059
10.1126/science.aad5168
10.1210/er.2009-0026
10.1073/pnas.1509428113
10.1021/ja01624a085
10.1016/j.bbabio.2006.03.010
10.1073/pnas.221444598
10.1074/jbc.275.1.223
ContentType Journal Article
Copyright 2018 © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
2018 by The American Society for Biochemistry and Molecular Biology, Inc.
2018 by The American Society for Biochemistry and Molecular Biology, Inc. 2018 The American Society for Biochemistry and Molecular Biology, Inc.
Copyright_xml – notice: 2018 © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
– notice: 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
– notice: 2018 by The American Society for Biochemistry and Molecular Biology, Inc. 2018 The American Society for Biochemistry and Molecular Biology, Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.TM117.000258
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate THEMATIC MINIREVIEW: Compartmentalization of hepatic NAD(P)H
EISSN 1083-351X
EndPage 7516
ExternalDocumentID PMC5961030
29514978
10_1074_jbc_TM117_000258
S0021925820369519
Genre Journal Article
Review
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK043351
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0R~
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
ADVLN
AENEX
AEXQZ
AFFNX
AFOSN
AFPKN
AI.
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
H13
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
W8F
WH7
WHG
WOQ
X7M
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZE2
ZGI
ZY4
~02
~KM
.7T
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-1dff5792dea8066cf1034bdbf79a0e476ff78304baa00e4120f1e7d404f58cd33
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 13:49:05 EDT 2025
Fri Sep 05 14:34:58 EDT 2025
Mon Jul 21 05:45:17 EDT 2025
Tue Jul 01 04:11:39 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Sun Apr 06 06:54:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords nicotinamide adenine dinucleotide (NADH)
hepatocyte
nicotinamide adenine dinucleotide (NAD)
liver
NAD biosynthesis
oxidation-reduction (redox)
liver metabolism
cell metabolism
NAD(P)ome
intermediary metabolism
hepatic metabolism
Language English
License This is an open access article under the CC BY license.
2018 by The American Society for Biochemistry and Molecular Biology, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-1dff5792dea8066cf1034bdbf79a0e476ff78304baa00e4120f1e7d404f58cd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by Ruma Banerjee
OpenAccessLink https://dx.doi.org/10.1074/jbc.TM117.000258
PMID 29514978
PQID 2012116498
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5961030
proquest_miscellaneous_2012116498
pubmed_primary_29514978
crossref_citationtrail_10_1074_jbc_TM117_000258
crossref_primary_10_1074_jbc_TM117_000258
elsevier_sciencedirect_doi_10_1074_jbc_TM117_000258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-18
PublicationDateYYYYMMDD 2018-05-18
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2018
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Davis, Bremer, Akerman (bib23) 1980; 255
Kanehisa, Goto (bib39) 2000; 28
Vollmers, Gill, DiTacchio, Pulivarthy, Le, Panda (bib55) 2009; 106
Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig, Harris, Hill, Issel-Tarver, Kasarskis, Lewis (bib45) 2000; 25
Madsen, Andersen, Daoud, Anderson, Laursen, Chakladar, Huynh, Colaço, Backos, Fristrup, Hirschey, Olsen (bib31) 2016; 291
Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib34) 2005; 434
Kanehisa, Furumichi, Tanabe, Sato, Morishima (bib41) 2017; 45
Shimoyama, Ohota, Kakehi, Ueda (bib36) 1970; 215
El-Mir, Nogueira, Fontaine, Avéret, Rigoulet, Leverve (bib13) 2000; 275
van Diepen, Jansen, Ballak, Hijmans, Hooiveld, Rommelaere, Galland, Naquet, Rutjes, Mensink, Schrauwen, Tack, Netea, Kersten, Schalkwijk, Stienstra (bib56) 2014; 61
Isselbacher, Greenberger (bib10) 1964; 270
Madiraju, Erion, Rahimi, Zhang, Braddock, Albright, Prigaro, Wood, Bhanot, MacDonald, Jurczak, Camporez, Lee, Cline, Samuel (bib15) 2014; 510
Schägger, Cramer, von Jagow (bib25) 1994; 217
Hayashida, Arimoto, Kuramoto, Kozako, Honda, Shimeno, Soeda (bib33) 2010; 339
Kersten, Seydoux, Peters, Gonzalez, Desvergne, Wahli (bib9) 1999; 103
Masia, McCarty, Lahmann, Luther, Chung, Yarmush, Yellen (bib69) 2018; 314
Thul, Åkesson, Wiking, Mahdessian, Geladaki, Ait Blal, Alm, Asplund, Björk, Breckels, Bäckström, Danielsson, Fagerberg, Fall, Gatto (bib46) 2017; 356
Aguilar-Arnal, Ranjit, Stringari, Orozco-Solis, Gratton, Sassone-Corsi (bib53) 2016; 113
Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva, Stevens, Li, Saha, Ruderman, Bain, Newgard (bib3) 2010; 464
Lin, Guarente (bib8) 2003; 15
Glock, Mclean (bib27) 1955; 61
Gaikwad, Long, Stringer, Jaiswal (bib28) 2001; 276
Veech, Eggleston, Krebs (bib16) 1969; 115
The Gene Ontology Consortium (bib44) 2017; 45
Tao, Zhao, Chu, Wang, Zhu, Chen, Zou, Shi, Liu, Su, Du, Zhou, Zhu, Qian, Liu, Loscalzo, Yang (bib51) 2017; 14
Geiger, Velic, Macek, Lundberg, Kampf, Nagaraj, Uhlen, Cox, Mann (bib86) 2013; 12
Zhao, Hu, Cheng, Su, Wang, Zou, Hu, Chen, Zhou, Huang, Yang, Zhu, Wang, Yi, Zhu (bib52) 2015; 21
Lattin, Schroder, Su, Walker, Zhang, Wiltshire, Saijo, Glass, Hume, Kellie, Sweet (bib71) 2008; 4
Isselbacher, Greenberger (bib11) 1964; 270
Edgar, Domrachev, Lash (bib72) 2002; 30
Ohashi, Kawai, Murata (bib65) 2012; 3
Nakagawa, Lomb, Haigis, Guarente (bib4) 2009; 137
Siess, Brocks, Lattke, Wieland (bib20) 1977; 166
Langdon (bib21) 1955; 77
Chen, Bruno, Easlon, Lin, Cheng, Alt, Guarente (bib29) 2008; 22
Fliegert, Gasser, Guse (bib6) 2007; 35
Tucker, Cavolo, Levitan (bib48) 2016; 27
Camacho, Coulouris, Avagyan, Ma, Papadopoulos, Bealer, Madden (bib82) 2009; 10
Wasmuth, Lima (bib83) 2017; 45
Riddick, Ding, Wolf, Porter, Pandey, Zhang, Gu, Finn, Ronseaux, McLaughlin, Henderson, Zou, Flück (bib12) 2013; 41
Cracan, Titov, Shen, Grabarek, Mootha (bib74) 2017; 13
Rothe, Brosz, Storm-Mathisen (bib24) 1995; 64
Shi, Li, Li, Wang (bib63) 2009; 41
Bilan, Matlashov, Gorokhovatsky, Schultz, Enikolopov, Belousov (bib68) 2014; 1840
Yates, Akanni, Amode, Barrell, Billis, Carvalho-Silva, Cummins, Clapham, Fitzgerald, Gil, Girón, Gordon, Hourlier, Hunt, Janacek (bib85) 2016; 44
Koch-Nolte, Haag, Guse, Lund, Ziegler (bib7) 2009; 2
Hung, Albeck, Tantama, Yellen (bib67) 2011; 14
Grunnet, Kondrup (bib79) 1986; 10
Chambon, Weill, Mandel (bib1) 1963; 11
Love, Pollak, Dölle, Niere, Chen, Oliveri, Amaya, Patel, Ziegler (bib62) 2015; 112
Glantz, Carpenter, Melkonian, Gardner, Boyden, Wong, Chow (bib75) 2016; 113
Bai, Cantó (bib5) 2012; 16
Yoshino, Mills, Yoon, Imai (bib80) 2011; 14
Krebs, Gascoyne (bib18) 1968; 108
Cambronne, Stewart, Kim, Jones-Brunette, Morgan, Farrens, Cohen, Goodman (bib70) 2016; 352
Montagner, Polizzi, Fouché, Ducheix, Lippi, Lasserre, Barquissau, Régnier, Lukowicz, Benhamed, Iroz, Bertrand-Michel, Al Saati, Cano, Mselli-Lakhal (bib54) 2016; 65
Rydström (bib26) 2006; 1757
Finn, Attwood, Babbitt, Bateman, Bork, Bridge, Chang, Dosztányi, El-Gebali, Fraser, Gough, Haft, Holliday, Huang, Huang (bib43) 2017; 45
LaNoue, Tischler (bib22) 1974; 249
Stubbs, Veech, Krebs (bib19) 1972; 126
Kolthur-Seetharam, Dantzer, McBurney, de Murcia, Sassone-Corsi (bib32) 2006; 5
Hughes, DiTacchio, Hayes, Vollmers, Pulivarthy, Baggs, Panda, Hogenesch (bib57) 2009; 5
Palero, Bader, de Bruijn, der Ploeg van den Heuvel, Sterenborg, Gerritsen (bib37) 2011; 2
Williamson, Lund, Krebs (bib17) 1967; 103
Csala, Bánhegyi, Benedetti (bib49) 2006; 580
Houtkooper, Cantó, Wanders, Auwerx (bib30) 2010; 31
Bailey, Pietsch, Cunningham (bib77) 1999; 27
Titov, Cracan, Goodman, Peng, Grabarek, Mootha (bib73) 2016; 352
Gariani, Menzies, Ryu, Wegner, Wang, Ropelle, Moullan, Zhang, Perino, Lemos, Kim, Park, Piersigilli, Pham, Yang (bib78) 2016; 63
Takamura-Enya, Watanabe, Totsuka, Kanazawa, Matsushima-Hibiya, Koyama, Sugimura, Wakabayashi (bib2) 2001; 98
Kanehisa, Sato, Kawashima, Furumichi, Tanabe (bib40) 2016; 44
Piccirella, Czegle, Lizák, Margittai, Senesi, Papp, Csala, Fulceri, Csermely, Mandl, Benedetti, Bánhegyi (bib50) 2006; 281
Ramsey, Yoshino, Brace, Abrassart, Kobayashi, Marcheva, Hong, Chong, Buhr, Lee, Takahashi, Imai, Bass (bib60) 2009; 324
Bublitz, Lawler (bib47) 1987; 245
GTEx Consortium (bib84) 2013; 45
Zhang, Lahens, Ballance, Hughes, Hogenesch (bib58) 2014; 111
Pollak, Niere, Ziegler (bib64) 2007; 282
Brown, Hem, Katz, Ovetsky, Wallin, Ermolaeva, Tolstoy, Tatusova, Pruitt, Maglott, Murphy (bib81) 2015; 43
Rutter, Reick, Wu, McKnight (bib59) 2001; 293
Lerner, Niere, Ludwig, Ziegler (bib61) 2001; 288
Zhao, Jin, Hu, Zhou, Yi, Yu, Xu, Wang, Yang, Loscalzo (bib66) 2011; 14
Sando, Baumgaertel, Pieraut, Torabi-Rander, Wandless, Mayford, Maximov (bib76) 2013; 10
Owen, Doran, Halestrap (bib14) 2000; 348
Finn, Coggill, Eberhardt, Eddy, Mistry, Mitchell, Potter, Punta, Qureshi, Sangrador-Vegas, Salazar, Tate, Bateman (bib42) 2016; 44
Qiao, Jin, Pang, Moskophidis, Mivechi (bib35) 2017; 216
Vishwasrao, Heikal, Kasischke, Webb (bib38) 2005; 280
Yoshino (10.1074/jbc.TM117.000258_bib80) 2011; 14
Ramsey (10.1074/jbc.TM117.000258_bib60) 2009; 324
Sando (10.1074/jbc.TM117.000258_bib76) 2013; 10
Nakagawa (10.1074/jbc.TM117.000258_bib4) 2009; 137
Madiraju (10.1074/jbc.TM117.000258_bib15) 2014; 510
Cracan (10.1074/jbc.TM117.000258_bib74) 2017; 13
Houtkooper (10.1074/jbc.TM117.000258_bib30) 2010; 31
Edgar (10.1074/jbc.TM117.000258_bib72) 2002; 30
Krebs (10.1074/jbc.TM117.000258_bib18) 1968; 108
Kersten (10.1074/jbc.TM117.000258_bib9) 1999; 103
Masia (10.1074/jbc.TM117.000258_bib69) 2018; 314
Chambon (10.1074/jbc.TM117.000258_bib1) 1963; 11
Lin (10.1074/jbc.TM117.000258_bib8) 2003; 15
Zhang (10.1074/jbc.TM117.000258_bib58) 2014; 111
Grunnet (10.1074/jbc.TM117.000258_bib79) 1986; 10
Brown (10.1074/jbc.TM117.000258_bib81) 2015; 43
Veech (10.1074/jbc.TM117.000258_bib16) 1969; 115
Zhao (10.1074/jbc.TM117.000258_bib52) 2015; 21
Lattin (10.1074/jbc.TM117.000258_bib71) 2008; 4
Hughes (10.1074/jbc.TM117.000258_bib57) 2009; 5
Gariani (10.1074/jbc.TM117.000258_bib78) 2016; 63
Langdon (10.1074/jbc.TM117.000258_bib21) 1955; 77
Kolthur-Seetharam (10.1074/jbc.TM117.000258_bib32) 2006; 5
Pollak (10.1074/jbc.TM117.000258_bib64) 2007; 282
Glantz (10.1074/jbc.TM117.000258_bib75) 2016; 113
Ohashi (10.1074/jbc.TM117.000258_bib65) 2012; 3
Aguilar-Arnal (10.1074/jbc.TM117.000258_bib53) 2016; 113
Davis (10.1074/jbc.TM117.000258_bib23) 1980; 255
Glock (10.1074/jbc.TM117.000258_bib27) 1955; 61
Tucker (10.1074/jbc.TM117.000258_bib48) 2016; 27
Tao (10.1074/jbc.TM117.000258_bib51) 2017; 14
Yates (10.1074/jbc.TM117.000258_bib85) 2016; 44
Love (10.1074/jbc.TM117.000258_bib62) 2015; 112
Vishwasrao (10.1074/jbc.TM117.000258_bib38) 2005; 280
Koch-Nolte (10.1074/jbc.TM117.000258_bib7) 2009; 2
Hung (10.1074/jbc.TM117.000258_bib67) 2011; 14
Thul (10.1074/jbc.TM117.000258_bib46) 2017; 356
Stubbs (10.1074/jbc.TM117.000258_bib19) 1972; 126
Isselbacher (10.1074/jbc.TM117.000258_bib11) 1964; 270
Geiger (10.1074/jbc.TM117.000258_bib86) 2013; 12
Siess (10.1074/jbc.TM117.000258_bib20) 1977; 166
The Gene Ontology Consortium (10.1074/jbc.TM117.000258_bib44) 2017; 45
Takamura-Enya (10.1074/jbc.TM117.000258_bib2) 2001; 98
Kanehisa (10.1074/jbc.TM117.000258_bib39) 2000; 28
Cambronne (10.1074/jbc.TM117.000258_bib70) 2016; 352
El-Mir (10.1074/jbc.TM117.000258_bib13) 2000; 275
Hayashida (10.1074/jbc.TM117.000258_bib33) 2010; 339
Hirschey (10.1074/jbc.TM117.000258_bib3) 2010; 464
Rydström (10.1074/jbc.TM117.000258_bib26) 2006; 1757
Bilan (10.1074/jbc.TM117.000258_bib68) 2014; 1840
Montagner (10.1074/jbc.TM117.000258_bib54) 2016; 65
Schägger (10.1074/jbc.TM117.000258_bib25) 1994; 217
Csala (10.1074/jbc.TM117.000258_bib49) 2006; 580
Zhao (10.1074/jbc.TM117.000258_bib66) 2011; 14
Finn (10.1074/jbc.TM117.000258_bib42) 2016; 44
GTEx Consortium (10.1074/jbc.TM117.000258_bib84) 2013; 45
Piccirella (10.1074/jbc.TM117.000258_bib50) 2006; 281
Chen (10.1074/jbc.TM117.000258_bib29) 2008; 22
Kanehisa (10.1074/jbc.TM117.000258_bib40) 2016; 44
Vollmers (10.1074/jbc.TM117.000258_bib55) 2009; 106
Rodgers (10.1074/jbc.TM117.000258_bib34) 2005; 434
Camacho (10.1074/jbc.TM117.000258_bib82) 2009; 10
Madsen (10.1074/jbc.TM117.000258_bib31) 2016; 291
Owen (10.1074/jbc.TM117.000258_bib14) 2000; 348
van Diepen (10.1074/jbc.TM117.000258_bib56) 2014; 61
Bai (10.1074/jbc.TM117.000258_bib5) 2012; 16
Isselbacher (10.1074/jbc.TM117.000258_bib10) 1964; 270
Riddick (10.1074/jbc.TM117.000258_bib12) 2013; 41
Williamson (10.1074/jbc.TM117.000258_bib17) 1967; 103
Kanehisa (10.1074/jbc.TM117.000258_bib41) 2017; 45
Bublitz (10.1074/jbc.TM117.000258_bib47) 1987; 245
Rothe (10.1074/jbc.TM117.000258_bib24) 1995; 64
Shi (10.1074/jbc.TM117.000258_bib63) 2009; 41
Lerner (10.1074/jbc.TM117.000258_bib61) 2001; 288
Fliegert (10.1074/jbc.TM117.000258_bib6) 2007; 35
Gaikwad (10.1074/jbc.TM117.000258_bib28) 2001; 276
Titov (10.1074/jbc.TM117.000258_bib73) 2016; 352
Wasmuth (10.1074/jbc.TM117.000258_bib83) 2017; 45
LaNoue (10.1074/jbc.TM117.000258_bib22) 1974; 249
Rutter (10.1074/jbc.TM117.000258_bib59) 2001; 293
Palero (10.1074/jbc.TM117.000258_bib37) 2011; 2
Qiao (10.1074/jbc.TM117.000258_bib35) 2017; 216
Shimoyama (10.1074/jbc.TM117.000258_bib36) 1970; 215
Ashburner (10.1074/jbc.TM117.000258_bib45) 2000; 25
Finn (10.1074/jbc.TM117.000258_bib43) 2017; 45
Bailey (10.1074/jbc.TM117.000258_bib77) 1999; 27
References_xml – volume: 44
  start-page: D279
  year: 2016
  end-page: D285
  ident: bib42
  article-title: The Pfam protein families database: towards a more sustainable future
  publication-title: Nucleic Acids Res
– volume: 113
  start-page: 12715
  year: 2016
  end-page: 12720
  ident: bib53
  article-title: Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 45
  start-page: D331
  year: 2017
  end-page: D338
  ident: bib44
  article-title: Expansion of the gene ontology knowledgebase and resources
  publication-title: Nucleic Acids Res
– volume: 356
  start-page: eaal3321
  year: 2017
  ident: bib46
  article-title: A subcellular map of the human proteome
  publication-title: Science
– volume: 16
  start-page: 290
  year: 2012
  end-page: 295
  ident: bib5
  article-title: The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease
  publication-title: Cell Metab
– volume: 352
  start-page: 231
  year: 2016
  end-page: 235
  ident: bib73
  article-title: Complementation of mitochondrial electron transport chain by manipulation of the NAD
  publication-title: Science
– volume: 111
  start-page: 16219
  year: 2014
  end-page: 16224
  ident: bib58
  article-title: A circadian gene expression atlas in mammals: implications for biology and medicine
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 98
  start-page: 12414
  year: 2001
  end-page: 12419
  ident: bib2
  article-title: Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 275
  start-page: 223
  year: 2000
  end-page: 228
  ident: bib13
  article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
  publication-title: J. Biol. Chem
– volume: 45
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib83
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
– volume: 216
  start-page: 723
  year: 2017
  end-page: 741
  ident: bib35
  article-title: The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis
  publication-title: J. Cell Biol
– volume: 65
  start-page: 1202
  year: 2016
  end-page: 1214
  ident: bib54
  article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD
  publication-title: Gut
– volume: 45
  start-page: D353
  year: 2017
  end-page: D361
  ident: bib41
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
– volume: 5
  start-page: 873
  year: 2006
  end-page: 877
  ident: bib32
  article-title: Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage
  publication-title: Cell Cycle
– volume: 2
  start-page: mr1
  year: 2009
  ident: bib7
  article-title: Emerging roles of NAD
  publication-title: Sci. Signal
– volume: 77
  start-page: 5190
  year: 1955
  end-page: 5192
  ident: bib21
  article-title: The requirement of triphosphopyridine nucleotide in fatty acid synthesis
  publication-title: J. Am. Chem. Soc
– volume: 27
  start-page: 3214
  year: 2016
  end-page: 3220
  ident: bib48
  article-title: Elevated mitochondria-coupled NAD(P)H in endoplasmic reticulum of dopamine neurons
  publication-title: Mol. Biol. Cell
– volume: 14
  start-page: 528
  year: 2011
  end-page: 536
  ident: bib80
  article-title: Nicotinamide mononucleotide, a key NAD
  publication-title: Cell Metab
– volume: 31
  start-page: 194
  year: 2010
  end-page: 223
  ident: bib30
  article-title: The secret life of NAD
  publication-title: Endocr. Rev
– volume: 21
  start-page: 777
  year: 2015
  end-page: 789
  ident: bib52
  article-title: SoNar, a highly responsive NAD
  publication-title: Cell Metab
– volume: 10
  start-page: 421
  year: 2009
  ident: bib82
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
– volume: 217
  start-page: 220
  year: 1994
  end-page: 230
  ident: bib25
  article-title: Physiological roles of nicotinamide nucleotide transhydrogenase
  publication-title: Anal. Biochem
– volume: 3
  start-page: 1248
  year: 2012
  ident: bib65
  article-title: Identification and characterization of a human mitochondrial NAD kinase
  publication-title: Nat. Commun
– volume: 281
  start-page: 4671
  year: 2006
  end-page: 4677
  ident: bib50
  article-title: Uncoupled redox systems in the lumen of the endoplasmic reticulum: pyridine nucleotides stay reduced in an oxidative environment
  publication-title: J. Biol. Chem
– volume: 115
  start-page: 609
  year: 1969
  end-page: 619
  ident: bib16
  article-title: The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver
  publication-title: Biochem. J
– volume: 41
  start-page: 352
  year: 2009
  end-page: 361
  ident: bib63
  article-title: Molecular properties, functions, and potential applications of NAD kinases
  publication-title: Acta Biochim. Biophys. Sin
– volume: 44
  start-page: D457
  year: 2016
  end-page: D462
  ident: bib40
  article-title: KEGG as a reference resource for gene and protein annotation
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 1709
  year: 2013
  end-page: 1722
  ident: bib86
  article-title: Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse
  publication-title: Mol. Cell. Proteomics
– volume: 215
  start-page: 207
  year: 1970
  end-page: 209
  ident: bib36
  article-title: Increase of NAD glycohydrolase activity and decrease of NAD concentration in rat liver during fasting
  publication-title: Biochim. Biophys. Acta
– volume: 166
  start-page: 225
  year: 1977
  end-page: 235
  ident: bib20
  article-title: Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate
  publication-title: Biochem. J
– volume: 464
  start-page: 121
  year: 2010
  end-page: 125
  ident: bib3
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  ident: bib39
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 555
  year: 2011
  end-page: 566
  ident: bib66
  article-title: Genetically encoded fluorescent sensors for intracellular NADH detection
  publication-title: Cell Metab
– volume: 63
  start-page: 1190
  year: 2016
  end-page: 1204
  ident: bib78
  article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice
  publication-title: Hepatology
– volume: 108
  start-page: 513
  year: 1968
  end-page: 520
  ident: bib18
  article-title: The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates
  publication-title: Biochem. J
– volume: 103
  start-page: 514
  year: 1967
  end-page: 527
  ident: bib17
  article-title: The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver
  publication-title: Biochem. J
– volume: 291
  start-page: 7128
  year: 2016
  end-page: 7141
  ident: bib31
  article-title: Investigating the sensitivity of NAD
  publication-title: J. Biol. Chem
– volume: 30
  start-page: 207
  year: 2002
  end-page: 210
  ident: bib72
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res
– volume: 41
  start-page: 12
  year: 2013
  end-page: 23
  ident: bib12
  article-title: NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology
  publication-title: Drug Metab. Dispos
– volume: 510
  start-page: 542
  year: 2014
  end-page: 546
  ident: bib15
  article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
  publication-title: Nature
– volume: 126
  start-page: 59
  year: 1972
  end-page: 65
  ident: bib19
  article-title: Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm
  publication-title: Biochem. J
– volume: 11
  start-page: 39
  year: 1963
  end-page: 43
  ident: bib1
  article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme
  publication-title: Biochem. Biophys. Res. Commun
– volume: 15
  start-page: 241
  year: 2003
  end-page: 246
  ident: bib8
  article-title: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease
  publication-title: Curr. Opin. Cell Biol
– volume: 2
  start-page: 1030
  year: 2011
  end-page: 1039
  ident: bib37
  article-title: monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy
  publication-title: Biomed. Opt. Express
– volume: 13
  start-page: 1088
  year: 2017
  end-page: 1095
  ident: bib74
  article-title: A genetically encoded tool for manipulation of NADP
  publication-title: Nat. Chem. Biol
– volume: 10
  start-page: 1085
  year: 2013
  end-page: 1088
  ident: bib76
  article-title: Inducible control of gene expression with destabilized Cre
  publication-title: Nat. Methods
– volume: 280
  start-page: 25119
  year: 2005
  end-page: 25126
  ident: bib38
  article-title: Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy
  publication-title: J. Biol. Chem
– volume: 270
  start-page: 403
  year: 1964
  end-page: 410
  ident: bib11
  article-title: Metabolic effects of alcohol on the liver
  publication-title: N. Engl. J. Med
– volume: 282
  start-page: 33562
  year: 2007
  end-page: 33571
  ident: bib64
  article-title: NAD kinase levels control the NADPH concentration in human cells
  publication-title: J. Biol. Chem
– volume: 293
  start-page: 510
  year: 2001
  end-page: 514
  ident: bib59
  article-title: Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
  publication-title: Science
– volume: 434
  start-page: 113
  year: 2005
  end-page: 118
  ident: bib34
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
  publication-title: Nature
– volume: 45
  start-page: D190
  year: 2017
  end-page: D199
  ident: bib43
  article-title: InterPro in 2017-beyond protein family and domain annotations
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 891
  year: 1999
  end-page: 900
  ident: bib77
  article-title: Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III
  publication-title: Free Radic. Biol. Med
– volume: 270
  start-page: 351
  year: 1964
  end-page: 356
  ident: bib10
  article-title: Metabolic effects of alcohol on the live
  publication-title: N. Engl. J. Med
– volume: 352
  start-page: 1474
  year: 2016
  end-page: 1477
  ident: bib70
  article-title: Biosensor reveals multiple sources for mitochondrial NAD
  publication-title: Science
– volume: 1757
  start-page: 721
  year: 2006
  end-page: 726
  ident: bib26
  article-title: Mitochondrial NADPH, transhydrogenase and disease
  publication-title: Biochim. Biophys. Acta
– volume: 61
  start-page: 381
  year: 1955
  end-page: 388
  ident: bib27
  article-title: The determination of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues
  publication-title: Biochem. J
– volume: 245
  start-page: 263
  year: 1987
  end-page: 267
  ident: bib47
  article-title: The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase
  publication-title: Biochem. J
– volume: 5
  start-page: e1000442
  year: 2009
  ident: bib57
  article-title: Harmonics of circadian gene transcription in mammals
  publication-title: PLoS Genet
– volume: 103
  start-page: 1489
  year: 1999
  end-page: 1498
  ident: bib9
  article-title: Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting
  publication-title: J. Clin. Invest
– volume: 112
  start-page: 1
  year: 2015
  end-page: 2
  ident: bib62
  article-title: NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 22
  start-page: 1753
  year: 2008
  end-page: 1757
  ident: bib29
  article-title: Tissue-specific regulation of SIRT1 by calorie restriction
  publication-title: Genes Dev
– volume: 35
  start-page: 109
  year: 2007
  end-page: 114
  ident: bib6
  article-title: Regulation of calcium signalling by adenine-based second messengers
  publication-title: Biochem. Soc. Trans
– volume: 580
  start-page: 2160
  year: 2006
  end-page: 2165
  ident: bib49
  article-title: Endoplasmic reticulum: a metabolic compartment
  publication-title: FEBS Lett
– volume: 339
  start-page: 285
  year: 2010
  end-page: 292
  ident: bib33
  article-title: Fasting promotes the expression of SIRT1, an NAD
  publication-title: Mol. Cell. Biochem
– volume: 4
  start-page: 1
  year: 2008
  end-page: 13
  ident: bib71
  article-title: Expression analysis of G protein-coupled receptors in mouse macrophages
  publication-title: Immunome Res
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  ident: bib45
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat. Genet
– volume: 14
  start-page: 720
  year: 2017
  end-page: 728
  ident: bib51
  article-title: Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism
  publication-title: Nat. Methods
– volume: 255
  start-page: 2277
  year: 1980
  end-page: 2283
  ident: bib23
  article-title: Thermodynamic aspects of translocation of reducing equivalents by mitochondria
  publication-title: J. Biol. Chem
– volume: 249
  start-page: 7522
  year: 1974
  end-page: 7528
  ident: bib22
  article-title: Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter
  publication-title: J. Biol. Chem
– volume: 106
  start-page: 21453
  year: 2009
  end-page: 21458
  ident: bib55
  article-title: Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 1840
  start-page: 951
  year: 2014
  end-page: 957
  ident: bib68
  article-title: Genetically encoded fluorescent indicator for imaging NAD
  publication-title: Biochim. Biophys. Acta
– volume: 64
  start-page: iii
  year: 1995
  end-page: xvi
  ident: bib24
  article-title: Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex
  publication-title: Neuroscience
– volume: 314
  start-page: G97
  year: 2018
  end-page: G108
  ident: bib69
  article-title: Live cell imaging of cytosolic NADH/NAD
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol
– volume: 288
  start-page: 69
  year: 2001
  end-page: 74
  ident: bib61
  article-title: Structural and functional characterization of human NAD kinase
  publication-title: Biochem. Biophys. Res. Commun
– volume: 14
  start-page: 545
  year: 2011
  end-page: 554
  ident: bib67
  article-title: Imaging cytosolic NADH-NAD
  publication-title: Cell Metab
– volume: 113
  start-page: E1442
  year: 2016
  end-page: E1451
  ident: bib75
  article-title: Functional and topological diversity of LOV domain photoreceptors
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 276
  start-page: 22559
  year: 2001
  end-page: 22564
  ident: bib28
  article-title: role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue
  publication-title: J. Biol. Chem
– volume: 137
  start-page: 560
  year: 2009
  end-page: 570
  ident: bib4
  article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
– volume: 43
  start-page: D36
  year: 2015
  end-page: D42
  ident: bib81
  article-title: Gene: a gene-centered information resource at NCBI
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 580
  year: 2013
  end-page: 585
  ident: bib84
  article-title: The genotype-tissue expression (GTEx) project
  publication-title: Nat. Genet
– volume: 61
  start-page: 366
  year: 2014
  end-page: 372
  ident: bib56
  article-title: PPAR-α dependent regulation of vanin-1 mediates hepatic lipid metabolism
  publication-title: J. Hepatol
– volume: 324
  start-page: 651
  year: 2009
  end-page: 654
  ident: bib60
  article-title: Circadian clock feedback cycle through NAMPT-mediated NAD
  publication-title: Science
– volume: 10
  start-page: 64S
  year: 1986
  end-page: 68S
  ident: bib79
  article-title: The effect of ethanol on the β-oxidation of fatty acids
  publication-title: Alcohol. Clin. Exp. Res
– volume: 348
  start-page: 607
  year: 2000
  end-page: 614
  ident: bib14
  article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
  publication-title: Biochem. J
– volume: 44
  start-page: D710
  year: 2016
  end-page: D716
  ident: bib85
  article-title: Ensembl 2016
  publication-title: Nucleic Acids Res
– volume: 245
  start-page: 263
  year: 1987
  ident: 10.1074/jbc.TM117.000258_bib47
  article-title: The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase
  publication-title: Biochem. J
  doi: 10.1042/bj2450263
– volume: 3
  start-page: 1248
  year: 2012
  ident: 10.1074/jbc.TM117.000258_bib65
  article-title: Identification and characterization of a human mitochondrial NAD kinase
  publication-title: Nat. Commun
  doi: 10.1038/ncomms2262
– volume: 281
  start-page: 4671
  year: 2006
  ident: 10.1074/jbc.TM117.000258_bib50
  article-title: Uncoupled redox systems in the lumen of the endoplasmic reticulum: pyridine nucleotides stay reduced in an oxidative environment
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M509406200
– volume: 44
  start-page: D279
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib42
  article-title: The Pfam protein families database: towards a more sustainable future
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1344
– volume: 11
  start-page: 39
  year: 1963
  ident: 10.1074/jbc.TM117.000258_bib1
  article-title: Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1016/0006-291X(63)90024-X
– volume: 28
  start-page: 27
  year: 2000
  ident: 10.1074/jbc.TM117.000258_bib39
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 14
  start-page: 555
  year: 2011
  ident: 10.1074/jbc.TM117.000258_bib66
  article-title: Genetically encoded fluorescent sensors for intracellular NADH detection
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.09.004
– volume: 282
  start-page: 33562
  year: 2007
  ident: 10.1074/jbc.TM117.000258_bib64
  article-title: NAD kinase levels control the NADPH concentration in human cells
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M704442200
– volume: 324
  start-page: 651
  year: 2009
  ident: 10.1074/jbc.TM117.000258_bib60
  article-title: Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
  publication-title: Science
  doi: 10.1126/science.1171641
– volume: 112
  start-page: 1
  year: 2015
  ident: 10.1074/jbc.TM117.000258_bib62
  article-title: NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1417290112
– volume: 10
  start-page: 421
  year: 2009
  ident: 10.1074/jbc.TM117.000258_bib82
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 45
  start-page: D331
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib44
  article-title: Expansion of the gene ontology knowledgebase and resources
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1108
– volume: 14
  start-page: 528
  year: 2011
  ident: 10.1074/jbc.TM117.000258_bib80
  article-title: Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.08.014
– volume: 30
  start-page: 207
  year: 2002
  ident: 10.1074/jbc.TM117.000258_bib72
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.207
– volume: 2
  start-page: mr1
  year: 2009
  ident: 10.1074/jbc.TM117.000258_bib7
  article-title: Emerging roles of NAD+ and its metabolites in cell signaling
  publication-title: Sci. Signal
– volume: 10
  start-page: 64S
  year: 1986
  ident: 10.1074/jbc.TM117.000258_bib79
  article-title: The effect of ethanol on the β-oxidation of fatty acids
  publication-title: Alcohol. Clin. Exp. Res
  doi: 10.1111/j.1530-0277.1986.tb05182.x
– volume: 216
  start-page: 723
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib35
  article-title: The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.201607091
– volume: 137
  start-page: 560
  year: 2009
  ident: 10.1074/jbc.TM117.000258_bib4
  article-title: SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.026
– volume: 352
  start-page: 231
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib73
  article-title: Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio
  publication-title: Science
  doi: 10.1126/science.aad4017
– volume: 12
  start-page: 1709
  year: 2013
  ident: 10.1074/jbc.TM117.000258_bib86
  article-title: Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M112.024919
– volume: 1840
  start-page: 951
  year: 2014
  ident: 10.1074/jbc.TM117.000258_bib68
  article-title: Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2013.11.018
– volume: 45
  start-page: D190
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib43
  article-title: InterPro in 2017-beyond protein family and domain annotations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1107
– volume: 115
  start-page: 609
  year: 1969
  ident: 10.1074/jbc.TM117.000258_bib16
  article-title: The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver
  publication-title: Biochem. J
  doi: 10.1042/bj1150609a
– volume: 27
  start-page: 891
  year: 1999
  ident: 10.1074/jbc.TM117.000258_bib77
  article-title: Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III
  publication-title: Free Radic. Biol. Med
  doi: 10.1016/S0891-5849(99)00138-0
– volume: 61
  start-page: 381
  year: 1955
  ident: 10.1074/jbc.TM117.000258_bib27
  article-title: The determination of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues
  publication-title: Biochem. J
  doi: 10.1042/bj0610381
– volume: 63
  start-page: 1190
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib78
  article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice
  publication-title: Hepatology
  doi: 10.1002/hep.28245
– volume: 15
  start-page: 241
  year: 2003
  ident: 10.1074/jbc.TM117.000258_bib8
  article-title: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease
  publication-title: Curr. Opin. Cell Biol
  doi: 10.1016/S0955-0674(03)00006-1
– volume: 215
  start-page: 207
  year: 1970
  ident: 10.1074/jbc.TM117.000258_bib36
  article-title: Increase of NAD glycohydrolase activity and decrease of NAD concentration in rat liver during fasting
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4165(70)90410-1
– volume: 14
  start-page: 545
  year: 2011
  ident: 10.1074/jbc.TM117.000258_bib67
  article-title: Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor Yin
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.08.012
– volume: 103
  start-page: 514
  year: 1967
  ident: 10.1074/jbc.TM117.000258_bib17
  article-title: The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver
  publication-title: Biochem. J
  doi: 10.1042/bj1030514
– volume: 22
  start-page: 1753
  year: 2008
  ident: 10.1074/jbc.TM117.000258_bib29
  article-title: Tissue-specific regulation of SIRT1 by calorie restriction
  publication-title: Genes Dev
  doi: 10.1101/gad.1650608
– volume: 4
  start-page: 1
  year: 2008
  ident: 10.1074/jbc.TM117.000258_bib71
  article-title: Expression analysis of G protein-coupled receptors in mouse macrophages
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-4-5
– volume: 64
  start-page: iii
  year: 1995
  ident: 10.1074/jbc.TM117.000258_bib24
  article-title: Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)E0200-N
– volume: 288
  start-page: 69
  year: 2001
  ident: 10.1074/jbc.TM117.000258_bib61
  article-title: Structural and functional characterization of human NAD kinase
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1006/bbrc.2001.5735
– volume: 45
  start-page: D353
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib41
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1092
– volume: 255
  start-page: 2277
  year: 1980
  ident: 10.1074/jbc.TM117.000258_bib23
  article-title: Thermodynamic aspects of translocation of reducing equivalents by mitochondria
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(19)85887-8
– volume: 27
  start-page: 3214
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib48
  article-title: Elevated mitochondria-coupled NAD(P)H in endoplasmic reticulum of dopamine neurons
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E16-07-0479
– volume: 44
  start-page: D710
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib85
  article-title: Ensembl 2016
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1157
– volume: 314
  start-page: G97
  year: 2018
  ident: 10.1074/jbc.TM117.000258_bib69
  article-title: Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol
  doi: 10.1152/ajpgi.00093.2017
– volume: 44
  start-page: D457
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib40
  article-title: KEGG as a reference resource for gene and protein annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1070
– volume: 61
  start-page: 366
  year: 2014
  ident: 10.1074/jbc.TM117.000258_bib56
  article-title: PPAR-α dependent regulation of vanin-1 mediates hepatic lipid metabolism
  publication-title: J. Hepatol
  doi: 10.1016/j.jhep.2014.04.013
– volume: 166
  start-page: 225
  year: 1977
  ident: 10.1074/jbc.TM117.000258_bib20
  article-title: Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate
  publication-title: Biochem. J
  doi: 10.1042/bj1660225
– volume: 434
  start-page: 113
  year: 2005
  ident: 10.1074/jbc.TM117.000258_bib34
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
  publication-title: Nature
  doi: 10.1038/nature03354
– volume: 291
  start-page: 7128
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib31
  article-title: Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M115.668699
– volume: 13
  start-page: 1088
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib74
  article-title: A genetically encoded tool for manipulation of NADP+/NADPH in living cells
  publication-title: Nat. Chem. Biol
  doi: 10.1038/nchembio.2454
– volume: 348
  start-page: 607
  year: 2000
  ident: 10.1074/jbc.TM117.000258_bib14
  article-title: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
  publication-title: Biochem. J
  doi: 10.1042/bj3480607
– volume: 5
  start-page: 873
  year: 2006
  ident: 10.1074/jbc.TM117.000258_bib32
  article-title: Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.8.2690
– volume: 5
  start-page: e1000442
  year: 2009
  ident: 10.1074/jbc.TM117.000258_bib57
  article-title: Harmonics of circadian gene transcription in mammals
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000442
– volume: 339
  start-page: 285
  year: 2010
  ident: 10.1074/jbc.TM117.000258_bib33
  article-title: Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARα in mice
  publication-title: Mol. Cell. Biochem
  doi: 10.1007/s11010-010-0391-z
– volume: 276
  start-page: 22559
  year: 2001
  ident: 10.1074/jbc.TM117.000258_bib28
  article-title: In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M101053200
– volume: 35
  start-page: 109
  year: 2007
  ident: 10.1074/jbc.TM117.000258_bib6
  article-title: Regulation of calcium signalling by adenine-based second messengers
  publication-title: Biochem. Soc. Trans
  doi: 10.1042/BST0350109
– volume: 65
  start-page: 1202
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib54
  article-title: Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310798
– volume: 41
  start-page: 352
  year: 2009
  ident: 10.1074/jbc.TM117.000258_bib63
  article-title: Molecular properties, functions, and potential applications of NAD kinases
  publication-title: Acta Biochim. Biophys. Sin
  doi: 10.1093/abbs/gmp029
– volume: 270
  start-page: 403
  year: 1964
  ident: 10.1074/jbc.TM117.000258_bib11
  article-title: Metabolic effects of alcohol on the liver
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJM196402202700806
– volume: 2
  start-page: 1030
  year: 2011
  ident: 10.1074/jbc.TM117.000258_bib37
  article-title: In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.001030
– volume: 45
  start-page: 580
  year: 2013
  ident: 10.1074/jbc.TM117.000258_bib84
  article-title: The genotype-tissue expression (GTEx) project
  publication-title: Nat. Genet
  doi: 10.1038/ng.2653
– volume: 510
  start-page: 542
  year: 2014
  ident: 10.1074/jbc.TM117.000258_bib15
  article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
  publication-title: Nature
  doi: 10.1038/nature13270
– volume: 111
  start-page: 16219
  year: 2014
  ident: 10.1074/jbc.TM117.000258_bib58
  article-title: A circadian gene expression atlas in mammals: implications for biology and medicine
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1408886111
– volume: 464
  start-page: 121
  year: 2010
  ident: 10.1074/jbc.TM117.000258_bib3
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
  doi: 10.1038/nature08778
– volume: 25
  start-page: 25
  year: 2000
  ident: 10.1074/jbc.TM117.000258_bib45
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat. Genet
  doi: 10.1038/75556
– volume: 103
  start-page: 1489
  year: 1999
  ident: 10.1074/jbc.TM117.000258_bib9
  article-title: Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI6223
– volume: 108
  start-page: 513
  year: 1968
  ident: 10.1074/jbc.TM117.000258_bib18
  article-title: The redox state of the nicotinamide-adenine dinucleotides in rat liver homogenates
  publication-title: Biochem. J
  doi: 10.1042/bj1080513
– volume: 580
  start-page: 2160
  year: 2006
  ident: 10.1074/jbc.TM117.000258_bib49
  article-title: Endoplasmic reticulum: a metabolic compartment
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2006.03.050
– volume: 249
  start-page: 7522
  year: 1974
  ident: 10.1074/jbc.TM117.000258_bib22
  article-title: Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(19)81269-3
– volume: 293
  start-page: 510
  year: 2001
  ident: 10.1074/jbc.TM117.000258_bib59
  article-title: Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
  publication-title: Science
  doi: 10.1126/science.1060698
– volume: 41
  start-page: 12
  year: 2013
  ident: 10.1074/jbc.TM117.000258_bib12
  article-title: NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology
  publication-title: Drug Metab. Dispos
  doi: 10.1124/dmd.112.048991
– volume: 113
  start-page: 12715
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib53
  article-title: Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1609227113
– volume: 10
  start-page: 1085
  year: 2013
  ident: 10.1074/jbc.TM117.000258_bib76
  article-title: Inducible control of gene expression with destabilized Cre
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2640
– volume: 270
  start-page: 351
  year: 1964
  ident: 10.1074/jbc.TM117.000258_bib10
  article-title: Metabolic effects of alcohol on the live
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJM196402132700707
– volume: 217
  start-page: 220
  year: 1994
  ident: 10.1074/jbc.TM117.000258_bib25
  article-title: Physiological roles of nicotinamide nucleotide transhydrogenase
  publication-title: Anal. Biochem
– volume: 280
  start-page: 25119
  year: 2005
  ident: 10.1074/jbc.TM117.000258_bib38
  article-title: Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M502475200
– volume: 356
  start-page: eaal3321
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib46
  article-title: A subcellular map of the human proteome
  publication-title: Science
  doi: 10.1126/science.aal3321
– volume: 21
  start-page: 777
  year: 2015
  ident: 10.1074/jbc.TM117.000258_bib52
  article-title: SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.04.009
– volume: 14
  start-page: 720
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib51
  article-title: Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4306
– volume: 43
  start-page: D36
  year: 2015
  ident: 10.1074/jbc.TM117.000258_bib81
  article-title: Gene: a gene-centered information resource at NCBI
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1055
– volume: 16
  start-page: 290
  year: 2012
  ident: 10.1074/jbc.TM117.000258_bib5
  article-title: The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.06.016
– volume: 106
  start-page: 21453
  year: 2009
  ident: 10.1074/jbc.TM117.000258_bib55
  article-title: Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0909591106
– volume: 45
  start-page: 1
  year: 2017
  ident: 10.1074/jbc.TM117.000258_bib83
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
– volume: 126
  start-page: 59
  year: 1972
  ident: 10.1074/jbc.TM117.000258_bib19
  article-title: Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm
  publication-title: Biochem. J
  doi: 10.1042/bj1260059
– volume: 352
  start-page: 1474
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib70
  article-title: Biosensor reveals multiple sources for mitochondrial NAD+
  publication-title: Science
  doi: 10.1126/science.aad5168
– volume: 31
  start-page: 194
  year: 2010
  ident: 10.1074/jbc.TM117.000258_bib30
  article-title: The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways
  publication-title: Endocr. Rev
  doi: 10.1210/er.2009-0026
– volume: 113
  start-page: E1442
  year: 2016
  ident: 10.1074/jbc.TM117.000258_bib75
  article-title: Functional and topological diversity of LOV domain photoreceptors
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1509428113
– volume: 77
  start-page: 5190
  year: 1955
  ident: 10.1074/jbc.TM117.000258_bib21
  article-title: The requirement of triphosphopyridine nucleotide in fatty acid synthesis
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja01624a085
– volume: 1757
  start-page: 721
  year: 2006
  ident: 10.1074/jbc.TM117.000258_bib26
  article-title: Mitochondrial NADPH, transhydrogenase and disease
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2006.03.010
– volume: 98
  start-page: 12414
  year: 2001
  ident: 10.1074/jbc.TM117.000258_bib2
  article-title: Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.221444598
– volume: 275
  start-page: 223
  year: 2000
  ident: 10.1074/jbc.TM117.000258_bib13
  article-title: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.275.1.223
SSID ssj0000491
Score 2.566783
SecondaryResourceType review_article
Snippet Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD+/NADH and NADP+/NADPH with a...
Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD /NADH and NADP /NADPH with a...
Compartmentalization is a fundamental design principle of eukaryotic metabolism. Here, we review the compartmentalization of NAD + /NADH and NADP + /NADPH with...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7508
SubjectTerms Animals
cell metabolism
Cytosol - metabolism
Energy Metabolism
hepatic metabolism
hepatocyte
Homeostasis
Humans
intermediary metabolism
liver
Liver - metabolism
Metabolic Networks and Pathways
Mitochondria - metabolism
NAD - metabolism
NAD biosynthesis
NAD(P)ome
NADP - metabolism
nicotinamide adenine dinucleotide (NAD)
nicotinamide adenine dinucleotide (NADH)
Oxidation-Reduction
oxidation-reduction (redox)
Oxidative Stress
Spatio-Temporal Analysis
Thematic Minireviews
Title Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism
URI https://dx.doi.org/10.1074/jbc.TM117.000258
https://www.ncbi.nlm.nih.gov/pubmed/29514978
https://www.proquest.com/docview/2012116498
https://pubmed.ncbi.nlm.nih.gov/PMC5961030
Volume 293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgPMALgo1LuclICAlN6WLHiZ3HagxFoE5cOrS3KIltMdQlE02R4NdzfEnSbGOCvURpLrXl89X97HPOdxB6JYRMNJFhoFTMApZGZQAsQQewFKkUBYIulMl3nh8m2RF7fxwfD_HzNrukLafV70vzSq5jVbgGdjVZsv9h2f5L4QKcg33hCBaG4z_Z-IsNh_bqUksfT946uX6fX-nI4JnVZT2cvc2sswBOPmameDQgYNlpCH4fcLPBUp1Ik5MR6WrD9TE7TSP9Burn9WpldwGng1Nj-bPp95x3D_ob8wbAYSnr1-J0dbL7Ybq580CEcZr7ydJuh3UpMaOITRfzQZ0eezfFUlcF0WOJhhszJjAWsfHvy2OXenlhZgeqY2b2spou5oRY3cmukbFetnE_E9MB42IF_pjeRLcoB2JlPPafBil5WBq5coq-v96HDe3snW_lb5zl4prkfGjtBldZ3EN3vfnwzCHmPrqh6m20M6uLtjn9hV9jG_Zr_Snb6PZ-Z9YdlI0BhS8DFG409oDCBlAYAIUtoPAAqAfo6N3BYj8LfKmNoGKMtwGRWsc8pVIVAkhopUkYsVKWmqdFqBhPtOYiCllZFCF8JjTURHHJQqZjUckoeoi26qZWjxGmsgLSWxh3eswKHpeJcfXRStCCiKqUE7TXDWZeeR16Uw5lmdt4CM5yGP7cDn_uhn-C3vRvnDkNliuejTr75J5DOm6YA5CueOtlZ8ochtz4zIpaNetVTq0GYsJSeOaRM23fBwroMgUaJ4iPjN4_YKTbx3fqk29Wwj1OE1Pf78m1evsU3Rl-js_QVvtjrZ4DNW7LFxbifwAehriA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+compartmentalization+of+hepatic+NADH+and+NADPH+metabolism&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Goodman%2C+Russell+P.&rft.au=Calvo%2C+Sarah+E.&rft.au=Mootha%2C+Vamsi+K.&rft.date=2018-05-18&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.volume=293&rft.issue=20&rft.spage=7508&rft.epage=7516&rft_id=info:doi/10.1074%2Fjbc.TM117.000258&rft.externalDocID=S0021925820369519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon