Micelle-Induced Versatile Performance of Amphiphilic Intramolecular Charge-Transfer Fluorescent Molecular Sensors

A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sod...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 13; no. 26; pp. 7543 - 7552
Main Authors Wang, Jiaobing, Qian, Xuhong, Qian, Junhong, Xu, Yufang
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.01.2007
WILEY‐VCH Verlag
Wiley
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
DOI10.1002/chem.200700435

Cover

Abstract A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor–Hg2+ complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg2+‐ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg2+‐ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1–3, the original “on–off” response of AS2 toward the Hg2+ ion is transformed into a self‐calibrated two‐wavelength ratiometric signal, while for AS3, Hg2+‐ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg2+‐ion identification could be achieved by using the SDS‐induced fingerprint emission (358 nm) of the AS2–Hg2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution. What a performance! The SDS micelle significantly elevates the performance of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors (see picture). Enhanced sensitivity, desirable spectral changes including “on–off” to ratiometric signal transformation, a thermocontrolled dynamic detection range, and highly specific analyte identification by the fingerprint emission of an analyte–sensor complex have been observed.
AbstractList A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg (2+) complexation, by using both UV/ visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg2+-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg2+-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the H g(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg2+ -ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg2+-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.
A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg(2+)-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg(2+) complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg(2+)-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg(2+)-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the Hg(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg(2+)-ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg(2+)-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg(2+) complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg(2+)-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg(2+) complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg(2+)-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg(2+)-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the Hg(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg(2+)-ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg(2+)-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg(2+) complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.
A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor–Hg2+ complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg2+‐ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg2+‐ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1–3, the original “on–off” response of AS2 toward the Hg2+ ion is transformed into a self‐calibrated two‐wavelength ratiometric signal, while for AS3, Hg2+‐ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg2+‐ion identification could be achieved by using the SDS‐induced fingerprint emission (358 nm) of the AS2–Hg2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution. What a performance! The SDS micelle significantly elevates the performance of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors (see picture). Enhanced sensitivity, desirable spectral changes including “on–off” to ratiometric signal transformation, a thermocontrolled dynamic detection range, and highly specific analyte identification by the fingerprint emission of an analyte–sensor complex have been observed.
A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg(2+)-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg(2+) complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg(2+)-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg(2+)-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the Hg(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg(2+)-ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg(2+)-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg(2+) complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.
A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg 2+ ‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor–Hg 2+ complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg 2+ ‐ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg 2+ ‐ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1–3, the original “on–off” response of AS2 toward the Hg 2+ ion is transformed into a self‐calibrated two‐wavelength ratiometric signal, while for AS3, Hg 2+ ‐ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg 2+ ‐ion identification could be achieved by using the SDS‐induced fingerprint emission (358 nm) of the AS2–Hg 2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.
Author Xu, Yufang
Qian, Xuhong
Wang, Jiaobing
Qian, Junhong
Author_xml – sequence: 1
  givenname: Jiaobing
  surname: Wang
  fullname: Wang, Jiaobing
  organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
– sequence: 2
  givenname: Xuhong
  surname: Qian
  fullname: Qian, Xuhong
  email: xhqian@ecust.edu.cn
  organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
– sequence: 3
  givenname: Junhong
  surname: Qian
  fullname: Qian, Junhong
  organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
– sequence: 4
  givenname: Yufang
  surname: Xu
  fullname: Xu, Yufang
  organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17582820$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9v0zAYhi00xLrBlSPKiQtK-RLbcXKcsh-ttgISVXe0HOcLDSR2ZyeC_fe4a4kQEgLJki35eazP73tGTow1SMjrBOYJQPpeb7GfpwACgFH-jMwSniYxFRk_ITMomIgzTotTcub9VwAoMkpfkNNE8DzNU5iRh1WrseswXpp61FhHG3ReDW2H0Sd0jXW9Mhoj20QX_W7bhtW1OlqawanedqjHTrmo3Cr3BeO1U8Y36KLrbrQOvUYzRKuJ-ozGW-dfkueN6jy-Ou7nZH19tS4X8d3Hm2V5cRdrxgSPc1BhVl3xOmUJVFgBVww4NBTqIslRAasKVTUZprwQjWh0BblmIhecp0zRc_L28OzO2YcR_SD71u-_qgza0cssTxnkNAvgmyM4Vj3WcufaXrlH-SujALw7AN-xso3XLYZEJiyEmrKCC8ifToHO_58u2yFkbU1pRzMElR1U7az3Dhupj_ch7baTCch953LfuZw6D9r8D236wt-E4jhiqPnxH7QsF1er39344LZ-wB-Tq9w3mQkquLz_cCM3orjfXC5uZUZ_Aug6zSs
CitedBy_id crossref_primary_10_1039_b807670g
crossref_primary_10_1002_qua_25836
crossref_primary_10_1039_C8NJ00025E
crossref_primary_10_1016_j_jphotochem_2009_07_006
crossref_primary_10_1039_c0cc00686f
crossref_primary_10_1039_C4TA03608E
crossref_primary_10_1002_asia_201301390
crossref_primary_10_1021_acsami_5b06604
crossref_primary_10_1021_am400063k
crossref_primary_10_1016_j_tet_2016_07_039
crossref_primary_10_1016_j_saa_2012_08_044
crossref_primary_10_1002_tcr_201600012
crossref_primary_10_1002_anie_201509096
crossref_primary_10_1016_j_ccr_2008_11_010
crossref_primary_10_1016_j_ccr_2009_03_015
crossref_primary_10_1039_C4OB00559G
crossref_primary_10_1016_j_snb_2018_04_017
crossref_primary_10_1021_ol4000845
crossref_primary_10_1021_am504208a
crossref_primary_10_1021_la5011264
crossref_primary_10_1039_c3ra46693k
crossref_primary_10_1016_j_aca_2013_01_030
crossref_primary_10_1016_j_tetlet_2008_10_055
crossref_primary_10_1002_slct_201701350
crossref_primary_10_1039_c3ta10453b
crossref_primary_10_1016_j_snb_2011_05_034
crossref_primary_10_1021_acs_analchem_6b01788
crossref_primary_10_1016_j_ccr_2020_213696
crossref_primary_10_1002_cbic_200800001
crossref_primary_10_1002_chem_201001663
crossref_primary_10_1002_ejoc_200900582
crossref_primary_10_3390_photochem2010004
crossref_primary_10_1016_j_molliq_2017_09_016
crossref_primary_10_1002_ange_201509096
crossref_primary_10_1016_j_saa_2008_07_023
crossref_primary_10_1016_j_jphotochem_2013_02_001
crossref_primary_10_1016_j_dyepig_2010_06_011
crossref_primary_10_1016_j_snb_2015_02_112
crossref_primary_10_1002_cplu_201402016
crossref_primary_10_1002_chem_201806270
Cites_doi 10.1021/ol061297u
10.1021/cr0300688
10.1021/ol061735x
10.1021/ja058431a
10.1021/ja0513638
10.1021/cr010421e
10.1021/jo030263m
10.1021/ja062001i
10.1021/ja0557987
10.1021/ja066144g
10.1002/ange.200500583
10.1021/jo052642g
10.1021/ja01577a032
10.1016/S0009-2614(00)00203-7
10.1002/chem.200600879
10.1021/cr9603892
10.1073/pnas.0406547102
10.1021/ja050301e
10.1021/ja0545766
10.1021/cr960386p
10.1073/pnas.0308079100
10.1021/ar050091a
10.1021/jp9633299
10.1021/cr030052h
10.1007/BF00531667
10.1016/0047-2670(83)80061-6
10.1039/B511319A
10.1021/ja0517724
10.1021/ja0431758
10.1021/j100119a050
10.1021/ja058359g
10.1021/ja065114a
10.1021/j100260a042
10.1021/cr9603800
10.1021/cr9801014
10.1021/ja015560s
10.1002/3527600248
10.1021/ol0615580
10.1021/jp994269k
10.1002/anie.200500583
10.1021/ic052083w
10.1039/b511319a
10.1021/ja042967z
ContentType Journal Article
Copyright Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GAMXJ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/chem.200700435
DatabaseName Istex
CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2007
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList Web of Science
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 7552
ExternalDocumentID 17582820
000249570800024
10_1002_chem_200700435
CHEM200700435
ark_67375_WNG_V79WVDHK_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
– fundername: National Key Project for Basic Research
  funderid: 2003CB 114400
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
UQL
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
.GJ
186
6TJ
9M8
ABDBF
ABEML
ACSCC
ACUHS
AETEA
AGCDD
AGHNM
AI.
BZBRT
CGR
CUY
CVF
EBD
ECM
EIF
HF~
H~9
MVM
NPM
PALCI
RIWAO
RJQFR
SAMSI
VH1
Y6R
ZGI
7X8
ID FETCH-LOGICAL-c4475-80a633cb5d2410beb05a4050f30d918ea04b9abf6e2597f7fcb08c47875524a3
IEDL.DBID DR2
ISICitedReferencesCount 40
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000249570800024
ISSN 0947-6539
IngestDate Wed Oct 01 14:07:02 EDT 2025
Mon Jul 21 05:53:28 EDT 2025
Fri Sep 26 20:25:21 EDT 2025
Wed Jul 09 20:17:15 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Wed Oct 01 01:33:16 EDT 2025
Wed Jan 22 16:23:02 EST 2025
Sun Sep 21 06:20:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords RECOGNITION
mercury
CATION-BINDING
CONJUGATED POLYMER
micelles
charge transfer
MERCURY IONS
HG2
sensors
SPECTROSCOPY
fluorescence
CHEMISTRY
MEDIA
SPECTRA
MODULATION
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4475-80a633cb5d2410beb05a4050f30d918ea04b9abf6e2597f7fcb08c47875524a3
Notes National Natural Science Foundation of China
National Key Project for Basic Research - No. 2003CB 114400
ark:/67375/WNG-V79WVDHK-6
istex:561BC5911E8126CFB863D3A919BB07B21DE0E576
ArticleID:CHEM200700435
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0394-1968
PMID 17582820
PQID 68240836
PQPubID 23479
PageCount 10
ParticipantIDs webofscience_primary_000249570800024
webofscience_primary_000249570800024CitationCount
pubmed_primary_17582820
crossref_citationtrail_10_1002_chem_200700435
crossref_primary_10_1002_chem_200700435
istex_primary_ark_67375_WNG_V79WVDHK_6
proquest_miscellaneous_68240836
wiley_primary_10_1002_chem_200700435_CHEM200700435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: WEINHEIM
– name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAbbrev CHEM-EUR J
PublicationTitleAlternate Chemistry - A European Journal
PublicationYear 2007
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
References I.-B. Kim, U. H. F. Bunz, J. Am. Chem. Soc. 2006, 128, 2818
Like the parent compound 2-phenylbenzoxazole, in AS1-3 the 2-phenyl ring should be electronically conjugated and coplanar with the benzoxazole moiety (energy-minimized molecular structure calculated with the Hyperchem software). This notion is supported by the 1H NMR spectroscopic studies: Hg2+-ion complexation results in a significant downfield shift of the aromatic protons of the 2-phenyl ring (see the Supporting Information): J. C. del Valle, M. Kasha, J. Catalán, J. Phys. Chem. A 1997, 101, 3260.
D. M. Vriezema, M. C. Aragonès, J. A. A. W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005, 105, 1445.
J. Wang, X. Qian, Chem. Commun. 2006, 109
B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2001
A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515
L. Pu, Chem. Rev. 2004, 104, 1687.
S. Tatay, P. Gaviña, E. Coronado, E. Palomares, Org. Lett. 2006, 8, 3857
J. V. Ros-Lis, M. D. Marcos, R. Martínez-Máñez, K. Rurack, J. Soto, Angew. Chem. 2005, 117, 4479
K. Rurack, J. L. Bricks, G. Reck, R. Radeglia, U. Resch-Genger, J. Phys. Chem. A 2000, 104, 3087.
J. Bourson, J. Pouget, B. Valeur, J. Phys. Chem. 1993, 97, 4552.
Y. Wan, H. Yang, D. Zhao, Acc. Chem. Res. 2006, 39, 423.
Angew. Chem. Int. Ed. 2005, 44, 4405.
A closely related FSM with typical D-A-D1 constitution using the benzothiazole fluorophore has been reported: K. Rurack, A. Koval'chuck, J. L. Bricks, J. L. Slominskii, J. Am. Chem. Soc. 2001, 123, 6205.
L. Yang, R. McRae, M. M. Henary, R. Patel, B. Lai, S. Vogt, C. J. Fahrni, Proc. Natl. Acad. Sci. USA 2005, 102, 11179.
B. Jönnson, B. Lindman, K. Holmberg, B. Kronberg, Surfactants and Polymers in Aqueous Solutions, Wiley, Chichester, 1998.
Very recently, in a Triton X-100 micelle sensing system, the fluorescence signal could by modulated by changing the lipophilicity of the receptor see: P. Pallavicini, Y. A. Diaz-Fernandez, F. Foti, C. Mangano, S. Patroni, Chem. Eur. J. 2007, 13, 178.
J. Wang, X. Qian, Org. Lett. 2006, 8, 3721.
F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681.
E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, J. Am. Chem. Soc. 2005, 127, 3284.
M. M. Conn, J.  Rebek, Jr., Chem. Rev. 1997, 97, 1647.
S. Fery-Forgues, J. Bourson, L. Dallery, B. Valeur, New J. Chem. 1990, 14, 617
Determined relative to quinine sulfate: S. R. Meech, D. C. Phillips, J. Photochem. 1983, 23, 193.
D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537
K. Niikura, E. V. Anslyn, J. Org. Chem. 2003, 68, 10156
Y. Zhao, Z. Zhong, Org. Lett. 2006, 8, 4715.
R. Martínez-Máñez, F. Sancenón, Chem. Rev. 2003, 103, 4419
S. Uchiyama, G. D. McClean, K. Iwai, A. P. de Silva, J. Am. Chem. Soc. 2005, 127, 8920.
K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc. 2005, 127, 10197
A D1→A transition is expected to absorb light around 350 nm, judged from the absorption of the parent chromophore 2-(4′-N,N-dimethylamino)phenylbenzoxazole: E. M. Vernigor, E. A. Lukyanets, L. P. Savvina, V. K. Shalaev, Chem. Heterocycl. Compd. 1993, 29, 208.
The sharp and structured absorption spectra of Hg2+-ion complexes of AS2 and AS3 resembled closely, in terms of spectral shape and absorbance, that of the unsubstituted 2-phenylbenzoxazole chromophore (see the Supporting Information): D. G. Ott, F. N. Hayes, E. Hansbury, V. N. Kerr, J. Am. Chem. Soc. 1957, 79, 5448.
K. Rurack, M. Sczepan, M. Spieles, U. Resch-Genger, W. Rettig, Chem. Phys. Lett. 2000, 320, 87
S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, J. Am. Chem. Soc. 2006, 128, 14150
J. Wang, X. Qian, J. Cui, J. Org. Chem. 2006, 71, 4308
E. M. Nolan, M. E. Racine, S. J. Lippard, Inorg. Chem. 2006, 45, 2742
A. Mallick, M. C. Mandal, B. Haldar, A. Chakrabarty, P. Das, N. Chattopadhyay, J. Am. Chem. Soc. 2006, 128, 3126
E. Coronado, J. R. Galán-Mascarüs, C. Martí-Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, Md. K. Nazeeruddin, J. Am. Chem. Soc. 2005, 127, 12351
S. Yoon, A. E. Albers, A. P. Wong, C. J. Chang, J. Am. Chem. Soc. 2005, 127, 16030
A. Coskun, E. U. Akkaya, J. Am. Chem. Soc. 2006, 128, 14474
C. J. Chang, J. Jaworski, E. M. Nolan, M. Sheng, S. J. Lippard, Proc. Natl. Acad. Sci. USA 2004, 101, 1129.
Y. Zhao, Z. Zhong, J. Am. Chem. Soc. 2006, 128, 9988
For microscopic polarity of the SDS micelle see: K. Kano, Y. Ueno, S. Hashimoto, J. Phys. Chem. 1985, 89, 3161.
A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tárraga, P. Molina, J. Veciana, J. Am. Chem. Soc. 2005, 127, 15666
2004; 101
2006; 71
2001; 123
2004; 104
1993; 29
1990; 14
2006; 39
1998
2006; 8
2006
1985; 89
2007; 13
1957; 79
2001
2006; 45
1997; 97
2000; 104
2005; 102
2005; 127
2005; 105
1993; 97
1997; 101
2003; 68
2000; 100
2000; 320
2003; 103
2006; 128
2005 2005; 117 44
1983; 23
e_1_2_6_53_2
e_1_2_6_30_2
Fery‐Forgues S. (e_1_2_6_45_2) 1990; 14
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_39_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
Jönnson B. (e_1_2_6_51_2) 1998
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
Rurack, K (WOS:000086597700002) 2000; 104
de Silva, AP (WOS:A1997XP66000011) 1997; 97
KANO, K (WOS:A1985AMN3000042) 1985; 89
Coronado, E (WOS:000231637100062) 2005; 127
Sasaki, E (WOS:000227738700020) 2005; 127
MEECH, SR (WOS:A1983RQ82100001) 1983; 23
VALEUR B (WOS:000249570800024.32) 2001
Mallick, A (WOS:000236035100010) 2006; 128
delValle, JC (WOS:A1997WX11900011) 1997; 101
Niikura, K (WOS:000187427500037) 2003; 68
Tatay, S (WOS:000239655500060) 2006; 8
OTT, DG (WOS:A1957WB81900032) 1957; 79
Rurack, K (WOS:000169534000050) 2001; 123
Komatsu, K (WOS:000230700700035) 2005; 127
VERNIGOR EM (WOS:000249570800024.33) 1993; 29
Wang, JB (WOS:000234096700026) 2006
Pallavicini, P (WOS:000244231500016) 2007; 13
Conn, MM (WOS:A1997XP66000014) 1997; 97
Vriezema, DM (WOS:000228412800009) 2005; 105
JONNSON B (WOS:000249570800024.10) 1998
Zhao, Y (WOS:000241030900012) 2006; 8
Ros-Lis, JV (WOS:000230521800030) 2005; 44
FERYFORGUES, S (WOS:A1990EA44200007) 1990; 14
Coskun, A (WOS:000241857200029) 2006; 128
Pu, L (WOS:000220153100011) 2004; 104
Wang, JB (WOS:000237654000037) 2006; 71
Yang, LC (WOS:000231253400012) 2005; 102
Wan, Y (WOS:000239086100001) 2006; 39
BOURSON, J (WOS:A1993LA02300050) 1993; 97
Nolan, EM (WOS:000236119700057) 2006; 45
McQuade, DT (WOS:000088366500005) 2000; 100
Kim, IB (WOS:000235942000030) 2006; 128
Caballero, A (WOS:000233535400003) 2005; 127
Wang, JB (WOS:000239655500026) 2006; 8
Martinez-Manez, R (WOS:000186596100007) 2003; 103
Ko, SK (WOS:000241519600052) 2006; 128
Yoon, S (WOS:000233445900019) 2005; 127
Zhao, Y (WOS:000239454800003) 2006; 128
Rurack, K (WOS:000086211200016) 2000; 320
Uchiyama, S (WOS:000230010600010) 2005; 127
Zeng, FW (WOS:A1997XP66000016) 1997; 97
ROSLIS JV (WOS:000249570800024.24) 2005; 117
Chang, CJ (WOS:000188796800008) 2004; 101
References_xml – reference: S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, J. Am. Chem. Soc. 2006, 128, 14150;
– reference: J. Wang, X. Qian, Org. Lett. 2006, 8, 3721.
– reference: Like the parent compound 2-phenylbenzoxazole, in AS1-3 the 2-phenyl ring should be electronically conjugated and coplanar with the benzoxazole moiety (energy-minimized molecular structure calculated with the Hyperchem software). This notion is supported by the 1H NMR spectroscopic studies: Hg2+-ion complexation results in a significant downfield shift of the aromatic protons of the 2-phenyl ring (see the Supporting Information): J. C. del Valle, M. Kasha, J. Catalán, J. Phys. Chem. A 1997, 101, 3260.
– reference: J. Bourson, J. Pouget, B. Valeur, J. Phys. Chem. 1993, 97, 4552.
– reference: K. Rurack, J. L. Bricks, G. Reck, R. Radeglia, U. Resch-Genger, J. Phys. Chem. A 2000, 104, 3087.
– reference: E. Coronado, J. R. Galán-Mascarüs, C. Martí-Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, Md. K. Nazeeruddin, J. Am. Chem. Soc. 2005, 127, 12351;
– reference: Y. Wan, H. Yang, D. Zhao, Acc. Chem. Res. 2006, 39, 423.
– reference: Very recently, in a Triton X-100 micelle sensing system, the fluorescence signal could by modulated by changing the lipophilicity of the receptor see: P. Pallavicini, Y. A. Diaz-Fernandez, F. Foti, C. Mangano, S. Patroni, Chem. Eur. J. 2007, 13, 178.
– reference: A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515;
– reference: J. Wang, X. Qian, Chem. Commun. 2006, 109;
– reference: B. Jönnson, B. Lindman, K. Holmberg, B. Kronberg, Surfactants and Polymers in Aqueous Solutions, Wiley, Chichester, 1998.
– reference: S. Uchiyama, G. D. McClean, K. Iwai, A. P. de Silva, J. Am. Chem. Soc. 2005, 127, 8920.
– reference: Y. Zhao, Z. Zhong, Org. Lett. 2006, 8, 4715.
– reference: F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681.
– reference: Angew. Chem. Int. Ed. 2005, 44, 4405.
– reference: K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc. 2005, 127, 10197;
– reference: C. J. Chang, J. Jaworski, E. M. Nolan, M. Sheng, S. J. Lippard, Proc. Natl. Acad. Sci. USA 2004, 101, 1129.
– reference: R. Martínez-Máñez, F. Sancenón, Chem. Rev. 2003, 103, 4419;
– reference: J. V. Ros-Lis, M. D. Marcos, R. Martínez-Máñez, K. Rurack, J. Soto, Angew. Chem. 2005, 117, 4479;
– reference: L. Yang, R. McRae, M. M. Henary, R. Patel, B. Lai, S. Vogt, C. J. Fahrni, Proc. Natl. Acad. Sci. USA 2005, 102, 11179.
– reference: D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537;
– reference: B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2001;
– reference: A D1→A transition is expected to absorb light around 350 nm, judged from the absorption of the parent chromophore 2-(4′-N,N-dimethylamino)phenylbenzoxazole: E. M. Vernigor, E. A. Lukyanets, L. P. Savvina, V. K. Shalaev, Chem. Heterocycl. Compd. 1993, 29, 208.
– reference: Y. Zhao, Z. Zhong, J. Am. Chem. Soc. 2006, 128, 9988;
– reference: The sharp and structured absorption spectra of Hg2+-ion complexes of AS2 and AS3 resembled closely, in terms of spectral shape and absorbance, that of the unsubstituted 2-phenylbenzoxazole chromophore (see the Supporting Information): D. G. Ott, F. N. Hayes, E. Hansbury, V. N. Kerr, J. Am. Chem. Soc. 1957, 79, 5448.
– reference: S. Yoon, A. E. Albers, A. P. Wong, C. J. Chang, J. Am. Chem. Soc. 2005, 127, 16030;
– reference: A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tárraga, P. Molina, J. Veciana, J. Am. Chem. Soc. 2005, 127, 15666;
– reference: M. M. Conn, J.  Rebek, Jr., Chem. Rev. 1997, 97, 1647.
– reference: I.-B. Kim, U. H. F. Bunz, J. Am. Chem. Soc. 2006, 128, 2818;
– reference: E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, J. Am. Chem. Soc. 2005, 127, 3284.
– reference: L. Pu, Chem. Rev. 2004, 104, 1687.
– reference: A. Mallick, M. C. Mandal, B. Haldar, A. Chakrabarty, P. Das, N. Chattopadhyay, J. Am. Chem. Soc. 2006, 128, 3126;
– reference: A. Coskun, E. U. Akkaya, J. Am. Chem. Soc. 2006, 128, 14474;
– reference: K. Niikura, E. V. Anslyn, J. Org. Chem. 2003, 68, 10156;
– reference: A closely related FSM with typical D-A-D1 constitution using the benzothiazole fluorophore has been reported: K. Rurack, A. Koval'chuck, J. L. Bricks, J. L. Slominskii, J. Am. Chem. Soc. 2001, 123, 6205.
– reference: Determined relative to quinine sulfate: S. R. Meech, D. C. Phillips, J. Photochem. 1983, 23, 193.
– reference: E. M. Nolan, M. E. Racine, S. J. Lippard, Inorg. Chem. 2006, 45, 2742;
– reference: D. M. Vriezema, M. C. Aragonès, J. A. A. W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005, 105, 1445.
– reference: K. Rurack, M. Sczepan, M. Spieles, U. Resch-Genger, W. Rettig, Chem. Phys. Lett. 2000, 320, 87;
– reference: S. Tatay, P. Gaviña, E. Coronado, E. Palomares, Org. Lett. 2006, 8, 3857;
– reference: For microscopic polarity of the SDS micelle see: K. Kano, Y. Ueno, S. Hashimoto, J. Phys. Chem. 1985, 89, 3161.
– reference: J. Wang, X. Qian, J. Cui, J. Org. Chem. 2006, 71, 4308;
– reference: S. Fery-Forgues, J. Bourson, L. Dallery, B. Valeur, New J. Chem. 1990, 14, 617;
– volume: 100
  start-page: 2537
  year: 2000
  publication-title: Chem. Rev.
– volume: 103
  start-page: 4419
  year: 2003
  publication-title: Chem. Rev.
– volume: 29
  start-page: 208
  year: 1993
  publication-title: Chem. Heterocycl. Compd.
– volume: 128
  start-page: 2818
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 9988
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 8920
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 3284
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 123
  start-page: 6205
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 320
  start-page: 87
  year: 2000
  publication-title: Chem. Phys. Lett.
– year: 2001
– volume: 68
  start-page: 10156
  year: 2003
  publication-title: J. Org. Chem.
– volume: 14
  start-page: 617
  year: 1990
  publication-title: New J. Chem.
– volume: 97
  start-page: 1515
  year: 1997
  publication-title: Chem. Rev.
– volume: 97
  start-page: 1647
  year: 1997
  publication-title: Chem. Rev.
– volume: 13
  start-page: 178
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 3721
  year: 2006
  publication-title: Org. Lett.
– volume: 128
  start-page: 14150
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 2742
  year: 2006
  publication-title: Inorg. Chem.
– volume: 127
  start-page: 12351
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 117 44
  start-page: 4479 4405
  year: 2005 2005
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 127
  start-page: 10197
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 1445
  year: 2005
  publication-title: Chem. Rev.
– volume: 8
  start-page: 3857
  year: 2006
  publication-title: Org. Lett.
– volume: 39
  start-page: 423
  year: 2006
  publication-title: Acc. Chem. Res.
– year: 1998
– volume: 79
  start-page: 5448
  year: 1957
  publication-title: J. Am. Chem. Soc.
– volume: 97
  start-page: 1681
  year: 1997
  publication-title: Chem. Rev.
– volume: 104
  start-page: 1687
  year: 2004
  publication-title: Chem. Rev.
– volume: 89
  start-page: 3161
  year: 1985
  publication-title: J. Phys. Chem.
– volume: 101
  start-page: 3260
  year: 1997
  publication-title: J. Phys. Chem. A
– start-page: 109
  year: 2006
  publication-title: Chem. Commun.
– volume: 23
  start-page: 193
  year: 1983
  publication-title: J. Photochem.
– volume: 128
  start-page: 3126
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 4308
  year: 2006
  publication-title: J. Org. Chem.
– volume: 8
  start-page: 4715
  year: 2006
  publication-title: Org. Lett.
– volume: 101
  start-page: 1129
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 102
  start-page: 11179
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 127
  start-page: 15666
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 3087
  year: 2000
  publication-title: J. Phys. Chem. A
– volume: 97
  start-page: 4552
  year: 1993
  publication-title: J. Phys. Chem.
– volume: 127
  start-page: 16030
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 14474
  year: 2006
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_44_2
– ident: e_1_2_6_23_2
  doi: 10.1021/ol061297u
– ident: e_1_2_6_52_2
– ident: e_1_2_6_12_2
  doi: 10.1021/cr0300688
– ident: e_1_2_6_17_2
  doi: 10.1021/ol061735x
– ident: e_1_2_6_30_2
  doi: 10.1021/ja058431a
– ident: e_1_2_6_19_2
  doi: 10.1021/ja0513638
– ident: e_1_2_6_5_2
  doi: 10.1021/cr010421e
– ident: e_1_2_6_15_2
  doi: 10.1021/jo030263m
– ident: e_1_2_6_31_2
  doi: 10.1021/ja062001i
– ident: e_1_2_6_36_2
  doi: 10.1021/ja0557987
– ident: e_1_2_6_33_2
  doi: 10.1021/ja066144g
– ident: e_1_2_6_39_2
  doi: 10.1002/ange.200500583
– ident: e_1_2_6_22_2
  doi: 10.1021/jo052642g
– ident: e_1_2_6_40_2
  doi: 10.1021/ja01577a032
– ident: e_1_2_6_46_2
  doi: 10.1016/S0009-2614(00)00203-7
– ident: e_1_2_6_43_2
  doi: 10.1002/chem.200600879
– ident: e_1_2_6_55_2
  doi: 10.1021/cr9603892
– ident: e_1_2_6_11_2
  doi: 10.1073/pnas.0406547102
– ident: e_1_2_6_8_2
  doi: 10.1021/ja050301e
– ident: e_1_2_6_28_2
– ident: e_1_2_6_37_2
  doi: 10.1021/ja0545766
– ident: e_1_2_6_3_2
  doi: 10.1021/cr960386p
– ident: e_1_2_6_10_2
  doi: 10.1073/pnas.0308079100
– ident: e_1_2_6_14_2
– ident: e_1_2_6_13_2
  doi: 10.1021/ar050091a
– ident: e_1_2_6_25_2
  doi: 10.1021/jp9633299
– ident: e_1_2_6_41_2
– ident: e_1_2_6_6_2
  doi: 10.1021/cr030052h
– volume-title: Surfactants and Polymers in Aqueous Solutions
  year: 1998
  ident: e_1_2_6_51_2
– ident: e_1_2_6_26_2
  doi: 10.1007/BF00531667
– ident: e_1_2_6_27_2
  doi: 10.1016/0047-2670(83)80061-6
– ident: e_1_2_6_21_2
  doi: 10.1039/B511319A
– ident: e_1_2_6_50_2
– ident: e_1_2_6_38_2
  doi: 10.1021/ja0517724
– ident: e_1_2_6_9_2
  doi: 10.1021/ja0431758
– volume: 14
  start-page: 617
  year: 1990
  ident: e_1_2_6_45_2
  publication-title: New J. Chem.
– ident: e_1_2_6_49_2
  doi: 10.1021/j100119a050
– ident: e_1_2_6_16_2
  doi: 10.1021/ja058359g
– ident: e_1_2_6_32_2
  doi: 10.1021/ja065114a
– ident: e_1_2_6_18_2
  doi: 10.1021/j100260a042
– ident: e_1_2_6_20_2
– ident: e_1_2_6_54_2
  doi: 10.1021/cr9603800
– ident: e_1_2_6_4_2
  doi: 10.1021/cr9801014
– ident: e_1_2_6_24_2
  doi: 10.1021/ja015560s
– ident: e_1_2_6_48_2
– ident: e_1_2_6_42_2
– ident: e_1_2_6_53_2
– ident: e_1_2_6_2_2
  doi: 10.1002/3527600248
– ident: e_1_2_6_29_2
– ident: e_1_2_6_34_2
  doi: 10.1021/ol0615580
– ident: e_1_2_6_47_2
  doi: 10.1021/jp994269k
– ident: e_1_2_6_39_3
  doi: 10.1002/anie.200500583
– ident: e_1_2_6_1_2
– ident: e_1_2_6_7_2
– ident: e_1_2_6_35_2
  doi: 10.1021/ic052083w
– volume: 45
  start-page: 2742
  year: 2006
  ident: WOS:000236119700057
  article-title: Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic052083w
– year: 2001
  ident: WOS:000249570800024.32
  publication-title: MOL FLUORESCENCE PRI
– volume: 97
  start-page: 1647
  year: 1997
  ident: WOS:A1997XP66000014
  article-title: Self-assembling capsules
  publication-title: CHEMICAL REVIEWS
– volume: 79
  start-page: 5448
  year: 1957
  ident: WOS:A1957WB81900032
  article-title: LIQUID SCINTILLATORS .5. ABSORPTION AND FLUORESCENCE SPECTRA OF 2,5-DIARYLOXAZOLES AND RELATED COMPOUNDS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 14
  start-page: 617
  year: 1990
  ident: WOS:A1990EA44200007
  article-title: NMR AND OPTICAL SPECTROSCOPY STUDIES OF CATION BINDING ON CHROMOPHORES AND FLUOROPHORES LINKED TO MONOAZA-15-CROWN-5
  publication-title: NEW JOURNAL OF CHEMISTRY
– start-page: 109
  year: 2006
  ident: WOS:000234096700026
  article-title: Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/b511319a
– volume: 8
  start-page: 3857
  year: 2006
  ident: WOS:000239655500060
  article-title: Optical mercury sensing using a benzothiazolium hemicyanine dye
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol0615580
– volume: 127
  start-page: 16030
  year: 2005
  ident: WOS:000233445900019
  article-title: Screening mercury levels in fish with a selective fluorescent chemosensor
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0557987
– volume: 117
  start-page: 4479
  year: 2005
  ident: WOS:000249570800024.24
  publication-title: ANGEW CHEM
– volume: 89
  start-page: 3161
  year: 1985
  ident: WOS:A1985AMN3000042
  article-title: FLUORESCENCE STUDIES ON THE CHARACTERIZATION AND SOLUBILIZING ABILITIES OF SODIUM DODECYL-SULFATE, HEXADECYLTRIMETHYLAMMONIUM CHLORIDE, AND TRITON X-100 MICELLES
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY
– volume: 8
  start-page: 4715
  year: 2006
  ident: WOS:000241030900012
  article-title: Detection of Hg2+ in aqueous solutions with a foldamer-based fluorescent sensor modulated by surfactant micelles
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol061735x
– volume: 104
  start-page: 1687
  year: 2004
  ident: WOS:000220153100011
  article-title: Fluorescence of organic molecules in chiral recognition
  publication-title: CHEMICAL REVIEWS
– year: 1998
  ident: WOS:000249570800024.10
  publication-title: SURFACTANTS POLYM AQ
– volume: 128
  start-page: 9988
  year: 2006
  ident: WOS:000239454800003
  article-title: Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja062001i
– volume: 127
  start-page: 15666
  year: 2005
  ident: WOS:000233535400003
  article-title: Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0545766
– volume: 23
  start-page: 193
  year: 1983
  ident: WOS:A1983RQ82100001
  article-title: PHOTOPHYSICS OF SOME COMMON FLUORESCENCE STANDARDS
  publication-title: JOURNAL OF PHOTOCHEMISTRY
– volume: 13
  start-page: 178
  year: 2007
  ident: WOS:000244231500016
  article-title: Fluorescent sensors for Hg2+ in micelles: A new approach that transforms an ON-OFF into an OFF-ON response as a function of the lipophilicity of the receptor
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200600879
– volume: 97
  start-page: 1681
  year: 1997
  ident: WOS:A1997XP66000016
  article-title: Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly
  publication-title: CHEMICAL REVIEWS
– volume: 68
  start-page: 10156
  year: 2003
  ident: WOS:000187427500037
  article-title: Triton X-100 enhances ion-pair-driven molecular recognition in aqueous media. Further work on a chemosensor for inositol trisphosphate
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo030263m
– volume: 123
  start-page: 6205
  year: 2001
  ident: WOS:000169534000050
  article-title: A simple bifunctional fluoroionophore signaling different metal ions either independently or cooperatively
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja015560s
– volume: 101
  start-page: 1129
  year: 2004
  ident: WOS:000188796800008
  article-title: A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.0308079100
– volume: 97
  start-page: 4552
  year: 1993
  ident: WOS:A1993LA02300050
  article-title: ION-RESPONSIVE FLUORESCENT COMPOUNDS .4. EFFECT OF CATION BINDING ON THE PHOTOPHYSICAL PROPERTIES OF A COUMARIN LINKED TO MONOAZA-CROWN AND DIAZA-CROWN ETHERS
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY
– volume: 100
  start-page: 2537
  year: 2000
  ident: WOS:000088366500005
  article-title: Conjugated polymer-based chemical sensors
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr9801014
– volume: 103
  start-page: 4419
  year: 2003
  ident: WOS:000186596100007
  article-title: Fluorogenic and chromogenic chemosensors and reagents for anions
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr010421e
– volume: 101
  start-page: 3260
  year: 1997
  ident: WOS:A1997WX11900011
  article-title: Spectroscopy of amplified spontaneous emission laser spikes in phenyloxazoles. Prototype classes
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
– volume: 127
  start-page: 10197
  year: 2005
  ident: WOS:000230700700035
  article-title: Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja050301e
– volume: 127
  start-page: 3684
  year: 2005
  ident: WOS:000227738700020
  article-title: Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja042967z
– volume: 39
  start-page: 423
  year: 2006
  ident: WOS:000239086100001
  article-title: "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar050091a
– volume: 104
  start-page: 3087
  year: 2000
  ident: WOS:000086597700002
  article-title: Chalcone-analogue dyes emitting in the near-infrared (NIR): Influence of donor-acceptor substitution and cation complexation on their spectroscopic properties and X-ray structure
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
– volume: 97
  start-page: 1515
  year: 1997
  ident: WOS:A1997XP66000011
  article-title: Signaling recognition events with fluorescent sensors and switches
  publication-title: CHEMICAL REVIEWS
– volume: 128
  start-page: 2818
  year: 2006
  ident: WOS:000235942000030
  article-title: Modulating the sensory response of a conjugated polymer by proteins: An agglutination assay for mercury ions in water
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja058431a
– volume: 102
  start-page: 11179
  year: 2005
  ident: WOS:000231253400012
  article-title: Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.0406547102
– volume: 105
  start-page: 1445
  year: 2005
  ident: WOS:000228412800009
  article-title: Self-assembled nanoreactors
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr0300688
– volume: 127
  start-page: 12351
  year: 2005
  ident: WOS:000231637100062
  article-title: Reversible colorimetric probes for mercury sensing
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0517724
– volume: 320
  start-page: 87
  year: 2000
  ident: WOS:000086211200016
  article-title: Correlations between complex stability and charge distribution in the ground state for Ca-II and Na-I complexes of charge transfer chromo- and fluoroionophores
  publication-title: CHEMICAL PHYSICS LETTERS
– volume: 128
  start-page: 14474
  year: 2006
  ident: WOS:000241857200029
  article-title: Signal ratio amplification via modulation of resonance energy transfer: Proof of principle in an emission ratiometric Hg(II) sensor
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja066144g
– volume: 8
  start-page: 3721
  year: 2006
  ident: WOS:000239655500026
  article-title: A series of polyamide receptor based PET fluorescent sensor molecules: Positively cooperative Hg2+ ion binding with high sensitivity
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol061297u
– volume: 71
  start-page: 4308
  year: 2006
  ident: WOS:000237654000037
  article-title: Detecting Hg2+ ions with an ICT fluorescent sensor molecule: Remarkable emission spectra shift and unique selectivity
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo052642g
– volume: 127
  start-page: 8920
  year: 2005
  ident: WOS:000230010600010
  article-title: Membrane media create small nanospaces for molecular computation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0513638
– volume: 44
  start-page: 4405
  year: 2005
  ident: WOS:000230521800030
  article-title: A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200500583
– volume: 29
  start-page: 208
  year: 1993
  ident: WOS:000249570800024.33
  publication-title: CHEM HETEROCYCL COMP
– volume: 128
  start-page: 3126
  year: 2006
  ident: WOS:000236035100010
  article-title: Surfactant-induced modulation of fluorosensor activity: A simple way to maximize the sensor efficiency
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja058359g
– volume: 128
  start-page: 14150
  year: 2006
  ident: WOS:000241519600052
  article-title: In vivo monitoring of mercury ions using a rhodamine-based molecular probe
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja065114a
SSID ssj0009633
Score 2.0662532
Snippet A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole...
A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7543
SubjectTerms charge transfer
Chemistry
Chemistry, Multidisciplinary
fluorescence
Fluorescent Dyes - chemistry
Indicators and Reagents
Magnetic Resonance Spectroscopy
mercury
Mercury - chemistry
Micelles
Physical Sciences
Science & Technology
sensors
Sodium Dodecyl Sulfate - chemistry
Solvents
Spectrometry, Fluorescence
Spectrophotometry, Ultraviolet
Surface-Active Agents - chemistry
Temperature
Title Micelle-Induced Versatile Performance of Amphiphilic Intramolecular Charge-Transfer Fluorescent Molecular Sensors
URI https://api.istex.fr/ark:/67375/WNG-V79WVDHK-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200700435
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000249570800024
https://www.ncbi.nlm.nih.gov/pubmed/17582820
https://www.proquest.com/docview/68240836
Volume 13
WOS 000249570800024
WOSCitedRecordID wos000249570800024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0947-6539
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKM8ABR8qOKX1Js7rWG1ZFtBWCErbm-UnqrpsquxGQpz4CfxGfkln7E22W4FAcEuUSaJ52DOesb8hZLtMNXd5amIHc1_MDWNxKQ2PK1ekRlYDmAKxojs5yMef-NuT7OTSKf6AD9En3HBk-PkaB7hU890VaCjwFE6SYzELT5kP0szXaT-s8KPAukIveV7EiMHaoTayZHf99TWvdB0F_PVXIecV77Qe0HqPNLpNZMdL2IhyttMu1I7-dgXm8X-YvUNuLcNVuhfsa5Ncs7O75Maw6xJ3j7STU5_7__n9B3YB0dZQTMGBvqeWvl-dSqC1o3tgOafnmMHR9A0mlb90vXkpVv0_40e873S2oaNpWzcBa4pOerqPsOqum_l9cjh6dTgcx8tWDrFGREHwgxJUoVVmIGJgyiqWSQgVmUuZqQallYyrSiqXW1iOFa5wWrFSI3BQliVcpg_Ixqye2UeEwopUcmVsBfS8SkyZa8e5LVNTQmxlTETiTpNCL2HOsdvGVASA5kSgLEUvy4i87OnPA8DHbylfeMPoyWRzhtviikwcH7wWR0V1fLQ_fifyiDzvLEeANlALcmbrdi7yEhHlUqB4GAxq9csC65cJi8j2ZQvrnzOP7ZgVGODDVUQGf0M2XAoA8Q0WEUm8if2BTYFYHP3d43956Qm5GVLgmKl6SjYWTWu3IHZbqGd-fF4ADuI8Bw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeygXyrO4PLqHCk5uN_b6daxSQkqbCEFoua32iaqGuHJjCXHiJ_Ab-SXseGOHVCAQ3Gx5bGseuzM7s_sNwG4eK2bTWIfWzX0h05SGudAsLGwWa1H03BSIFd3ROB2-Z68_JO1uQjwL4_EhuoQbjoxmvsYBjgnp_SVqqGPKHyXHalZyE9axSIdj8_DtEkHK2ZfvJs-yEFFYW9xGGu2vvr_il9ZRxJ9_FXRe80-rIW3jkwabIFtu_FaUi716LvfUl2tAj__F7h24vYhYyYE3sbtww8zuwUa_bRR3H-rReZP-__71GzYCUUYTzMI5lU8NebM8mEBKSw6c8ZxfYhJHkSPMK39q2_MSLPx_xI807tOaigymdVl5uCky6ujeuYV3WV09gMng5aQ_DBfdHEKFoILOFQqnCyUT7YIGKo2kiXDRIrUx1UUvN4IyWQhpU-NWZJnNrJI0V4gdlCQRE_FDWJuVM_MIiFuUCia1KRw9KyKdp8oyZvJY5y680jqAsFUlVwukc2y4MeUeozniKEveyTKAFx39pcf4-C3l88YyOjJRXeDOuCzhZ-NX_DQrzk4Ph8c8DWCnNR3utIFaEDNT1lc8zRFULnYUW96ilr_MsIQZ0QB2fzax7jlt4B2TDGN8dxVA72_I-gsBIMTBPICosbE_sMkRjqO72_6Xl3ZgYzgZnfCTo_HxY7jlM-KYuHoCa_OqNk9dKDeXz5rB-gOzckAj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3oXwqg8VnNJ6E-d1rLYsW8quKihtb5YT26jqslmlGwlx4ifwG_klzMSbbLcCgeCWKJNE4xl7Po_tbwC20rAQNg61b3Hs84Xm3E-VFn5mk1CrrIdDIK3ojsbx8KN4exqdXjrF7_ghuoQb9YxmvKYOPtN2Z0kaijq5k-S0mBVdh3UR4xSLYNH7JYEUupcrJi8Sn0hYW9pGHuysvr8Sltaphb_8CnNeCU-riLYJSYM7oFpl3E6U8-16nm8XX6_wPP6Ptnfh9gKvsl3nYPfgmpneh5v9tkzcA6hHZ03y_8e371QGpDCaUQ4ODT4x7HB5LIGVlu2i65zNKIVTsH3KKn9ui_MyWvb_RB9pgqc1FRtM6rJyZFNs1Ml9wGl3WV08hKPB66P-0F_UcvALohTEQKjQFEUeaYQMPDc5jxRiRW5DrrNeahQXeaZyGxucjyU2sUXO04KYg6IoECrcgLVpOTWPgeGUVIlcmwzlRRboNC6sECYNdYrgSmsP_NaSsljwnFO5jYl0DM2BpLaUXVt68KqTnzmGj99KvmwcoxNT1Tnti0sieTJ-I4-T7OR4b3ggYw82W8-RaA2ygpqasr6QcUqUciFKPHIOtfxlQguYAfdg67KHdc95Q-4YJYTw8cqD3t-I9RcNQAQHcw-CxsX-oKYkMo7u7sm_vLQJNw73BvLd_vjgKdxy6XDKWj2DtXlVm-eI4-b5i6ar_gS9qD7S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micelle-Induced+Versatile+Performance+of+Amphiphilic+Intramolecular+Charge-Transfer+Fluorescent+Molecular+Sensors&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Jiaobing&rft.au=Qian%2C+Xuhong&rft.au=Qian%2C+Junhong&rft.au=Xu%2C+Yufang&rft.date=2007-01-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=13&rft.issue=26&rft.spage=7543&rft.epage=7552&rft_id=info:doi/10.1002%2Fchem.200700435&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_V79WVDHK_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon