Micelle-Induced Versatile Performance of Amphiphilic Intramolecular Charge-Transfer Fluorescent Molecular Sensors
A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sod...
Saved in:
Published in | Chemistry : a European journal Vol. 13; no. 26; pp. 7543 - 7552 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.01.2007
WILEY‐VCH Verlag Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0947-6539 1521-3765 |
DOI | 10.1002/chem.200700435 |
Cover
Abstract | A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor–Hg2+ complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg2+‐ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg2+‐ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1–3, the original “on–off” response of AS2 toward the Hg2+ ion is transformed into a self‐calibrated two‐wavelength ratiometric signal, while for AS3, Hg2+‐ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg2+‐ion identification could be achieved by using the SDS‐induced fingerprint emission (358 nm) of the AS2–Hg2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.
What a performance! The SDS micelle significantly elevates the performance of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors (see picture). Enhanced sensitivity, desirable spectral changes including “on–off” to ratiometric signal transformation, a thermocontrolled dynamic detection range, and highly specific analyte identification by the fingerprint emission of an analyte–sensor complex have been observed. |
---|---|
AbstractList | A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg (2+) complexation, by using both UV/ visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg2+-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg2+-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the H g(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg2+ -ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg2+-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution. A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg(2+)-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg(2+) complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg(2+)-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg(2+)-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the Hg(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg(2+)-ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg(2+)-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg(2+) complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution.A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg(2+)-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg(2+) complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg(2+)-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg(2+)-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the Hg(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg(2+)-ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg(2+)-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg(2+) complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution. A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg2+‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor–Hg2+ complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg2+‐ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg2+‐ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1–3, the original “on–off” response of AS2 toward the Hg2+ ion is transformed into a self‐calibrated two‐wavelength ratiometric signal, while for AS3, Hg2+‐ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg2+‐ion identification could be achieved by using the SDS‐induced fingerprint emission (358 nm) of the AS2–Hg2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution. What a performance! The SDS micelle significantly elevates the performance of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors (see picture). Enhanced sensitivity, desirable spectral changes including “on–off” to ratiometric signal transformation, a thermocontrolled dynamic detection range, and highly specific analyte identification by the fingerprint emission of an analyte–sensor complex have been observed. A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg(2+)-ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor-Hg(2+) complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg(2+)-ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg(2+)-ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1-3, the original "on-off" response of AS2 toward the Hg(2+) ion is transformed into a self-calibrated two-wavelength ratiometric signal, while for AS3, Hg(2+)-ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg(2+)-ion identification could be achieved by using the SDS-induced fingerprint emission (358 nm) of the AS2-Hg(2+) complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution. A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole fluorophore and a hydrophilic tetraamide Hg 2+ ‐ion receptor, have been prepared. These sensor molecules could be incorporated into the hydrophobic sodium dodecyl sulfate (SDS) micelle, which is confirmed by the clear spectral blue shift and emission enhancement observed at the critical micelle concentration of SDS. Systematic examination of the sensor–Hg 2+ complexation, by using both UV/visible and fluorescence spectroscopy, indicates that SDS significantly modulates both the binding event and signal transformation of these sensor molecules. The potential advantages are fourfold: 1) SDS substantially increases the Hg 2+ ‐ion association constant and results in an amplified sensitivity. 2) SDS initiates spectral features which facilitate Hg 2+ ‐ion analysis, for example, in addition to the strengthened fluorescence of the free sensors AS1–3, the original “on–off” response of AS2 toward the Hg 2+ ion is transformed into a self‐calibrated two‐wavelength ratiometric signal, while for AS3, Hg 2+ ‐ion complexation in the presence of SDS results in a 180 nm blue shift, which is preferred to the 51 nm spectral shift obtained without SDS. 3) Thermoreversible tuning of the dynamic detection range is realized. 4) Highly specific Hg 2+ ‐ion identification could be achieved by using the SDS‐induced fingerprint emission (358 nm) of the AS2–Hg 2+ complex. Altogether, this work demonstrates a convenient and powerful strategy that remarkably elevates the performance of a given fluorescent molecular sensor. It also implies that for a specific utilization, much attention should be paid to the microenvironment in which the sensor resides, as the behavior of the sensor might be different from that in the bulk solution. |
Author | Xu, Yufang Qian, Xuhong Wang, Jiaobing Qian, Junhong |
Author_xml | – sequence: 1 givenname: Jiaobing surname: Wang fullname: Wang, Jiaobing organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China – sequence: 2 givenname: Xuhong surname: Qian fullname: Qian, Xuhong email: xhqian@ecust.edu.cn organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China – sequence: 3 givenname: Junhong surname: Qian fullname: Qian, Junhong organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China – sequence: 4 givenname: Yufang surname: Xu fullname: Xu, Yufang organization: State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17582820$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9v0zAYhi00xLrBlSPKiQtK-RLbcXKcsh-ttgISVXe0HOcLDSR2ZyeC_fe4a4kQEgLJki35eazP73tGTow1SMjrBOYJQPpeb7GfpwACgFH-jMwSniYxFRk_ITMomIgzTotTcub9VwAoMkpfkNNE8DzNU5iRh1WrseswXpp61FhHG3ReDW2H0Sd0jXW9Mhoj20QX_W7bhtW1OlqawanedqjHTrmo3Cr3BeO1U8Y36KLrbrQOvUYzRKuJ-ozGW-dfkueN6jy-Ou7nZH19tS4X8d3Hm2V5cRdrxgSPc1BhVl3xOmUJVFgBVww4NBTqIslRAasKVTUZprwQjWh0BblmIhecp0zRc_L28OzO2YcR_SD71u-_qgza0cssTxnkNAvgmyM4Vj3WcufaXrlH-SujALw7AN-xso3XLYZEJiyEmrKCC8ifToHO_58u2yFkbU1pRzMElR1U7az3Dhupj_ch7baTCch953LfuZw6D9r8D236wt-E4jhiqPnxH7QsF1er39344LZ-wB-Tq9w3mQkquLz_cCM3orjfXC5uZUZ_Aug6zSs |
CitedBy_id | crossref_primary_10_1039_b807670g crossref_primary_10_1002_qua_25836 crossref_primary_10_1039_C8NJ00025E crossref_primary_10_1016_j_jphotochem_2009_07_006 crossref_primary_10_1039_c0cc00686f crossref_primary_10_1039_C4TA03608E crossref_primary_10_1002_asia_201301390 crossref_primary_10_1021_acsami_5b06604 crossref_primary_10_1021_am400063k crossref_primary_10_1016_j_tet_2016_07_039 crossref_primary_10_1016_j_saa_2012_08_044 crossref_primary_10_1002_tcr_201600012 crossref_primary_10_1002_anie_201509096 crossref_primary_10_1016_j_ccr_2008_11_010 crossref_primary_10_1016_j_ccr_2009_03_015 crossref_primary_10_1039_C4OB00559G crossref_primary_10_1016_j_snb_2018_04_017 crossref_primary_10_1021_ol4000845 crossref_primary_10_1021_am504208a crossref_primary_10_1021_la5011264 crossref_primary_10_1039_c3ra46693k crossref_primary_10_1016_j_aca_2013_01_030 crossref_primary_10_1016_j_tetlet_2008_10_055 crossref_primary_10_1002_slct_201701350 crossref_primary_10_1039_c3ta10453b crossref_primary_10_1016_j_snb_2011_05_034 crossref_primary_10_1021_acs_analchem_6b01788 crossref_primary_10_1016_j_ccr_2020_213696 crossref_primary_10_1002_cbic_200800001 crossref_primary_10_1002_chem_201001663 crossref_primary_10_1002_ejoc_200900582 crossref_primary_10_3390_photochem2010004 crossref_primary_10_1016_j_molliq_2017_09_016 crossref_primary_10_1002_ange_201509096 crossref_primary_10_1016_j_saa_2008_07_023 crossref_primary_10_1016_j_jphotochem_2013_02_001 crossref_primary_10_1016_j_dyepig_2010_06_011 crossref_primary_10_1016_j_snb_2015_02_112 crossref_primary_10_1002_cplu_201402016 crossref_primary_10_1002_chem_201806270 |
Cites_doi | 10.1021/ol061297u 10.1021/cr0300688 10.1021/ol061735x 10.1021/ja058431a 10.1021/ja0513638 10.1021/cr010421e 10.1021/jo030263m 10.1021/ja062001i 10.1021/ja0557987 10.1021/ja066144g 10.1002/ange.200500583 10.1021/jo052642g 10.1021/ja01577a032 10.1016/S0009-2614(00)00203-7 10.1002/chem.200600879 10.1021/cr9603892 10.1073/pnas.0406547102 10.1021/ja050301e 10.1021/ja0545766 10.1021/cr960386p 10.1073/pnas.0308079100 10.1021/ar050091a 10.1021/jp9633299 10.1021/cr030052h 10.1007/BF00531667 10.1016/0047-2670(83)80061-6 10.1039/B511319A 10.1021/ja0517724 10.1021/ja0431758 10.1021/j100119a050 10.1021/ja058359g 10.1021/ja065114a 10.1021/j100260a042 10.1021/cr9603800 10.1021/cr9801014 10.1021/ja015560s 10.1002/3527600248 10.1021/ol0615580 10.1021/jp994269k 10.1002/anie.200500583 10.1021/ic052083w 10.1039/b511319a 10.1021/ja042967z |
ContentType | Journal Article |
Copyright | Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 17B 1KM BLEPL DTL EGQ GAMXJ CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/chem.200700435 |
DatabaseName | Istex CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2007 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | Web of Science MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 7552 |
ExternalDocumentID | 17582820 000249570800024 10_1002_chem_200700435 CHEM200700435 ark_67375_WNG_V79WVDHK_6 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China – fundername: National Key Project for Basic Research funderid: 2003CB 114400 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT UQL V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE .GJ 186 6TJ 9M8 ABDBF ABEML ACSCC ACUHS AETEA AGCDD AGHNM AI. BZBRT CGR CUY CVF EBD ECM EIF HF~ H~9 MVM NPM PALCI RIWAO RJQFR SAMSI VH1 Y6R ZGI 7X8 |
ID | FETCH-LOGICAL-c4475-80a633cb5d2410beb05a4050f30d918ea04b9abf6e2597f7fcb08c47875524a3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 40 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000249570800024 |
ISSN | 0947-6539 |
IngestDate | Wed Oct 01 14:07:02 EDT 2025 Mon Jul 21 05:53:28 EDT 2025 Fri Sep 26 20:25:21 EDT 2025 Wed Jul 09 20:17:15 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Wed Oct 01 01:33:16 EDT 2025 Wed Jan 22 16:23:02 EST 2025 Sun Sep 21 06:20:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | RECOGNITION mercury CATION-BINDING CONJUGATED POLYMER micelles charge transfer MERCURY IONS HG2 sensors SPECTROSCOPY fluorescence CHEMISTRY MEDIA SPECTRA MODULATION |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4475-80a633cb5d2410beb05a4050f30d918ea04b9abf6e2597f7fcb08c47875524a3 |
Notes | National Natural Science Foundation of China National Key Project for Basic Research - No. 2003CB 114400 ark:/67375/WNG-V79WVDHK-6 istex:561BC5911E8126CFB863D3A919BB07B21DE0E576 ArticleID:CHEM200700435 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0394-1968 |
PMID | 17582820 |
PQID | 68240836 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | webofscience_primary_000249570800024 webofscience_primary_000249570800024CitationCount pubmed_primary_17582820 crossref_citationtrail_10_1002_chem_200700435 crossref_primary_10_1002_chem_200700435 istex_primary_ark_67375_WNG_V79WVDHK_6 proquest_miscellaneous_68240836 wiley_primary_10_1002_chem_200700435_CHEM200700435 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-01-01 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: WEINHEIM – name: Germany |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAbbrev | CHEM-EUR J |
PublicationTitleAlternate | Chemistry - A European Journal |
PublicationYear | 2007 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley |
References | I.-B. Kim, U. H. F. Bunz, J. Am. Chem. Soc. 2006, 128, 2818 Like the parent compound 2-phenylbenzoxazole, in AS1-3 the 2-phenyl ring should be electronically conjugated and coplanar with the benzoxazole moiety (energy-minimized molecular structure calculated with the Hyperchem software). This notion is supported by the 1H NMR spectroscopic studies: Hg2+-ion complexation results in a significant downfield shift of the aromatic protons of the 2-phenyl ring (see the Supporting Information): J. C. del Valle, M. Kasha, J. Catalán, J. Phys. Chem. A 1997, 101, 3260. D. M. Vriezema, M. C. Aragonès, J. A. A. W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005, 105, 1445. J. Wang, X. Qian, Chem. Commun. 2006, 109 B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2001 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515 L. Pu, Chem. Rev. 2004, 104, 1687. S. Tatay, P. Gaviña, E. Coronado, E. Palomares, Org. Lett. 2006, 8, 3857 J. V. Ros-Lis, M. D. Marcos, R. Martínez-Máñez, K. Rurack, J. Soto, Angew. Chem. 2005, 117, 4479 K. Rurack, J. L. Bricks, G. Reck, R. Radeglia, U. Resch-Genger, J. Phys. Chem. A 2000, 104, 3087. J. Bourson, J. Pouget, B. Valeur, J. Phys. Chem. 1993, 97, 4552. Y. Wan, H. Yang, D. Zhao, Acc. Chem. Res. 2006, 39, 423. Angew. Chem. Int. Ed. 2005, 44, 4405. A closely related FSM with typical D-A-D1 constitution using the benzothiazole fluorophore has been reported: K. Rurack, A. Koval'chuck, J. L. Bricks, J. L. Slominskii, J. Am. Chem. Soc. 2001, 123, 6205. L. Yang, R. McRae, M. M. Henary, R. Patel, B. Lai, S. Vogt, C. J. Fahrni, Proc. Natl. Acad. Sci. USA 2005, 102, 11179. B. Jönnson, B. Lindman, K. Holmberg, B. Kronberg, Surfactants and Polymers in Aqueous Solutions, Wiley, Chichester, 1998. Very recently, in a Triton X-100 micelle sensing system, the fluorescence signal could by modulated by changing the lipophilicity of the receptor see: P. Pallavicini, Y. A. Diaz-Fernandez, F. Foti, C. Mangano, S. Patroni, Chem. Eur. J. 2007, 13, 178. J. Wang, X. Qian, Org. Lett. 2006, 8, 3721. F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681. E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, J. Am. Chem. Soc. 2005, 127, 3284. M. M. Conn, J. Rebek, Jr., Chem. Rev. 1997, 97, 1647. S. Fery-Forgues, J. Bourson, L. Dallery, B. Valeur, New J. Chem. 1990, 14, 617 Determined relative to quinine sulfate: S. R. Meech, D. C. Phillips, J. Photochem. 1983, 23, 193. D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537 K. Niikura, E. V. Anslyn, J. Org. Chem. 2003, 68, 10156 Y. Zhao, Z. Zhong, Org. Lett. 2006, 8, 4715. R. Martínez-Máñez, F. Sancenón, Chem. Rev. 2003, 103, 4419 S. Uchiyama, G. D. McClean, K. Iwai, A. P. de Silva, J. Am. Chem. Soc. 2005, 127, 8920. K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc. 2005, 127, 10197 A D1→A transition is expected to absorb light around 350 nm, judged from the absorption of the parent chromophore 2-(4′-N,N-dimethylamino)phenylbenzoxazole: E. M. Vernigor, E. A. Lukyanets, L. P. Savvina, V. K. Shalaev, Chem. Heterocycl. Compd. 1993, 29, 208. The sharp and structured absorption spectra of Hg2+-ion complexes of AS2 and AS3 resembled closely, in terms of spectral shape and absorbance, that of the unsubstituted 2-phenylbenzoxazole chromophore (see the Supporting Information): D. G. Ott, F. N. Hayes, E. Hansbury, V. N. Kerr, J. Am. Chem. Soc. 1957, 79, 5448. K. Rurack, M. Sczepan, M. Spieles, U. Resch-Genger, W. Rettig, Chem. Phys. Lett. 2000, 320, 87 S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, J. Am. Chem. Soc. 2006, 128, 14150 J. Wang, X. Qian, J. Cui, J. Org. Chem. 2006, 71, 4308 E. M. Nolan, M. E. Racine, S. J. Lippard, Inorg. Chem. 2006, 45, 2742 A. Mallick, M. C. Mandal, B. Haldar, A. Chakrabarty, P. Das, N. Chattopadhyay, J. Am. Chem. Soc. 2006, 128, 3126 E. Coronado, J. R. Galán-Mascarüs, C. Martí-Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, Md. K. Nazeeruddin, J. Am. Chem. Soc. 2005, 127, 12351 S. Yoon, A. E. Albers, A. P. Wong, C. J. Chang, J. Am. Chem. Soc. 2005, 127, 16030 A. Coskun, E. U. Akkaya, J. Am. Chem. Soc. 2006, 128, 14474 C. J. Chang, J. Jaworski, E. M. Nolan, M. Sheng, S. J. Lippard, Proc. Natl. Acad. Sci. USA 2004, 101, 1129. Y. Zhao, Z. Zhong, J. Am. Chem. Soc. 2006, 128, 9988 For microscopic polarity of the SDS micelle see: K. Kano, Y. Ueno, S. Hashimoto, J. Phys. Chem. 1985, 89, 3161. A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tárraga, P. Molina, J. Veciana, J. Am. Chem. Soc. 2005, 127, 15666 2004; 101 2006; 71 2001; 123 2004; 104 1993; 29 1990; 14 2006; 39 1998 2006; 8 2006 1985; 89 2007; 13 1957; 79 2001 2006; 45 1997; 97 2000; 104 2005; 102 2005; 127 2005; 105 1993; 97 1997; 101 2003; 68 2000; 100 2000; 320 2003; 103 2006; 128 2005 2005; 117 44 1983; 23 e_1_2_6_53_2 e_1_2_6_30_2 Fery‐Forgues S. (e_1_2_6_45_2) 1990; 14 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_39_3 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 Jönnson B. (e_1_2_6_51_2) 1998 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 Rurack, K (WOS:000086597700002) 2000; 104 de Silva, AP (WOS:A1997XP66000011) 1997; 97 KANO, K (WOS:A1985AMN3000042) 1985; 89 Coronado, E (WOS:000231637100062) 2005; 127 Sasaki, E (WOS:000227738700020) 2005; 127 MEECH, SR (WOS:A1983RQ82100001) 1983; 23 VALEUR B (WOS:000249570800024.32) 2001 Mallick, A (WOS:000236035100010) 2006; 128 delValle, JC (WOS:A1997WX11900011) 1997; 101 Niikura, K (WOS:000187427500037) 2003; 68 Tatay, S (WOS:000239655500060) 2006; 8 OTT, DG (WOS:A1957WB81900032) 1957; 79 Rurack, K (WOS:000169534000050) 2001; 123 Komatsu, K (WOS:000230700700035) 2005; 127 VERNIGOR EM (WOS:000249570800024.33) 1993; 29 Wang, JB (WOS:000234096700026) 2006 Pallavicini, P (WOS:000244231500016) 2007; 13 Conn, MM (WOS:A1997XP66000014) 1997; 97 Vriezema, DM (WOS:000228412800009) 2005; 105 JONNSON B (WOS:000249570800024.10) 1998 Zhao, Y (WOS:000241030900012) 2006; 8 Ros-Lis, JV (WOS:000230521800030) 2005; 44 FERYFORGUES, S (WOS:A1990EA44200007) 1990; 14 Coskun, A (WOS:000241857200029) 2006; 128 Pu, L (WOS:000220153100011) 2004; 104 Wang, JB (WOS:000237654000037) 2006; 71 Yang, LC (WOS:000231253400012) 2005; 102 Wan, Y (WOS:000239086100001) 2006; 39 BOURSON, J (WOS:A1993LA02300050) 1993; 97 Nolan, EM (WOS:000236119700057) 2006; 45 McQuade, DT (WOS:000088366500005) 2000; 100 Kim, IB (WOS:000235942000030) 2006; 128 Caballero, A (WOS:000233535400003) 2005; 127 Wang, JB (WOS:000239655500026) 2006; 8 Martinez-Manez, R (WOS:000186596100007) 2003; 103 Ko, SK (WOS:000241519600052) 2006; 128 Yoon, S (WOS:000233445900019) 2005; 127 Zhao, Y (WOS:000239454800003) 2006; 128 Rurack, K (WOS:000086211200016) 2000; 320 Uchiyama, S (WOS:000230010600010) 2005; 127 Zeng, FW (WOS:A1997XP66000016) 1997; 97 ROSLIS JV (WOS:000249570800024.24) 2005; 117 Chang, CJ (WOS:000188796800008) 2004; 101 |
References_xml | – reference: S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, J. Am. Chem. Soc. 2006, 128, 14150; – reference: J. Wang, X. Qian, Org. Lett. 2006, 8, 3721. – reference: Like the parent compound 2-phenylbenzoxazole, in AS1-3 the 2-phenyl ring should be electronically conjugated and coplanar with the benzoxazole moiety (energy-minimized molecular structure calculated with the Hyperchem software). This notion is supported by the 1H NMR spectroscopic studies: Hg2+-ion complexation results in a significant downfield shift of the aromatic protons of the 2-phenyl ring (see the Supporting Information): J. C. del Valle, M. Kasha, J. Catalán, J. Phys. Chem. A 1997, 101, 3260. – reference: J. Bourson, J. Pouget, B. Valeur, J. Phys. Chem. 1993, 97, 4552. – reference: K. Rurack, J. L. Bricks, G. Reck, R. Radeglia, U. Resch-Genger, J. Phys. Chem. A 2000, 104, 3087. – reference: E. Coronado, J. R. Galán-Mascarüs, C. Martí-Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, Md. K. Nazeeruddin, J. Am. Chem. Soc. 2005, 127, 12351; – reference: Y. Wan, H. Yang, D. Zhao, Acc. Chem. Res. 2006, 39, 423. – reference: Very recently, in a Triton X-100 micelle sensing system, the fluorescence signal could by modulated by changing the lipophilicity of the receptor see: P. Pallavicini, Y. A. Diaz-Fernandez, F. Foti, C. Mangano, S. Patroni, Chem. Eur. J. 2007, 13, 178. – reference: A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515; – reference: J. Wang, X. Qian, Chem. Commun. 2006, 109; – reference: B. Jönnson, B. Lindman, K. Holmberg, B. Kronberg, Surfactants and Polymers in Aqueous Solutions, Wiley, Chichester, 1998. – reference: S. Uchiyama, G. D. McClean, K. Iwai, A. P. de Silva, J. Am. Chem. Soc. 2005, 127, 8920. – reference: Y. Zhao, Z. Zhong, Org. Lett. 2006, 8, 4715. – reference: F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681. – reference: Angew. Chem. Int. Ed. 2005, 44, 4405. – reference: K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc. 2005, 127, 10197; – reference: C. J. Chang, J. Jaworski, E. M. Nolan, M. Sheng, S. J. Lippard, Proc. Natl. Acad. Sci. USA 2004, 101, 1129. – reference: R. Martínez-Máñez, F. Sancenón, Chem. Rev. 2003, 103, 4419; – reference: J. V. Ros-Lis, M. D. Marcos, R. Martínez-Máñez, K. Rurack, J. Soto, Angew. Chem. 2005, 117, 4479; – reference: L. Yang, R. McRae, M. M. Henary, R. Patel, B. Lai, S. Vogt, C. J. Fahrni, Proc. Natl. Acad. Sci. USA 2005, 102, 11179. – reference: D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537; – reference: B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2001; – reference: A D1→A transition is expected to absorb light around 350 nm, judged from the absorption of the parent chromophore 2-(4′-N,N-dimethylamino)phenylbenzoxazole: E. M. Vernigor, E. A. Lukyanets, L. P. Savvina, V. K. Shalaev, Chem. Heterocycl. Compd. 1993, 29, 208. – reference: Y. Zhao, Z. Zhong, J. Am. Chem. Soc. 2006, 128, 9988; – reference: The sharp and structured absorption spectra of Hg2+-ion complexes of AS2 and AS3 resembled closely, in terms of spectral shape and absorbance, that of the unsubstituted 2-phenylbenzoxazole chromophore (see the Supporting Information): D. G. Ott, F. N. Hayes, E. Hansbury, V. N. Kerr, J. Am. Chem. Soc. 1957, 79, 5448. – reference: S. Yoon, A. E. Albers, A. P. Wong, C. J. Chang, J. Am. Chem. Soc. 2005, 127, 16030; – reference: A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tárraga, P. Molina, J. Veciana, J. Am. Chem. Soc. 2005, 127, 15666; – reference: M. M. Conn, J. Rebek, Jr., Chem. Rev. 1997, 97, 1647. – reference: I.-B. Kim, U. H. F. Bunz, J. Am. Chem. Soc. 2006, 128, 2818; – reference: E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, J. Am. Chem. Soc. 2005, 127, 3284. – reference: L. Pu, Chem. Rev. 2004, 104, 1687. – reference: A. Mallick, M. C. Mandal, B. Haldar, A. Chakrabarty, P. Das, N. Chattopadhyay, J. Am. Chem. Soc. 2006, 128, 3126; – reference: A. Coskun, E. U. Akkaya, J. Am. Chem. Soc. 2006, 128, 14474; – reference: K. Niikura, E. V. Anslyn, J. Org. Chem. 2003, 68, 10156; – reference: A closely related FSM with typical D-A-D1 constitution using the benzothiazole fluorophore has been reported: K. Rurack, A. Koval'chuck, J. L. Bricks, J. L. Slominskii, J. Am. Chem. Soc. 2001, 123, 6205. – reference: Determined relative to quinine sulfate: S. R. Meech, D. C. Phillips, J. Photochem. 1983, 23, 193. – reference: E. M. Nolan, M. E. Racine, S. J. Lippard, Inorg. Chem. 2006, 45, 2742; – reference: D. M. Vriezema, M. C. Aragonès, J. A. A. W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev. 2005, 105, 1445. – reference: K. Rurack, M. Sczepan, M. Spieles, U. Resch-Genger, W. Rettig, Chem. Phys. Lett. 2000, 320, 87; – reference: S. Tatay, P. Gaviña, E. Coronado, E. Palomares, Org. Lett. 2006, 8, 3857; – reference: For microscopic polarity of the SDS micelle see: K. Kano, Y. Ueno, S. Hashimoto, J. Phys. Chem. 1985, 89, 3161. – reference: J. Wang, X. Qian, J. Cui, J. Org. Chem. 2006, 71, 4308; – reference: S. Fery-Forgues, J. Bourson, L. Dallery, B. Valeur, New J. Chem. 1990, 14, 617; – volume: 100 start-page: 2537 year: 2000 publication-title: Chem. Rev. – volume: 103 start-page: 4419 year: 2003 publication-title: Chem. Rev. – volume: 29 start-page: 208 year: 1993 publication-title: Chem. Heterocycl. Compd. – volume: 128 start-page: 2818 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 9988 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 8920 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 3284 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 123 start-page: 6205 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 320 start-page: 87 year: 2000 publication-title: Chem. Phys. Lett. – year: 2001 – volume: 68 start-page: 10156 year: 2003 publication-title: J. Org. Chem. – volume: 14 start-page: 617 year: 1990 publication-title: New J. Chem. – volume: 97 start-page: 1515 year: 1997 publication-title: Chem. Rev. – volume: 97 start-page: 1647 year: 1997 publication-title: Chem. Rev. – volume: 13 start-page: 178 year: 2007 publication-title: Chem. Eur. J. – volume: 8 start-page: 3721 year: 2006 publication-title: Org. Lett. – volume: 128 start-page: 14150 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 2742 year: 2006 publication-title: Inorg. Chem. – volume: 127 start-page: 12351 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 117 44 start-page: 4479 4405 year: 2005 2005 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 127 start-page: 10197 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 1445 year: 2005 publication-title: Chem. Rev. – volume: 8 start-page: 3857 year: 2006 publication-title: Org. Lett. – volume: 39 start-page: 423 year: 2006 publication-title: Acc. Chem. Res. – year: 1998 – volume: 79 start-page: 5448 year: 1957 publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 1681 year: 1997 publication-title: Chem. Rev. – volume: 104 start-page: 1687 year: 2004 publication-title: Chem. Rev. – volume: 89 start-page: 3161 year: 1985 publication-title: J. Phys. Chem. – volume: 101 start-page: 3260 year: 1997 publication-title: J. Phys. Chem. A – start-page: 109 year: 2006 publication-title: Chem. Commun. – volume: 23 start-page: 193 year: 1983 publication-title: J. Photochem. – volume: 128 start-page: 3126 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 4308 year: 2006 publication-title: J. Org. Chem. – volume: 8 start-page: 4715 year: 2006 publication-title: Org. Lett. – volume: 101 start-page: 1129 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 102 start-page: 11179 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 15666 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 3087 year: 2000 publication-title: J. Phys. Chem. A – volume: 97 start-page: 4552 year: 1993 publication-title: J. Phys. Chem. – volume: 127 start-page: 16030 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 14474 year: 2006 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_44_2 – ident: e_1_2_6_23_2 doi: 10.1021/ol061297u – ident: e_1_2_6_52_2 – ident: e_1_2_6_12_2 doi: 10.1021/cr0300688 – ident: e_1_2_6_17_2 doi: 10.1021/ol061735x – ident: e_1_2_6_30_2 doi: 10.1021/ja058431a – ident: e_1_2_6_19_2 doi: 10.1021/ja0513638 – ident: e_1_2_6_5_2 doi: 10.1021/cr010421e – ident: e_1_2_6_15_2 doi: 10.1021/jo030263m – ident: e_1_2_6_31_2 doi: 10.1021/ja062001i – ident: e_1_2_6_36_2 doi: 10.1021/ja0557987 – ident: e_1_2_6_33_2 doi: 10.1021/ja066144g – ident: e_1_2_6_39_2 doi: 10.1002/ange.200500583 – ident: e_1_2_6_22_2 doi: 10.1021/jo052642g – ident: e_1_2_6_40_2 doi: 10.1021/ja01577a032 – ident: e_1_2_6_46_2 doi: 10.1016/S0009-2614(00)00203-7 – ident: e_1_2_6_43_2 doi: 10.1002/chem.200600879 – ident: e_1_2_6_55_2 doi: 10.1021/cr9603892 – ident: e_1_2_6_11_2 doi: 10.1073/pnas.0406547102 – ident: e_1_2_6_8_2 doi: 10.1021/ja050301e – ident: e_1_2_6_28_2 – ident: e_1_2_6_37_2 doi: 10.1021/ja0545766 – ident: e_1_2_6_3_2 doi: 10.1021/cr960386p – ident: e_1_2_6_10_2 doi: 10.1073/pnas.0308079100 – ident: e_1_2_6_14_2 – ident: e_1_2_6_13_2 doi: 10.1021/ar050091a – ident: e_1_2_6_25_2 doi: 10.1021/jp9633299 – ident: e_1_2_6_41_2 – ident: e_1_2_6_6_2 doi: 10.1021/cr030052h – volume-title: Surfactants and Polymers in Aqueous Solutions year: 1998 ident: e_1_2_6_51_2 – ident: e_1_2_6_26_2 doi: 10.1007/BF00531667 – ident: e_1_2_6_27_2 doi: 10.1016/0047-2670(83)80061-6 – ident: e_1_2_6_21_2 doi: 10.1039/B511319A – ident: e_1_2_6_50_2 – ident: e_1_2_6_38_2 doi: 10.1021/ja0517724 – ident: e_1_2_6_9_2 doi: 10.1021/ja0431758 – volume: 14 start-page: 617 year: 1990 ident: e_1_2_6_45_2 publication-title: New J. Chem. – ident: e_1_2_6_49_2 doi: 10.1021/j100119a050 – ident: e_1_2_6_16_2 doi: 10.1021/ja058359g – ident: e_1_2_6_32_2 doi: 10.1021/ja065114a – ident: e_1_2_6_18_2 doi: 10.1021/j100260a042 – ident: e_1_2_6_20_2 – ident: e_1_2_6_54_2 doi: 10.1021/cr9603800 – ident: e_1_2_6_4_2 doi: 10.1021/cr9801014 – ident: e_1_2_6_24_2 doi: 10.1021/ja015560s – ident: e_1_2_6_48_2 – ident: e_1_2_6_42_2 – ident: e_1_2_6_53_2 – ident: e_1_2_6_2_2 doi: 10.1002/3527600248 – ident: e_1_2_6_29_2 – ident: e_1_2_6_34_2 doi: 10.1021/ol0615580 – ident: e_1_2_6_47_2 doi: 10.1021/jp994269k – ident: e_1_2_6_39_3 doi: 10.1002/anie.200500583 – ident: e_1_2_6_1_2 – ident: e_1_2_6_7_2 – ident: e_1_2_6_35_2 doi: 10.1021/ic052083w – volume: 45 start-page: 2742 year: 2006 ident: WOS:000236119700057 article-title: Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic052083w – year: 2001 ident: WOS:000249570800024.32 publication-title: MOL FLUORESCENCE PRI – volume: 97 start-page: 1647 year: 1997 ident: WOS:A1997XP66000014 article-title: Self-assembling capsules publication-title: CHEMICAL REVIEWS – volume: 79 start-page: 5448 year: 1957 ident: WOS:A1957WB81900032 article-title: LIQUID SCINTILLATORS .5. ABSORPTION AND FLUORESCENCE SPECTRA OF 2,5-DIARYLOXAZOLES AND RELATED COMPOUNDS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 14 start-page: 617 year: 1990 ident: WOS:A1990EA44200007 article-title: NMR AND OPTICAL SPECTROSCOPY STUDIES OF CATION BINDING ON CHROMOPHORES AND FLUOROPHORES LINKED TO MONOAZA-15-CROWN-5 publication-title: NEW JOURNAL OF CHEMISTRY – start-page: 109 year: 2006 ident: WOS:000234096700026 article-title: Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b511319a – volume: 8 start-page: 3857 year: 2006 ident: WOS:000239655500060 article-title: Optical mercury sensing using a benzothiazolium hemicyanine dye publication-title: ORGANIC LETTERS doi: 10.1021/ol0615580 – volume: 127 start-page: 16030 year: 2005 ident: WOS:000233445900019 article-title: Screening mercury levels in fish with a selective fluorescent chemosensor publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0557987 – volume: 117 start-page: 4479 year: 2005 ident: WOS:000249570800024.24 publication-title: ANGEW CHEM – volume: 89 start-page: 3161 year: 1985 ident: WOS:A1985AMN3000042 article-title: FLUORESCENCE STUDIES ON THE CHARACTERIZATION AND SOLUBILIZING ABILITIES OF SODIUM DODECYL-SULFATE, HEXADECYLTRIMETHYLAMMONIUM CHLORIDE, AND TRITON X-100 MICELLES publication-title: JOURNAL OF PHYSICAL CHEMISTRY – volume: 8 start-page: 4715 year: 2006 ident: WOS:000241030900012 article-title: Detection of Hg2+ in aqueous solutions with a foldamer-based fluorescent sensor modulated by surfactant micelles publication-title: ORGANIC LETTERS doi: 10.1021/ol061735x – volume: 104 start-page: 1687 year: 2004 ident: WOS:000220153100011 article-title: Fluorescence of organic molecules in chiral recognition publication-title: CHEMICAL REVIEWS – year: 1998 ident: WOS:000249570800024.10 publication-title: SURFACTANTS POLYM AQ – volume: 128 start-page: 9988 year: 2006 ident: WOS:000239454800003 article-title: Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja062001i – volume: 127 start-page: 15666 year: 2005 ident: WOS:000233535400003 article-title: Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0545766 – volume: 23 start-page: 193 year: 1983 ident: WOS:A1983RQ82100001 article-title: PHOTOPHYSICS OF SOME COMMON FLUORESCENCE STANDARDS publication-title: JOURNAL OF PHOTOCHEMISTRY – volume: 13 start-page: 178 year: 2007 ident: WOS:000244231500016 article-title: Fluorescent sensors for Hg2+ in micelles: A new approach that transforms an ON-OFF into an OFF-ON response as a function of the lipophilicity of the receptor publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200600879 – volume: 97 start-page: 1681 year: 1997 ident: WOS:A1997XP66000016 article-title: Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly publication-title: CHEMICAL REVIEWS – volume: 68 start-page: 10156 year: 2003 ident: WOS:000187427500037 article-title: Triton X-100 enhances ion-pair-driven molecular recognition in aqueous media. Further work on a chemosensor for inositol trisphosphate publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo030263m – volume: 123 start-page: 6205 year: 2001 ident: WOS:000169534000050 article-title: A simple bifunctional fluoroionophore signaling different metal ions either independently or cooperatively publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja015560s – volume: 101 start-page: 1129 year: 2004 ident: WOS:000188796800008 article-title: A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0308079100 – volume: 97 start-page: 4552 year: 1993 ident: WOS:A1993LA02300050 article-title: ION-RESPONSIVE FLUORESCENT COMPOUNDS .4. EFFECT OF CATION BINDING ON THE PHOTOPHYSICAL PROPERTIES OF A COUMARIN LINKED TO MONOAZA-CROWN AND DIAZA-CROWN ETHERS publication-title: JOURNAL OF PHYSICAL CHEMISTRY – volume: 100 start-page: 2537 year: 2000 ident: WOS:000088366500005 article-title: Conjugated polymer-based chemical sensors publication-title: CHEMICAL REVIEWS doi: 10.1021/cr9801014 – volume: 103 start-page: 4419 year: 2003 ident: WOS:000186596100007 article-title: Fluorogenic and chromogenic chemosensors and reagents for anions publication-title: CHEMICAL REVIEWS doi: 10.1021/cr010421e – volume: 101 start-page: 3260 year: 1997 ident: WOS:A1997WX11900011 article-title: Spectroscopy of amplified spontaneous emission laser spikes in phenyloxazoles. Prototype classes publication-title: JOURNAL OF PHYSICAL CHEMISTRY A – volume: 127 start-page: 10197 year: 2005 ident: WOS:000230700700035 article-title: Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja050301e – volume: 127 start-page: 3684 year: 2005 ident: WOS:000227738700020 article-title: Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja042967z – volume: 39 start-page: 423 year: 2006 ident: WOS:000239086100001 article-title: "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar050091a – volume: 104 start-page: 3087 year: 2000 ident: WOS:000086597700002 article-title: Chalcone-analogue dyes emitting in the near-infrared (NIR): Influence of donor-acceptor substitution and cation complexation on their spectroscopic properties and X-ray structure publication-title: JOURNAL OF PHYSICAL CHEMISTRY A – volume: 97 start-page: 1515 year: 1997 ident: WOS:A1997XP66000011 article-title: Signaling recognition events with fluorescent sensors and switches publication-title: CHEMICAL REVIEWS – volume: 128 start-page: 2818 year: 2006 ident: WOS:000235942000030 article-title: Modulating the sensory response of a conjugated polymer by proteins: An agglutination assay for mercury ions in water publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja058431a – volume: 102 start-page: 11179 year: 2005 ident: WOS:000231253400012 article-title: Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0406547102 – volume: 105 start-page: 1445 year: 2005 ident: WOS:000228412800009 article-title: Self-assembled nanoreactors publication-title: CHEMICAL REVIEWS doi: 10.1021/cr0300688 – volume: 127 start-page: 12351 year: 2005 ident: WOS:000231637100062 article-title: Reversible colorimetric probes for mercury sensing publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0517724 – volume: 320 start-page: 87 year: 2000 ident: WOS:000086211200016 article-title: Correlations between complex stability and charge distribution in the ground state for Ca-II and Na-I complexes of charge transfer chromo- and fluoroionophores publication-title: CHEMICAL PHYSICS LETTERS – volume: 128 start-page: 14474 year: 2006 ident: WOS:000241857200029 article-title: Signal ratio amplification via modulation of resonance energy transfer: Proof of principle in an emission ratiometric Hg(II) sensor publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja066144g – volume: 8 start-page: 3721 year: 2006 ident: WOS:000239655500026 article-title: A series of polyamide receptor based PET fluorescent sensor molecules: Positively cooperative Hg2+ ion binding with high sensitivity publication-title: ORGANIC LETTERS doi: 10.1021/ol061297u – volume: 71 start-page: 4308 year: 2006 ident: WOS:000237654000037 article-title: Detecting Hg2+ ions with an ICT fluorescent sensor molecule: Remarkable emission spectra shift and unique selectivity publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo052642g – volume: 127 start-page: 8920 year: 2005 ident: WOS:000230010600010 article-title: Membrane media create small nanospaces for molecular computation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0513638 – volume: 44 start-page: 4405 year: 2005 ident: WOS:000230521800030 article-title: A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200500583 – volume: 29 start-page: 208 year: 1993 ident: WOS:000249570800024.33 publication-title: CHEM HETEROCYCL COMP – volume: 128 start-page: 3126 year: 2006 ident: WOS:000236035100010 article-title: Surfactant-induced modulation of fluorosensor activity: A simple way to maximize the sensor efficiency publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja058359g – volume: 128 start-page: 14150 year: 2006 ident: WOS:000241519600052 article-title: In vivo monitoring of mercury ions using a rhodamine-based molecular probe publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja065114a |
SSID | ssj0009633 |
Score | 2.0662532 |
Snippet | A series of amphiphilic intramolecular charge‐transfer fluorescent molecular sensors AS1–3, equipped with a rod‐shaped hydrophobic 2‐phenylbenzoxazole... A series of amphiphilic intramolecular charge-transfer fluorescent molecular sensors AS1-3, equipped with a rod-shaped hydrophobic 2-phenylbenzoxazole... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7543 |
SubjectTerms | charge transfer Chemistry Chemistry, Multidisciplinary fluorescence Fluorescent Dyes - chemistry Indicators and Reagents Magnetic Resonance Spectroscopy mercury Mercury - chemistry Micelles Physical Sciences Science & Technology sensors Sodium Dodecyl Sulfate - chemistry Solvents Spectrometry, Fluorescence Spectrophotometry, Ultraviolet Surface-Active Agents - chemistry Temperature |
Title | Micelle-Induced Versatile Performance of Amphiphilic Intramolecular Charge-Transfer Fluorescent Molecular Sensors |
URI | https://api.istex.fr/ark:/67375/WNG-V79WVDHK-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200700435 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000249570800024 https://www.ncbi.nlm.nih.gov/pubmed/17582820 https://www.proquest.com/docview/68240836 |
Volume | 13 |
WOS | 000249570800024 |
WOSCitedRecordID | wos000249570800024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0947-6539 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKM8ABR8qOKX1Js7rWG1ZFtBWCErbm-UnqrpsquxGQpz4CfxGfkln7E22W4FAcEuUSaJ52DOesb8hZLtMNXd5amIHc1_MDWNxKQ2PK1ekRlYDmAKxojs5yMef-NuT7OTSKf6AD9En3HBk-PkaB7hU890VaCjwFE6SYzELT5kP0szXaT-s8KPAukIveV7EiMHaoTayZHf99TWvdB0F_PVXIecV77Qe0HqPNLpNZMdL2IhyttMu1I7-dgXm8X-YvUNuLcNVuhfsa5Ncs7O75Maw6xJ3j7STU5_7__n9B3YB0dZQTMGBvqeWvl-dSqC1o3tgOafnmMHR9A0mlb90vXkpVv0_40e873S2oaNpWzcBa4pOerqPsOqum_l9cjh6dTgcx8tWDrFGREHwgxJUoVVmIGJgyiqWSQgVmUuZqQallYyrSiqXW1iOFa5wWrFSI3BQliVcpg_Ixqye2UeEwopUcmVsBfS8SkyZa8e5LVNTQmxlTETiTpNCL2HOsdvGVASA5kSgLEUvy4i87OnPA8DHbylfeMPoyWRzhtviikwcH7wWR0V1fLQ_fifyiDzvLEeANlALcmbrdi7yEhHlUqB4GAxq9csC65cJi8j2ZQvrnzOP7ZgVGODDVUQGf0M2XAoA8Q0WEUm8if2BTYFYHP3d43956Qm5GVLgmKl6SjYWTWu3IHZbqGd-fF4ADuI8Bw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeygXyrO4PLqHCk5uN_b6daxSQkqbCEFoua32iaqGuHJjCXHiJ_Ab-SXseGOHVCAQ3Gx5bGseuzM7s_sNwG4eK2bTWIfWzX0h05SGudAsLGwWa1H03BSIFd3ROB2-Z68_JO1uQjwL4_EhuoQbjoxmvsYBjgnp_SVqqGPKHyXHalZyE9axSIdj8_DtEkHK2ZfvJs-yEFFYW9xGGu2vvr_il9ZRxJ9_FXRe80-rIW3jkwabIFtu_FaUi716LvfUl2tAj__F7h24vYhYyYE3sbtww8zuwUa_bRR3H-rReZP-__71GzYCUUYTzMI5lU8NebM8mEBKSw6c8ZxfYhJHkSPMK39q2_MSLPx_xI807tOaigymdVl5uCky6ujeuYV3WV09gMng5aQ_DBfdHEKFoILOFQqnCyUT7YIGKo2kiXDRIrUx1UUvN4IyWQhpU-NWZJnNrJI0V4gdlCQRE_FDWJuVM_MIiFuUCia1KRw9KyKdp8oyZvJY5y680jqAsFUlVwukc2y4MeUeozniKEveyTKAFx39pcf4-C3l88YyOjJRXeDOuCzhZ-NX_DQrzk4Ph8c8DWCnNR3utIFaEDNT1lc8zRFULnYUW96ilr_MsIQZ0QB2fzax7jlt4B2TDGN8dxVA72_I-gsBIMTBPICosbE_sMkRjqO72_6Xl3ZgYzgZnfCTo_HxY7jlM-KYuHoCa_OqNk9dKDeXz5rB-gOzckAj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3oXwqg8VnNJ6E-d1rLYsW8quKihtb5YT26jqslmlGwlx4ifwG_klzMSbbLcCgeCWKJNE4xl7Po_tbwC20rAQNg61b3Hs84Xm3E-VFn5mk1CrrIdDIK3ojsbx8KN4exqdXjrF7_ghuoQb9YxmvKYOPtN2Z0kaijq5k-S0mBVdh3UR4xSLYNH7JYEUupcrJi8Sn0hYW9pGHuysvr8Sltaphb_8CnNeCU-riLYJSYM7oFpl3E6U8-16nm8XX6_wPP6Ptnfh9gKvsl3nYPfgmpneh5v9tkzcA6hHZ03y_8e371QGpDCaUQ4ODT4x7HB5LIGVlu2i65zNKIVTsH3KKn9ui_MyWvb_RB9pgqc1FRtM6rJyZFNs1Ml9wGl3WV08hKPB66P-0F_UcvALohTEQKjQFEUeaYQMPDc5jxRiRW5DrrNeahQXeaZyGxucjyU2sUXO04KYg6IoECrcgLVpOTWPgeGUVIlcmwzlRRboNC6sECYNdYrgSmsP_NaSsljwnFO5jYl0DM2BpLaUXVt68KqTnzmGj99KvmwcoxNT1Tnti0sieTJ-I4-T7OR4b3ggYw82W8-RaA2ygpqasr6QcUqUciFKPHIOtfxlQguYAfdg67KHdc95Q-4YJYTw8cqD3t-I9RcNQAQHcw-CxsX-oKYkMo7u7sm_vLQJNw73BvLd_vjgKdxy6XDKWj2DtXlVm-eI4-b5i6ar_gS9qD7S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micelle-Induced+Versatile+Performance+of+Amphiphilic+Intramolecular+Charge-Transfer+Fluorescent+Molecular+Sensors&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Jiaobing&rft.au=Qian%2C+Xuhong&rft.au=Qian%2C+Junhong&rft.au=Xu%2C+Yufang&rft.date=2007-01-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=13&rft.issue=26&rft.spage=7543&rft.epage=7552&rft_id=info:doi/10.1002%2Fchem.200700435&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_V79WVDHK_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |