Pharmacological Inhibition of CETP (Cholesteryl Ester Transfer Protein) Increases HDL (High-Density Lipoprotein) That Contains ApoC3 and Other HDL Subspecies Associated With Higher Risk of Coronary Heart Disease
Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease ri...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 42; no. 2; pp. 227 - 237 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Lippincott Williams & Wilkins
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1079-5642 1524-4636 1524-4636 |
DOI | 10.1161/ATVBAHA.121.317181 |
Cover
Abstract | Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease risk, in part, because it increased dysfunctional subspecies associated with higher risk such as HDL that contains apoC3. Approach and Results: We studied participants in 2 randomized, double-blind, placebo-controlled trials of a CETP inhibitor on a background of atorvastatin treatment: ACCENTUATE (The Addition of Evacetrapib to Atorvastatin Compared to Placebo, High Intensity Atorvastatin, and Atorvastatin With Ezetimibe to Evaluate LDL-C Lowering in Patients With Primary Hyperlipidemia; 130 mg evacetrapib; n=126) and ILLUMINATE (Phase 3 Multi Center, Double Blind, Randomized, Parallel Group Evaluation of the Fixed Combination Torcetrapib/Atorvastatin, Administered Orally, Once Daily [Qd], Compared With Atorvastatin Alone, on the Occurrence of Major Cardiovascular Events in Subjects With Coronary Heart Disease or Risk Equivalents; 60 mg torcetrapib; n=80). We measured the concentration of apoA1 in total plasma and 17 protein-based HDL subspecies at baseline and 3 months. Both CETP inhibitors increased apoA1 in HDL that contains apoC3 the most of all HDL subspecies (median placebo-adjusted percent increase: evacetrapib 99% and torcetrapib 50%). They also increased apoA1 in other HDL subspecies associated with higher coronary heart disease risk such as those involved in inflammation (α-2-macroglobulin and complement C3) or hemostasis (plasminogen), and in HDL that contains both apoE and apoC3, a complex subspecies associated with higher coronary heart disease risk. ApoA1 in HDL that contains apoC1, associated with lower risk, increased 71% and 40%, respectively. Only HDL that contains apoL1 showed no response to either drug.
CETP inhibitors evacetrapib and torcetrapib increase apoA1 in HDL subspecies that contain apoC3 and other HDL subspecies associated with higher risk of coronary heart disease. Subspecies-specific effects shift HDL subspecies concentrations toward a profile associated with higher risk, which may contribute to lack of clinical benefit from raising HDL by pharmaceutical CETP inhibition. |
---|---|
AbstractList | Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease risk, in part, because it increased dysfunctional subspecies associated with higher risk such as HDL that contains apoC3. Approach and Results: We studied participants in 2 randomized, double-blind, placebo-controlled trials of a CETP inhibitor on a background of atorvastatin treatment: ACCENTUATE (The Addition of Evacetrapib to Atorvastatin Compared to Placebo, High Intensity Atorvastatin, and Atorvastatin With Ezetimibe to Evaluate LDL-C Lowering in Patients With Primary Hyperlipidemia; 130 mg evacetrapib; n=126) and ILLUMINATE (Phase 3 Multi Center, Double Blind, Randomized, Parallel Group Evaluation of the Fixed Combination Torcetrapib/Atorvastatin, Administered Orally, Once Daily [Qd], Compared With Atorvastatin Alone, on the Occurrence of Major Cardiovascular Events in Subjects With Coronary Heart Disease or Risk Equivalents; 60 mg torcetrapib; n=80). We measured the concentration of apoA1 in total plasma and 17 protein-based HDL subspecies at baseline and 3 months. Both CETP inhibitors increased apoA1 in HDL that contains apoC3 the most of all HDL subspecies (median placebo-adjusted percent increase: evacetrapib 99% and torcetrapib 50%). They also increased apoA1 in other HDL subspecies associated with higher coronary heart disease risk such as those involved in inflammation (α-2-macroglobulin and complement C3) or hemostasis (plasminogen), and in HDL that contains both apoE and apoC3, a complex subspecies associated with higher coronary heart disease risk. ApoA1 in HDL that contains apoC1, associated with lower risk, increased 71% and 40%, respectively. Only HDL that contains apoL1 showed no response to either drug.
CETP inhibitors evacetrapib and torcetrapib increase apoA1 in HDL subspecies that contain apoC3 and other HDL subspecies associated with higher risk of coronary heart disease. Subspecies-specific effects shift HDL subspecies concentrations toward a profile associated with higher risk, which may contribute to lack of clinical benefit from raising HDL by pharmaceutical CETP inhibition. Supplemental Digital Content is available in the text. Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease risk, in part, because it increased dysfunctional subspecies associated with higher risk such as HDL that contains apoC3. Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease risk, in part, because it increased dysfunctional subspecies associated with higher risk such as HDL that contains apoC3. Approach and Results: We studied participants in 2 randomized, double-blind, placebo-controlled trials of a CETP inhibitor on a background of atorvastatin treatment: ACCENTUATE (The Addition of Evacetrapib to Atorvastatin Compared to Placebo, High Intensity Atorvastatin, and Atorvastatin With Ezetimibe to Evaluate LDL-C Lowering in Patients With Primary Hyperlipidemia; 130 mg evacetrapib; n=126) and ILLUMINATE (Phase 3 Multi Center, Double Blind, Randomized, Parallel Group Evaluation of the Fixed Combination Torcetrapib/Atorvastatin, Administered Orally, Once Daily [Qd], Compared With Atorvastatin Alone, on the Occurrence of Major Cardiovascular Events in Subjects With Coronary Heart Disease or Risk Equivalents; 60 mg torcetrapib; n=80). We measured the concentration of apoA1 in total plasma and 17 protein-based HDL subspecies at baseline and 3 months. Both CETP inhibitors increased apoA1 in HDL that contains apoC3 the most of all HDL subspecies (median placebo-adjusted percent increase: evacetrapib 99% and torcetrapib 50%). They also increased apoA1 in other HDL subspecies associated with higher coronary heart disease risk such as those involved in inflammation (α-2-macroglobulin and complement C3) or hemostasis (plasminogen), and in HDL that contains both apoE and apoC3, a complex subspecies associated with higher coronary heart disease risk. ApoA1 in HDL that contains apoC1, associated with lower risk, increased 71% and 40%, respectively. Only HDL that contains apoL1 showed no response to either drug.OBJECTIVEPlasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease risk, in part, because it increased dysfunctional subspecies associated with higher risk such as HDL that contains apoC3. Approach and Results: We studied participants in 2 randomized, double-blind, placebo-controlled trials of a CETP inhibitor on a background of atorvastatin treatment: ACCENTUATE (The Addition of Evacetrapib to Atorvastatin Compared to Placebo, High Intensity Atorvastatin, and Atorvastatin With Ezetimibe to Evaluate LDL-C Lowering in Patients With Primary Hyperlipidemia; 130 mg evacetrapib; n=126) and ILLUMINATE (Phase 3 Multi Center, Double Blind, Randomized, Parallel Group Evaluation of the Fixed Combination Torcetrapib/Atorvastatin, Administered Orally, Once Daily [Qd], Compared With Atorvastatin Alone, on the Occurrence of Major Cardiovascular Events in Subjects With Coronary Heart Disease or Risk Equivalents; 60 mg torcetrapib; n=80). We measured the concentration of apoA1 in total plasma and 17 protein-based HDL subspecies at baseline and 3 months. Both CETP inhibitors increased apoA1 in HDL that contains apoC3 the most of all HDL subspecies (median placebo-adjusted percent increase: evacetrapib 99% and torcetrapib 50%). They also increased apoA1 in other HDL subspecies associated with higher coronary heart disease risk such as those involved in inflammation (α-2-macroglobulin and complement C3) or hemostasis (plasminogen), and in HDL that contains both apoE and apoC3, a complex subspecies associated with higher coronary heart disease risk. ApoA1 in HDL that contains apoC1, associated with lower risk, increased 71% and 40%, respectively. Only HDL that contains apoL1 showed no response to either drug.CETP inhibitors evacetrapib and torcetrapib increase apoA1 in HDL subspecies that contain apoC3 and other HDL subspecies associated with higher risk of coronary heart disease. Subspecies-specific effects shift HDL subspecies concentrations toward a profile associated with higher risk, which may contribute to lack of clinical benefit from raising HDL by pharmaceutical CETP inhibition.CONCLUSIONSCETP inhibitors evacetrapib and torcetrapib increase apoA1 in HDL subspecies that contain apoC3 and other HDL subspecies associated with higher risk of coronary heart disease. Subspecies-specific effects shift HDL subspecies concentrations toward a profile associated with higher risk, which may contribute to lack of clinical benefit from raising HDL by pharmaceutical CETP inhibition. |
Author | Dullea, Robert Sacks, Frank M. Nicholls, Stephen J. Furtado, Jeremy D. Carvajal-Gonzalez, Santos Ruotolo, Giacomo |
AuthorAffiliation | Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston MA (J.D.F., F.M.S.) Eli Lilly & Company, Indianapolis, IN (G.R.) Victorian Heart Institute, Monash University, Victoria, Australia (S.J.N.) Pfizer, Inc, Cambridge, MA (R.D., S.C.-G.) |
AuthorAffiliation_xml | – name: Victorian Heart Institute, Monash University, Victoria, Australia (S.J.N.) – name: Pfizer, Inc, Cambridge, MA (R.D., S.C.-G.) – name: Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston MA (J.D.F., F.M.S.) – name: Eli Lilly & Company, Indianapolis, IN (G.R.) |
Author_xml | – sequence: 1 givenname: Jeremy D. surname: Furtado fullname: Furtado, Jeremy D. organization: Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston MA (J.D.F., F.M.S.) – sequence: 2 givenname: Giacomo surname: Ruotolo fullname: Ruotolo, Giacomo organization: Eli Lilly & Company, Indianapolis, IN (G.R.) – sequence: 3 givenname: Stephen J. surname: Nicholls fullname: Nicholls, Stephen J. organization: Victorian Heart Institute, Monash University, Victoria, Australia (S.J.N.) – sequence: 4 givenname: Robert surname: Dullea fullname: Dullea, Robert organization: Pfizer, Inc, Cambridge, MA (R.D., S.C.-G.) – sequence: 5 givenname: Santos surname: Carvajal-Gonzalez fullname: Carvajal-Gonzalez, Santos organization: Pfizer, Inc, Cambridge, MA (R.D., S.C.-G.) – sequence: 6 givenname: Frank M. surname: Sacks fullname: Sacks, Frank M. organization: Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston MA (J.D.F., F.M.S.) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34937388$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsuO0zAUjdAg5gE_wAJ5WRYpfuW1QcqkhY5UaSoosLQc12nMuHawXUb9Tn4Ih7YIWLCwri2fx9W95zq5MNbIJHmJ4BShHL2p159v60U9RRhNCSpQiZ4kVyjDNKU5yS_iHRZVmuUUXybX3n-FEFKM4bPkktCKFKQsr5Ifq567HRdW260SXIM706tWBWUNsB1o5usVmDS91dIH6Q4azMcK1o4b38XLytkglXkdecJJ7qUHi9kSTBZq26czabwKB7BUgx3OwHXPA2isCVwZD-rBNgRwswH3oY96I_njvvWDFCpq1d5boXiQG_BFhR6MshH1QfmHX-1ZZw13B7CQ3AUwU35s4XnytOPayxenepN8ejdfN4t0ef_-rqmXqaC0wGnVIcwz1AqCCWlxgauMVpWEuG1pm-OWUpxTTngLRRxhWYm2gxWEnJQZ4vlmQ26St0fdYd_u5EZIExzXbHBqF3tiliv2949RPdva76wsyqwoaBSYnASc_baPE2Y75YXUmhtp957hHBEcLUsUoa_-9Pptct5kBJRHgHDWeyc7JlTg4x6jtdIMQTaGhp1Cw2Jo2DE0kYr_oZ7V_0uiR9Kj1TER_kHvH6VjveQ69GyMGslhlmIYE4fjM40HYfIT0EPWgg |
CitedBy_id | crossref_primary_10_7759_cureus_81034 crossref_primary_10_1016_j_intimp_2024_111537 crossref_primary_10_1093_eurheartj_ehac605 crossref_primary_10_1016_j_lanwpc_2023_100874 crossref_primary_10_3390_ijms241713622 crossref_primary_10_1016_j_lfs_2024_122823 crossref_primary_10_1161_ATVBAHA_123_319742 crossref_primary_10_1016_j_atherosclerosis_2023_02_001 crossref_primary_10_3390_ijms25147856 crossref_primary_10_1016_j_cpcardiol_2022_101395 crossref_primary_10_1007_s11883_023_01087_1 crossref_primary_10_32604_biocell_2023_031063 crossref_primary_10_1016_j_jlr_2022_100307 crossref_primary_10_1038_s41392_022_01125_5 crossref_primary_10_3390_ijms25063537 crossref_primary_10_1186_s12916_024_03810_4 crossref_primary_10_1186_s12014_024_09465_w crossref_primary_10_3390_metabo14020123 crossref_primary_10_1210_jendso_bvac099 crossref_primary_10_1093_cvr_cvad177 crossref_primary_10_3389_fcvm_2022_989428 crossref_primary_10_1097_MOL_0000000000000955 crossref_primary_10_1007_s12265_024_10559_x crossref_primary_10_1113_JP285362 crossref_primary_10_1016_j_jlr_2023_100397 crossref_primary_10_1016_j_pharmthera_2024_108747 crossref_primary_10_1161_CIRCRESAHA_123_321563 crossref_primary_10_1016_j_jlr_2023_100475 crossref_primary_10_3390_ijms252312759 crossref_primary_10_3390_ph15101278 crossref_primary_10_1186_s12933_024_02447_0 |
Cites_doi | 10.1001/jama.290.15.2030 10.1016/0021-9150(84)90074-1 10.1001/jamacardio.2016.1884 10.1194/jlr.P600011-JLR200 10.1007/s00018-010-0566-5 10.1006/bbrc.2000.3704 10.1161/JAHA.117.007824 10.1161/ATVBAHA.120.314609 10.1093/aje/kwx143 10.1016/S0021-9258(17)42171-5 10.1038/35018119 10.1016/j.atherosclerosis.2009.02.038 10.1016/j.atherosclerosis.2017.12.029 10.1016/j.jacc.2012.07.045 10.1161/ATVBAHA.109.197830 10.1016/S0021-9258(18)55263-7 10.1172/JCI109710 10.1194/jlr.M075382 10.1002/sim.6082 10.1194/jlr.R039297 10.2217/fmb.09.57 10.1056/NEJM199011013231803 10.1161/01.cir.101.16.1907 10.1194/jlr.M037903 10.1073/pnas.1530509100 10.1016/j.atherosclerosis.2017.04.008 10.1161/01.cir.102.18.2197 10.1161/01.atv.20.9.2106 10.1161/01.ATV.0000259357.42089.dc 10.1093/cvr/cvu150 10.1126/science.aad3517 10.1194/jlr.M042333 10.1016/j.atherosclerosis.2016.11.015 10.1074/mcp.M116.066290 10.1210/clinem/dgab234 10.1161/01.atv.20.5.1323 10.1001/jamacardio.2017.4177 10.1161/JAHA.113.000519 10.1007/s00125-019-4847-8 10.1161/ATVBAHA.106.138347 10.1093/eurheartj/ehx163 10.1093/gerona/63.11.1235 10.1194/jlr.M300198-JLR200 10.1161/01.ATV.0000243925.65265.3c 10.1016/S0002-9343(99)80314-3 10.1016/S0140-6736(12)60312-2 10.1056/NEJMoa1706444 10.1016/S0022-2275(20)39123-9 10.1194/jlr.M800588-JLR200 10.1074/jbc.M007210200 10.1038/342448a0 10.1074/jbc.274.52.36912 10.1016/j.jacc.2016.11.056 10.1056/NEJMoa0706628 10.1161/ATVBAHA.118.311607 10.1074/jbc.M100326200 10.1111/j.1538-7836.2010.04172.x 10.1161/circ.106.25.3143 10.1038/364073a0 10.1016/j.atherosclerosis.2004.07.022 10.1021/bi00685a003 10.1161/CIRCULATIONAHA.109.875807 10.1161/01.atv.0000054658.91146.64 10.1161/CIRCRESAHA.117.311145 10.1161/CIRCULATIONAHA.117.031276 10.1172/JCI118255 10.1016/0026-0495(91)90097-g 10.1172/jci.insight.98045 10.1093/eurheartj/eht571 10.1038/ng.2797 10.1161/01.atv.15.7.963 |
ContentType | Journal Article |
Copyright | Lippincott Williams & Wilkins 2021 The Authors. 2021 |
Copyright_xml | – notice: Lippincott Williams & Wilkins – notice: 2021 The Authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/ATVBAHA.121.317181 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 237 |
ExternalDocumentID | PMC8785774 34937388 10_1161_ATVBAHA_121_317181 00043605-202202000-00012 |
Genre | Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .Z2 01R 0R~ 1J1 23N 2WC 40H 4Q1 4Q2 4Q3 5GY 5RE 5VS 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADGGA ADHPY AE6 AENEX AFBFQ AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK C45 CS3 DIK DIWNM E.X E3Z EBS EEVPB ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ PZZ RAH RIG RLZ S4R S4S TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W YFH .3C .55 .GJ 3O- 53G 71W AAYXX ACCJW ADFPA ADGHP ADNKB AE3 AEETU AFFNX AHJKT AHRYX AJNYG BS7 C1A CITATION DUNZO EJD FW0 H13 J5H JF9 JG8 N~M OCUKA ODA ORVUJ OUVQU OWU OWV OWX OWZ P-K T8P X7M XXN XYM ZGI ZZMQN ACIJW CGR CUY CVF ECM EIF NPM 7X8 ADSXY 5PM |
ID | FETCH-LOGICAL-c4472-9f12a51bc3233b27295499e02bb4b62b44264a3ab0c64289cbf0900a3851a6dd3 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Thu Aug 21 13:47:00 EDT 2025 Thu Sep 04 17:59:06 EDT 2025 Thu Apr 03 07:02:07 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Tue Jul 01 00:38:53 EDT 2025 Fri May 16 03:52:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hydroxymethylglutaryl-CoA reductase inhibitors apolipoproteins cholesterol ester transfer proteins, antagonists & inhibitors heart diseases lipoproteins, HDL |
Language | English |
License | Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4472-9f12a51bc3233b27295499e02bb4b62b44264a3ab0c64289cbf0900a3851a6dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-3927-9996 0000-0003-1341-1995 0000-0002-5258-1869 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8785774 |
PMID | 34937388 |
PQID | 2613290081 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8785774 proquest_miscellaneous_2613290081 pubmed_primary_34937388 crossref_citationtrail_10_1161_ATVBAHA_121_317181 crossref_primary_10_1161_ATVBAHA_121_317181 wolterskluwer_health_00043605-202202000-00012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-February-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-February-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hagerstown, MD |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2022 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_21_2 doi: 10.1001/jama.290.15.2030 – ident: e_1_3_2_17_2 doi: 10.1016/0021-9150(84)90074-1 – ident: e_1_3_2_31_2 doi: 10.1001/jamacardio.2016.1884 – ident: e_1_3_2_57_2 doi: 10.1194/jlr.P600011-JLR200 – ident: e_1_3_2_50_2 doi: 10.1007/s00018-010-0566-5 – ident: e_1_3_2_52_2 doi: 10.1006/bbrc.2000.3704 – ident: e_1_3_2_43_2 doi: 10.1161/JAHA.117.007824 – ident: e_1_3_2_41_2 doi: 10.1161/ATVBAHA.120.314609 – ident: e_1_3_2_44_2 doi: 10.1093/aje/kwx143 – ident: e_1_3_2_64_2 doi: 10.1016/S0021-9258(17)42171-5 – ident: e_1_3_2_13_2 doi: 10.1038/35018119 – ident: e_1_3_2_11_2 doi: 10.1016/j.atherosclerosis.2009.02.038 – ident: e_1_3_2_45_2 doi: 10.1016/j.atherosclerosis.2017.12.029 – ident: e_1_3_2_26_2 doi: 10.1016/j.jacc.2012.07.045 – ident: e_1_3_2_59_2 doi: 10.1161/ATVBAHA.109.197830 – ident: e_1_3_2_62_2 doi: 10.1016/S0021-9258(18)55263-7 – ident: e_1_3_2_63_2 doi: 10.1172/JCI109710 – ident: e_1_3_2_37_2 doi: 10.1194/jlr.M075382 – ident: e_1_3_2_49_2 doi: 10.1002/sim.6082 – ident: e_1_3_2_3_2 doi: 10.1194/jlr.R039297 – ident: e_1_3_2_70_2 doi: 10.2217/fmb.09.57 – ident: e_1_3_2_19_2 doi: 10.1056/NEJM199011013231803 – ident: e_1_3_2_25_2 doi: 10.1161/01.cir.101.16.1907 – ident: e_1_3_2_66_2 doi: 10.1194/jlr.M037903 – ident: e_1_3_2_48_2 doi: 10.1073/pnas.1530509100 – ident: e_1_3_2_34_2 doi: 10.1016/j.atherosclerosis.2017.04.008 – ident: e_1_3_2_32_2 doi: 10.1161/01.cir.102.18.2197 – ident: e_1_3_2_12_2 doi: 10.1161/01.atv.20.9.2106 – ident: e_1_3_2_15_2 doi: 10.1161/01.ATV.0000259357.42089.dc – ident: e_1_3_2_71_2 doi: 10.1093/cvr/cvu150 – ident: e_1_3_2_4_2 doi: 10.1126/science.aad3517 – ident: e_1_3_2_47_2 doi: 10.1194/jlr.M042333 – ident: e_1_3_2_56_2 doi: 10.1016/j.atherosclerosis.2016.11.015 – ident: e_1_3_2_65_2 doi: 10.1074/mcp.M116.066290 – ident: e_1_3_2_46_2 doi: 10.1210/clinem/dgab234 – ident: e_1_3_2_20_2 doi: 10.1161/01.atv.20.5.1323 – ident: e_1_3_2_23_2 doi: 10.1001/jamacardio.2017.4177 – ident: e_1_3_2_5_2 doi: 10.1161/JAHA.113.000519 – ident: e_1_3_2_42_2 doi: 10.1007/s00125-019-4847-8 – ident: e_1_3_2_35_2 doi: 10.1161/ATVBAHA.106.138347 – ident: e_1_3_2_6_2 doi: 10.1093/eurheartj/ehx163 – ident: e_1_3_2_22_2 doi: 10.1093/gerona/63.11.1235 – ident: e_1_3_2_72_2 doi: 10.1194/jlr.M300198-JLR200 – ident: e_1_3_2_10_2 doi: 10.1161/01.ATV.0000243925.65265.3c – ident: e_1_3_2_53_2 doi: 10.1016/S0002-9343(99)80314-3 – ident: e_1_3_2_28_2 doi: 10.1016/S0140-6736(12)60312-2 – ident: e_1_3_2_36_2 doi: 10.1056/NEJMoa1706444 – ident: e_1_3_2_58_2 doi: 10.1016/S0022-2275(20)39123-9 – ident: e_1_3_2_68_2 doi: 10.1194/jlr.M800588-JLR200 – ident: e_1_3_2_69_2 doi: 10.1074/jbc.M007210200 – ident: e_1_3_2_7_2 doi: 10.1038/342448a0 – ident: e_1_3_2_16_2 doi: 10.1074/jbc.274.52.36912 – ident: e_1_3_2_27_2 doi: 10.1016/j.jacc.2016.11.056 – ident: e_1_3_2_33_2 doi: 10.1056/NEJMoa0706628 – ident: e_1_3_2_40_2 doi: 10.1161/ATVBAHA.118.311607 – ident: e_1_3_2_51_2 doi: 10.1074/jbc.M100326200 – ident: e_1_3_2_55_2 doi: 10.1111/j.1538-7836.2010.04172.x – ident: e_1_3_2_2_2 doi: 10.1161/circ.106.25.3143 – ident: e_1_3_2_9_2 doi: 10.1038/364073a0 – ident: e_1_3_2_54_2 doi: 10.1016/j.atherosclerosis.2004.07.022 – ident: e_1_3_2_67_2 doi: 10.1021/bi00685a003 – ident: e_1_3_2_61_2 doi: 10.1161/CIRCULATIONAHA.109.875807 – ident: e_1_3_2_8_2 doi: 10.1161/01.atv.0000054658.91146.64 – ident: e_1_3_2_24_2 doi: 10.1161/CIRCRESAHA.117.311145 – ident: e_1_3_2_39_2 doi: 10.1161/CIRCULATIONAHA.117.031276 – ident: e_1_3_2_14_2 doi: 10.1172/JCI118255 – ident: e_1_3_2_18_2 doi: 10.1016/0026-0495(91)90097-g – ident: e_1_3_2_38_2 doi: 10.1172/jci.insight.98045 – ident: e_1_3_2_30_2 doi: 10.1093/eurheartj/eht571 – ident: e_1_3_2_29_2 doi: 10.1038/ng.2797 – ident: e_1_3_2_60_2 doi: 10.1161/01.atv.15.7.963 |
SSID | ssj0004220 |
Score | 2.5339437 |
Snippet | Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart... Supplemental Digital Content is available in the text. Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies... |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 227 |
SubjectTerms | Aged Anticholesteremic Agents - therapeutic use Apolipoprotein C-III - blood Atorvastatin - therapeutic use Benzodiazepines - therapeutic use Cholesterol Ester Transfer Proteins - antagonists & inhibitors Clinical and Population Studies Coronary Disease - blood Coronary Disease - etiology Ezetimibe - therapeutic use Female Heart Disease Risk Factors Humans Hyperlipidemias - blood Hyperlipidemias - complications Hyperlipidemias - drug therapy Lipoproteins, HDL - blood Male Middle Aged |
Title | Pharmacological Inhibition of CETP (Cholesteryl Ester Transfer Protein) Increases HDL (High-Density Lipoprotein) That Contains ApoC3 and Other HDL Subspecies Associated With Higher Risk of Coronary Heart Disease |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00043605-202202000-00012 https://www.ncbi.nlm.nih.gov/pubmed/34937388 https://www.proquest.com/docview/2613290081 https://pubmed.ncbi.nlm.nih.gov/PMC8785774 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMetbUjTBELcKTcZiYdNU0biXBo_lraooA3K1MHeIjtx1Io2qZZWCL4mX4hznMRJKSDgpdfESetf4nPsv_8m5EUiuVDMTq3AUzEkKGFiiZCllu2nXpBwHnMf5zufvQtGF97bS_9yZ_d6S7W0XsmT-Nsv55X8T63CZ1CvOEv2H2rWFAofwGuoX3iEGobHv6rjceM7rf_rN9l0Jmd1DNgfTsZ6kBaXwEU_hK_z4yE-l47mKbwYo0tD2TUANwrUp6vieDQ4xd1QAWINUN8OcfrpbJkvm40nU7HCyYLYr1BAJJv3XT0K8R7DSV0A3pBwaXsoryYAQttP2OtbSUvOK1F7Hz0UULs3gotuhXagZsTIuOOioXRewK-HNr00RcDlHRayfofHNpraylfKkLmGBCMpB5jUFc6eMSLn83WOy_fqsYEZ_I-LvBmmwWZhXrSEcM0A2gAty0WjS2_3nEDSbRsViqru9syz0DGt3Rx4rIU9a9_bSxOD7TYnwDanN_n4qjfCvmXnBGIyp1yIpgXhcqEpdD2OZlJh0_4aVWT91S65xroQCaLE4EPL-54xu572FTgvtw94QPbrIjajrK3UaVsBfONLjuqM4rOenNEKsSa3yM0qN6K9EvTbZEdld8j-WaX-uEu-_8Q7bXineUqRd3rYop1q2mlNO61oP6KGdQqo0sM26bRF-hFFzmnNOdWcU2CNas71zg3ntOGcIue05Jwi5_r0Ks6p5pxWnN8jF6-Hk_7IqhYlsWLP6zKLpw4TviNjl7muZF09Ts6VzaT0ZMCkhymGcIW0Y0zteSxTm9u2cCG1EUGSuPfJXpZn6iGhigW-FMKHFArKcJPQidNQcSU87nOgrUOcuhKjuHLsx4Vj5pHO3AMnqhiIgIGoZKBDjs0-y9Kv5o9bP6_ZiKBZwbFCkal8XUQMwnzGMWHokAclK6a8GrIO6W5QZDZAy_rNb7LZVFvXh93Qh4SzQ6wN3qJy0nekhQmB7Vt4udq164XDHv32HB6Tg-bSfkL2Vldr9RTShJV8pq-eH32IFGE |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacological+Inhibition+of+CETP+%28Cholesteryl+Ester+Transfer+Protein%29+Increases+HDL+%28High-Density+Lipoprotein%29+That+Contains+ApoC3+and+Other+HDL+Subspecies+Associated+With+Higher+Risk+of+Coronary+Heart+Disease&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Furtado%2C+Jeremy+D&rft.au=Ruotolo%2C+Giacomo&rft.au=Nicholls%2C+Stephen+J&rft.au=Dullea%2C+Robert&rft.date=2022-02-01&rft.eissn=1524-4636&rft.volume=42&rft.issue=2&rft.spage=227&rft_id=info:doi/10.1161%2FATVBAHA.121.317181&rft_id=info%3Apmid%2F34937388&rft.externalDocID=34937388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |