Sparse Bayes Tensor and DOA Tracking Inspired Channel Estimation for V2X Millimeter Wave Massive MIMO System
Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve these objectives, accurate channel estimation in highly mobile scenarios becomes necessary. However, in the V2X millimeter-wave massive MIMO sy...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 21; no. 12; p. 4021 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        10.06.2021
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s21124021 | 
Cover
| Abstract | Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve these objectives, accurate channel estimation in highly mobile scenarios becomes necessary. However, in the V2X millimeter-wave massive MIMO system, the high mobility of vehicles leads to the rapid time-varying of the wireless channel and results in the existing static channel estimation algorithms no longer applicable. In this paper, we propose a sparse Bayes tensor and DOA tracking inspired channel estimation for V2X millimeter wave massive MIMO system. Specifically, by exploiting the sparse scattering characteristics of the channel, we transform the channel estimation into a sparse recovery problem. In order to reduce the influence of quantization errors, both the receiving and transmitting angle grids should have super-resolution. We obtain the measurement matrix to increase the resolution of the redundant dictionary. Furthermore, we take the low-rank characteristics of the received signals into consideration rather than singly using the traditional sparse prior. Motivated by the sparse Bayes tensor, a direction of arrival (DOA) tracking method is developed to acquire the DOA at the next moment, which equals the sum of the DOA at the previous moment and the offset. The obtained DOA is expected to provide a significant angle information update for tracking fast time-varying vehicular channels. The proposed approach is evaluated over the different speeds of the vehicle scenarios and compared to the other methods. Simulation results validated the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art researches. | 
    
|---|---|
| AbstractList | Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve these objectives, accurate channel estimation in highly mobile scenarios becomes necessary. However, in the V2X millimeter-wave massive MIMO system, the high mobility of vehicles leads to the rapid time-varying of the wireless channel and results in the existing static channel estimation algorithms no longer applicable. In this paper, we propose a sparse Bayes tensor and DOA tracking inspired channel estimation for V2X millimeter wave massive MIMO system. Specifically, by exploiting the sparse scattering characteristics of the channel, we transform the channel estimation into a sparse recovery problem. In order to reduce the influence of quantization errors, both the receiving and transmitting angle grids should have super-resolution. We obtain the measurement matrix to increase the resolution of the redundant dictionary. Furthermore, we take the low-rank characteristics of the received signals into consideration rather than singly using the traditional sparse prior. Motivated by the sparse Bayes tensor, a direction of arrival (DOA) tracking method is developed to acquire the DOA at the next moment, which equals the sum of the DOA at the previous moment and the offset. The obtained DOA is expected to provide a significant angle information update for tracking fast time-varying vehicular channels. The proposed approach is evaluated over the different speeds of the vehicle scenarios and compared to the other methods. Simulation results validated the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art researches. Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve these objectives, accurate channel estimation in highly mobile scenarios becomes necessary. However, in the V2X millimeter-wave massive MIMO system, the high mobility of vehicles leads to the rapid time-varying of the wireless channel and results in the existing static channel estimation algorithms no longer applicable. In this paper, we propose a sparse Bayes tensor and DOA tracking inspired channel estimation for V2X millimeter wave massive MIMO system. Specifically, by exploiting the sparse scattering characteristics of the channel, we transform the channel estimation into a sparse recovery problem. In order to reduce the influence of quantization errors, both the receiving and transmitting angle grids should have super-resolution. We obtain the measurement matrix to increase the resolution of the redundant dictionary. Furthermore, we take the low-rank characteristics of the received signals into consideration rather than singly using the traditional sparse prior. Motivated by the sparse Bayes tensor, a direction of arrival (DOA) tracking method is developed to acquire the DOA at the next moment, which equals the sum of the DOA at the previous moment and the offset. The obtained DOA is expected to provide a significant angle information update for tracking fast time-varying vehicular channels. The proposed approach is evaluated over the different speeds of the vehicle scenarios and compared to the other methods. Simulation results validated the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art researches.Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve these objectives, accurate channel estimation in highly mobile scenarios becomes necessary. However, in the V2X millimeter-wave massive MIMO system, the high mobility of vehicles leads to the rapid time-varying of the wireless channel and results in the existing static channel estimation algorithms no longer applicable. In this paper, we propose a sparse Bayes tensor and DOA tracking inspired channel estimation for V2X millimeter wave massive MIMO system. Specifically, by exploiting the sparse scattering characteristics of the channel, we transform the channel estimation into a sparse recovery problem. In order to reduce the influence of quantization errors, both the receiving and transmitting angle grids should have super-resolution. We obtain the measurement matrix to increase the resolution of the redundant dictionary. Furthermore, we take the low-rank characteristics of the received signals into consideration rather than singly using the traditional sparse prior. Motivated by the sparse Bayes tensor, a direction of arrival (DOA) tracking method is developed to acquire the DOA at the next moment, which equals the sum of the DOA at the previous moment and the offset. The obtained DOA is expected to provide a significant angle information update for tracking fast time-varying vehicular channels. The proposed approach is evaluated over the different speeds of the vehicle scenarios and compared to the other methods. Simulation results validated the theoretical analysis and demonstrate that the proposed solution outperforms a number of state-of-the-art researches.  | 
    
| Author | Zhou, Xiaoping Huang, Jifeng Luo, Kaihua Liu, Haichao Wang, Bin  | 
    
| AuthorAffiliation | The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China; vc_luokaihua@163.com (K.L.); jfhuang@shnu.edu.cn (J.H.); liuhaichao0609@163.com (H.L.) | 
    
| AuthorAffiliation_xml | – name: The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China; vc_luokaihua@163.com (K.L.); jfhuang@shnu.edu.cn (J.H.); liuhaichao0609@163.com (H.L.) | 
    
| Author_xml | – sequence: 1 givenname: Kaihua orcidid: 0000-0003-0221-7679 surname: Luo fullname: Luo, Kaihua – sequence: 2 givenname: Xiaoping surname: Zhou fullname: Zhou, Xiaoping – sequence: 3 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 4 givenname: Jifeng surname: Huang fullname: Huang, Jifeng – sequence: 5 givenname: Haichao surname: Liu fullname: Liu, Haichao  | 
    
| BookMark | eNp9kUtvEzEURkeoiD5gwT-wxAYqhfpxZ8bZIJVQIFKjLBoeO8uxr1MHxw72pFX-PZOmqmiFWNmyzz36_Pm4OogpYlW9ZvS9EEN6VjhjHChnz6ojBhwGknN68Nf-sDouZUkpF0LIF9WhAE6plOKoCldrnQuSj3qLhcwwlpSJjpZ8mp6TWdbml48LMo5l7TNaMrrWMWIgF6XzK935FInrB77zn2TiQ_Ar7DCTH_oGyUSX4nfreDIlV9vS4epl9dzpUPDV_XpSfft8MRt9HVxOv4xH55cDA9B0AycA7Fw44JJa3hjHoR3OW8ckWDOHFoRlNVA9rIXjDUjHJddzA1LCEMC04qQa77026aVa5z5q3qqkvbo7SHmhdO68CahAc9c21rbUASBlUjRty5DX1FmGzvau071rE9d6e6tDeBAyqnb1q4f6e_jDHl5v5iu0BmOXdXiU4PFN9NdqkW6U5IL2j-wFb-8FOf3eYOnUyheDIeiIaVMUr0ECBSZ36Jsn6DJtcux73VE169uAHfVuT5mcSsno_pv-7AlrfHf3yX1WH_4x8Qf8GcMF | 
    
| CitedBy_id | crossref_primary_10_3390_en15062049 crossref_primary_10_3390_photonics10080880 crossref_primary_10_1109_ACCESS_2023_3348409 crossref_primary_10_1109_TKDE_2022_3230874 crossref_primary_10_3390_signals3040040 crossref_primary_10_1155_2022_6856050 crossref_primary_10_3390_s23229073 crossref_primary_10_1016_j_apacoust_2023_109590 crossref_primary_10_1109_ACCESS_2022_3211076  | 
    
| Cites_doi | 10.1109/JSTSP.2021.3054241 10.1109/LCOMM.2014.2360199 10.1109/TVT.2019.2906358 10.1109/JOE.2019.2956299 10.1109/MCOM.2019.1800509 10.1109/JCN.2017.000040 10.1109/TWC.2019.2919602 10.1109/ACCESS.2019.2910088 10.1109/TCOMM.2019.2937516 10.1109/TWC.2020.3028433 10.1109/TCOMM.2016.2557791 10.1109/TSP.2018.2890058 10.1109/LWC.2019.2953265 10.1109/COMST.2020.3029723 10.1109/JIOT.2018.2796639 10.1109/ACCESS.2018.2873406 10.1109/TWC.2019.2952843 10.1109/TSP.2007.914345 10.1109/ACCESS.2021.3056297 10.1109/TVT.2020.2968637 10.1109/ACCESS.2017.2768579 10.1109/LCOMM.2019.2953706 10.1109/TWC.2017.2776108 10.1109/TCOMM.2018.2855197 10.1109/LWC.2019.2912202 10.1109/TCOMM.2019.2953260 10.1109/TCOMM.2020.2983673 10.1109/ACCESS.2019.2919489 10.1109/LWC.2016.2558510 10.1109/TWC.2019.2920823 10.1109/TCOMM.2020.3029568 10.1109/OJVT.2021.3049783 10.1109/JSAC.2017.2699338 10.1109/TVT.2018.2854735 10.1109/LWC.2020.2973968 10.1109/ACCESS.2020.3004779 10.1109/TWC.2019.2932404 10.1109/TWC.2019.2951135 10.1109/ACCESS.2019.2937628 10.1109/ACCESS.2020.3024597  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021  | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021  | 
    
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s21124021 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_4a2f76dd70f44e01836771e250fd1efd 10.3390/s21124021 PMC8230479 10_3390_s21124021  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AFFHD AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c446t-f344db3f4280d26cf2479b7f184dcb4743d1540a953f2648f282abc4884944c73 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:51:56 EDT 2025 Sun Oct 26 03:23:49 EDT 2025 Tue Sep 30 16:46:28 EDT 2025 Fri Sep 05 07:36:37 EDT 2025 Wed Oct 29 07:20:20 EDT 2025 Thu Oct 16 04:46:49 EDT 2025 Thu Apr 24 22:55:02 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c446t-f344db3f4280d26cf2479b7f184dcb4743d1540a953f2648f282abc4884944c73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-0221-7679 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/21/12/4021/pdf?version=1623398173 | 
    
| PMID | 34200883 | 
    
| PQID | 2545188449 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4a2f76dd70f44e01836771e250fd1efd unpaywall_primary_10_3390_s21124021 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8230479 proquest_miscellaneous_2548404189 proquest_journals_2545188449 crossref_primary_10_3390_s21124021 crossref_citationtrail_10_3390_s21124021  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210610 | 
    
| PublicationDateYYYYMMDD | 2021-06-10 | 
    
| PublicationDate_xml | – month: 6 year: 2021 text: 20210610 day: 10  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Zhou (ref_27) 2019; 9 Chang (ref_39) 2021; 15 Li (ref_25) 2019; 67 Qin (ref_30) 2021; 46 Long (ref_8) 2016; 5 Feng (ref_40) 2021; 20 Tipping (ref_42) 2001; 1 (ref_36) 2020; 8 Cheng (ref_38) 2019; 7 Ma (ref_12) 2019; 67 Suraj (ref_14) 2021; 69 Chen (ref_9) 2019; 18 Ali (ref_15) 2019; 18 Zhou (ref_18) 2017; 35 Storck (ref_5) 2020; 8 Reena (ref_23) 2018; 5 Wang (ref_3) 2019; 18 Yang (ref_19) 2017; 19 Xia (ref_33) 2020; 69 Qiao (ref_32) 2018; 6 Cheng (ref_17) 2019; 8 Li (ref_2) 2021; 2 Wang (ref_7) 2014; 18 Liao (ref_11) 2017; 5 Li (ref_13) 2017; 17 Han (ref_6) 2019; 19 Gyawali (ref_1) 2021; 23 Baek (ref_21) 2019; 68 Talaei (ref_22) 2021; 9 Jaiswal (ref_24) 2020; 1 Lee (ref_10) 2016; 64 Naik (ref_4) 2019; 7 Lin (ref_35) 2020; 68 Liu (ref_37) 2019; 7 You (ref_28) 2019; 24 Ji (ref_41) 2008; 56 Srivastava (ref_29) 2018; 67 Park (ref_34) 2019; 19 Qin (ref_20) 2018; 67 Shahmansoori (ref_26) 2020; 9 Mishra (ref_31) 2019; 68 Gozalvez (ref_16) 2019; 57  | 
    
| References_xml | – volume: 15 start-page: 847 year: 2021 ident: ref_39 article-title: Sparse Bayesian Learning Based Tensor Dictionary Learning and Signal Recovery with Application to MIMO Channel Estimation publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2021.3054241 – volume: 18 start-page: 1979 year: 2014 ident: ref_7 article-title: On the SINR in Massive MIMO Networks with MMSE Receivers publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2014.2360199 – volume: 68 start-page: 5169 year: 2019 ident: ref_21 article-title: A New Data Pilot-Aided Channel Estimation Scheme for Fast Time-Varying Channels in IEEE 802.11p Systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2906358 – volume: 46 start-page: 326 year: 2021 ident: ref_30 article-title: Bayesian Iterative Channel Estimation and Turbo Equalization for Multiple-Input–Multiple-Output Underwater Acoustic Communications publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2019.2956299 – volume: 57 start-page: 125 year: 2019 ident: ref_16 article-title: Sub-6GHz Assisted MAC for Millimeter Wave Vehicular Communications publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2019.1800509 – volume: 19 start-page: 227 year: 2017 ident: ref_19 article-title: Inter-vehicle cooperation channel estimation for IEEE 802.11p V2I communications publication-title: J. Commun. Netw. doi: 10.1109/JCN.2017.000040 – volume: 18 start-page: 3919 year: 2019 ident: ref_3 article-title: Platoon Cooperation in Cellular V2X Networks for 5G and Beyond publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2919602 – volume: 7 start-page: 48961 year: 2019 ident: ref_37 article-title: Bayesian mmWave Channel Estimation via Exploiting Joint Sparse and Low-Rank Structures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2910088 – volume: 67 start-page: 7558 year: 2019 ident: ref_25 article-title: Time-Varying Massive MIMO Channel Estimation: Capturing, Reconstruction, and Restoration publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2937516 – volume: 20 start-page: 812 year: 2021 ident: ref_40 article-title: Dynamic Hybrid Precoding Relying on Twin- Resolution Phase Shifters in Millimeter- Wave Communication Systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3028433 – volume: 64 start-page: 2370 year: 2016 ident: ref_10 article-title: Channel Estimation via Orthogonal Matching Pursuit for Hybrid MIMO Systems in Millimeter Wave Communications publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2016.2557791 – volume: 67 start-page: 1251 year: 2018 ident: ref_29 article-title: Quasi-Static and Time-Selective Channel Estimation for Block-Sparse Millimeter Wave Hybrid MIMO Systems: Sparse Bayesian Learning (SBL) Based Approaches publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2890058 – volume: 9 start-page: 311 year: 2019 ident: ref_27 article-title: Real-Valued Sparse Bayesian Learning Approach for Massive MIMO Channel Estimation publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2953265 – volume: 23 start-page: 222 year: 2021 ident: ref_1 article-title: Challenges and Solutions for Cellular Based V2X Communications publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2020.3029723 – volume: 5 start-page: 4642 year: 2018 ident: ref_23 article-title: Fuzzy-Based Channel Selection for Location Oriented Services in Multichannel VCPS Environments publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2796639 – volume: 6 start-page: 56675 year: 2018 ident: ref_32 article-title: Sparse Bayesian Learning for Channel Estimation in Time-Varying Underwater Acoustic OFDM Communication publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873406 – volume: 19 start-page: 1320 year: 2019 ident: ref_6 article-title: Massive Uncoordinated Access with Massive MIMO: A Dictionary Learning Approach publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2952843 – volume: 56 start-page: 2346 year: 2008 ident: ref_41 article-title: Bayesian Compressive Sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.914345 – volume: 9 start-page: 23398 year: 2021 ident: ref_22 article-title: Low Complexity MIMO Channel Prediction for Fast Time-Variant Vehicular Communications Channels Based on Discrete Prolate Spheroidal Sequences publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056297 – volume: 69 start-page: 8080 year: 2020 ident: ref_33 article-title: Learning the Time-Varying Massive MIMO Channels: Robust Estimation and Data-Aided Prediction publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2968637 – volume: 5 start-page: 24747 year: 2017 ident: ref_11 article-title: 2D unitary ESPRIT based super-resolution channel estimation for millimeter-wave massive MIMO with hybrid precoding publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2768579 – volume: 24 start-page: 344 year: 2019 ident: ref_28 article-title: Bayesian Matching Pursuit-Based Channel Estimation for Millimeter Wave Communication publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2953706 – volume: 17 start-page: 1123 year: 2017 ident: ref_13 article-title: Millimeter Wave Channel Estimation via Exploiting Joint Sparse and Low-Rank Structures publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2776108 – volume: 67 start-page: 1925 year: 2019 ident: ref_12 article-title: Sparse Bayesian Learning for the Time-Varying Massive MIMO Channels: Acquisition and Tracking publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2855197 – volume: 8 start-page: 1216 year: 2019 ident: ref_17 article-title: Tensor Decomposition-Aided Time-Varying Channel Estimation for Millimeter Wave MIMO Systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2912202 – volume: 68 start-page: 1132 year: 2019 ident: ref_31 article-title: Sparse Bayesian Learning-Aided Joint Sparse Channel Estimation and ML Sequence Detection in Space-Time Trellis Coded MIMO-OFDM Systems publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2953260 – volume: 68 start-page: 4218 year: 2020 ident: ref_35 article-title: Tensor-Based Channel Estimation for Millimeter Wave MIMO-OFDM with Dual-Wideband Effects publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.2983673 – volume: 7 start-page: 70169 year: 2019 ident: ref_4 article-title: IEEE 802.11bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919489 – volume: 5 start-page: 348 year: 2016 ident: ref_8 article-title: Minimum Number of Antennas Required to Satisfy Outage Probability in Massive MIMO Systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2016.2558510 – volume: 1 start-page: 211 year: 2001 ident: ref_42 article-title: Sparse Bayesian Learning and the Relevance Vector Machine publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 4060 year: 2019 ident: ref_9 article-title: Multi-Cell Sparse Activity Detection for Massive Random Access: Massive MIMO versus Cooperative MIMO publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2920823 – volume: 69 start-page: 529 year: 2021 ident: ref_14 article-title: Bayesian Learning-Based Double-Selective Sparse Channel Estimation for Millimeter Wave Hybrid MIMO-FBMC-OQAM Systems publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.3029568 – volume: 2 start-page: 78 year: 2021 ident: ref_2 article-title: Towards Safe Automated Driving: Design of Software-Defined Dynamic MmWave V2X Networks and PoC Implementation publication-title: IEEE Open J. Veh. Technol. doi: 10.1109/OJVT.2021.3049783 – volume: 35 start-page: 1524 year: 2017 ident: ref_18 article-title: Low-Rank Tensor Decomposition-Aided Channel Estimation for Millimeter Wave MIMO-OFDM Systems publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2017.2699338 – volume: 67 start-page: 9435 year: 2018 ident: ref_20 article-title: Time-Varying Channel Estimation for Millimeter Wave Multiuser MIMO Systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2854735 – volume: 9 start-page: 871 year: 2020 ident: ref_26 article-title: Sparse Bayesian Multi-Task Learning of Time-Varying Massive MIMO Channels with Dynamic Filtering publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2020.2973968 – volume: 8 start-page: 117593 year: 2020 ident: ref_5 article-title: A Survey of 5G Technology Evolution, Standards, and Infrastructure Associated With Vehicle-to-Everything Communications by Internet of Vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004779 – volume: 18 start-page: 5471 year: 2019 ident: ref_15 article-title: Spatial Covariance Estimation for Millimeter Wave Hybrid Systems Using Out-of-Band Information publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2932404 – volume: 1 start-page: 1 year: 2020 ident: ref_24 article-title: Secrecy Rate Maximization in Virtual-MIMO Enabled SWIPT for 5G Centric IoT Applications publication-title: IEEE Syst. J. – volume: 19 start-page: 1084 year: 2019 ident: ref_34 article-title: Spatial Channel Covariance Estimation for Hybrid Architectures Based on Tensor Decompositions publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2951135 – volume: 7 start-page: 123355 year: 2019 ident: ref_38 article-title: Millimeter Wave Time-Varying Channel Estimation via Exploiting Block-Sparse and Low-Rank Structures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937628 – volume: 8 start-page: 174931 year: 2020 ident: ref_36 article-title: Tensor-Based Framework With Model Order Selection and High Accuracy Factor Decomposition for Time-Delay Estimation in Dynamic Multipath Scenarios publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024597  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.3817182 | 
    
| Snippet | Efficient vehicle-to-everything (V2X) communications improve traffic safety, enable autonomous driving, and help to reduce environmental impacts. To achieve... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 4021 | 
    
| SubjectTerms | Algorithms Antennas Arrays Automation channel estimation Communications systems Decomposition direction of arrival (DOA) tracking Methods mmWave massive MIMO vehicle to everything (V2X) Vehicles  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQF-gBlUfV5SVDOXCJSOLJenMEBAKkhUOB7i1y_BArBe9qH634951JstEGFfXCKVIylmzPjD1fZvyZsZPESU00SoHqxSqgxEygMBAOXOJSkbheaMqDtP377s0T3A2SwdJVX1QTVtEDVxN3Bip2smuMDB2ADdECu1JGFnduZyLrDK2-YS9dgKkaaglEXhWPkEBQfzZFmENphKi1-5Qk_a3I8n1d5Nrcj9XbH1UUS5vO9Ve2UUeL_Lzq5SZbsX6LfVniENxmxc8xYlPLL9SbnfJHRKWjCVfecOwox51I079wfuspo24Np9ME3hb8Cl27OrXIMWzlz_GA07HA4SuVx_Bf6rflfYyrh_S87T_witl8hz1dXz1e3gT1FQqBRpw3C5wAMLlwCDJCE3e1i0GmuXSI64zOAcMHgzFUqNJEOKp1c4jAVK7RqyEF0FJ8Y6t-5O13xiVR32mFK4JIsVmYxgas1REx4oMR0GGni6nNdM0vTtdcFBniDNJC1mihw44b0XFFqvEvoQvSTyNAPNjlC7SOrLaO7H_W0WH7C-1mtXNOM8TEREMHkHbYUfMZ3YpyJcrb0byUQegLUQ9lZMsqWh1qf_HDl5Kgu0pmYssfjf18PM7dzxjnHluPqdiGLlUK99nqbDK3BxgtzfLD0jH-AhUZEQE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEE-RUtDyOHCxanvX2fiAEEGpWqQEBC3kZq33AZHcdcgD1H_PjF_UCDhFiseSk9nZ_T7PzDcALxInNckoBWocq4ASM4FCIBy4xKU8cePQVI20s_no5Fy8WySLPZi3vTBUVtnuidVGbUpN78iPkMiQdpgQ6evV94CmRlF2tR2hoZrRCuZVJTF2DfZjUsYawP5kOv_wsaNgHBlZrS_EkewfbZD-UHoh6p1KlXh_D3H-WS95fedX6vKnKoorh9HxbbjVoEj2pnb7Hdiz_i7cvKIteA-KTyvkrJZN1KXdsDNkq-WaKW8YskGGJ5Smd-Ts1FOm3RpGXQbeFmyKIV93MzKEs-xzvGDULri8oLIZ9kX9sGyGeHtJn6ez96xWPL8P58fTs7cnQTNaIdDI_7aB40KYnDskH6GJR9rFQqa5dMj3jM4FwgqD2CpUacId1cA5ZGYq1xjtIhVCS_4ABr709iEwSZJ4WuFOwVO8LUxjI6zVESnlC8PFEF62f22mG91xGn9RZMg_yAtZ54UhPOtMV7XYxt-MJuSfzoD0sasvyvXXrAm3TKjYyZExMnRC2BD3rZGUkUW850xknRnCYevdrAnaTfZ7iQ3haXcZw41yKMrbclfZICUW0RhtZG9V9B6of8Uvv1XC3XWSE-983q2ff__Og_8_4iO4EVN5DY1RCg9hsF3v7GPER9v8SbPofwFpYg74 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOlFdFoEXL48DFtfdhb3yq2qpVi5SCRAPhZK33ARHGifIoKr-eGdux4gokJE6W7FnJ1s7Ofp9n5ltC3sReGZRRCvSA6wATM4EGIBz42Kci9oPIVo20w4vkbCTfjePxRhc_llUCFZ9UQRq7sALYwaKQs5DxELgOC2fWH1w1_5IYbN4iHTAlbpOtJAY03iNbo4sPh1-qpqJmdC0oBIZRuAC-g_kE1tmGKrX-DsS8WSB5Z1XO9PVPXRQbu8_pNtHr966LTr7vr5b5vvl1Q9Lxfz7sAbnfQFN6WPvSQ3LLlY_IvQ3Bwsek-DgDIuzokb52C3oJFHg6p7q0FCgmhW3P4I93el5i-t5Ziq0LpSvoCcSRukWSAkamn_iYYg_i5AfW4tDP-srRIYD4CV7Ph-9pLaP-hIxOTy6Pz4LmvIbAAKlcBl5IaXPhgdFElifGc6nSXHkgkdbkErCKBcAW6TQWHgvrPNA9nRsIITKV0iixQ3rltHRPCVWos2c0hB-RwrAo5VY6ZxjK70srZJ-8XU9fZhoxczxTo8iA1OBMZ-1M98mr1nRWK3j8yegIfaA1QNHt6sZ0_jVr1nAmNfcqsVZFXkoXQTBMlGIOQKS3zHnbJ7trD8qaSLDIgICj5p2UaZ-8bB_DGsbEjC7ddFXZAM-WbAA2quN5nRfqPikn3yo18DpzCiNftz769-989k9Wz8ldjqU7eERTtEt6y_nK7QH2WuYvmuX1G2yBJlE priority: 102 providerName: Unpaywall  | 
    
| Title | Sparse Bayes Tensor and DOA Tracking Inspired Channel Estimation for V2X Millimeter Wave Massive MIMO System | 
    
| URI | https://www.proquest.com/docview/2545188449 https://www.proquest.com/docview/2548404189 https://pubmed.ncbi.nlm.nih.gov/PMC8230479 https://www.mdpi.com/1424-8220/21/12/4021/pdf?version=1623398173 https://doaj.org/article/4a2f76dd70f44e01836771e250fd1efd  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71eAAeEKdIKdFyCPFi8LHOxg8INSihRUqooIH0yVrvQSOZTZoDyL9nxnasGhWJl1jyjiPbe32fZ-YbgBexFYpklDzZDaVHjhlPIhD2bGyTKLZdXxeJtMNR53jMP07iyQ5sw5qrF7i8ltpRPanxIn_9-3LzDif8W2KcSNnfLJHEkJMgeDm_9KieFPldq-Iau7CPTQkVdRjy2r8QRlFR45rSvDzcIv1Sc6j5b42dqhD0b6DQv2Mob6zdXG5-yTy_skEN7sDtClmyo3Io3IUd4-7BrSt6g_ch_zLHhzWsJzdmyc6Qwc4WTDrNkCEy3LUUfTdnJ46870YzyjxwJmd9XAbKDEeGEJd9DSeMUginPyiUhn2TPw0bIgaf0vFk-ImVKugPYDzon70_9qpyC55CTrjybMS5ziKLhMTXYUfZkIskExY5oFYZR6ihEW_5MokjS3FxFtmazBSuADzhXInoIey5mTOPgAmSyVMSV48owcv8JNTcGBWQej7XEW_Bq-2rTVWlRU4lMfIUOQn1Qlr3Qgue1abzUoDjOqMe9U9tQJrZxYnZ4ntaTcGUy9CKjtbCt5wbH9eyjhCBQQxodWCsbsHhtnfT7ThMkT-TZB3nSQue1s04BcmvIp2ZrQsbpMk86KKNaIyKxg01W9z0ohDzLh2feOXzevz8-zkP_uMeHsPNkOJuqL6Sfwh7q8XaPEHgtMrasCsmAn-7gw9t2O_1R6ef28VHiHYxO_DceHR6dP4HTfcbLw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEE-RUmB5SVys2t51Nj4gRKFVQptyIIXc3PU-IFJqhzyo8qf4jcz41RoBt54sxWPL8czOzueZ-QbgZeSkJholT_VC5VFixlMYCHsucjGPXM83RSPt8LjbPxEfx9F4A37VvTBUVln7xMJRm1zTN_JdBDLEHSZE_Hb2w6OpUZRdrUdolGZxaNfnCNkWbwYfUL-vwvBgf_S-71VTBTyN0GfpOS6ESbnDuNs3YVe7UMg4lQ6hjtGpwB3VYFjhqzjijsq_HIISlWo0dBELoSXH-16D64KjL8H1I8cXAI8j3ivZiziP_d0FgitKXgStPa8YDdCKZ_-sxtxaZTO1PlfT6aWt7uA23KpiVPauNKo7sGGzu3DzEnPhPZh-niEitmxPre2CjRAL53OmMsMQazLc_zR9gWeDjPL41jDqYcjslO2jQyl7JRkGy-xLOGbUjDg5o6Ic9lX9tGyI0fyEjoPhJ1byqd-Hkyt5xQ9gM8sz-xCYJMI9rdAP8Rgv8-PQCGt1QDz8wnDRgdf1q010xWpOwzWmCaIb0kLSaKEDzxvRWUnl8TehPdJPI0Ds28UP-fxbUi3mRKjQya4x0ndCWB-9YlfKwGI06UxgnenATq3dpHIJi-TCgDvwrDmNi5kyNCqz-aqQQcAtgh7KyJZVtB6ofSabfC9owcsUKl75orGff__P7f8_4lPY6o-GR8nR4PjwEdwIqZCHBjb5O7C5nK_sY4zElumTwvwZnF71evsN2ipDsQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IE4RKLBcEi9WbO86Gz8gRGmjhpKCRAt5M-s92kjGDjmo8tf4dcz4aoOAtz5Fyo4jxzM7O59n5huAF5GTmmiUPNUPlUeJGU9hIOy5yMU8cn3flI20o4Pe3pF4P47GG_Cr6YWhssrGJ5aO2hSa3pF3EcgQd5gQcdfVZRGfdgZvpj88miBFmdZmnEZlIvt2dYrwbf56uIO6fhmGg93Dd3tePWHA0wiDFp7jQpiUO4zBfRP2tAuFjFPpEPYYnQo8XQ2GGL6KI-6oFMwhQFGpRqMXsRBacvzdS3BZch5TOaEcn4E9jtivYjLCRb87R6BFiYxg7fwrxwSsxbZ_VmZeXeZTtTpVWXbu2BvchBt1vMreVgZ2CzZsfhuun2MxvAPZ5ymiY8u21crO2SHi4mLGVG4Y4k6GZ6Gmt_FsmFNO3xpG_Qy5zdguOpeqb5Jh4My-hGNGjYmT71Sgw76qn5aNMLKf0Odw9JFV3Op34ehCHvE92MyL3N4HJol8Tyv0STzGy_w4NMJaHRAnvzBcdOBV82gTXTOc06CNLEGkQ1pIWi104FkrOq1oPf4mtE36aQWIibv8opgdJ_XGToQKnewZI30nhPXRQ_akDCxGls4E1pkObDXaTWr3ME_OjLkDT9tl3NiUrVG5LZalDIJvEfRRRq5ZxdoNra_kk5OSIrxKp-KVz1v7-ff_fPD_W3wCV3CnJR-GB_sP4VpINT00u8nfgs3FbGkfYVC2SB-X1s_g20Vvt98hdkf0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOlFdFoEXL48DFtfdhb3yq2qpVi5SCRAPhZK33ARHGifIoKr-eGdux4gokJE6W7FnJ1s7Ofp9n5ltC3sReGZRRCvSA6wATM4EGIBz42Kci9oPIVo20w4vkbCTfjePxRhc_llUCFZ9UQRq7sALYwaKQs5DxELgOC2fWH1w1_5IYbN4iHTAlbpOtJAY03iNbo4sPh1-qpqJmdC0oBIZRuAC-g_kE1tmGKrX-DsS8WSB5Z1XO9PVPXRQbu8_pNtHr966LTr7vr5b5vvl1Q9Lxfz7sAbnfQFN6WPvSQ3LLlY_IvQ3Bwsek-DgDIuzokb52C3oJFHg6p7q0FCgmhW3P4I93el5i-t5Ziq0LpSvoCcSRukWSAkamn_iYYg_i5AfW4tDP-srRIYD4CV7Ph-9pLaP-hIxOTy6Pz4LmvIbAAKlcBl5IaXPhgdFElifGc6nSXHkgkdbkErCKBcAW6TQWHgvrPNA9nRsIITKV0iixQ3rltHRPCVWos2c0hB-RwrAo5VY6ZxjK70srZJ-8XU9fZhoxczxTo8iA1OBMZ-1M98mr1nRWK3j8yegIfaA1QNHt6sZ0_jVr1nAmNfcqsVZFXkoXQTBMlGIOQKS3zHnbJ7trD8qaSLDIgICj5p2UaZ-8bB_DGsbEjC7ddFXZAM-WbAA2quN5nRfqPikn3yo18DpzCiNftz769-989k9Wz8ldjqU7eERTtEt6y_nK7QH2WuYvmuX1G2yBJlE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Bayes+Tensor+and+DOA+Tracking+Inspired+Channel+Estimation+for+V2X+Millimeter+Wave+Massive+MIMO+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Luo%2C+Kaihua&rft.au=Zhou%2C+Xiaoping&rft.au=Wang%2C+Bin&rft.au=Huang%2C+Jifeng&rft.date=2021-06-10&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft_id=info:doi/10.3390%2Fs21124021&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |