A hybrid imputation approach for microarray missing value estimation
Background Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the f...
Saved in:
| Published in | BMC genomics Vol. 16; no. Suppl 9; p. S1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
17.08.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/1471-2164-16-S9-S1 |
Cover
| Abstract | Background
Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate.
Methods
In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step.
Results
We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes.
Conclusions
It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods. |
|---|---|
| AbstractList | BACKGROUNDMissing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate.METHODSIn this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step.RESULTSWe evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes.CONCLUSIONSIt is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods. Background Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate. Methods In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step. Results We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes. Conclusions It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods. Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate. In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step. We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes. It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods. |
| ArticleNumber | S1 |
| Author | Li, Huihui Zhao, Changbo Li, Guo-Zheng Shao, Fengfeng Wang, Xiao |
| AuthorAffiliation | 1 The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, 201804 Shanghai, China 2 Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Science, 100700 Beijing, China 3 School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 450002 Zhengzhou, China |
| AuthorAffiliation_xml | – name: 2 Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Science, 100700 Beijing, China – name: 3 School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 450002 Zhengzhou, China – name: 1 The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, 201804 Shanghai, China |
| Author_xml | – sequence: 1 givenname: Huihui surname: Li fullname: Li, Huihui organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University – sequence: 2 givenname: Changbo surname: Zhao fullname: Zhao, Changbo organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University – sequence: 3 givenname: Fengfeng surname: Shao fullname: Shao, Fengfeng organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University – sequence: 4 givenname: Guo-Zheng surname: Li fullname: Li, Guo-Zheng email: gzli@tongji.edu.cn organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Science – sequence: 5 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, School of Computer and Communication Engineering, Zhengzhou University of Light Industry |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26330180$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UctOxCAUJUbj-wdcmC7dVLmUAboxMb4TExeja8JQOoPpQIVWM38vdcbnYlZc4J5z7jl3D2067wxCR4BPAQQ7A8ohJ8BoDiwfl_kYNtDu9-Pmr3oH7cX4gjFwQUbbaIewosAg8C66ushmi0mwVWbnbd-pznqXqbYNXulZVvuQza1OlxDUIpUxWjfN3lTTm8zEzs4_AQdoq1ZNNIercx8931w_Xd7lD4-395cXD7mmlHV5PegXBTAjOOCK6FoZqieTouTGUMEEploxQUpNCsxIhUERU9WGlwKrElSxj4olb-9atXhXTSPbkGYICwlYDpnIwbIcLEtgMpYyQkKdL1FtP5mbShvXBfWD9MrKvz_OzuTUv0k6opziUSI4WREE_9on2zIFoU3TKGd8HyVwXHIAzHhqPf6t9S3yFXhqIMuGFGqMwdTrHYxLOR4ciH8gbZerSvPaZj10FVlMOm5qgnzxfXBpS-tQH0OQtlg |
| CitedBy_id | crossref_primary_10_1111_jbi_14842 crossref_primary_10_3389_fmolb_2022_907150 crossref_primary_10_1186_s12859_016_1429_3 crossref_primary_10_1108_DTA_12_2020_0298 crossref_primary_10_1109_TCBB_2018_2810205 crossref_primary_10_1109_ACCESS_2021_3053631 crossref_primary_10_1109_TNB_2016_2636243 crossref_primary_10_3390_metabo12050429 |
| Cites_doi | 10.1038/35000501 10.7551/mitpress/9780262033589.001.0001 10.1145/279943.279962 10.1093/bib/bbq080 10.1091/mbc.9.12.3273 10.1093/bioinformatics/bth499 10.1073/pnas.0509978103 10.1109/JBHI.2013.2284795 10.1198/106186002317375640 10.1186/1471-2164-11-15 10.1142/S0219720006002302 10.1007/3-540-32392-9_63 10.1109/TKDE.2007.190644 10.1093/bioinformatics/btl339 10.1093/nar/gkl047 10.1093/bioinformatics/btg287 10.1016/j.patcog.2011.10.012 10.1186/1471-2105-9-12 10.1016/0098-3004(93)90090-R 10.1504/IJDMB.2010.033524 10.1073/pnas.97.18.10101 10.1093/bioinformatics/bti033 10.1093/bioinformatics/17.6.520 10.1006/bbrc.2001.5277 10.1016/j.compbiomed.2008.08.006 10.1016/j.ygeno.2011.03.001 10.1093/bioinformatics/bti638 10.1109/BIBM.2008.71 |
| ContentType | Journal Article |
| Copyright | Li et al. 2015 Copyright © 2015 Li et al. 2015 Li et al. |
| Copyright_xml | – notice: Li et al. 2015 – notice: Copyright © 2015 Li et al. 2015 Li et al. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2164-16-S9-S1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | S1 |
| ExternalDocumentID | 10.1186/1471-2164-16-s9-s1 PMC4547405 26330180 10_1186_1471_2164_16_S9_S1 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION 2VQ ALIPV C1A CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c446t-f01783316e8710d2cfae4cbb397ee486804ca6829c23062d01a2edfe7980a91a3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2164 |
| IngestDate | Sun Oct 26 04:00:34 EDT 2025 Tue Sep 30 16:53:11 EDT 2025 Thu Sep 04 16:30:32 EDT 2025 Thu Apr 03 07:06:09 EDT 2025 Wed Oct 01 03:03:23 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Sat Sep 06 07:21:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 9 |
| Keywords | Microarray gene expression data large missing rate Complement strategy normalized root mean squared error missing value imputation |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-f01783316e8710d2cfae4cbb397ee486804ca6829c23062d01a2edfe7980a91a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-16-S9-S1 |
| PMID | 26330180 |
| PQID | 1709711067 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2164_16_s9_s1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547405 proquest_miscellaneous_1709711067 pubmed_primary_26330180 crossref_primary_10_1186_1471_2164_16_S9_S1 crossref_citationtrail_10_1186_1471_2164_16_S9_S1 springer_journals_10_1186_1471_2164_16_S9_S1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-17 |
| PublicationDateYYYYMMDD | 2015-08-17 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2015 |
| Publisher | BioMed Central |
| Publisher_xml | – name: BioMed Central |
| References | S Oba (7224_CR1) 2003; 19 A Mohammadi (7224_CR20) 2008 A Máckiewicz (7224_CR4) 1993; 19 X Gan (7224_CR21) 2006; 34 F Meng (7224_CR11) 2014; 18 O Chapelle (7224_CR24) 2006 R Ji (7224_CR22) 2011; 7 M Ronen (7224_CR30) 2006; 103 GN Brock (7224_CR28) 2008; 9 D Wang (7224_CR8) 2006; 22 KO Cheng (7224_CR23) 2012; 45 MA Hearst (7224_CR3) 1998; 13 Z Cai (7224_CR15) 2006; 4 PT Spellman (7224_CR29) 1998; 9 A Statnikov (7224_CR6) 2005; 21 I Takemasa (7224_CR31) 2001; 285 M Celton (7224_CR7) 2010; 11 A Blum (7224_CR25) 1998 ZH Zhou (7224_CR26) 2005; 19 XY Pan (7224_CR19) 2011; 97 WK Ching (7224_CR17) 2010; 4 O Alter (7224_CR5) 2000; 97 A Grużdž (7224_CR10) 2005 AWC Liew (7224_CR12) 2011; 12 O Troyanskaya (7224_CR14) 2001; 17 H Attias (7224_CR27) 1999 X Zhang (7224_CR16) 2008; 38 H Kim (7224_CR2) 2005; 21 YH Yang (7224_CR13) 2002; 11 R Jörnsten (7224_CR18) 2005; 21 A Allzadeh (7224_CR9) 2000; 403 10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6 24132028 - IEEE J Biomed Health Inform. 2014 May;18(3):863-71 20681483 - Int J Data Min Bioinform. 2010;4(3):331-47 16118262 - Bioinformatics. 2005 Nov 15;21(22):4155-61 16809389 - Bioinformatics. 2006 Dec 1;22(23):2883-9 18186917 - BMC Bioinformatics. 2008;9:12 18828999 - Comput Biol Med. 2008 Oct;38(10):1112-20 21156727 - Brief Bioinform. 2011 Sep;12(5):498-513 17099935 - J Bioinform Comput Biol. 2006 Oct;4(5):935-57 11478790 - Biochem Biophys Res Commun. 2001 Aug 3;285(5):1244-9 15333461 - Bioinformatics. 2005 Jan 15;21(2):187-98 16549873 - Nucleic Acids Res. 2006;34(5):1608-19 21397683 - Genomics. 2011 May;97(5):257-64 10676951 - Nature. 2000 Feb 3;403(6769):503-11 20056002 - BMC Genomics. 2010;11:15 15374862 - Bioinformatics. 2005 Mar 1;21(5):631-43 14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96 16381818 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):389-94 9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97 11395428 - Bioinformatics. 2001 Jun;17(6):520-5 |
| References_xml | – volume: 403 start-page: 503 issue: 6769 year: 2000 ident: 7224_CR9 publication-title: Nature doi: 10.1038/35000501 – volume-title: Semi-supervised learning year: 2006 ident: 7224_CR24 doi: 10.7551/mitpress/9780262033589.001.0001 – start-page: 92 volume-title: Proceedings of the Eleventh Annual Conference on Computational Learning Theory year: 1998 ident: 7224_CR25 doi: 10.1145/279943.279962 – volume: 12 start-page: 498 issue: 5 year: 2011 ident: 7224_CR12 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbq080 – volume: 9 start-page: 3273 issue: 12 year: 1998 ident: 7224_CR29 publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.9.12.3273 – volume: 21 start-page: 187 issue: 2 year: 2005 ident: 7224_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth499 – start-page: 21 volume-title: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence year: 1999 ident: 7224_CR27 – volume: 103 start-page: 389 issue: 2 year: 2006 ident: 7224_CR30 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0509978103 – volume: 18 start-page: 863 issue: 3 year: 2014 ident: 7224_CR11 publication-title: Biomedical and Health Informatics, IEEE Journal doi: 10.1109/JBHI.2013.2284795 – volume: 11 start-page: 108 issue: 1 year: 2002 ident: 7224_CR13 publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186002317375640 – volume: 11 start-page: 15 issue: 1 year: 2010 ident: 7224_CR7 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-15 – volume: 4 start-page: 935 issue: 5 year: 2006 ident: 7224_CR15 publication-title: Journal of Bioinformatics and Computational Biology doi: 10.1142/S0219720006002302 – volume: 7 start-page: 4810 issue: 13 year: 2011 ident: 7224_CR22 publication-title: Journal of Computational Information Systems – start-page: 521 volume-title: Intelligent Information Processing and Web Mining year: 2005 ident: 7224_CR10 doi: 10.1007/3-540-32392-9_63 – volume: 19 start-page: 1479 issue: 11 year: 2005 ident: 7224_CR26 publication-title: Knowledge and Data Engineering, IEEE Transactions on doi: 10.1109/TKDE.2007.190644 – volume: 22 start-page: 2883 issue: 23 year: 2006 ident: 7224_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl339 – volume: 34 start-page: 1608 issue: 5 year: 2006 ident: 7224_CR21 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkl047 – volume: 19 start-page: 2088 issue: 16 year: 2003 ident: 7224_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg287 – volume: 45 start-page: 1281 issue: 4 year: 2012 ident: 7224_CR23 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.10.012 – volume: 9 start-page: 12 issue: 1 year: 2008 ident: 7224_CR28 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-12 – volume: 19 start-page: 303 issue: 3 year: 1993 ident: 7224_CR4 publication-title: Computers & Geosciences doi: 10.1016/0098-3004(93)90090-R – volume: 4 start-page: 331 issue: 3 year: 2010 ident: 7224_CR17 publication-title: International Journal of Data Mining and Bioinformatics doi: 10.1504/IJDMB.2010.033524 – volume: 97 start-page: 10101 issue: 18 year: 2000 ident: 7224_CR5 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.97.18.10101 – volume: 21 start-page: 631 issue: 5 year: 2005 ident: 7224_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti033 – volume: 13 start-page: 18 issue: 4 year: 1998 ident: 7224_CR3 publication-title: IEEE – volume: 17 start-page: 520 issue: 6 year: 2001 ident: 7224_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – volume: 285 start-page: 1244 issue: 5 year: 2001 ident: 7224_CR31 publication-title: Biochemical and Biophysical Research Communications doi: 10.1006/bbrc.2001.5277 – volume: 38 start-page: 1112 issue: 10 year: 2008 ident: 7224_CR16 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2008.08.006 – volume: 97 start-page: 257 issue: 5 year: 2011 ident: 7224_CR19 publication-title: Genomics doi: 10.1016/j.ygeno.2011.03.001 – volume: 21 start-page: 4155 issue: 22 year: 2005 ident: 7224_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti638 – start-page: 382 volume-title: Bioinformatics and Biomedicine, 2008. BIBM'08. IEEE International Conference year: 2008 ident: 7224_CR20 doi: 10.1109/BIBM.2008.71 – reference: 24132028 - IEEE J Biomed Health Inform. 2014 May;18(3):863-71 – reference: 10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6 – reference: 15333461 - Bioinformatics. 2005 Jan 15;21(2):187-98 – reference: 11478790 - Biochem Biophys Res Commun. 2001 Aug 3;285(5):1244-9 – reference: 20681483 - Int J Data Min Bioinform. 2010;4(3):331-47 – reference: 10676951 - Nature. 2000 Feb 3;403(6769):503-11 – reference: 21397683 - Genomics. 2011 May;97(5):257-64 – reference: 9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97 – reference: 16381818 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):389-94 – reference: 16809389 - Bioinformatics. 2006 Dec 1;22(23):2883-9 – reference: 18828999 - Comput Biol Med. 2008 Oct;38(10):1112-20 – reference: 20056002 - BMC Genomics. 2010;11:15 – reference: 16549873 - Nucleic Acids Res. 2006;34(5):1608-19 – reference: 18186917 - BMC Bioinformatics. 2008;9:12 – reference: 21156727 - Brief Bioinform. 2011 Sep;12(5):498-513 – reference: 11395428 - Bioinformatics. 2001 Jun;17(6):520-5 – reference: 16118262 - Bioinformatics. 2005 Nov 15;21(22):4155-61 – reference: 17099935 - J Bioinform Comput Biol. 2006 Oct;4(5):935-57 – reference: 14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96 – reference: 15374862 - Bioinformatics. 2005 Mar 1;21(5):631-43 |
| SSID | ssj0017825 |
| Score | 2.268733 |
| Snippet | Background
Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative... Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on... BACKGROUNDMissing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | S1 |
| SubjectTerms | Algorithms Animal Genetics and Genomics Bayes Theorem Biomedical and Life Sciences Gene Expression Profiling Humans Least-Squares Analysis Life Sciences Microarrays Microbial Genetics and Genomics Models, Statistical Oligonucleotide Array Sequence Analysis - methods Plant Genetics and Genomics Proteomics |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La-MwEBZLl9LuYdm-dtN9oEJvragly7J8DO2WsLC9pIHchCxLtJA6JU5Y8u874xcbWgK9GSwJe0aPbzQz3xByXqTaSjiGmdBFYDIXgWVWauZE5INI8kjXVSL-3qnRRP6ZJtM2Kazqot07l2S9U9fLWqsrDtsoE4DuGVdsnLEx2DwfE6Tzglk8EcPedwBnXtKlx7zZb_MIeoUrX4dH9j7ST2RvVT7b9T87m_13DN1-IZ9b_EiHjcIPyAdfHpLdpqLk-ojcDOnDGpOw6CNWa6jFTjvecAoAlT5hBJ5dLOwaHiu8KaBI-O0p0m00eYzHZHL7-_56xNpCCcyBNbdkAX86jrnyYP5EhXDBeunyHLCG91IrHUlnlRaZQ4NDFBG3whfBp5mObMZtfEJ2ynnpvxGqksSGmAsVhJNWFhbaRaEoYAwnNOcDwjvZGdeyiGMxi5mprQmtDMrboLwNxo5lZgx9Lvo-zw2HxtbWZ51KDMgB_Re29PNVZXiKhFfIeTcgXxsV9eMJFcfIRTYg6Yby-gZIo735pnx8qOm0kdIMYOuAXHZqNu06rrZ-5mU_Fbb_VZWZip--b_TvZB-QWYKX1zz9QXaWi5X_Cehnmf-qJ_sLAY_8_g priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MlLHtYfd22Q0N9rYqtWRZlh_DtlIGK4Ms0D0JWZZoaOKGOGFkv346vtG0EBjszeAjYUlH1nckfd8B-FikyoiwDFOuCk9Fzj3NjFDU8sh5nuSRqrNEfD-XZ1Px7SK5aOnRyIXJFxbFSRczW41uEtDnDb8B8ye41cmy8M10V_KEhd8r5QH1UybpJKOTEAsdyCQg8wEcTM9_jH_VBKPWqOPN3C5YZbRiu2vTHcB5995kf3j6CB5syqXZ_jbz-Y316fQJLLqWNddSrkabdT6yf26JPv6vpj-Fxy2QJePG857BPVc-h_tNasvtC_gyJpdbZIORGaaNqMefdALmJCBlssCrgGa1MtvwWOGWBUHlcUdQ96MhVL6E6enXn5_PaJuxgdoQVq6pD_NbxTGTLsRhUcGtN07YPA-gxzmhpIqENVLxzGLkw4uIGe4K79JMRSZjJj6EQXlduldAZJIYHzMuPbfCiMIEu8gXRajDcsXYEFg3Vtq2cuaYVWOu67BGSY29o7F3NF5iy_QklPnUl1k2Yh57rT90LqBDP-BBiind9abSLEXlLRTfG8JR4xJ9fVzGMYqiDSHdcZbeAPW8d9-Us8ta1xu11QJ-HsJx51a6_aFUez_zuHe9_a2qMl2x1_9m_gYeBoiY4C46S9_CYL3auHcBhq3z9-3s-gvwfizS priority: 102 providerName: Unpaywall |
| Title | A hybrid imputation approach for microarray missing value estimation |
| URI | https://link.springer.com/article/10.1186/1471-2164-16-S9-S1 https://www.ncbi.nlm.nih.gov/pubmed/26330180 https://www.proquest.com/docview/1709711067 https://pubmed.ncbi.nlm.nih.gov/PMC4547405 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-16-S9-S1 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6hrHuoeyzzT6CB3tbtVmKLMsPo2RZSxk0lGWG7EnItkwLqdvFCZv_-93ZsdfSLi9GxpKQ7iTf7_TxO4D3WaitRDPMhM5yJhORs8hKzVLhu1wEia_rKBGnE3USy2-zYLYFbbijtQDLe107iicVL-Yf__yqDnHCf64nvFafOP5gmUDcz7hi04hN0RvqoaWKKJTDqfy3q4DWMGgvztxbjqiBFXr4nFgib9qpO-Dz7hnKbiP1MTxaFde2-m3n8xu26vgJ7K5BpjdqRsVT2HLFM3jYhJ2snsPXkXde0U0t74JCOtS68VpycQ9RrHdJx_TsYmErTJa0nOARK7jziJOjuez4AuLjox_jE7aOpsBSdPmWLKf-D4dcOfSR_EykuXUyTRIEJM5JrbQvU6u0iFLySkTmcytclrsw0r6NuB2-hO3iqnD74KkgsPmQC5WLVFqZWczn51mGdaRCc94H3srOpGuqcYp4MTe1y6GVIdEbEr2hA2aRmWKZD12Z64ZoY2Pud61KDMqBNjls4a5WpeEhsWIRMV4f9hoVdfW1uu1DeEt5XQbi2r79pbg4rzm3ifcMsW0fDlo1m3asbmzmQTcUNveqjEzJX_23xa9hB5FaQIvZPHwD28vFyr1FNLRMBvAgnIUD6H05mpx9x7exGg_qlYVBPfjxGQtM9-LJ2ejnX-0mCbg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5KSkl7KH13-1Sht0bUkmVZPi5tw7ZNctks5CZkWSKBrRPWu5T9953xiy4pC70ZLAl7Ro9vNDPfAHyscuMUHsNcmipyVcrIC6cM9zIJUWZlYtoqEadnerZQPy6yiz4prBmi3QeXZLtTt8va6M8Ct1EuEd1zofm84HO0ee4SgRUx5i_kdPQd4JmXDekx_-y3ewTdwpW3wyNHH-kDONzUN2772y2Xfx1Dx4_gYY8f2bRT-GO4E-oncK-rKLl9Cl-n7HJLSVjsiqo1tGJnA284Q4DKflEEnlut3BYfG7opYET4HRjRbXR5jM9gcfzt_MuM94USuEdrbs0j_XSaCh3Q_Ekq6aMLypclYo0QlNEmUd5pIwtPBoesEuFkqGLIC5O4Qrj0ORzU13V4CUxnmYupkDpKr5yqHLZLYlXhGF4aISYgBtlZ37OIUzGLpW2tCaMtyduSvC3FjhV2jn0-jX1uOg6Nva0_DCqxKAfyX7g6XG8aK3IivCLOuwm86FQ0jid1mhIX2QTyHeWNDYhGe_dNfXXZ0mkTpRnC1gkcDWq2_Tpu9n7m0TgV9v9VU9hGvPq_0d_D4ez89MSefD_7-RruI0rL6CJb5G_gYL3ahLeIhNblu3bi_wEFhP_q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEBYhoUceQu9s0kOFvjUilizL8mPYdEl6hMI2kDch6yCBrbOsdwn77zNjr02WlIW-GSwJSyN5vtHMfEPIF59rK0ENM6F9ZLIUkRVWauZEEqLIykQ3VSJ-XaizS_n9Krt6kMXfRLt3Lsk2pwFZmqr58dTH9ohrdczhl8oEIH3GFRsXbAz2z44E7YY1DIZq2PsRQP9lXarMP_utq6NHGPNxqGTvL90lzxbV1C7v7GTyQCWNXpC9FZakJ63wX5KtUL0iT9rqksvX5PSEXi8xIYveYOWGRgS04xCnAFbpX4zGs7OZXcJjjbcGFMm_A0XqjTan8Q25HH37Mzxjq6IJzIFlN2cRJ52mXAUwhRIvXLRBurIE3BGC1Eon0lmlReHQ-BA-4VYEH0Ne6MQW3KZvyXZ1W4V9QlWW2ZhyoaJw0kpvoV0SvYcxnNCcDwjv1s64FaM4FraYmMay0Mrgehtcb4NxZIUZQ5-vfZ9py6exsfXnTiQG1gF9GbYKt4va8BzJr5D_bkDetSLqxxMqTZGXbEDyNeH1DZBSe_1NdXPdUGsjvRlA2AE56sRsVme63viZR_1W2DyrujA1P_i_0T-Rp79PR-bn-cWPQ_IcAFuGd9o8f0-257NF-ACgaF5-bPb9PWoyBB8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MlLHtYfd22Q0N9rYqtWRZlh_DtlIGK4Ms0D0JWZZoaOKGOGFkv346vtG0EBjszeAjYUlH1nckfd8B-FikyoiwDFOuCk9Fzj3NjFDU8sh5nuSRqrNEfD-XZ1Px7SK5aOnRyIXJFxbFSRczW41uEtDnDb8B8ye41cmy8M10V_KEhd8r5QH1UybpJKOTEAsdyCQg8wEcTM9_jH_VBKPWqOPN3C5YZbRiu2vTHcB5995kf3j6CB5syqXZ_jbz-Y316fQJLLqWNddSrkabdT6yf26JPv6vpj-Fxy2QJePG857BPVc-h_tNasvtC_gyJpdbZIORGaaNqMefdALmJCBlssCrgGa1MtvwWOGWBUHlcUdQ96MhVL6E6enXn5_PaJuxgdoQVq6pD_NbxTGTLsRhUcGtN07YPA-gxzmhpIqENVLxzGLkw4uIGe4K79JMRSZjJj6EQXlduldAZJIYHzMuPbfCiMIEu8gXRajDcsXYEFg3Vtq2cuaYVWOu67BGSY29o7F3NF5iy_QklPnUl1k2Yh57rT90LqBDP-BBiind9abSLEXlLRTfG8JR4xJ9fVzGMYqiDSHdcZbeAPW8d9-Us8ta1xu11QJ-HsJx51a6_aFUez_zuHe9_a2qMl2x1_9m_gYeBoiY4C46S9_CYL3auHcBhq3z9-3s-gvwfizS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+imputation+approach+for+microarray+missing+value+estimation&rft.jtitle=BMC+genomics&rft.au=Li%2C+Huihui&rft.au=Zhao%2C+Changbo&rft.au=Shao%2C+Fengfeng&rft.au=Li%2C+Guo-Zheng&rft.date=2015-08-17&rft.eissn=1471-2164&rft.volume=16+Suppl+9&rft.spage=S1&rft_id=info:doi/10.1186%2F1471-2164-16-S9-S1&rft_id=info%3Apmid%2F26330180&rft.externalDocID=26330180 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |