A hybrid imputation approach for microarray missing value estimation

Background Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the f...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 16; no. Suppl 9; p. S1
Main Authors Li, Huihui, Zhao, Changbo, Shao, Fengfeng, Li, Guo-Zheng, Wang, Xiao
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.08.2015
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-16-S9-S1

Cover

Abstract Background Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate. Methods In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step. Results We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes. Conclusions It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods.
AbstractList BACKGROUNDMissing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate.METHODSIn this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step.RESULTSWe evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes.CONCLUSIONSIt is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods.
Background Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate. Methods In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step. Results We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes. Conclusions It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods.
Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on performance of downstream analysis. Technically, most existing approaches suffer from this prevalent problem. Imputation is one of the frequently used methods for processing missing data. Actually many developments have been achieved in the research on estimating missing values. The challenging task is how to improve imputation accuracy for data with a large missing rate. In this paper, induced by the thought of collaborative training, we propose a novel hybrid imputation method, called Recursive Mutual Imputation (RMI). Specifically, RMI exploits global correlation information and local structure in the data, captured by two popular methods, Bayesian Principal Component Analysis (BPCA) and Local Least Squares (LLS), respectively. Mutual strategy is implemented by sharing the estimated data sequences at each recursive process. Meanwhile, we consider the imputation sequence based on the number of missing entries in the target gene. Furthermore, a weight based integrated method is utilized in the final assembling step. We evaluate RMI with three state-of-art algorithms (BPCA, LLS, Iterated Local Least Squares imputation (ItrLLS)) on four publicly available microarray datasets. Experimental results clearly demonstrate that RMI significantly outperforms comparative methods in terms of Normalized Root Mean Square Error (NRMSE), especially for datasets with large missing rates and less complete genes. It is noted that our proposed hybrid imputation approach incorporates both global and local information of microarray genes, which achieves lower NRMSE values against to any single approach only. Besides, this study highlights the need for considering the imputing sequence of missing entries for imputation methods.
ArticleNumber S1
Author Li, Huihui
Zhao, Changbo
Li, Guo-Zheng
Shao, Fengfeng
Wang, Xiao
AuthorAffiliation 1 The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, 201804 Shanghai, China
2 Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Science, 100700 Beijing, China
3 School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 450002 Zhengzhou, China
AuthorAffiliation_xml – name: 2 Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Science, 100700 Beijing, China
– name: 3 School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 450002 Zhengzhou, China
– name: 1 The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, 201804 Shanghai, China
Author_xml – sequence: 1
  givenname: Huihui
  surname: Li
  fullname: Li, Huihui
  organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University
– sequence: 2
  givenname: Changbo
  surname: Zhao
  fullname: Zhao, Changbo
  organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University
– sequence: 3
  givenname: Fengfeng
  surname: Shao
  fullname: Shao, Fengfeng
  organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University
– sequence: 4
  givenname: Guo-Zheng
  surname: Li
  fullname: Li, Guo-Zheng
  email: gzli@tongji.edu.cn
  organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Science
– sequence: 5
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Control Science and Engineering, Tongji University, School of Computer and Communication Engineering, Zhengzhou University of Light Industry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26330180$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOxCAUJUbj-wdcmC7dVLmUAboxMb4TExeja8JQOoPpQIVWM38vdcbnYlZc4J5z7jl3D2067wxCR4BPAQQ7A8ohJ8BoDiwfl_kYNtDu9-Pmr3oH7cX4gjFwQUbbaIewosAg8C66ushmi0mwVWbnbd-pznqXqbYNXulZVvuQza1OlxDUIpUxWjfN3lTTm8zEzs4_AQdoq1ZNNIercx8931w_Xd7lD4-395cXD7mmlHV5PegXBTAjOOCK6FoZqieTouTGUMEEploxQUpNCsxIhUERU9WGlwKrElSxj4olb-9atXhXTSPbkGYICwlYDpnIwbIcLEtgMpYyQkKdL1FtP5mbShvXBfWD9MrKvz_OzuTUv0k6opziUSI4WREE_9on2zIFoU3TKGd8HyVwXHIAzHhqPf6t9S3yFXhqIMuGFGqMwdTrHYxLOR4ciH8gbZerSvPaZj10FVlMOm5qgnzxfXBpS-tQH0OQtlg
CitedBy_id crossref_primary_10_1111_jbi_14842
crossref_primary_10_3389_fmolb_2022_907150
crossref_primary_10_1186_s12859_016_1429_3
crossref_primary_10_1108_DTA_12_2020_0298
crossref_primary_10_1109_TCBB_2018_2810205
crossref_primary_10_1109_ACCESS_2021_3053631
crossref_primary_10_1109_TNB_2016_2636243
crossref_primary_10_3390_metabo12050429
Cites_doi 10.1038/35000501
10.7551/mitpress/9780262033589.001.0001
10.1145/279943.279962
10.1093/bib/bbq080
10.1091/mbc.9.12.3273
10.1093/bioinformatics/bth499
10.1073/pnas.0509978103
10.1109/JBHI.2013.2284795
10.1198/106186002317375640
10.1186/1471-2164-11-15
10.1142/S0219720006002302
10.1007/3-540-32392-9_63
10.1109/TKDE.2007.190644
10.1093/bioinformatics/btl339
10.1093/nar/gkl047
10.1093/bioinformatics/btg287
10.1016/j.patcog.2011.10.012
10.1186/1471-2105-9-12
10.1016/0098-3004(93)90090-R
10.1504/IJDMB.2010.033524
10.1073/pnas.97.18.10101
10.1093/bioinformatics/bti033
10.1093/bioinformatics/17.6.520
10.1006/bbrc.2001.5277
10.1016/j.compbiomed.2008.08.006
10.1016/j.ygeno.2011.03.001
10.1093/bioinformatics/bti638
10.1109/BIBM.2008.71
ContentType Journal Article
Copyright Li et al. 2015
Copyright © 2015 Li et al. 2015 Li et al.
Copyright_xml – notice: Li et al. 2015
– notice: Copyright © 2015 Li et al. 2015 Li et al.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2164-16-S9-S1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage S1
ExternalDocumentID 10.1186/1471-2164-16-s9-s1
PMC4547405
26330180
10_1186_1471_2164_16_S9_S1
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
2VQ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c446t-f01783316e8710d2cfae4cbb397ee486804ca6829c23062d01a2edfe7980a91a3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Sun Oct 26 04:00:34 EDT 2025
Tue Sep 30 16:53:11 EDT 2025
Thu Sep 04 16:30:32 EDT 2025
Thu Apr 03 07:06:09 EDT 2025
Wed Oct 01 03:03:23 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Sat Sep 06 07:21:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 9
Keywords Microarray gene expression data
large missing rate
Complement strategy
normalized root mean squared error
missing value imputation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-f01783316e8710d2cfae4cbb397ee486804ca6829c23062d01a2edfe7980a91a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-16-S9-S1
PMID 26330180
PQID 1709711067
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1186_1471_2164_16_s9_s1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547405
proquest_miscellaneous_1709711067
pubmed_primary_26330180
crossref_primary_10_1186_1471_2164_16_S9_S1
crossref_citationtrail_10_1186_1471_2164_16_S9_S1
springer_journals_10_1186_1471_2164_16_S9_S1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-17
PublicationDateYYYYMMDD 2015-08-17
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-17
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2015
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References S Oba (7224_CR1) 2003; 19
A Mohammadi (7224_CR20) 2008
A Máckiewicz (7224_CR4) 1993; 19
X Gan (7224_CR21) 2006; 34
F Meng (7224_CR11) 2014; 18
O Chapelle (7224_CR24) 2006
R Ji (7224_CR22) 2011; 7
M Ronen (7224_CR30) 2006; 103
GN Brock (7224_CR28) 2008; 9
D Wang (7224_CR8) 2006; 22
KO Cheng (7224_CR23) 2012; 45
MA Hearst (7224_CR3) 1998; 13
Z Cai (7224_CR15) 2006; 4
PT Spellman (7224_CR29) 1998; 9
A Statnikov (7224_CR6) 2005; 21
I Takemasa (7224_CR31) 2001; 285
M Celton (7224_CR7) 2010; 11
A Blum (7224_CR25) 1998
ZH Zhou (7224_CR26) 2005; 19
XY Pan (7224_CR19) 2011; 97
WK Ching (7224_CR17) 2010; 4
O Alter (7224_CR5) 2000; 97
A Grużdž (7224_CR10) 2005
AWC Liew (7224_CR12) 2011; 12
O Troyanskaya (7224_CR14) 2001; 17
H Attias (7224_CR27) 1999
X Zhang (7224_CR16) 2008; 38
H Kim (7224_CR2) 2005; 21
YH Yang (7224_CR13) 2002; 11
R Jörnsten (7224_CR18) 2005; 21
A Allzadeh (7224_CR9) 2000; 403
10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6
24132028 - IEEE J Biomed Health Inform. 2014 May;18(3):863-71
20681483 - Int J Data Min Bioinform. 2010;4(3):331-47
16118262 - Bioinformatics. 2005 Nov 15;21(22):4155-61
16809389 - Bioinformatics. 2006 Dec 1;22(23):2883-9
18186917 - BMC Bioinformatics. 2008;9:12
18828999 - Comput Biol Med. 2008 Oct;38(10):1112-20
21156727 - Brief Bioinform. 2011 Sep;12(5):498-513
17099935 - J Bioinform Comput Biol. 2006 Oct;4(5):935-57
11478790 - Biochem Biophys Res Commun. 2001 Aug 3;285(5):1244-9
15333461 - Bioinformatics. 2005 Jan 15;21(2):187-98
16549873 - Nucleic Acids Res. 2006;34(5):1608-19
21397683 - Genomics. 2011 May;97(5):257-64
10676951 - Nature. 2000 Feb 3;403(6769):503-11
20056002 - BMC Genomics. 2010;11:15
15374862 - Bioinformatics. 2005 Mar 1;21(5):631-43
14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96
16381818 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):389-94
9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97
11395428 - Bioinformatics. 2001 Jun;17(6):520-5
References_xml – volume: 403
  start-page: 503
  issue: 6769
  year: 2000
  ident: 7224_CR9
  publication-title: Nature
  doi: 10.1038/35000501
– volume-title: Semi-supervised learning
  year: 2006
  ident: 7224_CR24
  doi: 10.7551/mitpress/9780262033589.001.0001
– start-page: 92
  volume-title: Proceedings of the Eleventh Annual Conference on Computational Learning Theory
  year: 1998
  ident: 7224_CR25
  doi: 10.1145/279943.279962
– volume: 12
  start-page: 498
  issue: 5
  year: 2011
  ident: 7224_CR12
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbq080
– volume: 9
  start-page: 3273
  issue: 12
  year: 1998
  ident: 7224_CR29
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.9.12.3273
– volume: 21
  start-page: 187
  issue: 2
  year: 2005
  ident: 7224_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth499
– start-page: 21
  volume-title: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
  year: 1999
  ident: 7224_CR27
– volume: 103
  start-page: 389
  issue: 2
  year: 2006
  ident: 7224_CR30
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0509978103
– volume: 18
  start-page: 863
  issue: 3
  year: 2014
  ident: 7224_CR11
  publication-title: Biomedical and Health Informatics, IEEE Journal
  doi: 10.1109/JBHI.2013.2284795
– volume: 11
  start-page: 108
  issue: 1
  year: 2002
  ident: 7224_CR13
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186002317375640
– volume: 11
  start-page: 15
  issue: 1
  year: 2010
  ident: 7224_CR7
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-15
– volume: 4
  start-page: 935
  issue: 5
  year: 2006
  ident: 7224_CR15
  publication-title: Journal of Bioinformatics and Computational Biology
  doi: 10.1142/S0219720006002302
– volume: 7
  start-page: 4810
  issue: 13
  year: 2011
  ident: 7224_CR22
  publication-title: Journal of Computational Information Systems
– start-page: 521
  volume-title: Intelligent Information Processing and Web Mining
  year: 2005
  ident: 7224_CR10
  doi: 10.1007/3-540-32392-9_63
– volume: 19
  start-page: 1479
  issue: 11
  year: 2005
  ident: 7224_CR26
  publication-title: Knowledge and Data Engineering, IEEE Transactions on
  doi: 10.1109/TKDE.2007.190644
– volume: 22
  start-page: 2883
  issue: 23
  year: 2006
  ident: 7224_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl339
– volume: 34
  start-page: 1608
  issue: 5
  year: 2006
  ident: 7224_CR21
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkl047
– volume: 19
  start-page: 2088
  issue: 16
  year: 2003
  ident: 7224_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg287
– volume: 45
  start-page: 1281
  issue: 4
  year: 2012
  ident: 7224_CR23
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.10.012
– volume: 9
  start-page: 12
  issue: 1
  year: 2008
  ident: 7224_CR28
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-12
– volume: 19
  start-page: 303
  issue: 3
  year: 1993
  ident: 7224_CR4
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(93)90090-R
– volume: 4
  start-page: 331
  issue: 3
  year: 2010
  ident: 7224_CR17
  publication-title: International Journal of Data Mining and Bioinformatics
  doi: 10.1504/IJDMB.2010.033524
– volume: 97
  start-page: 10101
  issue: 18
  year: 2000
  ident: 7224_CR5
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.97.18.10101
– volume: 21
  start-page: 631
  issue: 5
  year: 2005
  ident: 7224_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti033
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 7224_CR3
  publication-title: IEEE
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  ident: 7224_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume: 285
  start-page: 1244
  issue: 5
  year: 2001
  ident: 7224_CR31
  publication-title: Biochemical and Biophysical Research Communications
  doi: 10.1006/bbrc.2001.5277
– volume: 38
  start-page: 1112
  issue: 10
  year: 2008
  ident: 7224_CR16
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2008.08.006
– volume: 97
  start-page: 257
  issue: 5
  year: 2011
  ident: 7224_CR19
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.03.001
– volume: 21
  start-page: 4155
  issue: 22
  year: 2005
  ident: 7224_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti638
– start-page: 382
  volume-title: Bioinformatics and Biomedicine, 2008. BIBM'08. IEEE International Conference
  year: 2008
  ident: 7224_CR20
  doi: 10.1109/BIBM.2008.71
– reference: 24132028 - IEEE J Biomed Health Inform. 2014 May;18(3):863-71
– reference: 10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6
– reference: 15333461 - Bioinformatics. 2005 Jan 15;21(2):187-98
– reference: 11478790 - Biochem Biophys Res Commun. 2001 Aug 3;285(5):1244-9
– reference: 20681483 - Int J Data Min Bioinform. 2010;4(3):331-47
– reference: 10676951 - Nature. 2000 Feb 3;403(6769):503-11
– reference: 21397683 - Genomics. 2011 May;97(5):257-64
– reference: 9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97
– reference: 16381818 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):389-94
– reference: 16809389 - Bioinformatics. 2006 Dec 1;22(23):2883-9
– reference: 18828999 - Comput Biol Med. 2008 Oct;38(10):1112-20
– reference: 20056002 - BMC Genomics. 2010;11:15
– reference: 16549873 - Nucleic Acids Res. 2006;34(5):1608-19
– reference: 18186917 - BMC Bioinformatics. 2008;9:12
– reference: 21156727 - Brief Bioinform. 2011 Sep;12(5):498-513
– reference: 11395428 - Bioinformatics. 2001 Jun;17(6):520-5
– reference: 16118262 - Bioinformatics. 2005 Nov 15;21(22):4155-61
– reference: 17099935 - J Bioinform Comput Biol. 2006 Oct;4(5):935-57
– reference: 14594714 - Bioinformatics. 2003 Nov 1;19(16):2088-96
– reference: 15374862 - Bioinformatics. 2005 Mar 1;21(5):631-43
SSID ssj0017825
Score 2.268733
Snippet Background Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative...
Missing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact on...
BACKGROUNDMissing data is an inevitable phenomenon in gene expression microarray experiments due to instrument failure or human error. It has a negative impact...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S1
SubjectTerms Algorithms
Animal Genetics and Genomics
Bayes Theorem
Biomedical and Life Sciences
Gene Expression Profiling
Humans
Least-Squares Analysis
Life Sciences
Microarrays
Microbial Genetics and Genomics
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Plant Genetics and Genomics
Proteomics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La-MwEBZLl9LuYdm-dtN9oEJvragly7J8DO2WsLC9pIHchCxLtJA6JU5Y8u874xcbWgK9GSwJe0aPbzQz3xByXqTaSjiGmdBFYDIXgWVWauZE5INI8kjXVSL-3qnRRP6ZJtM2Kazqot07l2S9U9fLWqsrDtsoE4DuGVdsnLEx2DwfE6Tzglk8EcPedwBnXtKlx7zZb_MIeoUrX4dH9j7ST2RvVT7b9T87m_13DN1-IZ9b_EiHjcIPyAdfHpLdpqLk-ojcDOnDGpOw6CNWa6jFTjvecAoAlT5hBJ5dLOwaHiu8KaBI-O0p0m00eYzHZHL7-_56xNpCCcyBNbdkAX86jrnyYP5EhXDBeunyHLCG91IrHUlnlRaZQ4NDFBG3whfBp5mObMZtfEJ2ynnpvxGqksSGmAsVhJNWFhbaRaEoYAwnNOcDwjvZGdeyiGMxi5mprQmtDMrboLwNxo5lZgx9Lvo-zw2HxtbWZ51KDMgB_Re29PNVZXiKhFfIeTcgXxsV9eMJFcfIRTYg6Yby-gZIo735pnx8qOm0kdIMYOuAXHZqNu06rrZ-5mU_Fbb_VZWZip--b_TvZB-QWYKX1zz9QXaWi5X_Cehnmf-qJ_sLAY_8_g
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MlLHtYfd22Q0N9rYqtWRZlh_DtlIGK4Ms0D0JWZZoaOKGOGFkv346vtG0EBjszeAjYUlH1nckfd8B-FikyoiwDFOuCk9Fzj3NjFDU8sh5nuSRqrNEfD-XZ1Px7SK5aOnRyIXJFxbFSRczW41uEtDnDb8B8ye41cmy8M10V_KEhd8r5QH1UybpJKOTEAsdyCQg8wEcTM9_jH_VBKPWqOPN3C5YZbRiu2vTHcB5995kf3j6CB5syqXZ_jbz-Y316fQJLLqWNddSrkabdT6yf26JPv6vpj-Fxy2QJePG857BPVc-h_tNasvtC_gyJpdbZIORGaaNqMefdALmJCBlssCrgGa1MtvwWOGWBUHlcUdQ96MhVL6E6enXn5_PaJuxgdoQVq6pD_NbxTGTLsRhUcGtN07YPA-gxzmhpIqENVLxzGLkw4uIGe4K79JMRSZjJj6EQXlduldAZJIYHzMuPbfCiMIEu8gXRajDcsXYEFg3Vtq2cuaYVWOu67BGSY29o7F3NF5iy_QklPnUl1k2Yh57rT90LqBDP-BBiind9abSLEXlLRTfG8JR4xJ9fVzGMYqiDSHdcZbeAPW8d9-Us8ta1xu11QJ-HsJx51a6_aFUez_zuHe9_a2qMl2x1_9m_gYeBoiY4C46S9_CYL3auHcBhq3z9-3s-gvwfizS
  priority: 102
  providerName: Unpaywall
Title A hybrid imputation approach for microarray missing value estimation
URI https://link.springer.com/article/10.1186/1471-2164-16-S9-S1
https://www.ncbi.nlm.nih.gov/pubmed/26330180
https://www.proquest.com/docview/1709711067
https://pubmed.ncbi.nlm.nih.gov/PMC4547405
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-16-S9-S1
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6hrHuoeyzzT6CB3tbtVmKLMsPo2RZSxk0lGWG7EnItkwLqdvFCZv_-93ZsdfSLi9GxpKQ7iTf7_TxO4D3WaitRDPMhM5yJhORs8hKzVLhu1wEia_rKBGnE3USy2-zYLYFbbijtQDLe107iicVL-Yf__yqDnHCf64nvFafOP5gmUDcz7hi04hN0RvqoaWKKJTDqfy3q4DWMGgvztxbjqiBFXr4nFgib9qpO-Dz7hnKbiP1MTxaFde2-m3n8xu26vgJ7K5BpjdqRsVT2HLFM3jYhJ2snsPXkXde0U0t74JCOtS68VpycQ9RrHdJx_TsYmErTJa0nOARK7jziJOjuez4AuLjox_jE7aOpsBSdPmWLKf-D4dcOfSR_EykuXUyTRIEJM5JrbQvU6u0iFLySkTmcytclrsw0r6NuB2-hO3iqnD74KkgsPmQC5WLVFqZWczn51mGdaRCc94H3srOpGuqcYp4MTe1y6GVIdEbEr2hA2aRmWKZD12Z64ZoY2Pud61KDMqBNjls4a5WpeEhsWIRMV4f9hoVdfW1uu1DeEt5XQbi2r79pbg4rzm3ifcMsW0fDlo1m3asbmzmQTcUNveqjEzJX_23xa9hB5FaQIvZPHwD28vFyr1FNLRMBvAgnIUD6H05mpx9x7exGg_qlYVBPfjxGQtM9-LJ2ejnX-0mCbg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5KSkl7KH13-1Sht0bUkmVZPi5tw7ZNctks5CZkWSKBrRPWu5T9953xiy4pC70ZLAl7Ro9vNDPfAHyscuMUHsNcmipyVcrIC6cM9zIJUWZlYtoqEadnerZQPy6yiz4prBmi3QeXZLtTt8va6M8Ct1EuEd1zofm84HO0ee4SgRUx5i_kdPQd4JmXDekx_-y3ewTdwpW3wyNHH-kDONzUN2772y2Xfx1Dx4_gYY8f2bRT-GO4E-oncK-rKLl9Cl-n7HJLSVjsiqo1tGJnA284Q4DKflEEnlut3BYfG7opYET4HRjRbXR5jM9gcfzt_MuM94USuEdrbs0j_XSaCh3Q_Ekq6aMLypclYo0QlNEmUd5pIwtPBoesEuFkqGLIC5O4Qrj0ORzU13V4CUxnmYupkDpKr5yqHLZLYlXhGF4aISYgBtlZ37OIUzGLpW2tCaMtyduSvC3FjhV2jn0-jX1uOg6Nva0_DCqxKAfyX7g6XG8aK3IivCLOuwm86FQ0jid1mhIX2QTyHeWNDYhGe_dNfXXZ0mkTpRnC1gkcDWq2_Tpu9n7m0TgV9v9VU9hGvPq_0d_D4ez89MSefD_7-RruI0rL6CJb5G_gYL3ahLeIhNblu3bi_wEFhP_q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEBYhoUceQu9s0kOFvjUilizL8mPYdEl6hMI2kDch6yCBrbOsdwn77zNjr02WlIW-GSwJSyN5vtHMfEPIF59rK0ENM6F9ZLIUkRVWauZEEqLIykQ3VSJ-XaizS_n9Krt6kMXfRLt3Lsk2pwFZmqr58dTH9ohrdczhl8oEIH3GFRsXbAz2z44E7YY1DIZq2PsRQP9lXarMP_utq6NHGPNxqGTvL90lzxbV1C7v7GTyQCWNXpC9FZakJ63wX5KtUL0iT9rqksvX5PSEXi8xIYveYOWGRgS04xCnAFbpX4zGs7OZXcJjjbcGFMm_A0XqjTan8Q25HH37Mzxjq6IJzIFlN2cRJ52mXAUwhRIvXLRBurIE3BGC1Eon0lmlReHQ-BA-4VYEH0Ne6MQW3KZvyXZ1W4V9QlWW2ZhyoaJw0kpvoV0SvYcxnNCcDwjv1s64FaM4FraYmMay0Mrgehtcb4NxZIUZQ5-vfZ9py6exsfXnTiQG1gF9GbYKt4va8BzJr5D_bkDetSLqxxMqTZGXbEDyNeH1DZBSe_1NdXPdUGsjvRlA2AE56sRsVme63viZR_1W2DyrujA1P_i_0T-Rp79PR-bn-cWPQ_IcAFuGd9o8f0-257NF-ACgaF5-bPb9PWoyBB8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MlLHtYfd22Q0N9rYqtWRZlh_DtlIGK4Ms0D0JWZZoaOKGOGFkv346vtG0EBjszeAjYUlH1nckfd8B-FikyoiwDFOuCk9Fzj3NjFDU8sh5nuSRqrNEfD-XZ1Px7SK5aOnRyIXJFxbFSRczW41uEtDnDb8B8ye41cmy8M10V_KEhd8r5QH1UybpJKOTEAsdyCQg8wEcTM9_jH_VBKPWqOPN3C5YZbRiu2vTHcB5995kf3j6CB5syqXZ_jbz-Y316fQJLLqWNddSrkabdT6yf26JPv6vpj-Fxy2QJePG857BPVc-h_tNasvtC_gyJpdbZIORGaaNqMefdALmJCBlssCrgGa1MtvwWOGWBUHlcUdQ96MhVL6E6enXn5_PaJuxgdoQVq6pD_NbxTGTLsRhUcGtN07YPA-gxzmhpIqENVLxzGLkw4uIGe4K79JMRSZjJj6EQXlduldAZJIYHzMuPbfCiMIEu8gXRajDcsXYEFg3Vtq2cuaYVWOu67BGSY29o7F3NF5iy_QklPnUl1k2Yh57rT90LqBDP-BBiind9abSLEXlLRTfG8JR4xJ9fVzGMYqiDSHdcZbeAPW8d9-Us8ta1xu11QJ-HsJx51a6_aFUez_zuHe9_a2qMl2x1_9m_gYeBoiY4C46S9_CYL3auHcBhq3z9-3s-gvwfizS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+imputation+approach+for+microarray+missing+value+estimation&rft.jtitle=BMC+genomics&rft.au=Li%2C+Huihui&rft.au=Zhao%2C+Changbo&rft.au=Shao%2C+Fengfeng&rft.au=Li%2C+Guo-Zheng&rft.date=2015-08-17&rft.eissn=1471-2164&rft.volume=16+Suppl+9&rft.spage=S1&rft_id=info:doi/10.1186%2F1471-2164-16-S9-S1&rft_id=info%3Apmid%2F26330180&rft.externalDocID=26330180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon