A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip
In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integra...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 16; p. 5347 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
08.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21165347 |
Cover
Abstract | In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor. |
---|---|
AbstractList | In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor. In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor. In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO 2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO 2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO 2 sensor. |
Author | Roels, Joris Baets, Roel Jia, Xiaoning Roelkens, Gunther |
AuthorAffiliation | 2 Center for Nano- and Biophotonics, Ghent University, 9000 Gent, Belgium 1 Photonics Research Group, INTEC, Ghent University-Imec, Technologiepark 126, 9052 Gent, Belgium; Roel.Baets@UGent.be (R.B.); Gunther.Roelkens@UGent.be (G.R.) 3 Melexis Technologies NV, Transportstraat 1, 3980 Tessenderlo, Belgium; jro@melexis.com |
AuthorAffiliation_xml | – name: 2 Center for Nano- and Biophotonics, Ghent University, 9000 Gent, Belgium – name: 1 Photonics Research Group, INTEC, Ghent University-Imec, Technologiepark 126, 9052 Gent, Belgium; Roel.Baets@UGent.be (R.B.); Gunther.Roelkens@UGent.be (G.R.) – name: 3 Melexis Technologies NV, Transportstraat 1, 3980 Tessenderlo, Belgium; jro@melexis.com |
Author_xml | – sequence: 1 givenname: Xiaoning surname: Jia fullname: Jia, Xiaoning – sequence: 2 givenname: Joris surname: Roels fullname: Roels, Joris – sequence: 3 givenname: Roel surname: Baets fullname: Baets, Roel – sequence: 4 givenname: Gunther orcidid: 0000-0002-4667-5092 surname: Roelkens fullname: Roelkens, Gunther |
BookMark | eNplkUtv1DAQgC1URB9w4B9E4gISoX5MnPiCVC0trFRYicfZcuzx1qusvdgJUv99s2xBtJxseb75ZsZzSo5iikjIS0bfCaHoeeGMyUZA-4ScMOBQd5zTo3_ux-S0lA2lXAjRPSPHAqChbadOSHdRfQ4xmHHKoaB7W11Nw3BbLeOI62xGdNWXD8uv1WLFq28YS8rVKtaLm7B7Tp56MxR8cX-ekR9Xl98Xn-rr1cfl4uK6tgByrNHbTvoekCvJ-r610jJmwXqH4EWrbIegqAKkytkejEfqnDe2VUo2XilxRpYHr0tmo3c5bE2-1ckE_fsh5bU2eQx2QC2cFI3lqgFE4Eop49umYw46Kanr-ex6f3Dtpn6LzmIcsxkeSB9GYrjR6_RLd0A55-0seH0vyOnnhGXU21AsDoOJmKaieTNXEi1TMKOvHqGbNOU4f9WealoKEvbTnR8om1MpGb22YTRjSPv6YdCM6v2G9d8NzxlvHmX8af9_9g6z2qPg |
CitedBy_id | crossref_primary_10_1007_s10853_024_10440_x crossref_primary_10_3390_s23031090 crossref_primary_10_1016_j_culher_2023_10_017 crossref_primary_10_3390_s22020502 crossref_primary_10_35848_1347_4065_ad1699 crossref_primary_10_3390_mi15101203 crossref_primary_10_1038_s41378_024_00782_6 crossref_primary_10_1364_OL_480867 crossref_primary_10_3389_fphy_2022_1057519 crossref_primary_10_1016_j_arabjc_2022_104478 crossref_primary_10_1002_adsr_202300094 crossref_primary_10_1016_j_snb_2024_135703 crossref_primary_10_3390_s24175469 crossref_primary_10_46670_JSST_2021_30_6_456 crossref_primary_10_1016_j_infrared_2024_105466 crossref_primary_10_1109_TIM_2024_3375421 crossref_primary_10_1364_OE_460883 crossref_primary_10_1002_adom_202402603 crossref_primary_10_1016_j_measurement_2024_115445 crossref_primary_10_1016_j_scitotenv_2024_175696 crossref_primary_10_3390_en15196961 crossref_primary_10_3390_su15021533 crossref_primary_10_1016_j_enbuild_2022_112738 crossref_primary_10_1080_15275922_2024_2431330 crossref_primary_10_1021_acs_energyfuels_4c05354 crossref_primary_10_1063_5_0203277 crossref_primary_10_3390_s24020457 crossref_primary_10_1016_j_isci_2023_108293 crossref_primary_10_3390_s23146273 crossref_primary_10_1088_1361_6439_aca913 crossref_primary_10_1016_j_snb_2025_137633 crossref_primary_10_1134_S0030400X23030116 |
Cites_doi | 10.1034/j.1600-0668.2003.00189.x 10.3390/s120709635 10.1109/ICSENS.2016.7808664 10.3390/s130404157 10.1021/acs.estlett.1c00183 10.1002/1521-3773(20010202)40:3<518::AID-ANIE518>3.0.CO;2-4 10.3390/s18124345 10.1016/j.snb.2013.06.006 10.1038/s41893-019-0323-1 10.1002/adfm.201500314 10.1016/j.snb.2010.11.049 10.1364/AO.55.007029 10.1016/j.jqsrt.2013.07.002 10.1088/0957-0233/24/1/012004 10.1088/0256-307X/28/7/073302 10.3390/s19194260 10.1016/j.snb.2016.03.081 10.1126/science.abc6197 10.1016/j.sna.2019.03.014 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21165347 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3d635c2954ee42999af7581d48660db2 PMC8402227 10_3390_s21165347 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c446t-efc86fb4e2961bb7c6c11c4cfde4f379c8e49094e09dcb4afe0ddfac79965f993 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:24:29 EDT 2025 Thu Aug 21 18:17:33 EDT 2025 Fri Sep 05 07:25:43 EDT 2025 Fri Jul 25 22:48:10 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 03:56:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-efc86fb4e2961bb7c6c11c4cfde4f379c8e49094e09dcb4afe0ddfac79965f993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4667-5092 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21165347 |
PMID | 34450789 |
PQID | 2565704649 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d635c2954ee42999af7581d48660db2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402227 proquest_miscellaneous_2566037194 proquest_journals_2565704649 crossref_citationtrail_10_3390_s21165347 crossref_primary_10_3390_s21165347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210808 |
PublicationDateYYYYMMDD | 2021-08-08 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210808 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hodgkinson (ref_14) 2012; 24 Liu (ref_11) 2012; 12 Hodgkinson (ref_18) 2013; 186 Rothman (ref_24) 2013; 130 Peng (ref_9) 2021; 8 ref_13 ref_10 ref_15 Ayerden (ref_19) 2016; 236 Wang (ref_1) 2016; 55 Prather (ref_6) 2020; 368 Tan (ref_17) 2013; 13 Sun (ref_25) 2011; 28 Jacobson (ref_5) 2019; 2 Wells (ref_3) 2001; 40 Willa (ref_12) 2015; 25 ref_23 Chen (ref_16) 2019; 290 ref_22 Sklorz (ref_20) 2012; 170 ref_21 Rudnick (ref_8) 2003; 13 ref_2 ref_26 Morawska (ref_7) 2020; 71 ref_4 |
References_xml | – volume: 13 start-page: 237 year: 2003 ident: ref_8 article-title: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration publication-title: Indoor Air doi: 10.1034/j.1600-0668.2003.00189.x – volume: 12 start-page: 9635 year: 2012 ident: ref_11 article-title: A survey on gas sensing technology publication-title: Sensors doi: 10.3390/s120709635 – ident: ref_13 doi: 10.1109/ICSENS.2016.7808664 – volume: 13 start-page: 4157 year: 2013 ident: ref_17 article-title: Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane publication-title: Sensors doi: 10.3390/s130404157 – volume: 8 start-page: 392 year: 2021 ident: ref_9 article-title: Exhaled CO2 as COVID-19 infection risk proxy for different indoor environments and activities publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.1c00183 – volume: 40 start-page: 518 year: 2001 ident: ref_3 article-title: CO2 technology platform: An important tool for environmental problem solving publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010202)40:3<518::AID-ANIE518>3.0.CO;2-4 – ident: ref_26 – volume: 71 start-page: 2311 year: 2020 ident: ref_7 article-title: It is time to address airborne transmission of coronavirus disease 2019 (COVID-19) publication-title: Clin. Infect. Dis. – ident: ref_2 doi: 10.3390/s18124345 – volume: 186 start-page: 580 year: 2013 ident: ref_18 article-title: Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.06.006 – volume: 2 start-page: 691 year: 2019 ident: ref_5 article-title: Direct human health risks of increased atmospheric carbon dioxide publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0323-1 – ident: ref_23 – volume: 25 start-page: 2537 year: 2015 ident: ref_12 article-title: When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO2 Sensing at Room Temperature publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500314 – volume: 170 start-page: 21 year: 2012 ident: ref_20 article-title: Merging ethylene NDIR gas sensors with preconcentrator-devices for sensitivity enhancement publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2010.11.049 – volume: 55 start-page: 7029 year: 2016 ident: ref_1 article-title: Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: Development and deployment publication-title: Appl. Opt. doi: 10.1364/AO.55.007029 – ident: ref_4 – volume: 130 start-page: 4 year: 2013 ident: ref_24 article-title: The HITRAN2012 molecular spectroscopic database publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2013.07.002 – ident: ref_10 – volume: 24 start-page: 012004 year: 2012 ident: ref_14 article-title: Optical gas sensing: A review publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/1/012004 – volume: 28 start-page: 073302 year: 2011 ident: ref_25 article-title: Water vapor interference correction in a non dispersive infrared multi-gas analyzer publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/28/7/073302 – ident: ref_15 – ident: ref_21 doi: 10.3390/s19194260 – volume: 236 start-page: 917 year: 2016 ident: ref_19 article-title: A miniaturized optical gas-composition sensor with integrated sample chamber publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.03.081 – volume: 368 start-page: 1422 year: 2020 ident: ref_6 article-title: Reducing transmission of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6197 – ident: ref_22 – volume: 290 start-page: 119 year: 2019 ident: ref_16 article-title: Highly sensitive photoacoustic gas sensor based on multiple reflections on the cell wall publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.03.014 |
SSID | ssj0023338 |
Score | 2.5080743 |
Snippet | In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating... In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO 2 sensor implemented on a silicon chip. The sensor is based on an integrating... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5347 |
SubjectTerms | Aerosols CO2 sensor Coronaviruses COVID-19 Disease transmission Gases Indoor air quality NDIR optical sensor Outdoor air quality Process controls Response time Sensors silicon photonics Ventilation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWWcWDB0PTZJNsjrVaWsEW1EJvYZ80IGnp4-C_dyZJSwOCF6_ZISQz2Z3vYybfEHLPtRJBKJjrcxTVliFzhY6U64cW8HrIIWMWXb7DqD9mr5NwsjPqC3vCSnng0nGtQENKVFiNMgbPzkRYgLhtzXgUeVoWp6-XeBsyVVGtAJhXqSMUAKlvLX1UmQlwhspO9ilE-mvIst4XuZNoekfksEKItFM-2THZM_kJOdjRDTwlvEPfsjxDTc5safQjRSL5TQcb6QdNh8-Dd9od-fQDaOpsQUe5251m8zMy7r18dvtuNQLBVcDTVq6xikdWMuMnUVvKWEWq3VZMWW2YDeJEccMSYGjGS7SSTFjjaW2FioHGhBawxzlp5LPcXBAqNNwM680WMjrOjVQQGBEIT0qtrOUOedi4JlWVPjiOqfhKgSegF9OtFx1ytzWdl6IYvxk9oX-3BqhjXVyA6KZVdNO_ouuQ5iY6abW5lqmPpVosySYOud0uw7bAWofIzWxd2ESoRpgwh8S1qNYeqL6SZ9NCYBtIL_4ifPkfb3BF9n1sg8EuE94kjdViba4Bx6zkTfHJ_gDhjvAJ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BuMABlUdVU0AL6oEDFo69dtYHhCCAAKkB0SJxs_ZZLFV2moRD_z0zjm1iCXH1jtbWzO7OfJ7ZbwB-CKNlFEvuh4JItVXMfWkS7Yexw3g9FugxqyrfUXLzxO-e4-clGDV3YaissjkTq4PalJr-kZ-ElJ-jPFx6Nv7nU9coyq42LTRk3VrBnFYUY8uwgkdyHPRg5eJq9PDYQrAIEdmcXyhCsH8yDYl9JqLeKgteqSLv70Sc3XrJBQd0_QXW68iRnc9NvQFLttiEtQU-wS0Q5-xnXuTE1ZlPrTlmBDD_s9uGEsKw0eXtIxveh-wXwtdywu4Lf_iSj7fh6frq9_DGr1sj-Brx28y3TovEKW7DNOkrNdCJ7vc1185Y7qJBqoXlKSI3G6RGKy6dDYxxUg8Q3sQOY5Kv0CvKwn4DJg1ORnloh56e-klqNJiMZKCU0c4JD44a1WS65g2n9hV_M8QPpMWs1aIHh63oeE6W8ZHQBem3FSB-6-pBOfmT1dsliwwGQppykNaSx0ylQ2DTN1wkSWBU6MFuY52s3nTT7H2JeHDQDuN2oRyILGz5WskkxFKYcg8GHat2Pqg7UuQvFfE2gmG6Orzz-cu_w2pIhS9UVyJ2oTebvNo9jFxmar9ejm8dJ-8A priority: 102 providerName: ProQuest |
Title | A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip |
URI | https://www.proquest.com/docview/2565704649 https://www.proquest.com/docview/2566037194 https://pubmed.ncbi.nlm.nih.gov/PMC8402227 https://doaj.org/article/3d635c2954ee42999af7581d48660db2 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB3xcWkPqNBWdaHRUvXAAbfJem2vDxWCQApIhIo2Um7WfhZLyKFJkMq_74xjW1jiyMUHe2TZM7uaeX7jNwBfpDUqipUIuSRRbR2LUNnEhDz2WK_HEjNm1eU7Ts4n4nIaT9egmbFZO3DxLLSjeVKT-d3Xf38fj3DDfyfEiZD924KThkwk0nXYrGgi6uATLZnAI4RhK1GhrnknFVWK_Z0ys9sk-STrjN7AVl0usuNVfLdhzZU78PqJiOBbkMfsqigLEugsFs4eMkKVj-yi0YGwbHx6ccOG15z9Qsw6m7PrMhzeFvfvYDI6-z08D-t5CKFB0LYMnTcy8Vo4niUDrVOTmMHACOOtEz5KMyOdyBCuuX5mjRbKu761XpkUMU3ssRB5DxvlrHQfgCmLNyPy2WN6pyGSBqOkItXX2hrvZQAHjWtyU4uF08yKuxxBA3kxb70YwOfW9H6lkPGc0Qn5tzUgUevqxGz-J6_3SB5ZrH4MEY_OUZrMlEc0M7BCJknfah7AXhOdvFkoOSfelvjZLID99jLuESI-VOlmD5VNQtKEmQgg7US180DdK2VxW6ltIwKm_4U_vsQb7MIrTj0x1HIi92BjOX9wn7CoWeoerKfTFI9y9KMHmydn4583veoDQa9azP8B-yD6uw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4VOUlDAUWBBIHrDrrtWMfKtSmrRLapqi0Um9mn60lZKdJKtQ_x29jxrFNLCFuvXpXtjU7szPfzuw3AB8So2UYSeHzhEi1VSR8aWLt88hhvB4l6DGrKt9JPLoQXy-jyzX43dyFobLKZk-sNmpTajoj3-aUn6M8XPpleuNT1yjKrjYtNGTdWsHsVBRj9cWOI3v3CyHcfGe8j-v9kfPDg_PhyK-7DPgaodDCt04nsVPC8jTuKzXQse73tdDOWOHCQaoTK1IEQTZIjVZCOhsY46QeIFKIXEpkTOgC1gUdoPRgfe9g8u2shXwhIsAln1EYpsH2nBPbTUi9XFa8YNUsoBPhduszVxze4SZs1JEq212q1mNYs8UTeLTCX_gUkl12khc5cYPmc2s-MwK0d2zcUFAYNtkfn7HhKWffES6XM3Za-MPrfPoMLu5FSM-hV5SFfQFMGnwZ5b0dRhbUv1KjgshQBkoZ7VziwadGNJmuecqpXcbPDPEKSTFrpejB-3bqdEnO8a9JeyTfdgLxaVcPytlVVptnFhoMvDTlPK0lD51Kh0Cqb0QSx4FR3IOtZnWy2sjn2V-V9OBdO4zmSTkXWdjytpoTEytiKjwYdFa180PdkSK_roi-EXzTVeWX___4W3gwOj85zo7Hk6NX8JBT0Q3VtCRb0FvMbu1rjJoW6k2tmgx-3Lc1_AGKXi6y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KC6IP4idGq66i4IPhcpvNxz4Uae969KxeS7XQt7jZDxuQ5Ly7Iv0X_aucySXxAuJbX5MhCbMzO_PLzP4G4E1qtAojJXyeEql2HglfmVj7PHKYr0cpRsy6y3cWH52LjxfRxRb8bs_CUFtluyfWG7WpNP0jH3Cqz1EdTg5c0xZxOp58mP_0aYIUVVrbcRqqGbNg9mq6seaQx7G9_oVwbrk3HePav-V8cvh1dOQ3Ewd8jbBo5Vun09jlwnIZD_M80bEeDrXQzljhwkTq1AqJgMgG0uhcKGcDY5zSCaKGyEkiZsJwsJNg1EcguHNwODs96-BfiGhwzW0UhjIYLDkx34Q012UjItaDA3rZbr9XcyP4Te7B3SZrZftrM7sPW7Z8AHc2uAwfQrrPPhdlQTyhxdKa94zA7TWbtnQUhs3G0zM2OuHsC0LnasFOSn90WcwfwfmNKOkxbJdVaZ8AUwYfRjVwh1kGzbLUaCwqVEGeG-1c6sG7VjWZbjjLaXTGjwyxC2kx67TowetOdL4m6viX0AHptxMgbu36QrX4njWumoUGkzBN9U9rKVpL5RBUDY1I4zgwOfdgt12drHH4ZfbXPD141d1GV6X6iyptdVXLxMSQKIUHSW9Vex_Uv1MWlzXpNwJxOrb89P8vfwm30CuyT9PZ8TO4zan_htpb0l3YXi2u7HNMoFb5i8YyGXy7aWf4A3ABMvY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Miniaturised%2C+Fully+Integrated+NDIR+CO2+Sensor+On-Chip&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xiaoning+Jia&rft.au=Joris+Roels&rft.au=Roel+Baets&rft.au=Gunther+Roelkens&rft.date=2021-08-08&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=16&rft.spage=5347&rft_id=info:doi/10.3390%2Fs21165347&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3d635c2954ee42999af7581d48660db2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |