A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip

In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integra...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 16; p. 5347
Main Authors Jia, Xiaoning, Roels, Joris, Baets, Roel, Roelkens, Gunther
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.08.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21165347

Cover

Abstract In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.
AbstractList In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.
In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.
In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO 2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO 2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO 2 sensor.
Author Roels, Joris
Baets, Roel
Jia, Xiaoning
Roelkens, Gunther
AuthorAffiliation 2 Center for Nano- and Biophotonics, Ghent University, 9000 Gent, Belgium
1 Photonics Research Group, INTEC, Ghent University-Imec, Technologiepark 126, 9052 Gent, Belgium; Roel.Baets@UGent.be (R.B.); Gunther.Roelkens@UGent.be (G.R.)
3 Melexis Technologies NV, Transportstraat 1, 3980 Tessenderlo, Belgium; jro@melexis.com
AuthorAffiliation_xml – name: 2 Center for Nano- and Biophotonics, Ghent University, 9000 Gent, Belgium
– name: 1 Photonics Research Group, INTEC, Ghent University-Imec, Technologiepark 126, 9052 Gent, Belgium; Roel.Baets@UGent.be (R.B.); Gunther.Roelkens@UGent.be (G.R.)
– name: 3 Melexis Technologies NV, Transportstraat 1, 3980 Tessenderlo, Belgium; jro@melexis.com
Author_xml – sequence: 1
  givenname: Xiaoning
  surname: Jia
  fullname: Jia, Xiaoning
– sequence: 2
  givenname: Joris
  surname: Roels
  fullname: Roels, Joris
– sequence: 3
  givenname: Roel
  surname: Baets
  fullname: Baets, Roel
– sequence: 4
  givenname: Gunther
  orcidid: 0000-0002-4667-5092
  surname: Roelkens
  fullname: Roelkens, Gunther
BookMark eNplkUtv1DAQgC1URB9w4B9E4gISoX5MnPiCVC0trFRYicfZcuzx1qusvdgJUv99s2xBtJxseb75ZsZzSo5iikjIS0bfCaHoeeGMyUZA-4ScMOBQd5zTo3_ux-S0lA2lXAjRPSPHAqChbadOSHdRfQ4xmHHKoaB7W11Nw3BbLeOI62xGdNWXD8uv1WLFq28YS8rVKtaLm7B7Tp56MxR8cX-ekR9Xl98Xn-rr1cfl4uK6tgByrNHbTvoekCvJ-r610jJmwXqH4EWrbIegqAKkytkejEfqnDe2VUo2XilxRpYHr0tmo3c5bE2-1ckE_fsh5bU2eQx2QC2cFI3lqgFE4Eop49umYw46Kanr-ex6f3Dtpn6LzmIcsxkeSB9GYrjR6_RLd0A55-0seH0vyOnnhGXU21AsDoOJmKaieTNXEi1TMKOvHqGbNOU4f9WealoKEvbTnR8om1MpGb22YTRjSPv6YdCM6v2G9d8NzxlvHmX8af9_9g6z2qPg
CitedBy_id crossref_primary_10_1007_s10853_024_10440_x
crossref_primary_10_3390_s23031090
crossref_primary_10_1016_j_culher_2023_10_017
crossref_primary_10_3390_s22020502
crossref_primary_10_35848_1347_4065_ad1699
crossref_primary_10_3390_mi15101203
crossref_primary_10_1038_s41378_024_00782_6
crossref_primary_10_1364_OL_480867
crossref_primary_10_3389_fphy_2022_1057519
crossref_primary_10_1016_j_arabjc_2022_104478
crossref_primary_10_1002_adsr_202300094
crossref_primary_10_1016_j_snb_2024_135703
crossref_primary_10_3390_s24175469
crossref_primary_10_46670_JSST_2021_30_6_456
crossref_primary_10_1016_j_infrared_2024_105466
crossref_primary_10_1109_TIM_2024_3375421
crossref_primary_10_1364_OE_460883
crossref_primary_10_1002_adom_202402603
crossref_primary_10_1016_j_measurement_2024_115445
crossref_primary_10_1016_j_scitotenv_2024_175696
crossref_primary_10_3390_en15196961
crossref_primary_10_3390_su15021533
crossref_primary_10_1016_j_enbuild_2022_112738
crossref_primary_10_1080_15275922_2024_2431330
crossref_primary_10_1021_acs_energyfuels_4c05354
crossref_primary_10_1063_5_0203277
crossref_primary_10_3390_s24020457
crossref_primary_10_1016_j_isci_2023_108293
crossref_primary_10_3390_s23146273
crossref_primary_10_1088_1361_6439_aca913
crossref_primary_10_1016_j_snb_2025_137633
crossref_primary_10_1134_S0030400X23030116
Cites_doi 10.1034/j.1600-0668.2003.00189.x
10.3390/s120709635
10.1109/ICSENS.2016.7808664
10.3390/s130404157
10.1021/acs.estlett.1c00183
10.1002/1521-3773(20010202)40:3<518::AID-ANIE518>3.0.CO;2-4
10.3390/s18124345
10.1016/j.snb.2013.06.006
10.1038/s41893-019-0323-1
10.1002/adfm.201500314
10.1016/j.snb.2010.11.049
10.1364/AO.55.007029
10.1016/j.jqsrt.2013.07.002
10.1088/0957-0233/24/1/012004
10.1088/0256-307X/28/7/073302
10.3390/s19194260
10.1016/j.snb.2016.03.081
10.1126/science.abc6197
10.1016/j.sna.2019.03.014
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21165347
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3d635c2954ee42999af7581d48660db2
PMC8402227
10_3390_s21165347
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-efc86fb4e2961bb7c6c11c4cfde4f379c8e49094e09dcb4afe0ddfac79965f993
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:24:29 EDT 2025
Thu Aug 21 18:17:33 EDT 2025
Fri Sep 05 07:25:43 EDT 2025
Fri Jul 25 22:48:10 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 03:56:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-efc86fb4e2961bb7c6c11c4cfde4f379c8e49094e09dcb4afe0ddfac79965f993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4667-5092
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21165347
PMID 34450789
PQID 2565704649
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3d635c2954ee42999af7581d48660db2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402227
proquest_miscellaneous_2566037194
proquest_journals_2565704649
crossref_citationtrail_10_3390_s21165347
crossref_primary_10_3390_s21165347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210808
PublicationDateYYYYMMDD 2021-08-08
PublicationDate_xml – month: 8
  year: 2021
  text: 20210808
  day: 8
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hodgkinson (ref_14) 2012; 24
Liu (ref_11) 2012; 12
Hodgkinson (ref_18) 2013; 186
Rothman (ref_24) 2013; 130
Peng (ref_9) 2021; 8
ref_13
ref_10
ref_15
Ayerden (ref_19) 2016; 236
Wang (ref_1) 2016; 55
Prather (ref_6) 2020; 368
Tan (ref_17) 2013; 13
Sun (ref_25) 2011; 28
Jacobson (ref_5) 2019; 2
Wells (ref_3) 2001; 40
Willa (ref_12) 2015; 25
ref_23
Chen (ref_16) 2019; 290
ref_22
Sklorz (ref_20) 2012; 170
ref_21
Rudnick (ref_8) 2003; 13
ref_2
ref_26
Morawska (ref_7) 2020; 71
ref_4
References_xml – volume: 13
  start-page: 237
  year: 2003
  ident: ref_8
  article-title: Risk of indoor airborne infection transmission estimated from carbon dioxide concentration
  publication-title: Indoor Air
  doi: 10.1034/j.1600-0668.2003.00189.x
– volume: 12
  start-page: 9635
  year: 2012
  ident: ref_11
  article-title: A survey on gas sensing technology
  publication-title: Sensors
  doi: 10.3390/s120709635
– ident: ref_13
  doi: 10.1109/ICSENS.2016.7808664
– volume: 13
  start-page: 4157
  year: 2013
  ident: ref_17
  article-title: Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane
  publication-title: Sensors
  doi: 10.3390/s130404157
– volume: 8
  start-page: 392
  year: 2021
  ident: ref_9
  article-title: Exhaled CO2 as COVID-19 infection risk proxy for different indoor environments and activities
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00183
– volume: 40
  start-page: 518
  year: 2001
  ident: ref_3
  article-title: CO2 technology platform: An important tool for environmental problem solving
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010202)40:3<518::AID-ANIE518>3.0.CO;2-4
– ident: ref_26
– volume: 71
  start-page: 2311
  year: 2020
  ident: ref_7
  article-title: It is time to address airborne transmission of coronavirus disease 2019 (COVID-19)
  publication-title: Clin. Infect. Dis.
– ident: ref_2
  doi: 10.3390/s18124345
– volume: 186
  start-page: 580
  year: 2013
  ident: ref_18
  article-title: Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.06.006
– volume: 2
  start-page: 691
  year: 2019
  ident: ref_5
  article-title: Direct human health risks of increased atmospheric carbon dioxide
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0323-1
– ident: ref_23
– volume: 25
  start-page: 2537
  year: 2015
  ident: ref_12
  article-title: When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO2 Sensing at Room Temperature
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500314
– volume: 170
  start-page: 21
  year: 2012
  ident: ref_20
  article-title: Merging ethylene NDIR gas sensors with preconcentrator-devices for sensitivity enhancement
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2010.11.049
– volume: 55
  start-page: 7029
  year: 2016
  ident: ref_1
  article-title: Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: Development and deployment
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.007029
– ident: ref_4
– volume: 130
  start-page: 4
  year: 2013
  ident: ref_24
  article-title: The HITRAN2012 molecular spectroscopic database
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2013.07.002
– ident: ref_10
– volume: 24
  start-page: 012004
  year: 2012
  ident: ref_14
  article-title: Optical gas sensing: A review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/1/012004
– volume: 28
  start-page: 073302
  year: 2011
  ident: ref_25
  article-title: Water vapor interference correction in a non dispersive infrared multi-gas analyzer
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/28/7/073302
– ident: ref_15
– ident: ref_21
  doi: 10.3390/s19194260
– volume: 236
  start-page: 917
  year: 2016
  ident: ref_19
  article-title: A miniaturized optical gas-composition sensor with integrated sample chamber
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.03.081
– volume: 368
  start-page: 1422
  year: 2020
  ident: ref_6
  article-title: Reducing transmission of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abc6197
– ident: ref_22
– volume: 290
  start-page: 119
  year: 2019
  ident: ref_16
  article-title: Highly sensitive photoacoustic gas sensor based on multiple reflections on the cell wall
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.03.014
SSID ssj0023338
Score 2.5080743
Snippet In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating...
In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO 2 sensor implemented on a silicon chip. The sensor is based on an integrating...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5347
SubjectTerms Aerosols
CO2 sensor
Coronaviruses
COVID-19
Disease transmission
Gases
Indoor air quality
NDIR
optical sensor
Outdoor air quality
Process controls
Response time
Sensors
silicon photonics
Ventilation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWWcWDB0PTZJNsjrVaWsEW1EJvYZ80IGnp4-C_dyZJSwOCF6_ZISQz2Z3vYybfEHLPtRJBKJjrcxTVliFzhY6U64cW8HrIIWMWXb7DqD9mr5NwsjPqC3vCSnng0nGtQENKVFiNMgbPzkRYgLhtzXgUeVoWp6-XeBsyVVGtAJhXqSMUAKlvLX1UmQlwhspO9ilE-mvIst4XuZNoekfksEKItFM-2THZM_kJOdjRDTwlvEPfsjxDTc5safQjRSL5TQcb6QdNh8-Dd9od-fQDaOpsQUe5251m8zMy7r18dvtuNQLBVcDTVq6xikdWMuMnUVvKWEWq3VZMWW2YDeJEccMSYGjGS7SSTFjjaW2FioHGhBawxzlp5LPcXBAqNNwM680WMjrOjVQQGBEIT0qtrOUOedi4JlWVPjiOqfhKgSegF9OtFx1ytzWdl6IYvxk9oX-3BqhjXVyA6KZVdNO_ouuQ5iY6abW5lqmPpVosySYOud0uw7bAWofIzWxd2ESoRpgwh8S1qNYeqL6SZ9NCYBtIL_4ifPkfb3BF9n1sg8EuE94kjdViba4Bx6zkTfHJ_gDhjvAJ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BuMABlUdVU0AL6oEDFo69dtYHhCCAAKkB0SJxs_ZZLFV2moRD_z0zjm1iCXH1jtbWzO7OfJ7ZbwB-CKNlFEvuh4JItVXMfWkS7Yexw3g9FugxqyrfUXLzxO-e4-clGDV3YaissjkTq4PalJr-kZ-ElJ-jPFx6Nv7nU9coyq42LTRk3VrBnFYUY8uwgkdyHPRg5eJq9PDYQrAIEdmcXyhCsH8yDYl9JqLeKgteqSLv70Sc3XrJBQd0_QXW68iRnc9NvQFLttiEtQU-wS0Q5-xnXuTE1ZlPrTlmBDD_s9uGEsKw0eXtIxveh-wXwtdywu4Lf_iSj7fh6frq9_DGr1sj-Brx28y3TovEKW7DNOkrNdCJ7vc1185Y7qJBqoXlKSI3G6RGKy6dDYxxUg8Q3sQOY5Kv0CvKwn4DJg1ORnloh56e-klqNJiMZKCU0c4JD44a1WS65g2n9hV_M8QPpMWs1aIHh63oeE6W8ZHQBem3FSB-6-pBOfmT1dsliwwGQppykNaSx0ylQ2DTN1wkSWBU6MFuY52s3nTT7H2JeHDQDuN2oRyILGz5WskkxFKYcg8GHat2Pqg7UuQvFfE2gmG6Orzz-cu_w2pIhS9UVyJ2oTebvNo9jFxmar9ejm8dJ-8A
  priority: 102
  providerName: ProQuest
Title A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip
URI https://www.proquest.com/docview/2565704649
https://www.proquest.com/docview/2566037194
https://pubmed.ncbi.nlm.nih.gov/PMC8402227
https://doaj.org/article/3d635c2954ee42999af7581d48660db2
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB3xcWkPqNBWdaHRUvXAAbfJem2vDxWCQApIhIo2Um7WfhZLyKFJkMq_74xjW1jiyMUHe2TZM7uaeX7jNwBfpDUqipUIuSRRbR2LUNnEhDz2WK_HEjNm1eU7Ts4n4nIaT9egmbFZO3DxLLSjeVKT-d3Xf38fj3DDfyfEiZD924KThkwk0nXYrGgi6uATLZnAI4RhK1GhrnknFVWK_Z0ys9sk-STrjN7AVl0usuNVfLdhzZU78PqJiOBbkMfsqigLEugsFs4eMkKVj-yi0YGwbHx6ccOG15z9Qsw6m7PrMhzeFvfvYDI6-z08D-t5CKFB0LYMnTcy8Vo4niUDrVOTmMHACOOtEz5KMyOdyBCuuX5mjRbKu761XpkUMU3ssRB5DxvlrHQfgCmLNyPy2WN6pyGSBqOkItXX2hrvZQAHjWtyU4uF08yKuxxBA3kxb70YwOfW9H6lkPGc0Qn5tzUgUevqxGz-J6_3SB5ZrH4MEY_OUZrMlEc0M7BCJknfah7AXhOdvFkoOSfelvjZLID99jLuESI-VOlmD5VNQtKEmQgg7US180DdK2VxW6ltIwKm_4U_vsQb7MIrTj0x1HIi92BjOX9wn7CoWeoerKfTFI9y9KMHmydn4583veoDQa9azP8B-yD6uw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4VOUlDAUWBBIHrDrrtWMfKtSmrRLapqi0Um9mn60lZKdJKtQ_x29jxrFNLCFuvXpXtjU7szPfzuw3AB8So2UYSeHzhEi1VSR8aWLt88hhvB4l6DGrKt9JPLoQXy-jyzX43dyFobLKZk-sNmpTajoj3-aUn6M8XPpleuNT1yjKrjYtNGTdWsHsVBRj9cWOI3v3CyHcfGe8j-v9kfPDg_PhyK-7DPgaodDCt04nsVPC8jTuKzXQse73tdDOWOHCQaoTK1IEQTZIjVZCOhsY46QeIFKIXEpkTOgC1gUdoPRgfe9g8u2shXwhIsAln1EYpsH2nBPbTUi9XFa8YNUsoBPhduszVxze4SZs1JEq212q1mNYs8UTeLTCX_gUkl12khc5cYPmc2s-MwK0d2zcUFAYNtkfn7HhKWffES6XM3Za-MPrfPoMLu5FSM-hV5SFfQFMGnwZ5b0dRhbUv1KjgshQBkoZ7VziwadGNJmuecqpXcbPDPEKSTFrpejB-3bqdEnO8a9JeyTfdgLxaVcPytlVVptnFhoMvDTlPK0lD51Kh0Cqb0QSx4FR3IOtZnWy2sjn2V-V9OBdO4zmSTkXWdjytpoTEytiKjwYdFa180PdkSK_roi-EXzTVeWX___4W3gwOj85zo7Hk6NX8JBT0Q3VtCRb0FvMbu1rjJoW6k2tmgx-3Lc1_AGKXi6y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KC6IP4idGq66i4IPhcpvNxz4Uae969KxeS7XQt7jZDxuQ5Ly7Iv0X_aucySXxAuJbX5MhCbMzO_PLzP4G4E1qtAojJXyeEql2HglfmVj7PHKYr0cpRsy6y3cWH52LjxfRxRb8bs_CUFtluyfWG7WpNP0jH3Cqz1EdTg5c0xZxOp58mP_0aYIUVVrbcRqqGbNg9mq6seaQx7G9_oVwbrk3HePav-V8cvh1dOQ3Ewd8jbBo5Vun09jlwnIZD_M80bEeDrXQzljhwkTq1AqJgMgG0uhcKGcDY5zSCaKGyEkiZsJwsJNg1EcguHNwODs96-BfiGhwzW0UhjIYLDkx34Q012UjItaDA3rZbr9XcyP4Te7B3SZrZftrM7sPW7Z8AHc2uAwfQrrPPhdlQTyhxdKa94zA7TWbtnQUhs3G0zM2OuHsC0LnasFOSn90WcwfwfmNKOkxbJdVaZ8AUwYfRjVwh1kGzbLUaCwqVEGeG-1c6sG7VjWZbjjLaXTGjwyxC2kx67TowetOdL4m6viX0AHptxMgbu36QrX4njWumoUGkzBN9U9rKVpL5RBUDY1I4zgwOfdgt12drHH4ZfbXPD141d1GV6X6iyptdVXLxMSQKIUHSW9Vex_Uv1MWlzXpNwJxOrb89P8vfwm30CuyT9PZ8TO4zan_htpb0l3YXi2u7HNMoFb5i8YyGXy7aWf4A3ABMvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Miniaturised%2C+Fully+Integrated+NDIR+CO2+Sensor+On-Chip&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xiaoning+Jia&rft.au=Joris+Roels&rft.au=Roel+Baets&rft.au=Gunther+Roelkens&rft.date=2021-08-08&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=16&rft.spage=5347&rft_id=info:doi/10.3390%2Fs21165347&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3d635c2954ee42999af7581d48660db2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon