Current status of genomic evaluation
Abstract Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic...
Saved in:
| Published in | Journal of animal science Vol. 98; no. 4 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
US
Oxford University Press
01.04.2020
American Society of Animal Science |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-8812 1525-3163 1525-3015 1544-7847 1525-3163 |
| DOI | 10.1093/jas/skaa101 |
Cover
| Abstract | Abstract
Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented. |
|---|---|
| AbstractList | Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented. Abstract Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented. Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented.Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented. |
| Author | Misztal, Ignacy Legarra, Andres Lourenco, Daniela |
| AuthorAffiliation | 2 Department of Animal Genetics, Institut National de la Recherche Agronomique , Castanet-Tolosan, France 1 Department of Animal and Dairy Science, University of Georgia , Athens, GA |
| AuthorAffiliation_xml | – name: 1 Department of Animal and Dairy Science, University of Georgia , Athens, GA – name: 2 Department of Animal Genetics, Institut National de la Recherche Agronomique , Castanet-Tolosan, France |
| Author_xml | – sequence: 1 givenname: Ignacy orcidid: 0000-0002-0382-1897 surname: Misztal fullname: Misztal, Ignacy email: ignacy@uga.edu organization: Department of Animal and Dairy Science, University of Georgia, Athens, GA – sequence: 2 givenname: Daniela surname: Lourenco fullname: Lourenco, Daniela organization: Department of Animal and Dairy Science, University of Georgia, Athens, GA – sequence: 3 givenname: Andres surname: Legarra fullname: Legarra, Andres organization: Department of Animal Genetics, Institut National de la Recherche Agronomique, Castanet-Tolosan, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32267923$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02916894$$DView record in HAL |
| BookMark | eNqFkc1LwzAYh4Mo7kNP3mUHEUXr8tF06UUYQ50w8KLn8K59s3V2zWzayf57Ozu_BuopkDy_35snaZHdzGZIyBGjV4yGojsD13XPAIyyHdJkkktPsEDskialnHlKMd4gLedmlDIuQ7lPGoLzoBdy0SQngzLPMSs6roCidB1rOhPM7DyJOriEtIQisdkB2TOQOjzcrG3ydHvzOBh6o4e7-0F_5EW-HxRejFzGDCJgCnAMY-AiMlzwGIMQDTdSxBCArI5DlBJjIRANo4aaIPbH6Is2uax7y2wBq1dIU73IkznkK82oXsvqSlZvZCv8usYX5XiOcVRp5PAVsZDonydZMtUTu9Q9poSQvCo4rwumW7Fhf6TXe5SHLFChv1wPO9sMy-1Lia7Q88RFmKaQoS2d5kIpSqmvVIUef7_XZ_PHq1fARQ1EuXUuR_OPJtuio6R4_5dKKkl_yZzWGVsu_ix_A1sos54 |
| CitedBy_id | crossref_primary_10_3389_fgene_2021_642065 crossref_primary_10_1016_j_meatsci_2021_108707 crossref_primary_10_1093_jas_skac227 crossref_primary_10_3168_jds_2021_21016 crossref_primary_10_1016_j_animal_2022_100673 crossref_primary_10_1080_1828051X_2024_2367673 crossref_primary_10_3168_jds_2021_20293 crossref_primary_10_1016_j_isci_2022_104005 crossref_primary_10_1080_1828051X_2024_2329711 crossref_primary_10_1007_s11250_023_03508_4 crossref_primary_10_1016_j_aquaculture_2024_741622 crossref_primary_10_3168_jds_2021_21145 crossref_primary_10_3389_fgene_2022_1012205 crossref_primary_10_1016_j_smallrumres_2022_106835 crossref_primary_10_3168_jdsc_2021_0177 crossref_primary_10_3390_genes16020131 crossref_primary_10_1093_jas_skab261 crossref_primary_10_3390_ani14202961 crossref_primary_10_26897_2949_4710_2023_2_37_48 crossref_primary_10_1111_eva_13261 crossref_primary_10_1186_s12711_023_00781_7 crossref_primary_10_1016_j_psj_2024_104063 crossref_primary_10_1111_jbg_12509 crossref_primary_10_14202_vetworld_2021_3119_3125 crossref_primary_10_1017_S0022029922000395 crossref_primary_10_1093_jas_skab353 crossref_primary_10_3390_ani13182943 crossref_primary_10_3168_jds_2020_19821 crossref_primary_10_3168_jds_2021_21713 crossref_primary_10_3390_vetsci9040163 crossref_primary_10_3390_agriculture12030388 crossref_primary_10_1071_AN21581 crossref_primary_10_3168_jds_2020_18969 crossref_primary_10_1111_jbg_12759 crossref_primary_10_3168_jds_2023_24082 crossref_primary_10_1186_s12711_024_00939_x crossref_primary_10_3389_fvets_2024_1320484 crossref_primary_10_3168_jds_2022_22629 crossref_primary_10_3389_fgene_2021_692356 crossref_primary_10_1093_jas_skab243 crossref_primary_10_5194_aab_66_163_2023 crossref_primary_10_1093_jas_skab004 crossref_primary_10_5713_ab_22_0327 crossref_primary_10_3389_fgene_2021_625335 crossref_primary_10_1186_s12711_021_00645_y crossref_primary_10_1111_nph_18480 crossref_primary_10_1016_j_aquaculture_2022_739088 crossref_primary_10_1016_j_livsci_2025_105689 crossref_primary_10_3389_fgene_2021_769849 crossref_primary_10_3168_jds_2021_21152 crossref_primary_10_1080_07388551_2022_2104690 crossref_primary_10_1186_s12711_023_00832_z crossref_primary_10_1093_g3journal_jkad164 crossref_primary_10_1186_s41065_023_00285_w crossref_primary_10_1111_jbg_12665 crossref_primary_10_3168_jds_2022_22754 crossref_primary_10_1016_j_egg_2024_100257 crossref_primary_10_1071_AN21045 crossref_primary_10_12750_JARB_38_4_268 crossref_primary_10_3390_ani13233609 crossref_primary_10_3390_genes15040494 crossref_primary_10_3168_jds_2020_19838 crossref_primary_10_1002_aro2_89 crossref_primary_10_3390_agriculture12101524 crossref_primary_10_1016_j_aqrep_2024_102468 crossref_primary_10_3390_ani13121973 crossref_primary_10_1016_j_animal_2025_101434 crossref_primary_10_1186_s12711_021_00683_6 crossref_primary_10_1016_j_animal_2023_100980 crossref_primary_10_3389_fgene_2022_862838 crossref_primary_10_46897_livestockstudies_1209084 crossref_primary_10_1007_s13353_020_00598_w crossref_primary_10_3390_ani14071098 crossref_primary_10_1111_age_13275 crossref_primary_10_1093_g3journal_jkac137 crossref_primary_10_3390_microorganisms12102091 crossref_primary_10_24072_pcjournal_300 crossref_primary_10_1016_j_animal_2021_100292 crossref_primary_10_56407_bs_agrarian_1_2023_20 crossref_primary_10_3390_ani11061815 crossref_primary_10_1093_jas_skad333 crossref_primary_10_48130_forres_0024_0022 crossref_primary_10_1186_s12711_024_00925_3 crossref_primary_10_3389_fgene_2021_643733 crossref_primary_10_3168_jds_2020_19468 crossref_primary_10_3168_jds_2023_24208 crossref_primary_10_3168_jds_2023_24207 crossref_primary_10_1111_age_13483 crossref_primary_10_3390_f13101554 crossref_primary_10_3390_genes16020159 crossref_primary_10_1186_s12711_023_00808_z crossref_primary_10_3390_genes12121886 crossref_primary_10_1016_j_aqrep_2021_100660 crossref_primary_10_1093_jas_skae155 crossref_primary_10_1017_S0021859624000364 crossref_primary_10_1016_j_cj_2021_09_001 crossref_primary_10_1093_jas_skad104 crossref_primary_10_1016_j_animal_2024_101118 crossref_primary_10_3168_jds_2021_20416 crossref_primary_10_1007_s10126_023_10229_0 crossref_primary_10_1007_s13353_022_00685_0 crossref_primary_10_3168_jds_2021_20263 crossref_primary_10_1186_s12864_024_10640_4 crossref_primary_10_1016_j_livsci_2023_105287 crossref_primary_10_1186_s12711_022_00741_7 |
| Cites_doi | 10.1186/s12711-019-0516-0 10.1186/s12711-017-0318-1 10.1186/s12711-018-0426-6 10.1186/1297-9686-44-26 10.1186/1297-9686-35-1-77 10.1186/s12711-015-0165-x 10.1186/s12711-018-0410-1 10.3168/jds.2015-10433 10.1046/j.1439-0388.1999.00210.x 10.3168/jds.2019-16789 10.2527/jas2017.1912 10.3168/jds.2018-15419 10.3168/jds.2013-7752 10.1093/genetics/157.4.1819 10.3168/jds.2007-0231 10.3168/jds.2019-16634 10.2527/1992.7072000x 10.3168/jds.2013-7769 10.2527/jas.2015-9930 10.1007/s10709-008-9308-0 10.1186/s12711-017-0310-9 10.3168/jds.2012-5656 10.2527/jas.2009-2022 10.2307/2529339 10.1534/genetics.108.088575 10.1534/genetics.116.187013 10.1038/s41598-017-09170-9 10.1534/genetics.112.147983 10.3168/jds.S0022-0302(91)78453-1 10.3168/jds.2011-5019 10.1073/pnas.1519061113 10.2527/jas.2014-8836 10.1093/jas/skaa032 10.1186/s12864-019-6068-4 10.1111/jbg.12276 10.1186/1297-9686-46-50 10.1016/S0022-0302(88)79976-2 10.3168/jds.2014-8489 10.1186/s12711-015-0177-6 10.1534/genetics.115.177014 10.1371/journal.pgen.1007661 10.1534/g3.119.400663 10.1017/S0016672300014002 10.3168/jds.2009-2064 10.1186/1297-9686-43-25 10.1186/1297-9686-43-10 10.1186/s12711-015-0143-3 10.3168/jds.2017-13364 10.1186/1471-2105-15-246 10.1186/s12711-019-0469-3 10.1534/genetics.115.182089 10.1093/jas/skz042 10.2527/jas.2010-3555 10.1017/S001667231100022X 10.1111/jbg.12367 10.1186/s12711-016-0233-x 10.1186/1297-9686-43-1 10.1016/0301-6226(89)90041-9 10.3168/jds.2014-9005 10.1534/genetics.113.155309 10.3168/jds.S0022-0302(92)78077-1 10.1186/s12711-018-0373-2 10.3168/jds.2013-7821 10.1186/1297-9686-42-2 10.3168/jds.2009-2730 10.3168/jds.2014-7924 10.1186/1297-9686-44-37 10.1186/1297-9686-46-23 10.1186/s12711-017-0335-0 10.1111/j.1439-0388.2010.00912.x 10.3168/jds.S0022-0302(88)79688-5 10.1186/1297-9686-41-55 10.3168/jds.2017-12665 10.1016/j.livsci.2014.04.029 10.1111/jbg.12288 10.1186/s12711-019-0472-8 10.1093/bioinformatics/btp045 10.1186/s12711-017-0309-2 10.1186/1297-9686-45-30 10.1093/jas/skaa154 10.1038/s41576-018-0082-2 10.1093/jas/skz296 10.3168/jds.2019-16262 10.1186/1297-9686-46-49 10.1534/g3.117.043596 10.2527/jas.2015-9395 10.3168/jds.2011-4982 10.3168/jds.2013-7167 10.1186/s12711-019-0514-2 10.1186/s12711-017-0307-4 10.1111/j.1439-0388.2007.00700.x 10.1186/s12711-018-0400-3 10.3168/jds.2007-0980 10.1186/s12711-015-0137-1 10.3168/jds.2018-15707 10.1016/j.tpb.2015.08.005 10.1186/s12864-019-6323-8 10.3168/jds.2007-0575 10.1186/s12711-016-0261-6 10.1146/annurev-animal-020518-115024 10.3168/jds.2011-5000 10.3168/jds.S0022-0302(88)79691-5 10.3168/jds.2008-1514 10.3389/fgene.2014.00332 10.1186/s12711-015-0159-8 10.1371/journal.pone.0161054 10.3168/jds.S0022-0302(81)82778-6 10.1038/ng.548 10.1186/1297-9686-43-30 10.1111/jbg.12058 10.1111/j.1439-0388.2012.00991.x 10.1111/jbg.12025 10.1111/jbg.12257 10.1371/journal.pone.0005350 10.3168/jds.2011-4256 10.1111/jbg.12334 10.3168/jds.2009-2061 10.1111/jbg.12281 10.1186/s12711-015-0130-8 10.1186/1297-9686-43-40 10.3168/jds.2014-9125 10.1111/age.12378 10.2527/jas.2015-9748 10.3168/jds.2011-4481 10.1186/s12711-016-0260-7 10.3168/jds.2010-3804 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. 2020 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | TOX AAYXX CITATION NPM 7X8 1XC 5PM ADTOC UNPAY |
| DOI | 10.1093/jas/skaa101 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1525-3163 |
| ExternalDocumentID | 10.1093/jas/skaa101 PMC7183352 oai:HAL:hal-02916894v1 32267923 10_1093_jas_skaa101 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: 2015-67015-22936 |
| GroupedDBID | --- ..I .55 .GJ 0R~ 186 18M 29J 2WC 3V. 48X 53G 5GY 5RE 5WD 7RQ 7X2 7X7 7XC 88A 88E 88I 8AF 8FE 8FG 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAIMJ AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT ABCQX ABJCF ABJNI ABMNT ABPTD ABSAR ABUWG ABWST ABXVV ACFRR ACGFO ACGFS ACGOD ACIWK ACPRK ACQAM ACUTJ ACZBC ADBBV ADFRT ADGZP ADIPN ADNWM ADQBN ADRTK ADVEK AELWJ AENEX AETBJ AFFZL AFGWE AFKRA AFRAH AFYAG AGINJ AGKRT AGMDO AGQXC AHMBA AI. AJEEA ALIPV ALMA_UNASSIGNED_HOLDINGS ANFBD AOIJS APJGH AQDSO ASAOO ATCPS ATDFG ATGXG AZQEC BAYMD BBNVY BCRHZ BENPR BES BEYMZ BGLVJ BHPHI BKOMP BPHCQ BVXVI C1A CCPQU CS3 DIK DU5 DWQXO E3Z EBS ECGQY EJD ELUNK EYRJQ F5P F9R FHSFR FJW FLUFQ FOEOM FQBLK FYUFA GAUVT GNUQQ GUQSH H13 HCIFZ HMCUK HYE INIJC KBUDW KOP KSI KSN L6V L7B LK8 M0K M0L M1P M2O M2P M2Q M7P M7S MBTAY ML0 MV1 MW2 NEJ NHB NLBLG NOMLY NVLIB O9- OBOKY ODMLO OJZSN OK1 OWPYF P-O P0- P2P PATMY PQQKQ PRG PROAC PSQYO PTHSS PYCSY Q2X ROX RPM RUSNO RWL RXW S0X SJN TAE TCN TJA TOX TR2 TWZ UKHRP VH1 W8F WH7 WOQ X7M XOL YKV YXANX ZCG ZGI ZXP ~KM AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADGKP ADNBA AEUYN AJBYB AJNCP ALXQX CITATION JXSIZ PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO YR5 NPM 7X8 1XC ABUFD 5PM ABIME ABPIB ABZEO ACVCV ADTOC AHGBF AJDVS UNPAY |
| ID | FETCH-LOGICAL-c446t-de25d1aca18aebaba23cf232de69ef2f53da6a5a189e55ed33eef10f0f6d4be43 |
| IEDL.DBID | UNPAY |
| ISSN | 0021-8812 1525-3163 1525-3015 1544-7847 |
| IngestDate | Sun Oct 26 04:14:58 EDT 2025 Tue Sep 30 16:56:54 EDT 2025 Tue Oct 14 20:16:57 EDT 2025 Wed Oct 01 13:12:40 EDT 2025 Wed Feb 19 02:30:45 EST 2025 Wed Oct 01 01:15:27 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Wed Aug 28 03:18:02 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | genomic selection large data genomic evaluation single-step GBLUP |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-de25d1aca18aebaba23cf232de69ef2f53da6a5a189e55ed33eef10f0f6d4be43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 PMCID: PMC7183352 |
| ORCID | 0000-0002-0382-1897 0000-0001-8893-7620 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/jas/article-pdf/98/4/skaa101/33495645/skaa101.pdf |
| PMID | 32267923 |
| PQID | 2388000488 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1093_jas_skaa101 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183352 hal_primary_oai_HAL_hal_02916894v1 proquest_miscellaneous_2388000488 pubmed_primary_32267923 crossref_primary_10_1093_jas_skaa101 crossref_citationtrail_10_1093_jas_skaa101 oup_primary_10_1093_jas_skaa101 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | US |
| PublicationPlace_xml | – name: US – name: United States |
| PublicationTitle | Journal of animal science |
| PublicationTitleAlternate | J Anim Sci |
| PublicationYear | 2020 |
| Publisher | Oxford University Press American Society of Animal Science |
| Publisher_xml | – name: Oxford University Press – name: American Society of Animal Science |
| References | Tsuruta (2020071414323918400_CIT0126) 2017; 100 Pocrnic (2020071414323918400_CIT0112) 2019; 51 Christensen (2020071414323918400_CIT0017) 2012; 44 Xiang (2020071414323918400_CIT0147) 2016; 94 VanRaden (2020071414323918400_CIT0132) 1992; 75 Erbe (2020071414323918400_CIT0026) 2012; 95 Stam (2020071414323918400_CIT0118) 1980; 35 Fragomeni (2020071414323918400_CIT0031) 2017; 49 Howard (2020071414323918400_CIT0051) 2018; 135 Kennedy (2020071414323918400_CIT0058) 1992; 70 Garrick (2020071414323918400_CIT0038) 2018 Xu (2020071414323918400_CIT0149) 2013; 195 Bermann (2020071414323918400_CIT0005) 2020 Golden (2020071414323918400_CIT0044) 2018 Gualdrón Duarte (2020071414323918400_CIT0045) 2014; 15 Gengler (2020071414323918400_CIT0040) 2008; 91 Henderson (2020071414323918400_CIT0048) 1984 Legarra (2020071414323918400_CIT0060) 2009; 92 Ros-Freixedes (2020071414323918400_CIT0115) 2020; 52 Bernal Rubio (2020071414323918400_CIT0006) 2016; 47 Meyer (2020071414323918400_CIT0092) 2018; 50 Teissier (2020071414323918400_CIT0123) 2018; 50 Sargolzaei (2020071414323918400_CIT0117) 2009; 25 Westell (2020071414323918400_CIT0143) 1988; 71 Misztal (2020071414323918400_CIT0098) 2014 Legarra (2020071414323918400_CIT0059) 2016; 107 Misztal (2020071414323918400_CIT0097) 2013; 96 Cesarani (2020071414323918400_CIT0014) 2019; 136 Karaman (2020071414323918400_CIT0057) 2016; 11 Aguilar (2020071414323918400_CIT0004) 2011; 128 Cuyabano (2020071414323918400_CIT0021) 2015; 47 Carillier-Jacquin (2020071414323918400_CIT0013) 2016; 48 Garcia (2020071414323918400_CIT0035) 2020 Kachman (2020071414323918400_CIT0055) 2013; 45 Vandenplas (2020071414323918400_CIT0130) 2017; 49 Quaas (2020071414323918400_CIT0113) 1988; 71 Legarra (2020071414323918400_CIT0062) 2015; 200 Goddard (2020071414323918400_CIT0042) 2009; 136 Masuda (2020071414323918400_CIT0081) 2015; 93 Aguilar (2020071414323918400_CIT0003) 2010; 93 Bradford (2020071414323918400_CIT0010) 2019; 102 Daetwyler (2020071414323918400_CIT0022) 2013; 193 Matilainen (2020071414323918400_CIT0086) 2016; 50 Saatchi (2020071414323918400_CIT0116) 2011; 43 Pocrnic (2020071414323918400_CIT0111) 2016; 48 Vandenplas (2020071414323918400_CIT0129) 2019; 51 Liu (2020071414323918400_CIT0067) 2014; 97 Misztal (2020071414323918400_CIT0099) 2019 Misztal (2020071414323918400_CIT0096) 2014; 97 Brøndum (2020071414323918400_CIT0012) 2015; 98 Lourenco (2020071414323918400_CIT0073) 2016; 94 Patry (2020071414323918400_CIT0107) 2011; 94 Jónás (2020071414323918400_CIT0053) 2016; 99 Matukumalli (2020071414323918400_CIT0087) 2009; 4 VanRaden (2020071414323918400_CIT0135) 2020; 103 Legarra (2020071414323918400_CIT0065) 2008; 180 Misztal (2020071414323918400_CIT0095) 2009; 92 Lourenco (2020071414323918400_CIT0070) 2017; 134 Liu (2020071414323918400_CIT0068) 2017; 51 Lutaaya (2020071414323918400_CIT0077) 1999; 116 Masuda (2020071414323918400_CIT0084) 2018 VanRaden (2020071414323918400_CIT0137) 2014; 97 Tsuruta (2020071414323918400_CIT0125) 2019; 102 Fragomeni (2020071414323918400_CIT0032) 2015; 98 Garcia-Baccino (2020071414323918400_CIT0036) 2017; 49 Lourenco (2020071414323918400_CIT0074) 2015; 93 VanRaden (2020071414323918400_CIT0138) 2009; 92 Misztal (2020071414323918400_CIT0094) 2017; 51 MacNeil (2020071414323918400_CIT0078) 2010; 88 VanRaden (2020071414323918400_CIT0141) 2012; 95 Tsuruta (2020071414323918400_CIT0128) 2014; 97 Bradford (2020071414323918400_CIT0011) 2017; 134 Georges (2020071414323918400_CIT0041) 2019; 20 VanRaden (2020071414323918400_CIT0140) 2013; 47 Chen (2020071414323918400_CIT0015) 2011; 89 Aguilar (2020071414323918400_CIT0002) 2008; 91 Christensen (2020071414323918400_CIT0020) 2014; 46 Meuwissen (2020071414323918400_CIT0088) 2001; 157 Kachman (2020071414323918400_CIT0054) 2008 Strandén (2020071414323918400_CIT0120) 2011; 43 Vitezica (2020071414323918400_CIT0142) 2011; 93 Oget (2020071414323918400_CIT0105) 2019; 20 Bijma (2020071414323918400_CIT0007) 2012; 129 Lourenco (2020071414323918400_CIT0072) 2014; 97 Plieschke (2020071414323918400_CIT0108) 2015; 47 Xiang (2020071414323918400_CIT0146) 2017; 95 Garrick (2020071414323918400_CIT0039) 2009; 41 Tsuruta (2020071414323918400_CIT0124) 2019; 102 Masuda (2020071414323918400_CIT0085) 2018 Liu (2020071414323918400_CIT0069) 2017; 7 Misztal (2020071414323918400_CIT0100) 2013; 130 Mäntysaari (2020071414323918400_CIT0080) 2017; 95 Fernando (2020071414323918400_CIT0028) 2014; 46 Bradford (2020071414323918400_CIT0009) 2019; 102 Misztal (2020071414323918400_CIT0101) 1988; 71 Strandén (2020071414323918400_CIT0121) 2017; 134 VanRaden (2020071414323918400_CIT0134) 2011; 43 Fernando (2020071414323918400_CIT0027) 2016; 48 Wiggans (2020071414323918400_CIT0144) 2011; 94 Legarra (2020071414323918400_CIT0066) 2015; 47 Masuda (2020071414323918400_CIT0082) 2014; 131 Meyer (2020071414323918400_CIT0091) 1989; 21 VanRaden (2020071414323918400_CIT0133) 2008; 91 Legarra (2020071414323918400_CIT0064) 2018; 50 Pocrnic (2020071414323918400_CIT0110) 2016; 203 Makgahlela (2020071414323918400_CIT0079) 2014; 97 Legarra (2020071414323918400_CIT0063) 2012; 95 Edel (2020071414323918400_CIT0025) 2019; 102 Henderson (2020071414323918400_CIT0047) 1976; 32 Gao (2020071414323918400_CIT0034) 2019; 20 García-Ruiz (2020071414323918400_CIT0037) 2016; 113 Moghaddar (2020071414323918400_CIT0102) 2019; 51 Misztal (2020071414323918400_CIT0093) 2016; 202 Tsuruta (2020071414323918400_CIT0127) 2011; 94 Christensen (2020071414323918400_CIT0019) 2010; 42 Lourenco (2020071414323918400_CIT0075) 2018; 11 Meuwissen (2020071414323918400_CIT0090) 2015; 47 Duenk (2020071414323918400_CIT0024) 2020 Hidalgo (2020071414323918400_CIT0049) 2020 Ødegård (2020071414323918400_CIT0104) 2018; 50 VanRaden (2020071414323918400_CIT0136) 2017; 49 Legarra (2020071414323918400_CIT0061) 2014; 166 Muir (2020071414323918400_CIT0103) 2007; 124 Lu (2020071414323918400_CIT0076) 2018; 101 Patry (2020071414323918400_CIT0106) 2011; 43 Steyn (2020071414323918400_CIT0119) 2019; 97 Wiggans (2020071414323918400_CIT0145) 2012; 95 Masuda (2020071414323918400_CIT0083) 2017; 95 Lourenco (2020071414323918400_CIT0071) 2015; 47 Pocrnic (2020071414323918400_CIT0109) 2019; 97 Quaas (2020071414323918400_CIT0114) 1981; 64 Kang (2020071414323918400_CIT0056) 2010; 42 Fragomeni (2020071414323918400_CIT0033) 2014; 5 Derks (2020071414323918400_CIT0023) 2018; 14 Taskinen (2020071414323918400_CIT0122) 2017; 49 Fragomeni (2020071414323918400_CIT0030) 2019; 102 Meuwissen (2020071414323918400_CIT0089) 2014; 46 Goddard (2020071414323918400_CIT0043) 2017; 134 VanRaden (2020071414323918400_CIT0139) 1991; 74 Van Grevenhof (2020071414323918400_CIT0131) 2012; 44 Aguilar (2020071414323918400_CIT0001) 2019; 51 Hayes (2020071414323918400_CIT0046) 2019; 7 Hsu (2020071414323918400_CIT0052) 2017; 7 Boichard (2020071414323918400_CIT0008) 2003; 35 Christensen (2020071414323918400_CIT0018) 2015; 47 Forni (2020071414323918400_CIT0029) 2011; 43 |
| References_xml | – volume: 51 start-page: 75 year: 2019 ident: 2020071414323918400_CIT0112 article-title: Accuracy of genomic BLUP when considering a genomic relationship matrix based on the number of the largest eigenvalues: a simulation study publication-title: Genet. Sel. Evol doi: 10.1186/s12711-019-0516-0 – volume: 49 start-page: 43 year: 2017 ident: 2020071414323918400_CIT0130 article-title: Prediction of the reliability of genomic breeding values for crossbred performance publication-title: Genet. Sel. Evol doi: 10.1186/s12711-017-0318-1 – volume: 50 start-page: 53 year: 2018 ident: 2020071414323918400_CIT0064 article-title: Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method publication-title: Genet. Sel. Evol doi: 10.1186/s12711-018-0426-6 – volume: 44 start-page: 26 year: 2012 ident: 2020071414323918400_CIT0131 article-title: Response to genomic selection: the Bulmer effect and the potential of genomic selection when the number of phenotypic records is limiting publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-44-26 – volume: 35 start-page: 77 year: 2003 ident: 2020071414323918400_CIT0008 article-title: Detection of genes influencing economic traits in three French dairy cattle breeds publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-35-1-77 – volume: 47 start-page: 89 year: 2015 ident: 2020071414323918400_CIT0066 article-title: Genetic evaluation with major genes and polygenic inheritance when some animals are not genotyped using gene content multiple-trait BLUP publication-title: Genet. Sel. Evol doi: 10.1186/s12711-015-0165-x – volume: 50 start-page: 39 year: 2018 ident: 2020071414323918400_CIT0092 article-title: Estimates of genetic trend for single-step genomic evaluations publication-title: Genet. Sel. Evol doi: 10.1186/s12711-018-0410-1 – volume: 99 start-page: 4537 year: 2016 ident: 2020071414323918400_CIT0053 article-title: Alternative haplotype construction methods for genomic evaluation publication-title: J. Dairy Sci doi: 10.3168/jds.2015-10433 – volume: 116 start-page: 475 year: 1999 ident: 2020071414323918400_CIT0077 article-title: Inbreeding in populations with incomplete pedigrees publication-title: J. Anim. Breed. Genet doi: 10.1046/j.1439-0388.1999.00210.x – volume: 102 start-page: 9956 year: 2019 ident: 2020071414323918400_CIT0124 article-title: Controlling bias in genomic breeding values for young genotyped bulls publication-title: J. Dairy Sci doi: 10.3168/jds.2019-16789 – volume: 95 start-page: 4728 year: 2017 ident: 2020071414323918400_CIT0080 article-title: Efficient single-step genomic evaluation for a multibreed beef cattle population having many genotyped animals publication-title: J. Anim. Sci doi: 10.2527/jas2017.1912 – volume: 102 start-page: 2308 year: 2019 ident: 2020071414323918400_CIT0010 article-title: Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets publication-title: J. Dairy Sci doi: 10.3168/jds.2018-15419 – volume: 102 start-page: 397 year: 2019 ident: 2020071414323918400_CIT0125 article-title: Validation of genomic predictions for linear type traits in US Holsteins using over 2 million genotyped animals publication-title: J. Dairy Sci – volume: 97 start-page: 3943 year: 2014 ident: 2020071414323918400_CIT0096 article-title: Using recursion to compute the inverse of the genomic relationship matrix publication-title: J. Dairy Sci doi: 10.3168/jds.2013-7752 – start-page: 973 volume-title: An introduction to BOLT software for genetic and genomic evaluations year: 2018 ident: 2020071414323918400_CIT0038 – volume: 157 start-page: 1819 year: 2001 ident: 2020071414323918400_CIT0088 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 91 start-page: 1652 year: 2008 ident: 2020071414323918400_CIT0040 article-title: Accuracy of prediction of gene content in large animal populations and its use for candidate gene detection and genetic evaluation publication-title: J. Dairy Sci doi: 10.3168/jds.2007-0231 – volume: 103 start-page: 1620 year: 2020 ident: 2020071414323918400_CIT0135 article-title: Genomic predictions for crossbred dairy cattle publication-title: J. Dairy Sci doi: 10.3168/jds.2019-16634 – volume: 70 start-page: 2000 year: 1992 ident: 2020071414323918400_CIT0058 article-title: Estimation of effects of single genes on quantitative traits publication-title: J. Anim. Sci doi: 10.2527/1992.7072000x – volume: 97 start-page: 3930 year: 2014 ident: 2020071414323918400_CIT0072 article-title: Are evaluations on young genotyped animals benefiting from the past generations? publication-title: J. Dairy Sci doi: 10.3168/jds.2013-7769 – volume: 94 start-page: 936 year: 2016 ident: 2020071414323918400_CIT0147 article-title: Application of single-step genomic evaluation for crossbred performance in pig publication-title: J. Anim. Sci doi: 10.2527/jas.2015-9930 – volume: 136 start-page: 245 year: 2009 ident: 2020071414323918400_CIT0042 article-title: Genomic selection: prediction of accuracy and maximisation of long term response publication-title: Genetica doi: 10.1007/s10709-008-9308-0 – volume: 49 start-page: 36 year: 2017 ident: 2020071414323918400_CIT0122 article-title: Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects publication-title: Genet. Sel. Evol doi: 10.1186/s12711-017-0310-9 – volume: 96 start-page: 647 year: 2013 ident: 2020071414323918400_CIT0097 article-title: Methods to approximate reliabilities in single-step genomic evaluation publication-title: J. Dairy Sci doi: 10.3168/jds.2012-5656 – volume: 88 start-page: 517 year: 2010 ident: 2020071414323918400_CIT0078 article-title: Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators publication-title: J. Anim. Sci doi: 10.2527/jas.2009-2022 – volume: 32 start-page: 69 year: 1976 ident: 2020071414323918400_CIT0047 article-title: A simple method for computing the inverse of a relationship matrix used in prediction of breeding values publication-title: Biometrics doi: 10.2307/2529339 – volume: 180 start-page: 611 year: 2008 ident: 2020071414323918400_CIT0065 article-title: Performance of genomic selection in mice publication-title: Genetics doi: 10.1534/genetics.108.088575 – volume: 203 start-page: 573 year: 2016 ident: 2020071414323918400_CIT0110 article-title: The dimensionality of genomic information and its effect on genomic prediction publication-title: Genetics doi: 10.1534/genetics.116.187013 – volume: 7 start-page: 8487 year: 2017 ident: 2020071414323918400_CIT0069 article-title: Genome-wide association studies for female fertility traits in Chinese and Nordic Holsteins publication-title: Sci. Rep doi: 10.1038/s41598-017-09170-9 – volume: 193 start-page: 347 year: 2013 ident: 2020071414323918400_CIT0022 article-title: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking publication-title: Genetics doi: 10.1534/genetics.112.147983 – volume: 74 start-page: 2737 year: 1991 ident: 2020071414323918400_CIT0139 article-title: Derivation, calculation, and use of national animal model information publication-title: J. Dairy Sci doi: 10.3168/jds.S0022-0302(91)78453-1 – volume: 95 start-page: 4114 year: 2012 ident: 2020071414323918400_CIT0026 article-title: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels publication-title: J. Dairy Sci doi: 10.3168/jds.2011-5019 – start-page: 540 volume-title: Pre-selection bias and validation method in single-step GBLUP for production traits in US Holstein year: 2018 ident: 2020071414323918400_CIT0084 – volume: 113 start-page: E3995 year: 2016 ident: 2020071414323918400_CIT0037 article-title: Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1519061113 – volume: 93 start-page: 2653 year: 2015 ident: 2020071414323918400_CIT0074 article-title: Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus publication-title: J. Anim. Sci doi: 10.2527/jas.2014-8836 – year: 2020 ident: 2020071414323918400_CIT0049 article-title: Changes in genetic parameters for fitness and growth traits in pigs under genomic selection publication-title: J. Anim. Sci doi: 10.1093/jas/skaa032 – volume: 20 start-page: 719 year: 2019 ident: 2020071414323918400_CIT0105 article-title: Alternative methods improve the accuracy of genomic prediction using information from a causal point mutation in a dairy sheep model publication-title: BMC Genomics doi: 10.1186/s12864-019-6068-4 – volume: 134 start-page: 545 year: 2017 ident: 2020071414323918400_CIT0011 article-title: Selection of core animals in the algorithm for proven and young using a simulation model publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12276 – volume: 46 start-page: 50 year: 2014 ident: 2020071414323918400_CIT0028 article-title: A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-46-50 – volume: 71 start-page: 27 year: 1988 ident: 2020071414323918400_CIT0101 article-title: Approximation of prediction error variance in large-scale animal models publication-title: J. Dairy Sci doi: 10.1016/S0022-0302(88)79976-2 – volume: 97 start-page: 7952 year: 2014 ident: 2020071414323918400_CIT0137 article-title: Comparison of single-trait to multi-trait national evaluations for yield, health, and fertility publication-title: J. Dairy Sci doi: 10.3168/jds.2014-8489 – volume: 47 start-page: 98 year: 2015 ident: 2020071414323918400_CIT0018 article-title: Genetic evaluation for three-way crossbreeding publication-title: Genet. Sel. Evol doi: 10.1186/s12711-015-0177-6 – volume: 200 start-page: 455 year: 2015 ident: 2020071414323918400_CIT0062 article-title: Ancestral relationships using metafounders: finite ancestral populations and across population relationships publication-title: Genetics doi: 10.1534/genetics.115.177014 – volume: 14 start-page: e1007661 year: 2018 ident: 2020071414323918400_CIT0023 article-title: Balancing selection on a recessive lethal deletion with pleiotropic effects on two neighboring genes in the porcine genome publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007661 – year: 2020 ident: 2020071414323918400_CIT0024 article-title: The impact of non-additive effects on the genetic correlation between populations publication-title: G3 (Bethesda) doi: 10.1534/g3.119.400663 – volume: 47 start-page: 147 year: 2013 ident: 2020071414323918400_CIT0140 article-title: Measuring genomic pre-selection in theory and in practice publication-title: Interbull Bull – volume: 35 start-page: 131 year: 1980 ident: 2020071414323918400_CIT0118 article-title: The distribution of the fraction of the genome identical by descent in finite random mating populations publication-title: Genet. Res doi: 10.1017/S0016672300014002 – volume: 92 start-page: 4648 year: 2009 ident: 2020071414323918400_CIT0095 article-title: Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information publication-title: J. Dairy Sci doi: 10.3168/jds.2009-2064 – volume: 43 start-page: 25 year: 2011 ident: 2020071414323918400_CIT0120 article-title: Allele coding in genomic evaluation publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-43-25 – volume: 43 start-page: 10 year: 2011 ident: 2020071414323918400_CIT0134 article-title: Genomic evaluations with many more genotypes publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-43-10 – year: 2014 ident: 2020071414323918400_CIT0098 article-title: Manual for BLUPF90 family of programs. – volume: 47 start-page: 61 year: 2015 ident: 2020071414323918400_CIT0021 article-title: Selection of haplotype variables from a high-density marker map for genomic prediction publication-title: Genet. Sel. Evol doi: 10.1186/s12711-015-0143-3 – volume: 101 start-page: 3140 year: 2018 ident: 2020071414323918400_CIT0076 article-title: Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency publication-title: J. Dairy Sci doi: 10.3168/jds.2017-13364 – volume: 15 start-page: 246 year: 2014 ident: 2020071414323918400_CIT0045 article-title: Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-246 – volume: 51 start-page: 28 year: 2019 ident: 2020071414323918400_CIT0001 article-title: Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle publication-title: Genet. Sel. Evol doi: 10.1186/s12711-019-0469-3 – volume: 202 start-page: 401 year: 2016 ident: 2020071414323918400_CIT0093 article-title: Inexpensive computation of the inverse of the genomic relationship matrix in populations with small effective population size publication-title: Genetics doi: 10.1534/genetics.115.182089 – volume: 97 start-page: 1513 year: 2019 ident: 2020071414323918400_CIT0109 article-title: Crossbred evaluations using single-step genomic BLUP and algorithm for proven and young with different sources of data publication-title: J. Anim. Sci doi: 10.1093/jas/skz042 – volume: 50 start-page: 71 year: 2016 ident: 2020071414323918400_CIT0086 article-title: Managing genetic groups in single-step genomic evaluations applied on female fertility traits in Nordic Red Dairy Cattle publication-title: Interbull Bull – volume: 52 year: 2020 ident: 2020071414323918400_CIT0115 article-title: Accuracy of whole-genome sequence imputation using hybrid peeling in large pedigreed livestock populations publication-title: Genet. Sel. Evol – volume: 11 start-page: 495 year: 2018 ident: 2020071414323918400_CIT0075 article-title: Single-step genomic BLUP for national beef cattle evaluation in US: from initial developments to final implementation publication-title: Proc. World. Cong. Appl. Livest. Prod – volume: 89 start-page: 2673 year: 2011 ident: 2020071414323918400_CIT0015 article-title: Effect of different genomic relationship matrices on accuracy and scale publication-title: J. Anim. Sci doi: 10.2527/jas.2010-3555 – volume: 93 start-page: 357 year: 2011 ident: 2020071414323918400_CIT0142 article-title: Bias in genomic predictions for populations under selection publication-title: Genet. Res. (Camb) doi: 10.1017/S001667231100022X – volume: 136 start-page: 40 year: 2019 ident: 2020071414323918400_CIT0014 article-title: Bias in heritability estimates from genomic restricted maximum likelihood methods under different genotyping strategies publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12367 – volume: 48 start-page: 54 year: 2016 ident: 2020071414323918400_CIT0013 article-title: Including α s1 casein gene information in genomic evaluations of French dairy goats publication-title: Genet. Sel. Evol doi: 10.1186/s12711-016-0233-x – volume: 43 start-page: 1 year: 2011 ident: 2020071414323918400_CIT0029 article-title: Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-43-1 – volume: 21 start-page: 87 year: 1989 ident: 2020071414323918400_CIT0091 article-title: Approximate accuracy of genetic evaluation under an animal model publication-title: Livest. Prod. Sci doi: 10.1016/0301-6226(89)90041-9 – volume: 98 start-page: 4107 year: 2015 ident: 2020071414323918400_CIT0012 article-title: Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction publication-title: J. Dairy Sci doi: 10.3168/jds.2014-9005 – volume: 195 start-page: 1103 year: 2013 ident: 2020071414323918400_CIT0149 article-title: Genetic mapping and genomic selection using recombination breakpoint data publication-title: Genetics doi: 10.1534/genetics.113.155309 – volume: 75 start-page: 3136 year: 1992 ident: 2020071414323918400_CIT0132 article-title: Accounting for inbreeding and crossbreeding in genetic evaluation of large populations publication-title: J. Dairy Sci doi: 10.3168/jds.S0022-0302(92)78077-1 – volume: 50 start-page: 6 year: 2018 ident: 2020071414323918400_CIT0104 article-title: Large-scale genomic prediction using singular value decomposition of the genotype matrix publication-title: Genet. Sel. Evol doi: 10.1186/s12711-018-0373-2 – volume: 97 start-page: 5814 year: 2014 ident: 2020071414323918400_CIT0128 article-title: Assigning unknown parent groups to reduce bias in genomic evaluations of final score in US Holsteins publication-title: J. Dairy Sci doi: 10.3168/jds.2013-7821 – volume: 42 start-page: 2 year: 2010 ident: 2020071414323918400_CIT0019 article-title: Genomic prediction when some animals are not genotyped publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-42-2 – volume: 51 start-page: 75 year: 2017 ident: 2020071414323918400_CIT0068 article-title: Approximating genomic reliabilities for national genomic evaluation publication-title: Interbull Bull – volume: 93 start-page: 743 year: 2010 ident: 2020071414323918400_CIT0003 article-title: Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score publication-title: J. Dairy Sci doi: 10.3168/jds.2009-2730 – volume: 97 start-page: 5833 year: 2014 ident: 2020071414323918400_CIT0067 article-title: A single-step genomic model with direct estimation of marker effects publication-title: J. Dairy Sci doi: 10.3168/jds.2014-7924 – volume: 95 start-page: 446 year: 2012 ident: 2020071414323918400_CIT0141 article-title: Adjustment of selection index coefficients and polygenic variance to improve regressions and reliability of genomic evaluations publication-title: J. Dairy Sci – volume: 44 start-page: 37 year: 2012 ident: 2020071414323918400_CIT0017 article-title: Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-44-37 – volume: 46 start-page: 23 year: 2014 ident: 2020071414323918400_CIT0020 article-title: Genomic evaluation of both purebred and crossbred performances publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-46-23 – volume: 49 start-page: 59 year: 2017 ident: 2020071414323918400_CIT0031 article-title: Incorporation of causative quantitative trait nucleotides in single-step GBLUP publication-title: Genet. Sel. Evol doi: 10.1186/s12711-017-0335-0 – start-page: 14 volume-title: Current single-step national beef cattle evaluation models used by the American Hereford Association and International Genetic Solutions, computational aspects, and implications of marker selection year: 2018 ident: 2020071414323918400_CIT0044 – volume: 128 start-page: 422 year: 2011 ident: 2020071414323918400_CIT0004 article-title: Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation publication-title: J. Anim. Breed. Genet doi: 10.1111/j.1439-0388.2010.00912.x – volume: 71 start-page: 1310 year: 1988 ident: 2020071414323918400_CIT0143 article-title: Genetic groups in an animal model publication-title: J. Dairy Sci doi: 10.3168/jds.S0022-0302(88)79688-5 – volume: 41 start-page: 55 year: 2009 ident: 2020071414323918400_CIT0039 article-title: Deregressing estimated breeding values and weighting information for genomic regression analyses publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-41-55 – start-page: 92 volume-title: Incorporation of marker scores into national cattle evaluations year: 2008 ident: 2020071414323918400_CIT0054 – volume: 100 start-page: 7295 year: 2017 ident: 2020071414323918400_CIT0126 article-title: Genomic analysis of cow mortality and milk production using a threshold-linear model publication-title: J. Dairy Sci doi: 10.3168/jds.2017-12665 – volume: 166 start-page: 54 year: 2014 ident: 2020071414323918400_CIT0061 article-title: Single step, a general approach for genomic selection publication-title: Livest. Prod. Sci doi: 10.1016/j.livsci.2014.04.029 – volume: 134 start-page: 463 year: 2017 ident: 2020071414323918400_CIT0070 article-title: Implications of SNP weighting on single-step genomic predictions for different reference population sizes publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12288 – volume: 51 start-page: 30 year: 2019 ident: 2020071414323918400_CIT0129 article-title: A second-level diagonal preconditioner for single-step SNPBLUP publication-title: Genet. Sel. Evol doi: 10.1186/s12711-019-0472-8 – volume: 25 start-page: 680 year: 2009 ident: 2020071414323918400_CIT0117 article-title: QMSim: a large-scale genome simulator for livestock publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp045 – start-page: 5194 volume-title: Differing genetic trend estimates from traditional and genomic evaluations of genotyped animals as evidence of preselection bias in US Holsteins year: 2018 ident: 2020071414323918400_CIT0085 – volume-title: Changes in predictions when using different core animals in the APY algorithm year: 2019 ident: 2020071414323918400_CIT0099 – volume: 49 start-page: 34 year: 2017 ident: 2020071414323918400_CIT0036 article-title: Metafounders are related to F st fixation indices and reduce bias in single-step genomic evaluations publication-title: Genet. Sel. Evol doi: 10.1186/s12711-017-0309-2 – volume: 45 start-page: 30 year: 2013 ident: 2020071414323918400_CIT0055 article-title: Comparison of molecular breeding values based on within- and across-breed training in beef cattle publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-45-30 – year: 2020 ident: 2020071414323918400_CIT0035 article-title: Indirect predictions with a large number of genotyped animals using the algorithm for proven and young publication-title: J. Anim. Sci doi: 10.1093/jas/skaa154 – volume: 20 start-page: 135 year: 2019 ident: 2020071414323918400_CIT0041 article-title: Harnessing genomic information for livestock improvement publication-title: Nat. Rev. Genet doi: 10.1038/s41576-018-0082-2 – year: 2020 ident: 2020071414323918400_CIT0005 article-title: Validation of genomic and pedigree predictions from threshold models using the linear regression (LR) method: an application in chicken mortality publication-title: Genet. Sel. Evol – volume: 97 start-page: 4418 year: 2019 ident: 2020071414323918400_CIT0119 article-title: Genomic predictions in purebreds with a multibreed genomic relationship matrix1 publication-title: J. Anim. Sci doi: 10.1093/jas/skz296 – volume: 102 start-page: 10012 year: 2019 ident: 2020071414323918400_CIT0030 article-title: Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants publication-title: J. Dairy Sci doi: 10.3168/jds.2019-16262 – volume: 46 start-page: 49 year: 2014 ident: 2020071414323918400_CIT0089 article-title: On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-46-49 – volume: 7 start-page: 2685 year: 2017 ident: 2020071414323918400_CIT0052 article-title: The accuracy and bias of single-step genomic prediction for populations under selection publication-title: G3 (Bethesda) doi: 10.1534/g3.117.043596 – volume: 93 start-page: 4670 year: 2015 ident: 2020071414323918400_CIT0081 article-title: Technical note: acceleration of sparse operations for average-information REML analyses with supernodal methods and sparse-storage refinements publication-title: J. Anim. Sci doi: 10.2527/jas.2015-9395 – volume: 95 start-page: 4629 year: 2012 ident: 2020071414323918400_CIT0063 article-title: Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction publication-title: J. Dairy Sci doi: 10.3168/jds.2011-4982 – volume: 97 start-page: 1117 year: 2014 ident: 2020071414323918400_CIT0079 article-title: Using the unified relationship matrix adjusted by breed-wise allele frequencies in genomic evaluation of a multibreed population publication-title: J. Dairy Sci doi: 10.3168/jds.2013-7167 – volume: 102 start-page: 2308 year: 2019 ident: 2020071414323918400_CIT0009 article-title: Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets publication-title: J. Dairy Sci doi: 10.3168/jds.2018-15419 – volume: 51 start-page: 72 year: 2019 ident: 2020071414323918400_CIT0102 article-title: Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations publication-title: Genet. Sel. Evol doi: 10.1186/s12711-019-0514-2 – volume: 49 start-page: 32 year: 2017 ident: 2020071414323918400_CIT0136 article-title: Selecting sequence variants to improve genomic predictions for dairy cattle publication-title: Genet. Sel. Evol doi: 10.1186/s12711-017-0307-4 – volume: 124 start-page: 342 year: 2007 ident: 2020071414323918400_CIT0103 article-title: Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters publication-title: J. Anim. Breed. Genet doi: 10.1111/j.1439-0388.2007.00700.x – volume: 50 start-page: 31 year: 2018 ident: 2020071414323918400_CIT0123 article-title: Weighted single-step genomic BLUP improves accuracy of genomic breeding values for protein content in French dairy goats: a quantitative trait influenced by a major gene publication-title: Genet. Sel. Evol doi: 10.1186/s12711-018-0400-3 – volume: 91 start-page: 4414 year: 2008 ident: 2020071414323918400_CIT0133 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci doi: 10.3168/jds.2007-0980 – volume: 47 start-page: 56 year: 2015 ident: 2020071414323918400_CIT0071 article-title: Accuracy of estimated breeding values with genomic information on males, females, or both: an example on broiler chicken publication-title: Genet. Sel. Evol doi: 10.1186/s12711-015-0137-1 – volume: 102 start-page: 3259 year: 2019 ident: 2020071414323918400_CIT0025 article-title: Short communication: calculating analytical reliabilities for single-step predictions publication-title: J. Dairy Sci doi: 10.3168/jds.2018-15707 – volume-title: Applications of linear models in animal breeding year: 1984 ident: 2020071414323918400_CIT0048 – volume: 107 start-page: 26 year: 2016 ident: 2020071414323918400_CIT0059 article-title: Comparing estimates of genetic variance across different relationship models publication-title: Theor. Popul. Biol doi: 10.1016/j.tpb.2015.08.005 – volume: 95 start-page: 49 year: 2017 ident: 2020071414323918400_CIT0083 article-title: Technical note: avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient publication-title: J. Anim. Sci – volume: 20 start-page: 956 year: 2019 ident: 2020071414323918400_CIT0034 article-title: Bias in estimates of variance components in populations undergoing genomic selection: a simulation study publication-title: BMC Genomics doi: 10.1186/s12864-019-6323-8 – volume: 91 start-page: 1669 year: 2008 ident: 2020071414323918400_CIT0002 article-title: Technical note: recursive algorithm for inbreeding coefficients assuming nonzero inbreeding of unknown parents publication-title: J. Dairy Sci doi: 10.3168/jds.2007-0575 – volume: 48 start-page: 82 year: 2016 ident: 2020071414323918400_CIT0111 article-title: Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species publication-title: Genet. Sel. Evol doi: 10.1186/s12711-016-0261-6 – volume: 7 start-page: 89 year: 2019 ident: 2020071414323918400_CIT0046 article-title: 1000 Bull genomes project to map simple and complex genetic traits in cattle: applications and outcomes publication-title: Annu. Rev. Anim. Biosci doi: 10.1146/annurev-animal-020518-115024 – volume: 95 start-page: 3444 year: 2012 ident: 2020071414323918400_CIT0145 article-title: Technical note: adjustment of all cow evaluations for yield traits to be comparable with bull evaluations publication-title: J. Dairy Sci doi: 10.3168/jds.2011-5000 – volume: 71 start-page: 1338 year: 1988 ident: 2020071414323918400_CIT0113 article-title: Additive genetic model with groups and relationships publication-title: J. Dairy Sci doi: 10.3168/jds.S0022-0302(88)79691-5 – volume: 92 start-page: 16 year: 2009 ident: 2020071414323918400_CIT0138 article-title: Invited review: reliability of genomic predictions for North American Holstein bulls publication-title: J. Dairy Sci doi: 10.3168/jds.2008-1514 – volume: 5 start-page: 332 year: 2014 ident: 2020071414323918400_CIT0033 article-title: Changes in variance explained by top SNP windows over generations for three traits in broiler chicken publication-title: Front. Genet doi: 10.3389/fgene.2014.00332 – volume: 47 start-page: 79 year: 2015 ident: 2020071414323918400_CIT0090 article-title: Genomic predictions based on animal models using genotype imputation on a national scale in Norwegian Red cattle publication-title: Genet. Sel. Evol doi: 10.1186/s12711-015-0159-8 – volume: 11 start-page: e0161054 year: 2016 ident: 2020071414323918400_CIT0057 article-title: An upper bound for accuracy of prediction using GBLUP publication-title: PLoS One doi: 10.1371/journal.pone.0161054 – volume: 64 start-page: 1868 year: 1981 ident: 2020071414323918400_CIT0114 article-title: Modified equations for sire models with groups publication-title: J. Dairy Sci doi: 10.3168/jds.S0022-0302(81)82778-6 – volume: 42 start-page: 348 year: 2010 ident: 2020071414323918400_CIT0056 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat. Genet doi: 10.1038/ng.548 – volume: 43 start-page: 30 year: 2011 ident: 2020071414323918400_CIT0106 article-title: Accounting for genomic pre-selection in national BLUP evaluations in dairy cattle publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-43-30 – volume: 131 start-page: 227 year: 2014 ident: 2020071414323918400_CIT0082 article-title: Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12058 – volume: 129 start-page: 345 year: 2012 ident: 2020071414323918400_CIT0007 article-title: Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations publication-title: J. Anim. Breed. Genet doi: 10.1111/j.1439-0388.2012.00991.x – volume: 95 start-page: 1472 year: 2017 ident: 2020071414323918400_CIT0146 article-title: Technical note: genomic evaluation for crossbred performance in a single-step approach with metafounders publication-title: J. Anim. Sci – volume: 130 start-page: 252 year: 2013 ident: 2020071414323918400_CIT0100 article-title: Unknown-parent groups in single-step genomic evaluation publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12025 – volume: 51 start-page: 38 year: 2017 ident: 2020071414323918400_CIT0094 article-title: Studies on inflation of GEBV in single-step GBLUP for type publication-title: Interbull Bull – volume: 134 start-page: 264 year: 2017 ident: 2020071414323918400_CIT0121 article-title: Solving efficiently large single-step genomic best linear unbiased prediction models publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12257 – volume: 4 start-page: e5350 year: 2009 ident: 2020071414323918400_CIT0087 article-title: Development and characterization of a high density SNP genotyping assay for cattle publication-title: PLoS One doi: 10.1371/journal.pone.0005350 – volume: 94 start-page: 4198 year: 2011 ident: 2020071414323918400_CIT0127 article-title: Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins publication-title: J. Dairy Sci doi: 10.3168/jds.2011-4256 – volume: 135 start-page: 251 year: 2018 ident: 2020071414323918400_CIT0051 article-title: The impact of truncating data on the predictive ability for single-step genomic best linear unbiased prediction publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12334 – volume: 92 start-page: 4656 year: 2009 ident: 2020071414323918400_CIT0060 article-title: A relationship matrix including full pedigree and genomic information publication-title: J. Dairy Sci doi: 10.3168/jds.2009-2061 – volume: 134 start-page: 287 year: 2017 ident: 2020071414323918400_CIT0043 article-title: Can we make genomic selection 100% accurate? publication-title: J. Anim. Breed. Genet doi: 10.1111/jbg.12281 – volume: 47 start-page: 53 year: 2015 ident: 2020071414323918400_CIT0108 article-title: A simple method to separate base population and segregation effects in genomic relationship matrices publication-title: Genet. Sel. Evol doi: 10.1186/s12711-015-0130-8 – volume: 43 start-page: 40 year: 2011 ident: 2020071414323918400_CIT0116 article-title: Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-43-40 – volume: 98 start-page: 4090 year: 2015 ident: 2020071414323918400_CIT0032 article-title: Hot topic: use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes publication-title: J. Dairy Sci doi: 10.3168/jds.2014-9125 – volume: 47 start-page: 36 year: 2016 ident: 2020071414323918400_CIT0006 article-title: Meta-analysis of genome-wide association from genomic prediction models publication-title: Anim. Genet doi: 10.1111/age.12378 – volume: 94 start-page: 909 year: 2016 ident: 2020071414323918400_CIT0073 article-title: Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices publication-title: J. Anim. Sci doi: 10.2527/jas.2015-9748 – volume: 94 start-page: 6188 year: 2011 ident: 2020071414323918400_CIT0144 article-title: Technical note: adjustment of traditional cow evaluations to improve accuracy of genomic predictions publication-title: J. Dairy Sci doi: 10.3168/jds.2011-4481 – volume: 48 start-page: 80 year: 2016 ident: 2020071414323918400_CIT0027 article-title: An efficient exact method to obtain GBLUP and single-step GBLUP when the genomic relationship matrix is singular publication-title: Genet. Sel. Evol doi: 10.1186/s12711-016-0260-7 – volume: 94 start-page: 1011 year: 2011 ident: 2020071414323918400_CIT0107 article-title: Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle publication-title: J. Dairy Sci doi: 10.3168/jds.2010-3804 |
| SSID | ssj0012595 |
| Score | 2.6063557 |
| SecondaryResourceType | review_article |
| Snippet | Abstract
Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for... Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an... |
| SourceID | unpaywall pubmedcentral hal proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Biochemistry, Molecular Biology Board Invited Review Genomics Life Sciences |
| Title | Current status of genomic evaluation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32267923 https://www.proquest.com/docview/2388000488 https://hal.inrae.fr/hal-02916894 https://pubmed.ncbi.nlm.nih.gov/PMC7183352 https://academic.oup.com/jas/article-pdf/98/4/skaa101/33495645/skaa101.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 98 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1525-3163 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0012595 issn: 1525-3163 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1525-3163 dateEnd: 20210331 omitProxy: true ssIdentifier: ssj0012595 issn: 1525-3163 databaseCode: 7X7 dateStart: 19971001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1525-3163 dateEnd: 20210331 omitProxy: true ssIdentifier: ssj0012595 issn: 1525-3163 databaseCode: BENPR dateStart: 19971001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1525-3163 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012595 issn: 1525-3163 databaseCode: 8FG dateStart: 19971001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7R9gAceD_CowRULkhunk6cY0FbKgRlhbZSOUWOHyy0SqttA4JfzzhxwhbQigMXK4ontmOP7c_2zGeAUaR0IJLUJzJQGYkLIUjBY0nM1KVDX2rJjDfyu3kyW8RvlnRp7Z-MLwy3VuHj1qXhC995thLJVmovY17s7Vacoy55UWTwfUzbF2OU6MEgoYjL-zBYzI8nHxsbj4Aw1hx90pAS1GraPQf1dWuGlYakOFZbJz5c6dd525QPpq3eqTGaPHCIO4dL_zSvvFyVW_79G1-vz81d0-uwav-6MVlZjat9MRY_fiOE_D_VcgOuWYjrTprvbsIlVd6Cq5NPZ5bmQ92GkaWFco0_U7VzN9o1ZLGYtfuLfvwOLKZHJ69mxN7XQAQuKvdEqpDKAIsaMK4KXvAwEhoRm1RJpnSoaSR5wilGZ4pSJaNIoab42teJjAsVR3ehX25KdR9cJrQSCctSkeo4C30m00JlqRaBpIoy34EXbXPkwpKZmzs11nlzqB7lWEG5_X0HRp3wtuHw-LvYM2zXTsLwbs8mb3Pzzg8RRbMs_opCT7AJLk7maasSOXZVc_7CS7WpdnloiHfqIdOBe42KdAnhuJoYKkcH0gPlOSjOYUz5-bSmA0d0YRznHHjeqdlF5Xvwj3IP4Upo9hZqK6VH0N-fVeoxArB9MYReukwxZNPXQxi8PJoffxjW-2QYnrxfDm3P-wmhlTKm |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6x3QNw4P0Iz4DKBclNYseJc6wQqwrBigOVllPk-MFCq7TaNiD49YwTJ2wArThwi-yJn2P7sz3zGWDKjE1UlsdEJ6YgaaUUqWSqiVu6LI211cJ5I787zhbL9M0JP_H2T84XRnqr8Fnv0vBF7iLfiGSrbVSIKI12KylRlyLGHL5PeR8wQ4kDOMw44vIJHC6P388_djYeCRGiu_rklBPUaj58J-1za46VhuQ4V3snPtzpt3n7lEfL1sGpM5ocOcSdw6V_mldebuqt_P5Nrtfn1q6j67Dqa92ZrKxmzb6aqR-_EUL-n2a5Adc8xA3n3X834ZKpb8HV-aczT_NhbsPU00KFzp-p2YUbGzqyWMw6_EU_fgeWR68_vFoQ_14DUbip3BNtKNcJFjUR0lSykpQpi4hNm6wwllrOtMwkx-jCcG40YwY1JbaxzXRamZTdhUm9qc19CIWyRmWiyFVu04LGQueVKXKrEs0NF3EAL_vuKJUnM3dvaqzL7lKdldhApa9-ANNBeNtxePxd7Dn26yDheLcX87elC4spomhRpF9R6Cl2wcXJPOtVosSh6u5fZG02za6kjninnTIDuNepyJAQzquZo3IMIB8pz6g445j682lLB47owjnOBfBiULOLyvfgH-UewhXqzhZaK6VHMNmfNeYxArB99cSPrJ-2GS0T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+of+genomic+evaluation&rft.jtitle=Journal+of+animal+science&rft.au=Misztal%2C+Ignacy&rft.au=Lourenco%2C+Daniela&rft.au=Legarra%2C+Andres&rft.date=2020-04-01&rft.eissn=1525-3163&rft.volume=98&rft.issue=4&rft_id=info:doi/10.1093%2Fjas%2Fskaa101&rft_id=info%3Apmid%2F32267923&rft.externalDocID=32267923 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8812&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8812&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8812&client=summon |