Current status of genomic evaluation

Abstract Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal science Vol. 98; no. 4
Main Authors Misztal, Ignacy, Lourenco, Daniela, Legarra, Andres
Format Journal Article
LanguageEnglish
Published US Oxford University Press 01.04.2020
American Society of Animal Science
Subjects
Online AccessGet full text
ISSN0021-8812
1525-3163
1525-3015
1544-7847
1525-3163
DOI10.1093/jas/skaa101

Cover

Abstract Abstract Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented.
AbstractList Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented.
Abstract Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented.
Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented.Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic and pedigree relationships automatically creates an index with all sources of information, can use any combination of male and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented.
Author Misztal, Ignacy
Legarra, Andres
Lourenco, Daniela
AuthorAffiliation 2 Department of Animal Genetics, Institut National de la Recherche Agronomique , Castanet-Tolosan, France
1 Department of Animal and Dairy Science, University of Georgia , Athens, GA
AuthorAffiliation_xml – name: 1 Department of Animal and Dairy Science, University of Georgia , Athens, GA
– name: 2 Department of Animal Genetics, Institut National de la Recherche Agronomique , Castanet-Tolosan, France
Author_xml – sequence: 1
  givenname: Ignacy
  orcidid: 0000-0002-0382-1897
  surname: Misztal
  fullname: Misztal, Ignacy
  email: ignacy@uga.edu
  organization: Department of Animal and Dairy Science, University of Georgia, Athens, GA
– sequence: 2
  givenname: Daniela
  surname: Lourenco
  fullname: Lourenco, Daniela
  organization: Department of Animal and Dairy Science, University of Georgia, Athens, GA
– sequence: 3
  givenname: Andres
  surname: Legarra
  fullname: Legarra, Andres
  organization: Department of Animal Genetics, Institut National de la Recherche Agronomique, Castanet-Tolosan, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32267923$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02916894$$DView record in HAL
BookMark eNqFkc1LwzAYh4Mo7kNP3mUHEUXr8tF06UUYQ50w8KLn8K59s3V2zWzayf57Ozu_BuopkDy_35snaZHdzGZIyBGjV4yGojsD13XPAIyyHdJkkktPsEDskialnHlKMd4gLedmlDIuQ7lPGoLzoBdy0SQngzLPMSs6roCidB1rOhPM7DyJOriEtIQisdkB2TOQOjzcrG3ydHvzOBh6o4e7-0F_5EW-HxRejFzGDCJgCnAMY-AiMlzwGIMQDTdSxBCArI5DlBJjIRANo4aaIPbH6Is2uax7y2wBq1dIU73IkznkK82oXsvqSlZvZCv8usYX5XiOcVRp5PAVsZDonydZMtUTu9Q9poSQvCo4rwumW7Fhf6TXe5SHLFChv1wPO9sMy-1Lia7Q88RFmKaQoS2d5kIpSqmvVIUef7_XZ_PHq1fARQ1EuXUuR_OPJtuio6R4_5dKKkl_yZzWGVsu_ix_A1sos54
CitedBy_id crossref_primary_10_3389_fgene_2021_642065
crossref_primary_10_1016_j_meatsci_2021_108707
crossref_primary_10_1093_jas_skac227
crossref_primary_10_3168_jds_2021_21016
crossref_primary_10_1016_j_animal_2022_100673
crossref_primary_10_1080_1828051X_2024_2367673
crossref_primary_10_3168_jds_2021_20293
crossref_primary_10_1016_j_isci_2022_104005
crossref_primary_10_1080_1828051X_2024_2329711
crossref_primary_10_1007_s11250_023_03508_4
crossref_primary_10_1016_j_aquaculture_2024_741622
crossref_primary_10_3168_jds_2021_21145
crossref_primary_10_3389_fgene_2022_1012205
crossref_primary_10_1016_j_smallrumres_2022_106835
crossref_primary_10_3168_jdsc_2021_0177
crossref_primary_10_3390_genes16020131
crossref_primary_10_1093_jas_skab261
crossref_primary_10_3390_ani14202961
crossref_primary_10_26897_2949_4710_2023_2_37_48
crossref_primary_10_1111_eva_13261
crossref_primary_10_1186_s12711_023_00781_7
crossref_primary_10_1016_j_psj_2024_104063
crossref_primary_10_1111_jbg_12509
crossref_primary_10_14202_vetworld_2021_3119_3125
crossref_primary_10_1017_S0022029922000395
crossref_primary_10_1093_jas_skab353
crossref_primary_10_3390_ani13182943
crossref_primary_10_3168_jds_2020_19821
crossref_primary_10_3168_jds_2021_21713
crossref_primary_10_3390_vetsci9040163
crossref_primary_10_3390_agriculture12030388
crossref_primary_10_1071_AN21581
crossref_primary_10_3168_jds_2020_18969
crossref_primary_10_1111_jbg_12759
crossref_primary_10_3168_jds_2023_24082
crossref_primary_10_1186_s12711_024_00939_x
crossref_primary_10_3389_fvets_2024_1320484
crossref_primary_10_3168_jds_2022_22629
crossref_primary_10_3389_fgene_2021_692356
crossref_primary_10_1093_jas_skab243
crossref_primary_10_5194_aab_66_163_2023
crossref_primary_10_1093_jas_skab004
crossref_primary_10_5713_ab_22_0327
crossref_primary_10_3389_fgene_2021_625335
crossref_primary_10_1186_s12711_021_00645_y
crossref_primary_10_1111_nph_18480
crossref_primary_10_1016_j_aquaculture_2022_739088
crossref_primary_10_1016_j_livsci_2025_105689
crossref_primary_10_3389_fgene_2021_769849
crossref_primary_10_3168_jds_2021_21152
crossref_primary_10_1080_07388551_2022_2104690
crossref_primary_10_1186_s12711_023_00832_z
crossref_primary_10_1093_g3journal_jkad164
crossref_primary_10_1186_s41065_023_00285_w
crossref_primary_10_1111_jbg_12665
crossref_primary_10_3168_jds_2022_22754
crossref_primary_10_1016_j_egg_2024_100257
crossref_primary_10_1071_AN21045
crossref_primary_10_12750_JARB_38_4_268
crossref_primary_10_3390_ani13233609
crossref_primary_10_3390_genes15040494
crossref_primary_10_3168_jds_2020_19838
crossref_primary_10_1002_aro2_89
crossref_primary_10_3390_agriculture12101524
crossref_primary_10_1016_j_aqrep_2024_102468
crossref_primary_10_3390_ani13121973
crossref_primary_10_1016_j_animal_2025_101434
crossref_primary_10_1186_s12711_021_00683_6
crossref_primary_10_1016_j_animal_2023_100980
crossref_primary_10_3389_fgene_2022_862838
crossref_primary_10_46897_livestockstudies_1209084
crossref_primary_10_1007_s13353_020_00598_w
crossref_primary_10_3390_ani14071098
crossref_primary_10_1111_age_13275
crossref_primary_10_1093_g3journal_jkac137
crossref_primary_10_3390_microorganisms12102091
crossref_primary_10_24072_pcjournal_300
crossref_primary_10_1016_j_animal_2021_100292
crossref_primary_10_56407_bs_agrarian_1_2023_20
crossref_primary_10_3390_ani11061815
crossref_primary_10_1093_jas_skad333
crossref_primary_10_48130_forres_0024_0022
crossref_primary_10_1186_s12711_024_00925_3
crossref_primary_10_3389_fgene_2021_643733
crossref_primary_10_3168_jds_2020_19468
crossref_primary_10_3168_jds_2023_24208
crossref_primary_10_3168_jds_2023_24207
crossref_primary_10_1111_age_13483
crossref_primary_10_3390_f13101554
crossref_primary_10_3390_genes16020159
crossref_primary_10_1186_s12711_023_00808_z
crossref_primary_10_3390_genes12121886
crossref_primary_10_1016_j_aqrep_2021_100660
crossref_primary_10_1093_jas_skae155
crossref_primary_10_1017_S0021859624000364
crossref_primary_10_1016_j_cj_2021_09_001
crossref_primary_10_1093_jas_skad104
crossref_primary_10_1016_j_animal_2024_101118
crossref_primary_10_3168_jds_2021_20416
crossref_primary_10_1007_s10126_023_10229_0
crossref_primary_10_1007_s13353_022_00685_0
crossref_primary_10_3168_jds_2021_20263
crossref_primary_10_1186_s12864_024_10640_4
crossref_primary_10_1016_j_livsci_2023_105287
crossref_primary_10_1186_s12711_022_00741_7
Cites_doi 10.1186/s12711-019-0516-0
10.1186/s12711-017-0318-1
10.1186/s12711-018-0426-6
10.1186/1297-9686-44-26
10.1186/1297-9686-35-1-77
10.1186/s12711-015-0165-x
10.1186/s12711-018-0410-1
10.3168/jds.2015-10433
10.1046/j.1439-0388.1999.00210.x
10.3168/jds.2019-16789
10.2527/jas2017.1912
10.3168/jds.2018-15419
10.3168/jds.2013-7752
10.1093/genetics/157.4.1819
10.3168/jds.2007-0231
10.3168/jds.2019-16634
10.2527/1992.7072000x
10.3168/jds.2013-7769
10.2527/jas.2015-9930
10.1007/s10709-008-9308-0
10.1186/s12711-017-0310-9
10.3168/jds.2012-5656
10.2527/jas.2009-2022
10.2307/2529339
10.1534/genetics.108.088575
10.1534/genetics.116.187013
10.1038/s41598-017-09170-9
10.1534/genetics.112.147983
10.3168/jds.S0022-0302(91)78453-1
10.3168/jds.2011-5019
10.1073/pnas.1519061113
10.2527/jas.2014-8836
10.1093/jas/skaa032
10.1186/s12864-019-6068-4
10.1111/jbg.12276
10.1186/1297-9686-46-50
10.1016/S0022-0302(88)79976-2
10.3168/jds.2014-8489
10.1186/s12711-015-0177-6
10.1534/genetics.115.177014
10.1371/journal.pgen.1007661
10.1534/g3.119.400663
10.1017/S0016672300014002
10.3168/jds.2009-2064
10.1186/1297-9686-43-25
10.1186/1297-9686-43-10
10.1186/s12711-015-0143-3
10.3168/jds.2017-13364
10.1186/1471-2105-15-246
10.1186/s12711-019-0469-3
10.1534/genetics.115.182089
10.1093/jas/skz042
10.2527/jas.2010-3555
10.1017/S001667231100022X
10.1111/jbg.12367
10.1186/s12711-016-0233-x
10.1186/1297-9686-43-1
10.1016/0301-6226(89)90041-9
10.3168/jds.2014-9005
10.1534/genetics.113.155309
10.3168/jds.S0022-0302(92)78077-1
10.1186/s12711-018-0373-2
10.3168/jds.2013-7821
10.1186/1297-9686-42-2
10.3168/jds.2009-2730
10.3168/jds.2014-7924
10.1186/1297-9686-44-37
10.1186/1297-9686-46-23
10.1186/s12711-017-0335-0
10.1111/j.1439-0388.2010.00912.x
10.3168/jds.S0022-0302(88)79688-5
10.1186/1297-9686-41-55
10.3168/jds.2017-12665
10.1016/j.livsci.2014.04.029
10.1111/jbg.12288
10.1186/s12711-019-0472-8
10.1093/bioinformatics/btp045
10.1186/s12711-017-0309-2
10.1186/1297-9686-45-30
10.1093/jas/skaa154
10.1038/s41576-018-0082-2
10.1093/jas/skz296
10.3168/jds.2019-16262
10.1186/1297-9686-46-49
10.1534/g3.117.043596
10.2527/jas.2015-9395
10.3168/jds.2011-4982
10.3168/jds.2013-7167
10.1186/s12711-019-0514-2
10.1186/s12711-017-0307-4
10.1111/j.1439-0388.2007.00700.x
10.1186/s12711-018-0400-3
10.3168/jds.2007-0980
10.1186/s12711-015-0137-1
10.3168/jds.2018-15707
10.1016/j.tpb.2015.08.005
10.1186/s12864-019-6323-8
10.3168/jds.2007-0575
10.1186/s12711-016-0261-6
10.1146/annurev-animal-020518-115024
10.3168/jds.2011-5000
10.3168/jds.S0022-0302(88)79691-5
10.3168/jds.2008-1514
10.3389/fgene.2014.00332
10.1186/s12711-015-0159-8
10.1371/journal.pone.0161054
10.3168/jds.S0022-0302(81)82778-6
10.1038/ng.548
10.1186/1297-9686-43-30
10.1111/jbg.12058
10.1111/j.1439-0388.2012.00991.x
10.1111/jbg.12025
10.1111/jbg.12257
10.1371/journal.pone.0005350
10.3168/jds.2011-4256
10.1111/jbg.12334
10.3168/jds.2009-2061
10.1111/jbg.12281
10.1186/s12711-015-0130-8
10.1186/1297-9686-43-40
10.3168/jds.2014-9125
10.1111/age.12378
10.2527/jas.2015-9748
10.3168/jds.2011-4481
10.1186/s12711-016-0260-7
10.3168/jds.2010-3804
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. 2020
The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. 2020
– notice: The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID TOX
AAYXX
CITATION
NPM
7X8
1XC
5PM
ADTOC
UNPAY
DOI 10.1093/jas/skaa101
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3163
ExternalDocumentID 10.1093/jas/skaa101
PMC7183352
oai:HAL:hal-02916894v1
32267923
10_1093_jas_skaa101
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 2015-67015-22936
GroupedDBID ---
..I
.55
.GJ
0R~
186
18M
29J
2WC
3V.
48X
53G
5GY
5RE
5WD
7RQ
7X2
7X7
7XC
88A
88E
88I
8AF
8FE
8FG
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAIMJ
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
ABCQX
ABJCF
ABJNI
ABMNT
ABPTD
ABSAR
ABUWG
ABWST
ABXVV
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACQAM
ACUTJ
ACZBC
ADBBV
ADFRT
ADGZP
ADIPN
ADNWM
ADQBN
ADRTK
ADVEK
AELWJ
AENEX
AETBJ
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AHMBA
AI.
AJEEA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ATCPS
ATDFG
ATGXG
AZQEC
BAYMD
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BGLVJ
BHPHI
BKOMP
BPHCQ
BVXVI
C1A
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
ELUNK
EYRJQ
F5P
F9R
FHSFR
FJW
FLUFQ
FOEOM
FQBLK
FYUFA
GAUVT
GNUQQ
GUQSH
H13
HCIFZ
HMCUK
HYE
INIJC
KBUDW
KOP
KSI
KSN
L6V
L7B
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
M7S
MBTAY
ML0
MV1
MW2
NEJ
NHB
NLBLG
NOMLY
NVLIB
O9-
OBOKY
ODMLO
OJZSN
OK1
OWPYF
P-O
P0-
P2P
PATMY
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PYCSY
Q2X
ROX
RPM
RUSNO
RWL
RXW
S0X
SJN
TAE
TCN
TJA
TOX
TR2
TWZ
UKHRP
VH1
W8F
WH7
WOQ
X7M
XOL
YKV
YXANX
ZCG
ZGI
ZXP
~KM
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADGKP
ADNBA
AEUYN
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
YR5
NPM
7X8
1XC
ABUFD
5PM
ABIME
ABPIB
ABZEO
ACVCV
ADTOC
AHGBF
AJDVS
UNPAY
ID FETCH-LOGICAL-c446t-de25d1aca18aebaba23cf232de69ef2f53da6a5a189e55ed33eef10f0f6d4be43
IEDL.DBID UNPAY
ISSN 0021-8812
1525-3163
1525-3015
1544-7847
IngestDate Sun Oct 26 04:14:58 EDT 2025
Tue Sep 30 16:56:54 EDT 2025
Tue Oct 14 20:16:57 EDT 2025
Wed Oct 01 13:12:40 EDT 2025
Wed Feb 19 02:30:45 EST 2025
Wed Oct 01 01:15:27 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Wed Aug 28 03:18:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords genomic selection
large data
genomic evaluation
single-step GBLUP
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-de25d1aca18aebaba23cf232de69ef2f53da6a5a189e55ed33eef10f0f6d4be43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMCID: PMC7183352
ORCID 0000-0002-0382-1897
0000-0001-8893-7620
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/jas/article-pdf/98/4/skaa101/33495645/skaa101.pdf
PMID 32267923
PQID 2388000488
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1093_jas_skaa101
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183352
hal_primary_oai_HAL_hal_02916894v1
proquest_miscellaneous_2388000488
pubmed_primary_32267923
crossref_primary_10_1093_jas_skaa101
crossref_citationtrail_10_1093_jas_skaa101
oup_primary_10_1093_jas_skaa101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
PublicationTitle Journal of animal science
PublicationTitleAlternate J Anim Sci
PublicationYear 2020
Publisher Oxford University Press
American Society of Animal Science
Publisher_xml – name: Oxford University Press
– name: American Society of Animal Science
References Tsuruta (2020071414323918400_CIT0126) 2017; 100
Pocrnic (2020071414323918400_CIT0112) 2019; 51
Christensen (2020071414323918400_CIT0017) 2012; 44
Xiang (2020071414323918400_CIT0147) 2016; 94
VanRaden (2020071414323918400_CIT0132) 1992; 75
Erbe (2020071414323918400_CIT0026) 2012; 95
Stam (2020071414323918400_CIT0118) 1980; 35
Fragomeni (2020071414323918400_CIT0031) 2017; 49
Howard (2020071414323918400_CIT0051) 2018; 135
Kennedy (2020071414323918400_CIT0058) 1992; 70
Garrick (2020071414323918400_CIT0038) 2018
Xu (2020071414323918400_CIT0149) 2013; 195
Bermann (2020071414323918400_CIT0005) 2020
Golden (2020071414323918400_CIT0044) 2018
Gualdrón Duarte (2020071414323918400_CIT0045) 2014; 15
Gengler (2020071414323918400_CIT0040) 2008; 91
Henderson (2020071414323918400_CIT0048) 1984
Legarra (2020071414323918400_CIT0060) 2009; 92
Ros-Freixedes (2020071414323918400_CIT0115) 2020; 52
Bernal Rubio (2020071414323918400_CIT0006) 2016; 47
Meyer (2020071414323918400_CIT0092) 2018; 50
Teissier (2020071414323918400_CIT0123) 2018; 50
Sargolzaei (2020071414323918400_CIT0117) 2009; 25
Westell (2020071414323918400_CIT0143) 1988; 71
Misztal (2020071414323918400_CIT0098) 2014
Legarra (2020071414323918400_CIT0059) 2016; 107
Misztal (2020071414323918400_CIT0097) 2013; 96
Cesarani (2020071414323918400_CIT0014) 2019; 136
Karaman (2020071414323918400_CIT0057) 2016; 11
Aguilar (2020071414323918400_CIT0004) 2011; 128
Cuyabano (2020071414323918400_CIT0021) 2015; 47
Carillier-Jacquin (2020071414323918400_CIT0013) 2016; 48
Garcia (2020071414323918400_CIT0035) 2020
Kachman (2020071414323918400_CIT0055) 2013; 45
Vandenplas (2020071414323918400_CIT0130) 2017; 49
Quaas (2020071414323918400_CIT0113) 1988; 71
Legarra (2020071414323918400_CIT0062) 2015; 200
Goddard (2020071414323918400_CIT0042) 2009; 136
Masuda (2020071414323918400_CIT0081) 2015; 93
Aguilar (2020071414323918400_CIT0003) 2010; 93
Bradford (2020071414323918400_CIT0010) 2019; 102
Daetwyler (2020071414323918400_CIT0022) 2013; 193
Matilainen (2020071414323918400_CIT0086) 2016; 50
Saatchi (2020071414323918400_CIT0116) 2011; 43
Pocrnic (2020071414323918400_CIT0111) 2016; 48
Vandenplas (2020071414323918400_CIT0129) 2019; 51
Liu (2020071414323918400_CIT0067) 2014; 97
Misztal (2020071414323918400_CIT0099) 2019
Misztal (2020071414323918400_CIT0096) 2014; 97
Brøndum (2020071414323918400_CIT0012) 2015; 98
Lourenco (2020071414323918400_CIT0073) 2016; 94
Patry (2020071414323918400_CIT0107) 2011; 94
Jónás (2020071414323918400_CIT0053) 2016; 99
Matukumalli (2020071414323918400_CIT0087) 2009; 4
VanRaden (2020071414323918400_CIT0135) 2020; 103
Legarra (2020071414323918400_CIT0065) 2008; 180
Misztal (2020071414323918400_CIT0095) 2009; 92
Lourenco (2020071414323918400_CIT0070) 2017; 134
Liu (2020071414323918400_CIT0068) 2017; 51
Lutaaya (2020071414323918400_CIT0077) 1999; 116
Masuda (2020071414323918400_CIT0084) 2018
VanRaden (2020071414323918400_CIT0137) 2014; 97
Tsuruta (2020071414323918400_CIT0125) 2019; 102
Fragomeni (2020071414323918400_CIT0032) 2015; 98
Garcia-Baccino (2020071414323918400_CIT0036) 2017; 49
Lourenco (2020071414323918400_CIT0074) 2015; 93
VanRaden (2020071414323918400_CIT0138) 2009; 92
Misztal (2020071414323918400_CIT0094) 2017; 51
MacNeil (2020071414323918400_CIT0078) 2010; 88
VanRaden (2020071414323918400_CIT0141) 2012; 95
Tsuruta (2020071414323918400_CIT0128) 2014; 97
Bradford (2020071414323918400_CIT0011) 2017; 134
Georges (2020071414323918400_CIT0041) 2019; 20
VanRaden (2020071414323918400_CIT0140) 2013; 47
Chen (2020071414323918400_CIT0015) 2011; 89
Aguilar (2020071414323918400_CIT0002) 2008; 91
Christensen (2020071414323918400_CIT0020) 2014; 46
Meuwissen (2020071414323918400_CIT0088) 2001; 157
Kachman (2020071414323918400_CIT0054) 2008
Strandén (2020071414323918400_CIT0120) 2011; 43
Vitezica (2020071414323918400_CIT0142) 2011; 93
Oget (2020071414323918400_CIT0105) 2019; 20
Bijma (2020071414323918400_CIT0007) 2012; 129
Lourenco (2020071414323918400_CIT0072) 2014; 97
Plieschke (2020071414323918400_CIT0108) 2015; 47
Xiang (2020071414323918400_CIT0146) 2017; 95
Garrick (2020071414323918400_CIT0039) 2009; 41
Tsuruta (2020071414323918400_CIT0124) 2019; 102
Masuda (2020071414323918400_CIT0085) 2018
Liu (2020071414323918400_CIT0069) 2017; 7
Misztal (2020071414323918400_CIT0100) 2013; 130
Mäntysaari (2020071414323918400_CIT0080) 2017; 95
Fernando (2020071414323918400_CIT0028) 2014; 46
Bradford (2020071414323918400_CIT0009) 2019; 102
Misztal (2020071414323918400_CIT0101) 1988; 71
Strandén (2020071414323918400_CIT0121) 2017; 134
VanRaden (2020071414323918400_CIT0134) 2011; 43
Fernando (2020071414323918400_CIT0027) 2016; 48
Wiggans (2020071414323918400_CIT0144) 2011; 94
Legarra (2020071414323918400_CIT0066) 2015; 47
Masuda (2020071414323918400_CIT0082) 2014; 131
Meyer (2020071414323918400_CIT0091) 1989; 21
VanRaden (2020071414323918400_CIT0133) 2008; 91
Legarra (2020071414323918400_CIT0064) 2018; 50
Pocrnic (2020071414323918400_CIT0110) 2016; 203
Makgahlela (2020071414323918400_CIT0079) 2014; 97
Legarra (2020071414323918400_CIT0063) 2012; 95
Edel (2020071414323918400_CIT0025) 2019; 102
Henderson (2020071414323918400_CIT0047) 1976; 32
Gao (2020071414323918400_CIT0034) 2019; 20
García-Ruiz (2020071414323918400_CIT0037) 2016; 113
Moghaddar (2020071414323918400_CIT0102) 2019; 51
Misztal (2020071414323918400_CIT0093) 2016; 202
Tsuruta (2020071414323918400_CIT0127) 2011; 94
Christensen (2020071414323918400_CIT0019) 2010; 42
Lourenco (2020071414323918400_CIT0075) 2018; 11
Meuwissen (2020071414323918400_CIT0090) 2015; 47
Duenk (2020071414323918400_CIT0024) 2020
Hidalgo (2020071414323918400_CIT0049) 2020
Ødegård (2020071414323918400_CIT0104) 2018; 50
VanRaden (2020071414323918400_CIT0136) 2017; 49
Legarra (2020071414323918400_CIT0061) 2014; 166
Muir (2020071414323918400_CIT0103) 2007; 124
Lu (2020071414323918400_CIT0076) 2018; 101
Patry (2020071414323918400_CIT0106) 2011; 43
Steyn (2020071414323918400_CIT0119) 2019; 97
Wiggans (2020071414323918400_CIT0145) 2012; 95
Masuda (2020071414323918400_CIT0083) 2017; 95
Lourenco (2020071414323918400_CIT0071) 2015; 47
Pocrnic (2020071414323918400_CIT0109) 2019; 97
Quaas (2020071414323918400_CIT0114) 1981; 64
Kang (2020071414323918400_CIT0056) 2010; 42
Fragomeni (2020071414323918400_CIT0033) 2014; 5
Derks (2020071414323918400_CIT0023) 2018; 14
Taskinen (2020071414323918400_CIT0122) 2017; 49
Fragomeni (2020071414323918400_CIT0030) 2019; 102
Meuwissen (2020071414323918400_CIT0089) 2014; 46
Goddard (2020071414323918400_CIT0043) 2017; 134
VanRaden (2020071414323918400_CIT0139) 1991; 74
Van Grevenhof (2020071414323918400_CIT0131) 2012; 44
Aguilar (2020071414323918400_CIT0001) 2019; 51
Hayes (2020071414323918400_CIT0046) 2019; 7
Hsu (2020071414323918400_CIT0052) 2017; 7
Boichard (2020071414323918400_CIT0008) 2003; 35
Christensen (2020071414323918400_CIT0018) 2015; 47
Forni (2020071414323918400_CIT0029) 2011; 43
References_xml – volume: 51
  start-page: 75
  year: 2019
  ident: 2020071414323918400_CIT0112
  article-title: Accuracy of genomic BLUP when considering a genomic relationship matrix based on the number of the largest eigenvalues: a simulation study
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-019-0516-0
– volume: 49
  start-page: 43
  year: 2017
  ident: 2020071414323918400_CIT0130
  article-title: Prediction of the reliability of genomic breeding values for crossbred performance
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-017-0318-1
– volume: 50
  start-page: 53
  year: 2018
  ident: 2020071414323918400_CIT0064
  article-title: Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-018-0426-6
– volume: 44
  start-page: 26
  year: 2012
  ident: 2020071414323918400_CIT0131
  article-title: Response to genomic selection: the Bulmer effect and the potential of genomic selection when the number of phenotypic records is limiting
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-44-26
– volume: 35
  start-page: 77
  year: 2003
  ident: 2020071414323918400_CIT0008
  article-title: Detection of genes influencing economic traits in three French dairy cattle breeds
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-35-1-77
– volume: 47
  start-page: 89
  year: 2015
  ident: 2020071414323918400_CIT0066
  article-title: Genetic evaluation with major genes and polygenic inheritance when some animals are not genotyped using gene content multiple-trait BLUP
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-015-0165-x
– volume: 50
  start-page: 39
  year: 2018
  ident: 2020071414323918400_CIT0092
  article-title: Estimates of genetic trend for single-step genomic evaluations
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-018-0410-1
– volume: 99
  start-page: 4537
  year: 2016
  ident: 2020071414323918400_CIT0053
  article-title: Alternative haplotype construction methods for genomic evaluation
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2015-10433
– volume: 116
  start-page: 475
  year: 1999
  ident: 2020071414323918400_CIT0077
  article-title: Inbreeding in populations with incomplete pedigrees
  publication-title: J. Anim. Breed. Genet
  doi: 10.1046/j.1439-0388.1999.00210.x
– volume: 102
  start-page: 9956
  year: 2019
  ident: 2020071414323918400_CIT0124
  article-title: Controlling bias in genomic breeding values for young genotyped bulls
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2019-16789
– volume: 95
  start-page: 4728
  year: 2017
  ident: 2020071414323918400_CIT0080
  article-title: Efficient single-step genomic evaluation for a multibreed beef cattle population having many genotyped animals
  publication-title: J. Anim. Sci
  doi: 10.2527/jas2017.1912
– volume: 102
  start-page: 2308
  year: 2019
  ident: 2020071414323918400_CIT0010
  article-title: Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2018-15419
– volume: 102
  start-page: 397
  year: 2019
  ident: 2020071414323918400_CIT0125
  article-title: Validation of genomic predictions for linear type traits in US Holsteins using over 2 million genotyped animals
  publication-title: J. Dairy Sci
– volume: 97
  start-page: 3943
  year: 2014
  ident: 2020071414323918400_CIT0096
  article-title: Using recursion to compute the inverse of the genomic relationship matrix
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2013-7752
– start-page: 973
  volume-title: An introduction to BOLT software for genetic and genomic evaluations
  year: 2018
  ident: 2020071414323918400_CIT0038
– volume: 157
  start-page: 1819
  year: 2001
  ident: 2020071414323918400_CIT0088
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 91
  start-page: 1652
  year: 2008
  ident: 2020071414323918400_CIT0040
  article-title: Accuracy of prediction of gene content in large animal populations and its use for candidate gene detection and genetic evaluation
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2007-0231
– volume: 103
  start-page: 1620
  year: 2020
  ident: 2020071414323918400_CIT0135
  article-title: Genomic predictions for crossbred dairy cattle
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2019-16634
– volume: 70
  start-page: 2000
  year: 1992
  ident: 2020071414323918400_CIT0058
  article-title: Estimation of effects of single genes on quantitative traits
  publication-title: J. Anim. Sci
  doi: 10.2527/1992.7072000x
– volume: 97
  start-page: 3930
  year: 2014
  ident: 2020071414323918400_CIT0072
  article-title: Are evaluations on young genotyped animals benefiting from the past generations?
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2013-7769
– volume: 94
  start-page: 936
  year: 2016
  ident: 2020071414323918400_CIT0147
  article-title: Application of single-step genomic evaluation for crossbred performance in pig
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2015-9930
– volume: 136
  start-page: 245
  year: 2009
  ident: 2020071414323918400_CIT0042
  article-title: Genomic selection: prediction of accuracy and maximisation of long term response
  publication-title: Genetica
  doi: 10.1007/s10709-008-9308-0
– volume: 49
  start-page: 36
  year: 2017
  ident: 2020071414323918400_CIT0122
  article-title: Single-step SNP-BLUP with on-the-fly imputed genotypes and residual polygenic effects
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-017-0310-9
– volume: 96
  start-page: 647
  year: 2013
  ident: 2020071414323918400_CIT0097
  article-title: Methods to approximate reliabilities in single-step genomic evaluation
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2012-5656
– volume: 88
  start-page: 517
  year: 2010
  ident: 2020071414323918400_CIT0078
  article-title: Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2009-2022
– volume: 32
  start-page: 69
  year: 1976
  ident: 2020071414323918400_CIT0047
  article-title: A simple method for computing the inverse of a relationship matrix used in prediction of breeding values
  publication-title: Biometrics
  doi: 10.2307/2529339
– volume: 180
  start-page: 611
  year: 2008
  ident: 2020071414323918400_CIT0065
  article-title: Performance of genomic selection in mice
  publication-title: Genetics
  doi: 10.1534/genetics.108.088575
– volume: 203
  start-page: 573
  year: 2016
  ident: 2020071414323918400_CIT0110
  article-title: The dimensionality of genomic information and its effect on genomic prediction
  publication-title: Genetics
  doi: 10.1534/genetics.116.187013
– volume: 7
  start-page: 8487
  year: 2017
  ident: 2020071414323918400_CIT0069
  article-title: Genome-wide association studies for female fertility traits in Chinese and Nordic Holsteins
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-09170-9
– volume: 193
  start-page: 347
  year: 2013
  ident: 2020071414323918400_CIT0022
  article-title: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking
  publication-title: Genetics
  doi: 10.1534/genetics.112.147983
– volume: 74
  start-page: 2737
  year: 1991
  ident: 2020071414323918400_CIT0139
  article-title: Derivation, calculation, and use of national animal model information
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.S0022-0302(91)78453-1
– volume: 95
  start-page: 4114
  year: 2012
  ident: 2020071414323918400_CIT0026
  article-title: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2011-5019
– start-page: 540
  volume-title: Pre-selection bias and validation method in single-step GBLUP for production traits in US Holstein
  year: 2018
  ident: 2020071414323918400_CIT0084
– volume: 113
  start-page: E3995
  year: 2016
  ident: 2020071414323918400_CIT0037
  article-title: Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1519061113
– volume: 93
  start-page: 2653
  year: 2015
  ident: 2020071414323918400_CIT0074
  article-title: Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2014-8836
– year: 2020
  ident: 2020071414323918400_CIT0049
  article-title: Changes in genetic parameters for fitness and growth traits in pigs under genomic selection
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skaa032
– volume: 20
  start-page: 719
  year: 2019
  ident: 2020071414323918400_CIT0105
  article-title: Alternative methods improve the accuracy of genomic prediction using information from a causal point mutation in a dairy sheep model
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6068-4
– volume: 134
  start-page: 545
  year: 2017
  ident: 2020071414323918400_CIT0011
  article-title: Selection of core animals in the algorithm for proven and young using a simulation model
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12276
– volume: 46
  start-page: 50
  year: 2014
  ident: 2020071414323918400_CIT0028
  article-title: A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-46-50
– volume: 71
  start-page: 27
  year: 1988
  ident: 2020071414323918400_CIT0101
  article-title: Approximation of prediction error variance in large-scale animal models
  publication-title: J. Dairy Sci
  doi: 10.1016/S0022-0302(88)79976-2
– volume: 97
  start-page: 7952
  year: 2014
  ident: 2020071414323918400_CIT0137
  article-title: Comparison of single-trait to multi-trait national evaluations for yield, health, and fertility
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2014-8489
– volume: 47
  start-page: 98
  year: 2015
  ident: 2020071414323918400_CIT0018
  article-title: Genetic evaluation for three-way crossbreeding
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-015-0177-6
– volume: 200
  start-page: 455
  year: 2015
  ident: 2020071414323918400_CIT0062
  article-title: Ancestral relationships using metafounders: finite ancestral populations and across population relationships
  publication-title: Genetics
  doi: 10.1534/genetics.115.177014
– volume: 14
  start-page: e1007661
  year: 2018
  ident: 2020071414323918400_CIT0023
  article-title: Balancing selection on a recessive lethal deletion with pleiotropic effects on two neighboring genes in the porcine genome
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007661
– year: 2020
  ident: 2020071414323918400_CIT0024
  article-title: The impact of non-additive effects on the genetic correlation between populations
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.119.400663
– volume: 47
  start-page: 147
  year: 2013
  ident: 2020071414323918400_CIT0140
  article-title: Measuring genomic pre-selection in theory and in practice
  publication-title: Interbull Bull
– volume: 35
  start-page: 131
  year: 1980
  ident: 2020071414323918400_CIT0118
  article-title: The distribution of the fraction of the genome identical by descent in finite random mating populations
  publication-title: Genet. Res
  doi: 10.1017/S0016672300014002
– volume: 92
  start-page: 4648
  year: 2009
  ident: 2020071414323918400_CIT0095
  article-title: Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2009-2064
– volume: 43
  start-page: 25
  year: 2011
  ident: 2020071414323918400_CIT0120
  article-title: Allele coding in genomic evaluation
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-43-25
– volume: 43
  start-page: 10
  year: 2011
  ident: 2020071414323918400_CIT0134
  article-title: Genomic evaluations with many more genotypes
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-43-10
– year: 2014
  ident: 2020071414323918400_CIT0098
  article-title: Manual for BLUPF90 family of programs.
– volume: 47
  start-page: 61
  year: 2015
  ident: 2020071414323918400_CIT0021
  article-title: Selection of haplotype variables from a high-density marker map for genomic prediction
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-015-0143-3
– volume: 101
  start-page: 3140
  year: 2018
  ident: 2020071414323918400_CIT0076
  article-title: Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2017-13364
– volume: 15
  start-page: 246
  year: 2014
  ident: 2020071414323918400_CIT0045
  article-title: Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-246
– volume: 51
  start-page: 28
  year: 2019
  ident: 2020071414323918400_CIT0001
  article-title: Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-019-0469-3
– volume: 202
  start-page: 401
  year: 2016
  ident: 2020071414323918400_CIT0093
  article-title: Inexpensive computation of the inverse of the genomic relationship matrix in populations with small effective population size
  publication-title: Genetics
  doi: 10.1534/genetics.115.182089
– volume: 97
  start-page: 1513
  year: 2019
  ident: 2020071414323918400_CIT0109
  article-title: Crossbred evaluations using single-step genomic BLUP and algorithm for proven and young with different sources of data
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skz042
– volume: 50
  start-page: 71
  year: 2016
  ident: 2020071414323918400_CIT0086
  article-title: Managing genetic groups in single-step genomic evaluations applied on female fertility traits in Nordic Red Dairy Cattle
  publication-title: Interbull Bull
– volume: 52
  year: 2020
  ident: 2020071414323918400_CIT0115
  article-title: Accuracy of whole-genome sequence imputation using hybrid peeling in large pedigreed livestock populations
  publication-title: Genet. Sel. Evol
– volume: 11
  start-page: 495
  year: 2018
  ident: 2020071414323918400_CIT0075
  article-title: Single-step genomic BLUP for national beef cattle evaluation in US: from initial developments to final implementation
  publication-title: Proc. World. Cong. Appl. Livest. Prod
– volume: 89
  start-page: 2673
  year: 2011
  ident: 2020071414323918400_CIT0015
  article-title: Effect of different genomic relationship matrices on accuracy and scale
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2010-3555
– volume: 93
  start-page: 357
  year: 2011
  ident: 2020071414323918400_CIT0142
  article-title: Bias in genomic predictions for populations under selection
  publication-title: Genet. Res. (Camb)
  doi: 10.1017/S001667231100022X
– volume: 136
  start-page: 40
  year: 2019
  ident: 2020071414323918400_CIT0014
  article-title: Bias in heritability estimates from genomic restricted maximum likelihood methods under different genotyping strategies
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12367
– volume: 48
  start-page: 54
  year: 2016
  ident: 2020071414323918400_CIT0013
  article-title: Including α s1 casein gene information in genomic evaluations of French dairy goats
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-016-0233-x
– volume: 43
  start-page: 1
  year: 2011
  ident: 2020071414323918400_CIT0029
  article-title: Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-43-1
– volume: 21
  start-page: 87
  year: 1989
  ident: 2020071414323918400_CIT0091
  article-title: Approximate accuracy of genetic evaluation under an animal model
  publication-title: Livest. Prod. Sci
  doi: 10.1016/0301-6226(89)90041-9
– volume: 98
  start-page: 4107
  year: 2015
  ident: 2020071414323918400_CIT0012
  article-title: Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2014-9005
– volume: 195
  start-page: 1103
  year: 2013
  ident: 2020071414323918400_CIT0149
  article-title: Genetic mapping and genomic selection using recombination breakpoint data
  publication-title: Genetics
  doi: 10.1534/genetics.113.155309
– volume: 75
  start-page: 3136
  year: 1992
  ident: 2020071414323918400_CIT0132
  article-title: Accounting for inbreeding and crossbreeding in genetic evaluation of large populations
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.S0022-0302(92)78077-1
– volume: 50
  start-page: 6
  year: 2018
  ident: 2020071414323918400_CIT0104
  article-title: Large-scale genomic prediction using singular value decomposition of the genotype matrix
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-018-0373-2
– volume: 97
  start-page: 5814
  year: 2014
  ident: 2020071414323918400_CIT0128
  article-title: Assigning unknown parent groups to reduce bias in genomic evaluations of final score in US Holsteins
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2013-7821
– volume: 42
  start-page: 2
  year: 2010
  ident: 2020071414323918400_CIT0019
  article-title: Genomic prediction when some animals are not genotyped
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-42-2
– volume: 51
  start-page: 75
  year: 2017
  ident: 2020071414323918400_CIT0068
  article-title: Approximating genomic reliabilities for national genomic evaluation
  publication-title: Interbull Bull
– volume: 93
  start-page: 743
  year: 2010
  ident: 2020071414323918400_CIT0003
  article-title: Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2009-2730
– volume: 97
  start-page: 5833
  year: 2014
  ident: 2020071414323918400_CIT0067
  article-title: A single-step genomic model with direct estimation of marker effects
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2014-7924
– volume: 95
  start-page: 446
  year: 2012
  ident: 2020071414323918400_CIT0141
  article-title: Adjustment of selection index coefficients and polygenic variance to improve regressions and reliability of genomic evaluations
  publication-title: J. Dairy Sci
– volume: 44
  start-page: 37
  year: 2012
  ident: 2020071414323918400_CIT0017
  article-title: Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-44-37
– volume: 46
  start-page: 23
  year: 2014
  ident: 2020071414323918400_CIT0020
  article-title: Genomic evaluation of both purebred and crossbred performances
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-46-23
– volume: 49
  start-page: 59
  year: 2017
  ident: 2020071414323918400_CIT0031
  article-title: Incorporation of causative quantitative trait nucleotides in single-step GBLUP
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-017-0335-0
– start-page: 14
  volume-title: Current single-step national beef cattle evaluation models used by the American Hereford Association and International Genetic Solutions, computational aspects, and implications of marker selection
  year: 2018
  ident: 2020071414323918400_CIT0044
– volume: 128
  start-page: 422
  year: 2011
  ident: 2020071414323918400_CIT0004
  article-title: Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/j.1439-0388.2010.00912.x
– volume: 71
  start-page: 1310
  year: 1988
  ident: 2020071414323918400_CIT0143
  article-title: Genetic groups in an animal model
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.S0022-0302(88)79688-5
– volume: 41
  start-page: 55
  year: 2009
  ident: 2020071414323918400_CIT0039
  article-title: Deregressing estimated breeding values and weighting information for genomic regression analyses
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-41-55
– start-page: 92
  volume-title: Incorporation of marker scores into national cattle evaluations
  year: 2008
  ident: 2020071414323918400_CIT0054
– volume: 100
  start-page: 7295
  year: 2017
  ident: 2020071414323918400_CIT0126
  article-title: Genomic analysis of cow mortality and milk production using a threshold-linear model
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2017-12665
– volume: 166
  start-page: 54
  year: 2014
  ident: 2020071414323918400_CIT0061
  article-title: Single step, a general approach for genomic selection
  publication-title: Livest. Prod. Sci
  doi: 10.1016/j.livsci.2014.04.029
– volume: 134
  start-page: 463
  year: 2017
  ident: 2020071414323918400_CIT0070
  article-title: Implications of SNP weighting on single-step genomic predictions for different reference population sizes
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12288
– volume: 51
  start-page: 30
  year: 2019
  ident: 2020071414323918400_CIT0129
  article-title: A second-level diagonal preconditioner for single-step SNPBLUP
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-019-0472-8
– volume: 25
  start-page: 680
  year: 2009
  ident: 2020071414323918400_CIT0117
  article-title: QMSim: a large-scale genome simulator for livestock
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp045
– start-page: 5194
  volume-title: Differing genetic trend estimates from traditional and genomic evaluations of genotyped animals as evidence of preselection bias in US Holsteins
  year: 2018
  ident: 2020071414323918400_CIT0085
– volume-title: Changes in predictions when using different core animals in the APY algorithm
  year: 2019
  ident: 2020071414323918400_CIT0099
– volume: 49
  start-page: 34
  year: 2017
  ident: 2020071414323918400_CIT0036
  article-title: Metafounders are related to F st fixation indices and reduce bias in single-step genomic evaluations
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-017-0309-2
– volume: 45
  start-page: 30
  year: 2013
  ident: 2020071414323918400_CIT0055
  article-title: Comparison of molecular breeding values based on within- and across-breed training in beef cattle
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-45-30
– year: 2020
  ident: 2020071414323918400_CIT0035
  article-title: Indirect predictions with a large number of genotyped animals using the algorithm for proven and young
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skaa154
– volume: 20
  start-page: 135
  year: 2019
  ident: 2020071414323918400_CIT0041
  article-title: Harnessing genomic information for livestock improvement
  publication-title: Nat. Rev. Genet
  doi: 10.1038/s41576-018-0082-2
– year: 2020
  ident: 2020071414323918400_CIT0005
  article-title: Validation of genomic and pedigree predictions from threshold models using the linear regression (LR) method: an application in chicken mortality
  publication-title: Genet. Sel. Evol
– volume: 97
  start-page: 4418
  year: 2019
  ident: 2020071414323918400_CIT0119
  article-title: Genomic predictions in purebreds with a multibreed genomic relationship matrix1
  publication-title: J. Anim. Sci
  doi: 10.1093/jas/skz296
– volume: 102
  start-page: 10012
  year: 2019
  ident: 2020071414323918400_CIT0030
  article-title: Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2019-16262
– volume: 46
  start-page: 49
  year: 2014
  ident: 2020071414323918400_CIT0089
  article-title: On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-46-49
– volume: 7
  start-page: 2685
  year: 2017
  ident: 2020071414323918400_CIT0052
  article-title: The accuracy and bias of single-step genomic prediction for populations under selection
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.117.043596
– volume: 93
  start-page: 4670
  year: 2015
  ident: 2020071414323918400_CIT0081
  article-title: Technical note: acceleration of sparse operations for average-information REML analyses with supernodal methods and sparse-storage refinements
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2015-9395
– volume: 95
  start-page: 4629
  year: 2012
  ident: 2020071414323918400_CIT0063
  article-title: Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2011-4982
– volume: 97
  start-page: 1117
  year: 2014
  ident: 2020071414323918400_CIT0079
  article-title: Using the unified relationship matrix adjusted by breed-wise allele frequencies in genomic evaluation of a multibreed population
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2013-7167
– volume: 102
  start-page: 2308
  year: 2019
  ident: 2020071414323918400_CIT0009
  article-title: Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2018-15419
– volume: 51
  start-page: 72
  year: 2019
  ident: 2020071414323918400_CIT0102
  article-title: Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-019-0514-2
– volume: 49
  start-page: 32
  year: 2017
  ident: 2020071414323918400_CIT0136
  article-title: Selecting sequence variants to improve genomic predictions for dairy cattle
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-017-0307-4
– volume: 124
  start-page: 342
  year: 2007
  ident: 2020071414323918400_CIT0103
  article-title: Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/j.1439-0388.2007.00700.x
– volume: 50
  start-page: 31
  year: 2018
  ident: 2020071414323918400_CIT0123
  article-title: Weighted single-step genomic BLUP improves accuracy of genomic breeding values for protein content in French dairy goats: a quantitative trait influenced by a major gene
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-018-0400-3
– volume: 91
  start-page: 4414
  year: 2008
  ident: 2020071414323918400_CIT0133
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2007-0980
– volume: 47
  start-page: 56
  year: 2015
  ident: 2020071414323918400_CIT0071
  article-title: Accuracy of estimated breeding values with genomic information on males, females, or both: an example on broiler chicken
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-015-0137-1
– volume: 102
  start-page: 3259
  year: 2019
  ident: 2020071414323918400_CIT0025
  article-title: Short communication: calculating analytical reliabilities for single-step predictions
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2018-15707
– volume-title: Applications of linear models in animal breeding
  year: 1984
  ident: 2020071414323918400_CIT0048
– volume: 107
  start-page: 26
  year: 2016
  ident: 2020071414323918400_CIT0059
  article-title: Comparing estimates of genetic variance across different relationship models
  publication-title: Theor. Popul. Biol
  doi: 10.1016/j.tpb.2015.08.005
– volume: 95
  start-page: 49
  year: 2017
  ident: 2020071414323918400_CIT0083
  article-title: Technical note: avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient
  publication-title: J. Anim. Sci
– volume: 20
  start-page: 956
  year: 2019
  ident: 2020071414323918400_CIT0034
  article-title: Bias in estimates of variance components in populations undergoing genomic selection: a simulation study
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6323-8
– volume: 91
  start-page: 1669
  year: 2008
  ident: 2020071414323918400_CIT0002
  article-title: Technical note: recursive algorithm for inbreeding coefficients assuming nonzero inbreeding of unknown parents
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2007-0575
– volume: 48
  start-page: 82
  year: 2016
  ident: 2020071414323918400_CIT0111
  article-title: Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-016-0261-6
– volume: 7
  start-page: 89
  year: 2019
  ident: 2020071414323918400_CIT0046
  article-title: 1000 Bull genomes project to map simple and complex genetic traits in cattle: applications and outcomes
  publication-title: Annu. Rev. Anim. Biosci
  doi: 10.1146/annurev-animal-020518-115024
– volume: 95
  start-page: 3444
  year: 2012
  ident: 2020071414323918400_CIT0145
  article-title: Technical note: adjustment of all cow evaluations for yield traits to be comparable with bull evaluations
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2011-5000
– volume: 71
  start-page: 1338
  year: 1988
  ident: 2020071414323918400_CIT0113
  article-title: Additive genetic model with groups and relationships
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.S0022-0302(88)79691-5
– volume: 92
  start-page: 16
  year: 2009
  ident: 2020071414323918400_CIT0138
  article-title: Invited review: reliability of genomic predictions for North American Holstein bulls
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2008-1514
– volume: 5
  start-page: 332
  year: 2014
  ident: 2020071414323918400_CIT0033
  article-title: Changes in variance explained by top SNP windows over generations for three traits in broiler chicken
  publication-title: Front. Genet
  doi: 10.3389/fgene.2014.00332
– volume: 47
  start-page: 79
  year: 2015
  ident: 2020071414323918400_CIT0090
  article-title: Genomic predictions based on animal models using genotype imputation on a national scale in Norwegian Red cattle
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-015-0159-8
– volume: 11
  start-page: e0161054
  year: 2016
  ident: 2020071414323918400_CIT0057
  article-title: An upper bound for accuracy of prediction using GBLUP
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161054
– volume: 64
  start-page: 1868
  year: 1981
  ident: 2020071414323918400_CIT0114
  article-title: Modified equations for sire models with groups
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.S0022-0302(81)82778-6
– volume: 42
  start-page: 348
  year: 2010
  ident: 2020071414323918400_CIT0056
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat. Genet
  doi: 10.1038/ng.548
– volume: 43
  start-page: 30
  year: 2011
  ident: 2020071414323918400_CIT0106
  article-title: Accounting for genomic pre-selection in national BLUP evaluations in dairy cattle
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-43-30
– volume: 131
  start-page: 227
  year: 2014
  ident: 2020071414323918400_CIT0082
  article-title: Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12058
– volume: 129
  start-page: 345
  year: 2012
  ident: 2020071414323918400_CIT0007
  article-title: Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/j.1439-0388.2012.00991.x
– volume: 95
  start-page: 1472
  year: 2017
  ident: 2020071414323918400_CIT0146
  article-title: Technical note: genomic evaluation for crossbred performance in a single-step approach with metafounders
  publication-title: J. Anim. Sci
– volume: 130
  start-page: 252
  year: 2013
  ident: 2020071414323918400_CIT0100
  article-title: Unknown-parent groups in single-step genomic evaluation
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12025
– volume: 51
  start-page: 38
  year: 2017
  ident: 2020071414323918400_CIT0094
  article-title: Studies on inflation of GEBV in single-step GBLUP for type
  publication-title: Interbull Bull
– volume: 134
  start-page: 264
  year: 2017
  ident: 2020071414323918400_CIT0121
  article-title: Solving efficiently large single-step genomic best linear unbiased prediction models
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12257
– volume: 4
  start-page: e5350
  year: 2009
  ident: 2020071414323918400_CIT0087
  article-title: Development and characterization of a high density SNP genotyping assay for cattle
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005350
– volume: 94
  start-page: 4198
  year: 2011
  ident: 2020071414323918400_CIT0127
  article-title: Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2011-4256
– volume: 135
  start-page: 251
  year: 2018
  ident: 2020071414323918400_CIT0051
  article-title: The impact of truncating data on the predictive ability for single-step genomic best linear unbiased prediction
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12334
– volume: 92
  start-page: 4656
  year: 2009
  ident: 2020071414323918400_CIT0060
  article-title: A relationship matrix including full pedigree and genomic information
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2009-2061
– volume: 134
  start-page: 287
  year: 2017
  ident: 2020071414323918400_CIT0043
  article-title: Can we make genomic selection 100% accurate?
  publication-title: J. Anim. Breed. Genet
  doi: 10.1111/jbg.12281
– volume: 47
  start-page: 53
  year: 2015
  ident: 2020071414323918400_CIT0108
  article-title: A simple method to separate base population and segregation effects in genomic relationship matrices
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-015-0130-8
– volume: 43
  start-page: 40
  year: 2011
  ident: 2020071414323918400_CIT0116
  article-title: Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-43-40
– volume: 98
  start-page: 4090
  year: 2015
  ident: 2020071414323918400_CIT0032
  article-title: Hot topic: use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2014-9125
– volume: 47
  start-page: 36
  year: 2016
  ident: 2020071414323918400_CIT0006
  article-title: Meta-analysis of genome-wide association from genomic prediction models
  publication-title: Anim. Genet
  doi: 10.1111/age.12378
– volume: 94
  start-page: 909
  year: 2016
  ident: 2020071414323918400_CIT0073
  article-title: Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2015-9748
– volume: 94
  start-page: 6188
  year: 2011
  ident: 2020071414323918400_CIT0144
  article-title: Technical note: adjustment of traditional cow evaluations to improve accuracy of genomic predictions
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2011-4481
– volume: 48
  start-page: 80
  year: 2016
  ident: 2020071414323918400_CIT0027
  article-title: An efficient exact method to obtain GBLUP and single-step GBLUP when the genomic relationship matrix is singular
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-016-0260-7
– volume: 94
  start-page: 1011
  year: 2011
  ident: 2020071414323918400_CIT0107
  article-title: Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2010-3804
SSID ssj0012595
Score 2.6063557
SecondaryResourceType review_article
Snippet Abstract Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for...
Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k SNP seemed sufficient for an...
SourceID unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Biochemistry, Molecular Biology
Board Invited Review
Genomics
Life Sciences
Title Current status of genomic evaluation
URI https://www.ncbi.nlm.nih.gov/pubmed/32267923
https://www.proquest.com/docview/2388000488
https://hal.inrae.fr/hal-02916894
https://pubmed.ncbi.nlm.nih.gov/PMC7183352
https://academic.oup.com/jas/article-pdf/98/4/skaa101/33495645/skaa101.pdf
UnpaywallVersion publishedVersion
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1525-3163
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0012595
  issn: 1525-3163
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1525-3163
  dateEnd: 20210331
  omitProxy: true
  ssIdentifier: ssj0012595
  issn: 1525-3163
  databaseCode: 7X7
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1525-3163
  dateEnd: 20210331
  omitProxy: true
  ssIdentifier: ssj0012595
  issn: 1525-3163
  databaseCode: BENPR
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1525-3163
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012595
  issn: 1525-3163
  databaseCode: 8FG
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7R9gAceD_CowRULkhunk6cY0FbKgRlhbZSOUWOHyy0SqttA4JfzzhxwhbQigMXK4ontmOP7c_2zGeAUaR0IJLUJzJQGYkLIUjBY0nM1KVDX2rJjDfyu3kyW8RvlnRp7Z-MLwy3VuHj1qXhC995thLJVmovY17s7Vacoy55UWTwfUzbF2OU6MEgoYjL-zBYzI8nHxsbj4Aw1hx90pAS1GraPQf1dWuGlYakOFZbJz5c6dd525QPpq3eqTGaPHCIO4dL_zSvvFyVW_79G1-vz81d0-uwav-6MVlZjat9MRY_fiOE_D_VcgOuWYjrTprvbsIlVd6Cq5NPZ5bmQ92GkaWFco0_U7VzN9o1ZLGYtfuLfvwOLKZHJ69mxN7XQAQuKvdEqpDKAIsaMK4KXvAwEhoRm1RJpnSoaSR5wilGZ4pSJaNIoab42teJjAsVR3ehX25KdR9cJrQSCctSkeo4C30m00JlqRaBpIoy34EXbXPkwpKZmzs11nlzqB7lWEG5_X0HRp3wtuHw-LvYM2zXTsLwbs8mb3Pzzg8RRbMs_opCT7AJLk7maasSOXZVc_7CS7WpdnloiHfqIdOBe42KdAnhuJoYKkcH0gPlOSjOYUz5-bSmA0d0YRznHHjeqdlF5Xvwj3IP4Upo9hZqK6VH0N-fVeoxArB9MYReukwxZNPXQxi8PJoffxjW-2QYnrxfDm3P-wmhlTKm
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6x3QNw4P0Iz4DKBclNYseJc6wQqwrBigOVllPk-MFCq7TaNiD49YwTJ2wArThwi-yJn2P7sz3zGWDKjE1UlsdEJ6YgaaUUqWSqiVu6LI211cJ5I787zhbL9M0JP_H2T84XRnqr8Fnv0vBF7iLfiGSrbVSIKI12KylRlyLGHL5PeR8wQ4kDOMw44vIJHC6P388_djYeCRGiu_rklBPUaj58J-1za46VhuQ4V3snPtzpt3n7lEfL1sGpM5ocOcSdw6V_mldebuqt_P5Nrtfn1q6j67Dqa92ZrKxmzb6aqR-_EUL-n2a5Adc8xA3n3X834ZKpb8HV-aczT_NhbsPU00KFzp-p2YUbGzqyWMw6_EU_fgeWR68_vFoQ_14DUbip3BNtKNcJFjUR0lSykpQpi4hNm6wwllrOtMwkx-jCcG40YwY1JbaxzXRamZTdhUm9qc19CIWyRmWiyFVu04LGQueVKXKrEs0NF3EAL_vuKJUnM3dvaqzL7lKdldhApa9-ANNBeNtxePxd7Dn26yDheLcX87elC4spomhRpF9R6Cl2wcXJPOtVosSh6u5fZG02za6kjninnTIDuNepyJAQzquZo3IMIB8pz6g445j682lLB47owjnOBfBiULOLyvfgH-UewhXqzhZaK6VHMNmfNeYxArB99cSPrJ-2GS0T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+of+genomic+evaluation&rft.jtitle=Journal+of+animal+science&rft.au=Misztal%2C+Ignacy&rft.au=Lourenco%2C+Daniela&rft.au=Legarra%2C+Andres&rft.date=2020-04-01&rft.eissn=1525-3163&rft.volume=98&rft.issue=4&rft_id=info:doi/10.1093%2Fjas%2Fskaa101&rft_id=info%3Apmid%2F32267923&rft.externalDocID=32267923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8812&client=summon