SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture
•A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a quarter of UNet model parameters whilst achieving a comparable prediction performance.•The proposed model is examined on a real-life datasets...
Saved in:
Published in | Pattern recognition letters Vol. 145; pp. 178 - 186 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2021.01.036 |
Cover
Abstract | •A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a quarter of UNet model parameters whilst achieving a comparable prediction performance.•The proposed model is examined on a real-life datasets consisting of precipitation maps and cloud cover.
Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks-based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France. The experimental results show that in terms of prediction performance, the proposed model is comparable to other examined models while only using a quarter of the trainable parameters. |
---|---|
AbstractList | •A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a quarter of UNet model parameters whilst achieving a comparable prediction performance.•The proposed model is examined on a real-life datasets consisting of precipitation maps and cloud cover.
Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks-based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France. The experimental results show that in terms of prediction performance, the proposed model is comparable to other examined models while only using a quarter of the trainable parameters. Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks-based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France. The experimental results show that in terms of prediction performance, the proposed model is comparable to other examined models while only using a quarter of the trainable parameters. |
Author | Trebing, Kevin Staǹczyk, Tomasz Mehrkanoon, Siamak |
Author_xml | – sequence: 1 givenname: Kevin surname: Trebing fullname: Trebing, Kevin – sequence: 2 givenname: Tomasz surname: Staǹczyk fullname: Staǹczyk, Tomasz – sequence: 3 givenname: Siamak surname: Mehrkanoon fullname: Mehrkanoon, Siamak email: siamak.mehrkanoon@maastrichtuniversity.nl |
BookMark | eNqFkF1LwzAUhoNMcJv-Ay8KXneepG3a7UIYwy-QKeiuw2maakrX1iRV_PemdldeKBxObp7nDeedkUnTNoqQcwoLCpRfVosOnVFywYDRBfiJ-BGZ0ixlYRrF8YRMPZaGGU-SEzKztgIAHi2zKdk-73Htwt1WuVXw5DN0px063TZB035KtE43r0Fvh42B3WNdB-icagbkRwvQyDftlHS9UafkuMTaqrPDOye7m-uXzV348Hh7v1k_hDKOuQsLLNIIJGIksYQly3KuKBR5IYGmeZnLHJDlWZzSCHiZ8CxjhUJMOV-WDBMazcnFmNuZ9r1X1omq7U3jvxQsYVkCFFLmqdVISdNaa1Qp5OE4Z1DXgoIY-hOVGPsTQ38C_ETcy_EvuTN6j-brP-1q1JQ__0MrI6zUqpGq0B51omj13wHfiEmPOg |
CitedBy_id | crossref_primary_10_1007_s00376_023_3085_7 crossref_primary_10_3390_rs15061684 crossref_primary_10_3390_axioms11030107 crossref_primary_10_1007_s13351_025_4107_4 crossref_primary_10_1002_mp_15986 crossref_primary_10_1016_j_atmosres_2022_106500 crossref_primary_10_3390_atmos14101506 crossref_primary_10_3390_e23101314 crossref_primary_10_1109_TGRS_2022_3217639 crossref_primary_10_1038_s41586_021_03854_z crossref_primary_10_3390_w15081585 crossref_primary_10_3390_forecast4040046 crossref_primary_10_1002_qj_4643 crossref_primary_10_1029_2021MS002954 crossref_primary_10_1007_s00371_022_02563_6 crossref_primary_10_1109_TGRS_2025_3534278 crossref_primary_10_1109_TGRS_2023_3268187 crossref_primary_10_1080_08839514_2024_2311003 crossref_primary_10_1007_s11280_021_00988_y crossref_primary_10_1016_j_eswa_2024_123606 crossref_primary_10_1007_s12145_024_01554_6 crossref_primary_10_3390_s24155004 crossref_primary_10_3390_su132413834 crossref_primary_10_3390_s23135785 crossref_primary_10_1016_j_knosys_2024_112612 crossref_primary_10_1029_2023GL106084 crossref_primary_10_2147_JMDH_S417068 crossref_primary_10_1016_j_patcog_2024_111193 crossref_primary_10_1109_TGRS_2023_3330303 crossref_primary_10_5194_gmd_18_1851_2025 crossref_primary_10_4018_IJITSA_340774 crossref_primary_10_1109_LGRS_2022_3162882 crossref_primary_10_1109_TGRS_2024_3510693 crossref_primary_10_1109_JSTARS_2022_3188201 crossref_primary_10_1051_bioconf_202411103014 crossref_primary_10_1016_j_inffus_2022_11_008 crossref_primary_10_1109_TGRS_2024_3382172 crossref_primary_10_1038_s43247_024_01687_y crossref_primary_10_1016_j_jhydrol_2024_131593 crossref_primary_10_1016_j_atmosres_2023_107093 crossref_primary_10_1109_ACCESS_2023_3280932 crossref_primary_10_3390_electronics12040896 crossref_primary_10_3390_math9141653 crossref_primary_10_3390_s22072802 crossref_primary_10_1109_JSTARS_2023_3310153 crossref_primary_10_1109_JSTARS_2021_3128522 crossref_primary_10_1007_s13351_022_1174_7 crossref_primary_10_3390_rs16010052 crossref_primary_10_3390_biomedicines11102687 crossref_primary_10_1016_j_jmmm_2022_169521 crossref_primary_10_1109_TGRS_2022_3198222 crossref_primary_10_1016_j_procs_2023_10_150 crossref_primary_10_1109_ACCESS_2024_3495215 crossref_primary_10_3390_atmos14010025 crossref_primary_10_1016_j_neucom_2025_129840 crossref_primary_10_1371_journal_pone_0296044 crossref_primary_10_1002_met_2032 crossref_primary_10_1007_s11227_024_06357_6 crossref_primary_10_3390_rs15061639 crossref_primary_10_3390_en17205143 crossref_primary_10_14801_jkiit_2023_21_10_47 crossref_primary_10_1007_s10489_022_04338_x crossref_primary_10_1007_s13351_024_3211_1 crossref_primary_10_1029_2022RS007566 crossref_primary_10_3390_agriculture14040637 crossref_primary_10_3390_atmos15010104 crossref_primary_10_1016_j_eswa_2024_124179 crossref_primary_10_3390_info13120577 crossref_primary_10_1109_JSTARS_2024_3462480 crossref_primary_10_1155_2022_1536976 crossref_primary_10_3390_rs14195042 crossref_primary_10_3390_rs16061063 crossref_primary_10_1016_j_envsoft_2024_106001 crossref_primary_10_1016_j_engappai_2024_109788 crossref_primary_10_3390_s23198065 crossref_primary_10_1016_j_uclim_2022_101359 crossref_primary_10_1029_2023WR035600 crossref_primary_10_1109_JSTARS_2023_3322343 crossref_primary_10_1016_j_neucom_2024_127665 crossref_primary_10_1017_eds_2023_26 crossref_primary_10_1109_JSTARS_2023_3310361 crossref_primary_10_1088_1742_6596_2089_1_012059 crossref_primary_10_1051_e3sconf_202340504003 crossref_primary_10_2478_rgg_2022_0005 crossref_primary_10_1016_j_envsoft_2024_106251 crossref_primary_10_1109_TGRS_2024_3424250 crossref_primary_10_1155_2022_9856669 crossref_primary_10_3390_rs16142685 crossref_primary_10_1016_j_knosys_2022_109445 crossref_primary_10_1109_TGRS_2024_3407157 crossref_primary_10_3390_rs14174256 crossref_primary_10_5194_gmd_17_53_2024 crossref_primary_10_3390_w16081136 crossref_primary_10_1109_TGRS_2024_3439871 crossref_primary_10_1007_s10994_021_06022_6 crossref_primary_10_1029_2023GL104370 crossref_primary_10_1007_s10489_021_03111_w crossref_primary_10_1016_j_scitotenv_2023_165061 crossref_primary_10_1109_JSTARS_2023_3238016 crossref_primary_10_1016_j_atmosres_2023_106750 crossref_primary_10_1109_JSTARS_2024_3383397 crossref_primary_10_3390_electronics13204032 crossref_primary_10_1016_j_neunet_2021_08_036 crossref_primary_10_1109_JSEN_2023_3246178 crossref_primary_10_1016_j_cmpb_2023_107614 crossref_primary_10_1016_j_jhydrol_2024_130871 crossref_primary_10_1007_s11227_024_06577_w crossref_primary_10_1631_FITEE_2300493 crossref_primary_10_3390_s23218739 crossref_primary_10_3390_w16050671 crossref_primary_10_3390_rs15061529 crossref_primary_10_1007_s11760_023_02632_w crossref_primary_10_1016_j_jhydrol_2025_132795 crossref_primary_10_1109_LGRS_2023_3325628 crossref_primary_10_1002_jmrs_701 crossref_primary_10_2139_ssrn_4199193 crossref_primary_10_5194_gmd_15_5407_2022 crossref_primary_10_1016_j_ecolind_2023_110524 crossref_primary_10_1109_LGRS_2024_3359229 crossref_primary_10_1016_j_cageo_2025_105851 crossref_primary_10_1186_s13244_022_01342_0 crossref_primary_10_1007_s11760_022_02325_w crossref_primary_10_1016_j_knosys_2024_112679 crossref_primary_10_3390_rs15143466 crossref_primary_10_3390_rs15010137 crossref_primary_10_1016_j_asoc_2024_112065 crossref_primary_10_1016_j_heliyon_2023_e14715 crossref_primary_10_1029_2023WR035088 crossref_primary_10_1109_TGRS_2025_3528423 crossref_primary_10_1007_s11063_024_11533_z crossref_primary_10_1016_j_compgeo_2023_105412 crossref_primary_10_3390_rs16020275 crossref_primary_10_3390_rs15133306 crossref_primary_10_3390_rs16020274 crossref_primary_10_1016_j_eswa_2024_126168 crossref_primary_10_1029_2022EA002411 crossref_primary_10_2151_sola_2024_018 crossref_primary_10_1109_MSMC_2022_3216943 crossref_primary_10_1109_TGRS_2024_3444789 crossref_primary_10_1016_j_wace_2024_100724 crossref_primary_10_1080_15481603_2023_2203363 crossref_primary_10_1109_LGRS_2024_3382241 crossref_primary_10_1109_TGRS_2023_3318374 crossref_primary_10_32604_cmes_2022_022045 crossref_primary_10_1016_j_knosys_2025_113120 crossref_primary_10_3390_rs16193597 crossref_primary_10_1016_j_procs_2023_08_160 crossref_primary_10_1142_S021800142355008X crossref_primary_10_1109_TCSVT_2024_3487965 crossref_primary_10_1167_tvst_12_3_22 crossref_primary_10_1016_j_isatra_2022_06_046 crossref_primary_10_1016_j_jastp_2024_106175 crossref_primary_10_1186_s13007_022_00941_8 crossref_primary_10_1109_LGRS_2024_3384772 crossref_primary_10_54097_hset_v39i_6613 crossref_primary_10_3390_rs13183627 crossref_primary_10_1016_j_inffus_2024_102607 crossref_primary_10_1038_s41598_023_50989_2 crossref_primary_10_1007_s00371_024_03639_1 crossref_primary_10_1016_j_bspc_2024_106285 crossref_primary_10_1109_TGRS_2024_3414934 crossref_primary_10_1016_j_atmosres_2025_108010 crossref_primary_10_3390_rs15010227 crossref_primary_10_1007_s11760_022_02443_5 crossref_primary_10_1016_j_compbiomed_2022_106089 crossref_primary_10_1016_j_dsp_2025_105050 crossref_primary_10_1029_2022MS003593 crossref_primary_10_5194_hess_26_2923_2022 crossref_primary_10_12677_csa_2024_1411230 crossref_primary_10_1016_j_jappgeo_2024_105344 crossref_primary_10_1049_ell2_70204 crossref_primary_10_3390_atmos14050807 crossref_primary_10_1016_j_jag_2024_103962 crossref_primary_10_1109_TGRS_2024_3404062 crossref_primary_10_1016_j_cageo_2024_105536 crossref_primary_10_1007_s00521_023_09265_7 crossref_primary_10_1038_s41598_024_79742_z crossref_primary_10_1016_j_cageo_2023_105498 crossref_primary_10_5194_gmd_15_5967_2022 crossref_primary_10_5194_gmd_17_6657_2024 crossref_primary_10_1007_s11760_024_03234_w crossref_primary_10_5194_gmd_17_3839_2024 crossref_primary_10_5194_gmd_16_5895_2023 crossref_primary_10_3390_rs14205106 crossref_primary_10_3390_rs16213956 crossref_primary_10_1016_j_compbiomed_2025_110012 crossref_primary_10_1016_j_compag_2022_106697 crossref_primary_10_1145_3638773 crossref_primary_10_1016_j_cmpb_2023_107914 crossref_primary_10_1016_j_patrec_2023_12_025 crossref_primary_10_1167_tvst_13_10_24 crossref_primary_10_1007_s11760_023_02770_1 crossref_primary_10_1016_j_jvcir_2023_103856 crossref_primary_10_1109_ACCESS_2022_3146317 crossref_primary_10_1016_j_neucom_2024_127700 crossref_primary_10_1109_JSEN_2024_3419434 crossref_primary_10_1109_JSTARS_2022_3194522 crossref_primary_10_1016_j_eswa_2024_126301 crossref_primary_10_1109_TGRS_2023_3295211 crossref_primary_10_1016_j_knosys_2021_107900 crossref_primary_10_1109_JSTARS_2024_3381822 crossref_primary_10_1038_s41598_023_46580_4 crossref_primary_10_3390_w16243702 crossref_primary_10_1109_TGRS_2025_3538164 crossref_primary_10_1016_j_jhydrol_2024_131438 crossref_primary_10_3390_rs17071123 crossref_primary_10_1007_s11263_023_01818_6 crossref_primary_10_1029_2023GL106391 crossref_primary_10_3390_rs15235619 crossref_primary_10_3390_rs16244792 crossref_primary_10_1016_j_heliyon_2024_e36134 crossref_primary_10_3390_agriculture15060627 crossref_primary_10_3390_atmos15091114 crossref_primary_10_3390_rs15010142 crossref_primary_10_3390_atmos15010052 crossref_primary_10_1109_LGRS_2022_3141498 crossref_primary_10_1007_s11760_024_03596_1 crossref_primary_10_1016_j_ejrh_2025_102273 crossref_primary_10_1080_01431161_2024_2359731 crossref_primary_10_3390_rs14163890 crossref_primary_10_1029_2024JD041914 crossref_primary_10_1029_2022GL100901 crossref_primary_10_12677_csa_2024_144105 crossref_primary_10_1016_j_rse_2023_113950 crossref_primary_10_1109_TGRS_2023_3303947 crossref_primary_10_3724_j_1006_8775_2023_036 crossref_primary_10_1016_j_compbiomed_2024_109191 crossref_primary_10_1016_j_eswa_2024_126098 crossref_primary_10_3390_s24020459 crossref_primary_10_1007_s11517_024_03035_w |
Cites_doi | 10.1088/1741-2552/aace8c 10.1175/2010WAF2222417.1 10.3390/diagnostics10020110 10.1016/j.knosys.2019.05.009 10.3390/rs11192303 10.1175/2009JAMC1954.1 10.1162/neco.1997.9.8.1735 10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier Science Ltd. May 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Science Ltd. May 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patrec.2021.01.036 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 186 |
ExternalDocumentID | 10_1016_j_patrec_2021_01_036 S0167865521000556 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c446t-dad730caa3caf0928b6e10dbdc017bfbcb0a2b8471306f56882deaa7669f2a513 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Fri Jul 25 07:51:47 EDT 2025 Tue Jul 01 02:40:43 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Fri Feb 23 02:46:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Domain adaptation Kernel methods Neural networks Coupling regularization |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-dad730caa3caf0928b6e10dbdc017bfbcb0a2b8471306f56882deaa7669f2a513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167865521000556 |
PQID | 2528501072 |
PQPubID | 2047552 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2528501072 crossref_citationtrail_10_1016_j_patrec_2021_01_036 crossref_primary_10_1016_j_patrec_2021_01_036 elsevier_sciencedirect_doi_10_1016_j_patrec_2021_01_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, J. Hickey, Machine learning for precipitation nowcasting from radar images, arXiv Deutscher Wetterdienst (bib0008) 2020 Wang, Long, Wang, Gao, Philip (bib0031) 2017 M. Babaeizadeh, C. Finn, D. Erhan, R.H. Campbell, S. Levine, Stochastic variational video prediction, arXiv D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv He, Zhang, Ren, Sun (bib0011) 2016 Anderson, He, Buehler, Teney, Johnson, Gould, Zhang (bib0002) 2018 Liang, Zhang, Wang, Xu (bib0020) 2019 Krizhevsky, Sutskever, Hinton (bib0018) 2012 E. Denton, R. Fergus, Stochastic video generation with a learned prior, arXiv Overeem, Holleman, Buishand (bib0024) 2009; 48 Ronneberger, Fischer, Brox (bib0025) 2015 Woo, Park, Lee, So Kweon (bib0035) 2018 Zhang, Zhou, Lin, Sun (bib0037) 2018 C.K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, N. Kalchbrenner, MetNet: a neural weather model for precipitation forecasting, arXiv (2020). Hochreiter, Schmidhuber (bib0013) 1997; 9 Wilson, Crook, Mueller, Sun, Dixon (bib0034) 1998; 79 Wang, Zhang, Zhu, Long, Wang, Yu (bib0032) 2019 Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0036) 2015 Berthomier, Pradel, Perez (bib0005) 2020 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0019) 2018; 15 M. Mathieu, C. Couprie, Y. LeCun, Deep multi-scale video prediction beyond mean square error, arXiv Shi, Gao, Lausen, Wang, Yeung, Wong, Woo (bib0026) 2017 A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile vision applications, arXiv Guo, Li, Wang, Rosing (bib0010) 2019; vol. 33 Bello, Zoph, Vaswani, Shlens, Le (bib0004) 2019 Chollet (bib0006) 2017 (2015). (2014). Trebing, Mehrkanoon (bib0030) 2020 Gadosey, Li, Agyekum, Zhang, Liu, Yamak, Essaf (bib0009) 2020; 10 O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, et al., Attention U-Net: learning where to look for the pancreas, arXiv (2019). (2018). (2017). Mehrkanoon (bib0022) 2019; 179 Soman, Zareipour, Malik, Mandal (bib0027) 2010 Hu, Shen, Sun (bib0015) 2018 Wilson, Feng, Chen, Roberts (bib0033) 2010; 25 Jaderberg, Simonyan, Zisserman (bib0016) 2015 Tran, Song (bib0029) 2019; 11 Hering, Morel, Galli, Sénési, Ambrosetti, Boscacci (bib0012) 2004; vol. 1 Zhang (10.1016/j.patrec.2021.01.036_bib0037) 2018 Overeem (10.1016/j.patrec.2021.01.036_bib0024) 2009; 48 Bello (10.1016/j.patrec.2021.01.036_bib0004) 2019 Wilson (10.1016/j.patrec.2021.01.036_bib0034) 1998; 79 Soman (10.1016/j.patrec.2021.01.036_bib0027) 2010 Deutscher Wetterdienst (10.1016/j.patrec.2021.01.036_sbref0008) 2020 Wilson (10.1016/j.patrec.2021.01.036_bib0033) 2010; 25 Jaderberg (10.1016/j.patrec.2021.01.036_bib0016) 2015 Mehrkanoon (10.1016/j.patrec.2021.01.036_bib0022) 2019; 179 10.1016/j.patrec.2021.01.036_bib0014 10.1016/j.patrec.2021.01.036_bib0017 Wang (10.1016/j.patrec.2021.01.036_bib0031) 2017 Gadosey (10.1016/j.patrec.2021.01.036_bib0009) 2020; 10 Guo (10.1016/j.patrec.2021.01.036_bib0010) 2019; vol. 33 Berthomier (10.1016/j.patrec.2021.01.036_bib0005) 2020 Hochreiter (10.1016/j.patrec.2021.01.036_bib0013) 1997; 9 Wang (10.1016/j.patrec.2021.01.036_bib0032) 2019 Liang (10.1016/j.patrec.2021.01.036_bib0020) 2019 Xingjian (10.1016/j.patrec.2021.01.036_bib0036) 2015 Hu (10.1016/j.patrec.2021.01.036_bib0015) 2018 Chollet (10.1016/j.patrec.2021.01.036_bib0006) 2017 Ronneberger (10.1016/j.patrec.2021.01.036_bib0025) 2015 Woo (10.1016/j.patrec.2021.01.036_bib0035) 2018 Anderson (10.1016/j.patrec.2021.01.036_bib0002) 2018 Krizhevsky (10.1016/j.patrec.2021.01.036_bib0018) 2012 10.1016/j.patrec.2021.01.036_bib0001 10.1016/j.patrec.2021.01.036_bib0023 Tran (10.1016/j.patrec.2021.01.036_bib0029) 2019; 11 10.1016/j.patrec.2021.01.036_bib0021 He (10.1016/j.patrec.2021.01.036_bib0011) 2016 10.1016/j.patrec.2021.01.036_bib0003 Hering (10.1016/j.patrec.2021.01.036_bib0012) 2004; vol. 1 Trebing (10.1016/j.patrec.2021.01.036_bib0030) 2020 Lawhern (10.1016/j.patrec.2021.01.036_bib0019) 2018; 15 10.1016/j.patrec.2021.01.036_bib0028 10.1016/j.patrec.2021.01.036_bib0007 Shi (10.1016/j.patrec.2021.01.036_bib0026) 2017 |
References_xml | – start-page: 2017 year: 2015 end-page: 2025 ident: bib0016 article-title: Spatial transformer networks publication-title: Advances in Neural Information Processing Systems – start-page: 1251 year: 2017 end-page: 1258 ident: bib0006 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3 year: 2018 end-page: 19 ident: bib0035 article-title: CBAM: convolutional block attention module publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – reference: M. Mathieu, C. Couprie, Y. LeCun, Deep multi-scale video prediction beyond mean square error, arXiv: – year: 2020 ident: bib0005 article-title: Cloud cover nowcasting with deep learning publication-title: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA) – start-page: 1097 year: 2012 end-page: 1105 ident: bib0018 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – reference: (2019). – start-page: 5617 year: 2017 end-page: 5627 ident: bib0026 article-title: Deep learning for precipitation nowcasting: a benchmark and a new model publication-title: Advances in Neural Information Processing Systems – start-page: 3286 year: 2019 end-page: 3295 ident: bib0004 article-title: Attention augmented convolutional networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: C.K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, N. Kalchbrenner, MetNet: a neural weather model for precipitation forecasting, arXiv: – volume: 15 start-page: 056013 year: 2018 ident: bib0019 article-title: EegNet: a compact convolutional neural network for eeg-based brain–computer interfaces publication-title: J. Neural Eng. – start-page: 234 year: 2015 end-page: 241 ident: bib0025 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: (2015). – start-page: 6848 year: 2018 end-page: 6856 ident: bib0037 article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2010 end-page: 8 ident: bib0027 article-title: A review of wind power and wind speed forecasting methods with different time horizons publication-title: North American Power Symposium 2010 – start-page: 713 year: 2020 end-page: 720 ident: bib0030 article-title: Wind speed prediction using multidimensional convolutional neural networks publication-title: 2020 IEEE Symposium Series on Computational Intelligence (SSCI) – reference: S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, J. Hickey, Machine learning for precipitation nowcasting from radar images, arXiv: – volume: vol. 1 year: 2004 ident: bib0012 article-title: Nowcasting thunderstorms in the alpine region using a radar based adaptive thresholding scheme publication-title: Proceedings of ERAD – reference: E. Denton, R. Fergus, Stochastic video generation with a learned prior, arXiv: – start-page: 770 year: 2016 end-page: 778 ident: bib0011 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 7132 year: 2018 end-page: 7141 ident: bib0015 article-title: Squeeze-and-excitation networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0013 article-title: Long short-term memory publication-title: Neural Comput. – reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile vision applications, arXiv: – reference: (2014). – year: 2020 ident: bib0008 article-title: Nowcasting applications – reference: (2020). – start-page: 6077 year: 2018 end-page: 6086 ident: bib0002 article-title: Bottom-up and top-down attention for image captioning and visual question answering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 11 start-page: 2303 year: 2019 ident: bib0029 article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks publication-title: Remote Sens. – volume: 79 start-page: 2079 year: 1998 end-page: 2100 ident: bib0034 article-title: Nowcasting thunderstorms: a status report publication-title: Bull. Am. Meteorol. Soc. – reference: (2018). – reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: – volume: 179 start-page: 120 year: 2019 end-page: 128 ident: bib0022 article-title: Deep shared representation learning for weather elements forecasting publication-title: Knowl.-Based Syst. – start-page: 802 year: 2015 end-page: 810 ident: bib0036 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – volume: vol. 33 start-page: 8368 year: 2019 end-page: 8375 ident: bib0010 article-title: Depthwise convolution is all you need for learning multiple visual domains publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 9154 year: 2019 end-page: 9162 ident: bib0032 article-title: Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 25 year: 2010 ident: bib0033 article-title: Nowcasting challenges during the Beijing olympics: successes, failures, and implications for future nowcasting systems publication-title: Weather Forecasting – volume: 10 start-page: 110 year: 2020 ident: bib0009 article-title: SD-UNet: stripping down U-Net for segmentation of biomedical images on platforms with low computational budgets publication-title: Diagnostics – volume: 48 start-page: 1448 year: 2009 end-page: 1463 ident: bib0024 article-title: Derivation of a 10-year radar-based climatology of rainfall publication-title: J. Appl. Meteorol. Climatol. – start-page: 879 year: 2017 end-page: 888 ident: bib0031 article-title: PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMS publication-title: Advances in Neural Information Processing Systems – reference: O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, et al., Attention U-Net: learning where to look for the pancreas, arXiv: – reference: M. Babaeizadeh, C. Finn, D. Erhan, R.H. Campbell, S. Levine, Stochastic variational video prediction, arXiv: – reference: (2017). – year: 2019 ident: bib0020 article-title: A deep learning model for transportation mode detection based on smartphone sensing data publication-title: IEEE Trans. Intell. Transp.Syst. – start-page: 1251 year: 2017 ident: 10.1016/j.patrec.2021.01.036_bib0006 article-title: Xception: deep learning with depthwise separable convolutions – start-page: 802 year: 2015 ident: 10.1016/j.patrec.2021.01.036_bib0036 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting – volume: 15 start-page: 056013 issue: 5 year: 2018 ident: 10.1016/j.patrec.2021.01.036_bib0019 article-title: EegNet: a compact convolutional neural network for eeg-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – ident: 10.1016/j.patrec.2021.01.036_bib0021 – start-page: 9154 year: 2019 ident: 10.1016/j.patrec.2021.01.036_bib0032 article-title: Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics – ident: 10.1016/j.patrec.2021.01.036_bib0023 – start-page: 3286 year: 2019 ident: 10.1016/j.patrec.2021.01.036_bib0004 article-title: Attention augmented convolutional networks – volume: 25 year: 2010 ident: 10.1016/j.patrec.2021.01.036_bib0033 article-title: Nowcasting challenges during the Beijing olympics: successes, failures, and implications for future nowcasting systems publication-title: Weather Forecasting doi: 10.1175/2010WAF2222417.1 – volume: 10 start-page: 110 issue: 2 year: 2020 ident: 10.1016/j.patrec.2021.01.036_bib0009 article-title: SD-UNet: stripping down U-Net for segmentation of biomedical images on platforms with low computational budgets publication-title: Diagnostics doi: 10.3390/diagnostics10020110 – year: 2019 ident: 10.1016/j.patrec.2021.01.036_bib0020 article-title: A deep learning model for transportation mode detection based on smartphone sensing data publication-title: IEEE Trans. Intell. Transp.Syst. – start-page: 2017 year: 2015 ident: 10.1016/j.patrec.2021.01.036_bib0016 article-title: Spatial transformer networks – volume: 179 start-page: 120 year: 2019 ident: 10.1016/j.patrec.2021.01.036_bib0022 article-title: Deep shared representation learning for weather elements forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.05.009 – ident: 10.1016/j.patrec.2021.01.036_bib0017 – start-page: 234 year: 2015 ident: 10.1016/j.patrec.2021.01.036_bib0025 article-title: U-Net: convolutional networks for biomedical image segmentation – ident: 10.1016/j.patrec.2021.01.036_bib0003 – volume: vol. 33 start-page: 8368 year: 2019 ident: 10.1016/j.patrec.2021.01.036_bib0010 article-title: Depthwise convolution is all you need for learning multiple visual domains – volume: 11 start-page: 2303 issue: 19 year: 2019 ident: 10.1016/j.patrec.2021.01.036_bib0029 article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks publication-title: Remote Sens. doi: 10.3390/rs11192303 – ident: 10.1016/j.patrec.2021.01.036_bib0001 – start-page: 5617 year: 2017 ident: 10.1016/j.patrec.2021.01.036_bib0026 article-title: Deep learning for precipitation nowcasting: a benchmark and a new model – ident: 10.1016/j.patrec.2021.01.036_bib0028 – volume: vol. 1 year: 2004 ident: 10.1016/j.patrec.2021.01.036_bib0012 article-title: Nowcasting thunderstorms in the alpine region using a radar based adaptive thresholding scheme – year: 2020 ident: 10.1016/j.patrec.2021.01.036_sbref0008 – start-page: 1097 year: 2012 ident: 10.1016/j.patrec.2021.01.036_bib0018 article-title: ImageNet classification with deep convolutional neural networks – start-page: 6848 year: 2018 ident: 10.1016/j.patrec.2021.01.036_bib0037 article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices – ident: 10.1016/j.patrec.2021.01.036_bib0007 – start-page: 713 year: 2020 ident: 10.1016/j.patrec.2021.01.036_bib0030 article-title: Wind speed prediction using multidimensional convolutional neural networks – start-page: 7132 year: 2018 ident: 10.1016/j.patrec.2021.01.036_bib0015 article-title: Squeeze-and-excitation networks – start-page: 6077 year: 2018 ident: 10.1016/j.patrec.2021.01.036_bib0002 article-title: Bottom-up and top-down attention for image captioning and visual question answering – start-page: 770 year: 2016 ident: 10.1016/j.patrec.2021.01.036_bib0011 article-title: Deep residual learning for image recognition – start-page: 879 year: 2017 ident: 10.1016/j.patrec.2021.01.036_bib0031 article-title: PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMS – volume: 48 start-page: 1448 issue: 7 year: 2009 ident: 10.1016/j.patrec.2021.01.036_bib0024 article-title: Derivation of a 10-year radar-based climatology of rainfall publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2009JAMC1954.1 – year: 2020 ident: 10.1016/j.patrec.2021.01.036_bib0005 article-title: Cloud cover nowcasting with deep learning – start-page: 3 year: 2018 ident: 10.1016/j.patrec.2021.01.036_bib0035 article-title: CBAM: convolutional block attention module – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.patrec.2021.01.036_bib0013 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.patrec.2021.01.036_bib0014 – start-page: 1 year: 2010 ident: 10.1016/j.patrec.2021.01.036_bib0027 article-title: A review of wind power and wind speed forecasting methods with different time horizons – volume: 79 start-page: 2079 issue: 10 year: 1998 ident: 10.1016/j.patrec.2021.01.036_bib0034 article-title: Nowcasting thunderstorms: a status report publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2 |
SSID | ssj0006398 |
Score | 2.6878972 |
Snippet | •A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a... Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 178 |
SubjectTerms | Artificial neural networks Atmospheric models Coupling regularization Domain adaptation Kernel methods Mathematical models Neural networks Nowcasting Numerical weather forecasting Physical properties Precipitation Predictions Weather forecasting |
Title | SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture |
URI | https://dx.doi.org/10.1016/j.patrec.2021.01.036 https://www.proquest.com/docview/2528501072 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vejBt7i-yMFr3TZtsltvi7isiouwLngLkzQVZV-4FW_-djNtKiqCIPTS0intJPNKv_kCcKqlyFMdZ0FohQkS7XI45CYJbGyENXnY5oIanG8Hsj9Krh_EwxJc1L0wBKv0vr_y6aW39ldaXput-dNTa0gAemqr5LRELYRchhUep1I0YKV7ddMffDpkF4Q7NcU3CdQddCXMi5acLXEZ8qjk7yy5mn-NUD98dRmAepuw7jNH1q1ebguW7HQbNupdGZg30m1Y-0IxuAOD4QS7RTAa2OKc3RGVxdyzcrPp7M3ggmDPjNDvjwzZYoLjMSPKzRIEWYqxr_8admHUu7y_6Ad-D4XAuEKvCDLMnA0bxNhgHqa8o6WNwkxnxpmizrXRIXJNIcrVDrmQLuHOLGJbyjTnKKJ4DxrT2dTuA0PupLVMJJl9ipGOuHEuAYW2PMcEmxDXelPGfwrtczFWNZLsWVXaVqRtFbojlk0IPqXmFcHGH_e36yFR3yaKcjHgD8mjegSVN9SF4oJ3hKtJ2_zg3w8-hFU6q2CQR9AoXl7tsUtVCn0Cy2fv0YmfkB_oGumC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH3-L6zMFr3TZt0l1vIsr6WgRd8BYmaSor67q4FW_-djNt6gtBEHpqM6WZZB5Jv_kCsK-lyDs6zoLQChMk2uVwyE0S2NgIa_Iw5YIKnK96sttPzu_E3RQc17UwBKv0vr_y6aW39ndaXput8WDQuiEAPZVVctqiFkJOw0wi4pRwfQdvnzgPF4LbNcE3Na_r50qQF204W2Iy5FHJ3lkyNf8an3546jL8nC7Bgs8b2VH1acswZUcrsFifycC8ia7A_BeCwVXo3TziURH0e7Y4ZNdEZDH2nNxs9PRqcEKgZ0bY93uGbPKIwyEjws0SAlmKsa9_Gtagf3pye9wN_AkKgXHLvCLIMHMWbBBjg3nY4W0tbRRmOjPOEHWujQ6RawpQbuWQC-nS7cwiplJ2co4iitehMXoa2Q1gyJ20lokko-9gpCNunENAoS3PMcEmxLXelPFdoVMuhqrGkT2oStuKtK1Cd8WyCcGH1Lii1_ijfVoPifo2TZSLAH9IbtcjqLyZThQXvC3cijTlm_9-8R7Mdm-vLtXlWe9iC-boSQWI3IZG8fxid1zSUujdclK-A-Fe6k0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SmaAt-UNet%3A+Precipitation+nowcasting+using+a+small+attention-UNet+architecture&rft.jtitle=Pattern+recognition+letters&rft.au=Trebing%2C+Kevin&rft.au=Sta%C7%B9czyk%2C+Tomasz&rft.au=Mehrkanoon%2C+Siamak&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=145&rft.spage=178&rft.epage=186&rft_id=info:doi/10.1016%2Fj.patrec.2021.01.036&rft.externalDocID=S0167865521000556 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |