SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture

•A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a quarter of UNet model parameters whilst achieving a comparable prediction performance.•The proposed model is examined on a real-life datasets...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 145; pp. 178 - 186
Main Authors Trebing, Kevin, Staǹczyk, Tomasz, Mehrkanoon, Siamak
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2021.01.036

Cover

Abstract •A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a quarter of UNet model parameters whilst achieving a comparable prediction performance.•The proposed model is examined on a real-life datasets consisting of precipitation maps and cloud cover. Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks-based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France. The experimental results show that in terms of prediction performance, the proposed model is comparable to other examined models while only using a quarter of the trainable parameters.
AbstractList •A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a quarter of UNet model parameters whilst achieving a comparable prediction performance.•The proposed model is examined on a real-life datasets consisting of precipitation maps and cloud cover. Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks-based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France. The experimental results show that in terms of prediction performance, the proposed model is comparable to other examined models while only using a quarter of the trainable parameters.
Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks-based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France. The experimental results show that in terms of prediction performance, the proposed model is comparable to other examined models while only using a quarter of the trainable parameters.
Author Trebing, Kevin
Staǹczyk, Tomasz
Mehrkanoon, Siamak
Author_xml – sequence: 1
  givenname: Kevin
  surname: Trebing
  fullname: Trebing, Kevin
– sequence: 2
  givenname: Tomasz
  surname: Staǹczyk
  fullname: Staǹczyk, Tomasz
– sequence: 3
  givenname: Siamak
  surname: Mehrkanoon
  fullname: Mehrkanoon, Siamak
  email: siamak.mehrkanoon@maastrichtuniversity.nl
BookMark eNqFkF1LwzAUhoNMcJv-Ay8KXneepG3a7UIYwy-QKeiuw2maakrX1iRV_PemdldeKBxObp7nDeedkUnTNoqQcwoLCpRfVosOnVFywYDRBfiJ-BGZ0ixlYRrF8YRMPZaGGU-SEzKztgIAHi2zKdk-73Htwt1WuVXw5DN0px063TZB035KtE43r0Fvh42B3WNdB-icagbkRwvQyDftlHS9UafkuMTaqrPDOye7m-uXzV348Hh7v1k_hDKOuQsLLNIIJGIksYQly3KuKBR5IYGmeZnLHJDlWZzSCHiZ8CxjhUJMOV-WDBMazcnFmNuZ9r1X1omq7U3jvxQsYVkCFFLmqdVISdNaa1Qp5OE4Z1DXgoIY-hOVGPsTQ38C_ETcy_EvuTN6j-brP-1q1JQ__0MrI6zUqpGq0B51omj13wHfiEmPOg
CitedBy_id crossref_primary_10_1007_s00376_023_3085_7
crossref_primary_10_3390_rs15061684
crossref_primary_10_3390_axioms11030107
crossref_primary_10_1007_s13351_025_4107_4
crossref_primary_10_1002_mp_15986
crossref_primary_10_1016_j_atmosres_2022_106500
crossref_primary_10_3390_atmos14101506
crossref_primary_10_3390_e23101314
crossref_primary_10_1109_TGRS_2022_3217639
crossref_primary_10_1038_s41586_021_03854_z
crossref_primary_10_3390_w15081585
crossref_primary_10_3390_forecast4040046
crossref_primary_10_1002_qj_4643
crossref_primary_10_1029_2021MS002954
crossref_primary_10_1007_s00371_022_02563_6
crossref_primary_10_1109_TGRS_2025_3534278
crossref_primary_10_1109_TGRS_2023_3268187
crossref_primary_10_1080_08839514_2024_2311003
crossref_primary_10_1007_s11280_021_00988_y
crossref_primary_10_1016_j_eswa_2024_123606
crossref_primary_10_1007_s12145_024_01554_6
crossref_primary_10_3390_s24155004
crossref_primary_10_3390_su132413834
crossref_primary_10_3390_s23135785
crossref_primary_10_1016_j_knosys_2024_112612
crossref_primary_10_1029_2023GL106084
crossref_primary_10_2147_JMDH_S417068
crossref_primary_10_1016_j_patcog_2024_111193
crossref_primary_10_1109_TGRS_2023_3330303
crossref_primary_10_5194_gmd_18_1851_2025
crossref_primary_10_4018_IJITSA_340774
crossref_primary_10_1109_LGRS_2022_3162882
crossref_primary_10_1109_TGRS_2024_3510693
crossref_primary_10_1109_JSTARS_2022_3188201
crossref_primary_10_1051_bioconf_202411103014
crossref_primary_10_1016_j_inffus_2022_11_008
crossref_primary_10_1109_TGRS_2024_3382172
crossref_primary_10_1038_s43247_024_01687_y
crossref_primary_10_1016_j_jhydrol_2024_131593
crossref_primary_10_1016_j_atmosres_2023_107093
crossref_primary_10_1109_ACCESS_2023_3280932
crossref_primary_10_3390_electronics12040896
crossref_primary_10_3390_math9141653
crossref_primary_10_3390_s22072802
crossref_primary_10_1109_JSTARS_2023_3310153
crossref_primary_10_1109_JSTARS_2021_3128522
crossref_primary_10_1007_s13351_022_1174_7
crossref_primary_10_3390_rs16010052
crossref_primary_10_3390_biomedicines11102687
crossref_primary_10_1016_j_jmmm_2022_169521
crossref_primary_10_1109_TGRS_2022_3198222
crossref_primary_10_1016_j_procs_2023_10_150
crossref_primary_10_1109_ACCESS_2024_3495215
crossref_primary_10_3390_atmos14010025
crossref_primary_10_1016_j_neucom_2025_129840
crossref_primary_10_1371_journal_pone_0296044
crossref_primary_10_1002_met_2032
crossref_primary_10_1007_s11227_024_06357_6
crossref_primary_10_3390_rs15061639
crossref_primary_10_3390_en17205143
crossref_primary_10_14801_jkiit_2023_21_10_47
crossref_primary_10_1007_s10489_022_04338_x
crossref_primary_10_1007_s13351_024_3211_1
crossref_primary_10_1029_2022RS007566
crossref_primary_10_3390_agriculture14040637
crossref_primary_10_3390_atmos15010104
crossref_primary_10_1016_j_eswa_2024_124179
crossref_primary_10_3390_info13120577
crossref_primary_10_1109_JSTARS_2024_3462480
crossref_primary_10_1155_2022_1536976
crossref_primary_10_3390_rs14195042
crossref_primary_10_3390_rs16061063
crossref_primary_10_1016_j_envsoft_2024_106001
crossref_primary_10_1016_j_engappai_2024_109788
crossref_primary_10_3390_s23198065
crossref_primary_10_1016_j_uclim_2022_101359
crossref_primary_10_1029_2023WR035600
crossref_primary_10_1109_JSTARS_2023_3322343
crossref_primary_10_1016_j_neucom_2024_127665
crossref_primary_10_1017_eds_2023_26
crossref_primary_10_1109_JSTARS_2023_3310361
crossref_primary_10_1088_1742_6596_2089_1_012059
crossref_primary_10_1051_e3sconf_202340504003
crossref_primary_10_2478_rgg_2022_0005
crossref_primary_10_1016_j_envsoft_2024_106251
crossref_primary_10_1109_TGRS_2024_3424250
crossref_primary_10_1155_2022_9856669
crossref_primary_10_3390_rs16142685
crossref_primary_10_1016_j_knosys_2022_109445
crossref_primary_10_1109_TGRS_2024_3407157
crossref_primary_10_3390_rs14174256
crossref_primary_10_5194_gmd_17_53_2024
crossref_primary_10_3390_w16081136
crossref_primary_10_1109_TGRS_2024_3439871
crossref_primary_10_1007_s10994_021_06022_6
crossref_primary_10_1029_2023GL104370
crossref_primary_10_1007_s10489_021_03111_w
crossref_primary_10_1016_j_scitotenv_2023_165061
crossref_primary_10_1109_JSTARS_2023_3238016
crossref_primary_10_1016_j_atmosres_2023_106750
crossref_primary_10_1109_JSTARS_2024_3383397
crossref_primary_10_3390_electronics13204032
crossref_primary_10_1016_j_neunet_2021_08_036
crossref_primary_10_1109_JSEN_2023_3246178
crossref_primary_10_1016_j_cmpb_2023_107614
crossref_primary_10_1016_j_jhydrol_2024_130871
crossref_primary_10_1007_s11227_024_06577_w
crossref_primary_10_1631_FITEE_2300493
crossref_primary_10_3390_s23218739
crossref_primary_10_3390_w16050671
crossref_primary_10_3390_rs15061529
crossref_primary_10_1007_s11760_023_02632_w
crossref_primary_10_1016_j_jhydrol_2025_132795
crossref_primary_10_1109_LGRS_2023_3325628
crossref_primary_10_1002_jmrs_701
crossref_primary_10_2139_ssrn_4199193
crossref_primary_10_5194_gmd_15_5407_2022
crossref_primary_10_1016_j_ecolind_2023_110524
crossref_primary_10_1109_LGRS_2024_3359229
crossref_primary_10_1016_j_cageo_2025_105851
crossref_primary_10_1186_s13244_022_01342_0
crossref_primary_10_1007_s11760_022_02325_w
crossref_primary_10_1016_j_knosys_2024_112679
crossref_primary_10_3390_rs15143466
crossref_primary_10_3390_rs15010137
crossref_primary_10_1016_j_asoc_2024_112065
crossref_primary_10_1016_j_heliyon_2023_e14715
crossref_primary_10_1029_2023WR035088
crossref_primary_10_1109_TGRS_2025_3528423
crossref_primary_10_1007_s11063_024_11533_z
crossref_primary_10_1016_j_compgeo_2023_105412
crossref_primary_10_3390_rs16020275
crossref_primary_10_3390_rs15133306
crossref_primary_10_3390_rs16020274
crossref_primary_10_1016_j_eswa_2024_126168
crossref_primary_10_1029_2022EA002411
crossref_primary_10_2151_sola_2024_018
crossref_primary_10_1109_MSMC_2022_3216943
crossref_primary_10_1109_TGRS_2024_3444789
crossref_primary_10_1016_j_wace_2024_100724
crossref_primary_10_1080_15481603_2023_2203363
crossref_primary_10_1109_LGRS_2024_3382241
crossref_primary_10_1109_TGRS_2023_3318374
crossref_primary_10_32604_cmes_2022_022045
crossref_primary_10_1016_j_knosys_2025_113120
crossref_primary_10_3390_rs16193597
crossref_primary_10_1016_j_procs_2023_08_160
crossref_primary_10_1142_S021800142355008X
crossref_primary_10_1109_TCSVT_2024_3487965
crossref_primary_10_1167_tvst_12_3_22
crossref_primary_10_1016_j_isatra_2022_06_046
crossref_primary_10_1016_j_jastp_2024_106175
crossref_primary_10_1186_s13007_022_00941_8
crossref_primary_10_1109_LGRS_2024_3384772
crossref_primary_10_54097_hset_v39i_6613
crossref_primary_10_3390_rs13183627
crossref_primary_10_1016_j_inffus_2024_102607
crossref_primary_10_1038_s41598_023_50989_2
crossref_primary_10_1007_s00371_024_03639_1
crossref_primary_10_1016_j_bspc_2024_106285
crossref_primary_10_1109_TGRS_2024_3414934
crossref_primary_10_1016_j_atmosres_2025_108010
crossref_primary_10_3390_rs15010227
crossref_primary_10_1007_s11760_022_02443_5
crossref_primary_10_1016_j_compbiomed_2022_106089
crossref_primary_10_1016_j_dsp_2025_105050
crossref_primary_10_1029_2022MS003593
crossref_primary_10_5194_hess_26_2923_2022
crossref_primary_10_12677_csa_2024_1411230
crossref_primary_10_1016_j_jappgeo_2024_105344
crossref_primary_10_1049_ell2_70204
crossref_primary_10_3390_atmos14050807
crossref_primary_10_1016_j_jag_2024_103962
crossref_primary_10_1109_TGRS_2024_3404062
crossref_primary_10_1016_j_cageo_2024_105536
crossref_primary_10_1007_s00521_023_09265_7
crossref_primary_10_1038_s41598_024_79742_z
crossref_primary_10_1016_j_cageo_2023_105498
crossref_primary_10_5194_gmd_15_5967_2022
crossref_primary_10_5194_gmd_17_6657_2024
crossref_primary_10_1007_s11760_024_03234_w
crossref_primary_10_5194_gmd_17_3839_2024
crossref_primary_10_5194_gmd_16_5895_2023
crossref_primary_10_3390_rs14205106
crossref_primary_10_3390_rs16213956
crossref_primary_10_1016_j_compbiomed_2025_110012
crossref_primary_10_1016_j_compag_2022_106697
crossref_primary_10_1145_3638773
crossref_primary_10_1016_j_cmpb_2023_107914
crossref_primary_10_1016_j_patrec_2023_12_025
crossref_primary_10_1167_tvst_13_10_24
crossref_primary_10_1007_s11760_023_02770_1
crossref_primary_10_1016_j_jvcir_2023_103856
crossref_primary_10_1109_ACCESS_2022_3146317
crossref_primary_10_1016_j_neucom_2024_127700
crossref_primary_10_1109_JSEN_2024_3419434
crossref_primary_10_1109_JSTARS_2022_3194522
crossref_primary_10_1016_j_eswa_2024_126301
crossref_primary_10_1109_TGRS_2023_3295211
crossref_primary_10_1016_j_knosys_2021_107900
crossref_primary_10_1109_JSTARS_2024_3381822
crossref_primary_10_1038_s41598_023_46580_4
crossref_primary_10_3390_w16243702
crossref_primary_10_1109_TGRS_2025_3538164
crossref_primary_10_1016_j_jhydrol_2024_131438
crossref_primary_10_3390_rs17071123
crossref_primary_10_1007_s11263_023_01818_6
crossref_primary_10_1029_2023GL106391
crossref_primary_10_3390_rs15235619
crossref_primary_10_3390_rs16244792
crossref_primary_10_1016_j_heliyon_2024_e36134
crossref_primary_10_3390_agriculture15060627
crossref_primary_10_3390_atmos15091114
crossref_primary_10_3390_rs15010142
crossref_primary_10_3390_atmos15010052
crossref_primary_10_1109_LGRS_2022_3141498
crossref_primary_10_1007_s11760_024_03596_1
crossref_primary_10_1016_j_ejrh_2025_102273
crossref_primary_10_1080_01431161_2024_2359731
crossref_primary_10_3390_rs14163890
crossref_primary_10_1029_2024JD041914
crossref_primary_10_1029_2022GL100901
crossref_primary_10_12677_csa_2024_144105
crossref_primary_10_1016_j_rse_2023_113950
crossref_primary_10_1109_TGRS_2023_3303947
crossref_primary_10_3724_j_1006_8775_2023_036
crossref_primary_10_1016_j_compbiomed_2024_109191
crossref_primary_10_1016_j_eswa_2024_126098
crossref_primary_10_3390_s24020459
crossref_primary_10_1007_s11517_024_03035_w
Cites_doi 10.1088/1741-2552/aace8c
10.1175/2010WAF2222417.1
10.3390/diagnostics10020110
10.1016/j.knosys.2019.05.009
10.3390/rs11192303
10.1175/2009JAMC1954.1
10.1162/neco.1997.9.8.1735
10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. May 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. May 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2021.01.036
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 186
ExternalDocumentID 10_1016_j_patrec_2021_01_036
S0167865521000556
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c446t-dad730caa3caf0928b6e10dbdc017bfbcb0a2b8471306f56882deaa7669f2a513
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Fri Jul 25 07:51:47 EDT 2025
Tue Jul 01 02:40:43 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Fri Feb 23 02:46:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Domain adaptation
Kernel methods
Neural networks
Coupling regularization
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-dad730caa3caf0928b6e10dbdc017bfbcb0a2b8471306f56882deaa7669f2a513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167865521000556
PQID 2528501072
PQPubID 2047552
PageCount 9
ParticipantIDs proquest_journals_2528501072
crossref_citationtrail_10_1016_j_patrec_2021_01_036
crossref_primary_10_1016_j_patrec_2021_01_036
elsevier_sciencedirect_doi_10_1016_j_patrec_2021_01_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, J. Hickey, Machine learning for precipitation nowcasting from radar images, arXiv
Deutscher Wetterdienst (bib0008) 2020
Wang, Long, Wang, Gao, Philip (bib0031) 2017
M. Babaeizadeh, C. Finn, D. Erhan, R.H. Campbell, S. Levine, Stochastic variational video prediction, arXiv
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv
He, Zhang, Ren, Sun (bib0011) 2016
Anderson, He, Buehler, Teney, Johnson, Gould, Zhang (bib0002) 2018
Liang, Zhang, Wang, Xu (bib0020) 2019
Krizhevsky, Sutskever, Hinton (bib0018) 2012
E. Denton, R. Fergus, Stochastic video generation with a learned prior, arXiv
Overeem, Holleman, Buishand (bib0024) 2009; 48
Ronneberger, Fischer, Brox (bib0025) 2015
Woo, Park, Lee, So Kweon (bib0035) 2018
Zhang, Zhou, Lin, Sun (bib0037) 2018
C.K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, N. Kalchbrenner, MetNet: a neural weather model for precipitation forecasting, arXiv
(2020).
Hochreiter, Schmidhuber (bib0013) 1997; 9
Wilson, Crook, Mueller, Sun, Dixon (bib0034) 1998; 79
Wang, Zhang, Zhu, Long, Wang, Yu (bib0032) 2019
Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0036) 2015
Berthomier, Pradel, Perez (bib0005) 2020
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0019) 2018; 15
M. Mathieu, C. Couprie, Y. LeCun, Deep multi-scale video prediction beyond mean square error, arXiv
Shi, Gao, Lausen, Wang, Yeung, Wong, Woo (bib0026) 2017
A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile vision applications, arXiv
Guo, Li, Wang, Rosing (bib0010) 2019; vol. 33
Bello, Zoph, Vaswani, Shlens, Le (bib0004) 2019
Chollet (bib0006) 2017
(2015).
(2014).
Trebing, Mehrkanoon (bib0030) 2020
Gadosey, Li, Agyekum, Zhang, Liu, Yamak, Essaf (bib0009) 2020; 10
O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, et al., Attention U-Net: learning where to look for the pancreas, arXiv
(2019).
(2018).
(2017).
Mehrkanoon (bib0022) 2019; 179
Soman, Zareipour, Malik, Mandal (bib0027) 2010
Hu, Shen, Sun (bib0015) 2018
Wilson, Feng, Chen, Roberts (bib0033) 2010; 25
Jaderberg, Simonyan, Zisserman (bib0016) 2015
Tran, Song (bib0029) 2019; 11
Hering, Morel, Galli, Sénési, Ambrosetti, Boscacci (bib0012) 2004; vol. 1
Zhang (10.1016/j.patrec.2021.01.036_bib0037) 2018
Overeem (10.1016/j.patrec.2021.01.036_bib0024) 2009; 48
Bello (10.1016/j.patrec.2021.01.036_bib0004) 2019
Wilson (10.1016/j.patrec.2021.01.036_bib0034) 1998; 79
Soman (10.1016/j.patrec.2021.01.036_bib0027) 2010
Deutscher Wetterdienst (10.1016/j.patrec.2021.01.036_sbref0008) 2020
Wilson (10.1016/j.patrec.2021.01.036_bib0033) 2010; 25
Jaderberg (10.1016/j.patrec.2021.01.036_bib0016) 2015
Mehrkanoon (10.1016/j.patrec.2021.01.036_bib0022) 2019; 179
10.1016/j.patrec.2021.01.036_bib0014
10.1016/j.patrec.2021.01.036_bib0017
Wang (10.1016/j.patrec.2021.01.036_bib0031) 2017
Gadosey (10.1016/j.patrec.2021.01.036_bib0009) 2020; 10
Guo (10.1016/j.patrec.2021.01.036_bib0010) 2019; vol. 33
Berthomier (10.1016/j.patrec.2021.01.036_bib0005) 2020
Hochreiter (10.1016/j.patrec.2021.01.036_bib0013) 1997; 9
Wang (10.1016/j.patrec.2021.01.036_bib0032) 2019
Liang (10.1016/j.patrec.2021.01.036_bib0020) 2019
Xingjian (10.1016/j.patrec.2021.01.036_bib0036) 2015
Hu (10.1016/j.patrec.2021.01.036_bib0015) 2018
Chollet (10.1016/j.patrec.2021.01.036_bib0006) 2017
Ronneberger (10.1016/j.patrec.2021.01.036_bib0025) 2015
Woo (10.1016/j.patrec.2021.01.036_bib0035) 2018
Anderson (10.1016/j.patrec.2021.01.036_bib0002) 2018
Krizhevsky (10.1016/j.patrec.2021.01.036_bib0018) 2012
10.1016/j.patrec.2021.01.036_bib0001
10.1016/j.patrec.2021.01.036_bib0023
Tran (10.1016/j.patrec.2021.01.036_bib0029) 2019; 11
10.1016/j.patrec.2021.01.036_bib0021
He (10.1016/j.patrec.2021.01.036_bib0011) 2016
10.1016/j.patrec.2021.01.036_bib0003
Hering (10.1016/j.patrec.2021.01.036_bib0012) 2004; vol. 1
Trebing (10.1016/j.patrec.2021.01.036_bib0030) 2020
Lawhern (10.1016/j.patrec.2021.01.036_bib0019) 2018; 15
10.1016/j.patrec.2021.01.036_bib0028
10.1016/j.patrec.2021.01.036_bib0007
Shi (10.1016/j.patrec.2021.01.036_bib0026) 2017
References_xml – start-page: 2017
  year: 2015
  end-page: 2025
  ident: bib0016
  article-title: Spatial transformer networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: bib0006
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3
  year: 2018
  end-page: 19
  ident: bib0035
  article-title: CBAM: convolutional block attention module
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– reference: M. Mathieu, C. Couprie, Y. LeCun, Deep multi-scale video prediction beyond mean square error, arXiv:
– year: 2020
  ident: bib0005
  article-title: Cloud cover nowcasting with deep learning
  publication-title: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA)
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0018
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: (2019).
– start-page: 5617
  year: 2017
  end-page: 5627
  ident: bib0026
  article-title: Deep learning for precipitation nowcasting: a benchmark and a new model
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3286
  year: 2019
  end-page: 3295
  ident: bib0004
  article-title: Attention augmented convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: C.K. Sønderby, L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, N. Kalchbrenner, MetNet: a neural weather model for precipitation forecasting, arXiv:
– volume: 15
  start-page: 056013
  year: 2018
  ident: bib0019
  article-title: EegNet: a compact convolutional neural network for eeg-based brain–computer interfaces
  publication-title: J. Neural Eng.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0025
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: (2015).
– start-page: 6848
  year: 2018
  end-page: 6856
  ident: bib0037
  article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib0027
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
  publication-title: North American Power Symposium 2010
– start-page: 713
  year: 2020
  end-page: 720
  ident: bib0030
  article-title: Wind speed prediction using multidimensional convolutional neural networks
  publication-title: 2020 IEEE Symposium Series on Computational Intelligence (SSCI)
– reference: S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, J. Hickey, Machine learning for precipitation nowcasting from radar images, arXiv:
– volume: vol. 1
  year: 2004
  ident: bib0012
  article-title: Nowcasting thunderstorms in the alpine region using a radar based adaptive thresholding scheme
  publication-title: Proceedings of ERAD
– reference: E. Denton, R. Fergus, Stochastic video generation with a learned prior, arXiv:
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0011
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib0015
  article-title: Squeeze-and-excitation networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0013
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile vision applications, arXiv:
– reference: (2014).
– year: 2020
  ident: bib0008
  article-title: Nowcasting applications
– reference: (2020).
– start-page: 6077
  year: 2018
  end-page: 6086
  ident: bib0002
  article-title: Bottom-up and top-down attention for image captioning and visual question answering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 2303
  year: 2019
  ident: bib0029
  article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks
  publication-title: Remote Sens.
– volume: 79
  start-page: 2079
  year: 1998
  end-page: 2100
  ident: bib0034
  article-title: Nowcasting thunderstorms: a status report
  publication-title: Bull. Am. Meteorol. Soc.
– reference: (2018).
– reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:
– volume: 179
  start-page: 120
  year: 2019
  end-page: 128
  ident: bib0022
  article-title: Deep shared representation learning for weather elements forecasting
  publication-title: Knowl.-Based Syst.
– start-page: 802
  year: 2015
  end-page: 810
  ident: bib0036
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– volume: vol. 33
  start-page: 8368
  year: 2019
  end-page: 8375
  ident: bib0010
  article-title: Depthwise convolution is all you need for learning multiple visual domains
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 9154
  year: 2019
  end-page: 9162
  ident: bib0032
  article-title: Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 25
  year: 2010
  ident: bib0033
  article-title: Nowcasting challenges during the Beijing olympics: successes, failures, and implications for future nowcasting systems
  publication-title: Weather Forecasting
– volume: 10
  start-page: 110
  year: 2020
  ident: bib0009
  article-title: SD-UNet: stripping down U-Net for segmentation of biomedical images on platforms with low computational budgets
  publication-title: Diagnostics
– volume: 48
  start-page: 1448
  year: 2009
  end-page: 1463
  ident: bib0024
  article-title: Derivation of a 10-year radar-based climatology of rainfall
  publication-title: J. Appl. Meteorol. Climatol.
– start-page: 879
  year: 2017
  end-page: 888
  ident: bib0031
  article-title: PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMS
  publication-title: Advances in Neural Information Processing Systems
– reference: O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, et al., Attention U-Net: learning where to look for the pancreas, arXiv:
– reference: M. Babaeizadeh, C. Finn, D. Erhan, R.H. Campbell, S. Levine, Stochastic variational video prediction, arXiv:
– reference: (2017).
– year: 2019
  ident: bib0020
  article-title: A deep learning model for transportation mode detection based on smartphone sensing data
  publication-title: IEEE Trans. Intell. Transp.Syst.
– start-page: 1251
  year: 2017
  ident: 10.1016/j.patrec.2021.01.036_bib0006
  article-title: Xception: deep learning with depthwise separable convolutions
– start-page: 802
  year: 2015
  ident: 10.1016/j.patrec.2021.01.036_bib0036
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
– volume: 15
  start-page: 056013
  issue: 5
  year: 2018
  ident: 10.1016/j.patrec.2021.01.036_bib0019
  article-title: EegNet: a compact convolutional neural network for eeg-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– ident: 10.1016/j.patrec.2021.01.036_bib0021
– start-page: 9154
  year: 2019
  ident: 10.1016/j.patrec.2021.01.036_bib0032
  article-title: Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics
– ident: 10.1016/j.patrec.2021.01.036_bib0023
– start-page: 3286
  year: 2019
  ident: 10.1016/j.patrec.2021.01.036_bib0004
  article-title: Attention augmented convolutional networks
– volume: 25
  year: 2010
  ident: 10.1016/j.patrec.2021.01.036_bib0033
  article-title: Nowcasting challenges during the Beijing olympics: successes, failures, and implications for future nowcasting systems
  publication-title: Weather Forecasting
  doi: 10.1175/2010WAF2222417.1
– volume: 10
  start-page: 110
  issue: 2
  year: 2020
  ident: 10.1016/j.patrec.2021.01.036_bib0009
  article-title: SD-UNet: stripping down U-Net for segmentation of biomedical images on platforms with low computational budgets
  publication-title: Diagnostics
  doi: 10.3390/diagnostics10020110
– year: 2019
  ident: 10.1016/j.patrec.2021.01.036_bib0020
  article-title: A deep learning model for transportation mode detection based on smartphone sensing data
  publication-title: IEEE Trans. Intell. Transp.Syst.
– start-page: 2017
  year: 2015
  ident: 10.1016/j.patrec.2021.01.036_bib0016
  article-title: Spatial transformer networks
– volume: 179
  start-page: 120
  year: 2019
  ident: 10.1016/j.patrec.2021.01.036_bib0022
  article-title: Deep shared representation learning for weather elements forecasting
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.05.009
– ident: 10.1016/j.patrec.2021.01.036_bib0017
– start-page: 234
  year: 2015
  ident: 10.1016/j.patrec.2021.01.036_bib0025
  article-title: U-Net: convolutional networks for biomedical image segmentation
– ident: 10.1016/j.patrec.2021.01.036_bib0003
– volume: vol. 33
  start-page: 8368
  year: 2019
  ident: 10.1016/j.patrec.2021.01.036_bib0010
  article-title: Depthwise convolution is all you need for learning multiple visual domains
– volume: 11
  start-page: 2303
  issue: 19
  year: 2019
  ident: 10.1016/j.patrec.2021.01.036_bib0029
  article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11192303
– ident: 10.1016/j.patrec.2021.01.036_bib0001
– start-page: 5617
  year: 2017
  ident: 10.1016/j.patrec.2021.01.036_bib0026
  article-title: Deep learning for precipitation nowcasting: a benchmark and a new model
– ident: 10.1016/j.patrec.2021.01.036_bib0028
– volume: vol. 1
  year: 2004
  ident: 10.1016/j.patrec.2021.01.036_bib0012
  article-title: Nowcasting thunderstorms in the alpine region using a radar based adaptive thresholding scheme
– year: 2020
  ident: 10.1016/j.patrec.2021.01.036_sbref0008
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patrec.2021.01.036_bib0018
  article-title: ImageNet classification with deep convolutional neural networks
– start-page: 6848
  year: 2018
  ident: 10.1016/j.patrec.2021.01.036_bib0037
  article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices
– ident: 10.1016/j.patrec.2021.01.036_bib0007
– start-page: 713
  year: 2020
  ident: 10.1016/j.patrec.2021.01.036_bib0030
  article-title: Wind speed prediction using multidimensional convolutional neural networks
– start-page: 7132
  year: 2018
  ident: 10.1016/j.patrec.2021.01.036_bib0015
  article-title: Squeeze-and-excitation networks
– start-page: 6077
  year: 2018
  ident: 10.1016/j.patrec.2021.01.036_bib0002
  article-title: Bottom-up and top-down attention for image captioning and visual question answering
– start-page: 770
  year: 2016
  ident: 10.1016/j.patrec.2021.01.036_bib0011
  article-title: Deep residual learning for image recognition
– start-page: 879
  year: 2017
  ident: 10.1016/j.patrec.2021.01.036_bib0031
  article-title: PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMS
– volume: 48
  start-page: 1448
  issue: 7
  year: 2009
  ident: 10.1016/j.patrec.2021.01.036_bib0024
  article-title: Derivation of a 10-year radar-based climatology of rainfall
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2009JAMC1954.1
– year: 2020
  ident: 10.1016/j.patrec.2021.01.036_bib0005
  article-title: Cloud cover nowcasting with deep learning
– start-page: 3
  year: 2018
  ident: 10.1016/j.patrec.2021.01.036_bib0035
  article-title: CBAM: convolutional block attention module
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.patrec.2021.01.036_bib0013
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.patrec.2021.01.036_bib0014
– start-page: 1
  year: 2010
  ident: 10.1016/j.patrec.2021.01.036_bib0027
  article-title: A review of wind power and wind speed forecasting methods with different time horizons
– volume: 79
  start-page: 2079
  issue: 10
  year: 1998
  ident: 10.1016/j.patrec.2021.01.036_bib0034
  article-title: Nowcasting thunderstorms: a status report
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2
SSID ssj0006398
Score 2.6878972
Snippet •A novel SmaAt-UNet model is introduced.•The core UNet model is equipped with attention mechanism and depthwise-separable convolutions.•This model requires a...
Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Artificial neural networks
Atmospheric models
Coupling regularization
Domain adaptation
Kernel methods
Mathematical models
Neural networks
Nowcasting
Numerical weather forecasting
Physical properties
Precipitation
Predictions
Weather forecasting
Title SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture
URI https://dx.doi.org/10.1016/j.patrec.2021.01.036
https://www.proquest.com/docview/2528501072
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vejBt7i-yMFr3TZtsltvi7isiouwLngLkzQVZV-4FW_-djNtKiqCIPTS0intJPNKv_kCcKqlyFMdZ0FohQkS7XI45CYJbGyENXnY5oIanG8Hsj9Krh_EwxJc1L0wBKv0vr_y6aW39ldaXput-dNTa0gAemqr5LRELYRchhUep1I0YKV7ddMffDpkF4Q7NcU3CdQddCXMi5acLXEZ8qjk7yy5mn-NUD98dRmAepuw7jNH1q1ebguW7HQbNupdGZg30m1Y-0IxuAOD4QS7RTAa2OKc3RGVxdyzcrPp7M3ggmDPjNDvjwzZYoLjMSPKzRIEWYqxr_8admHUu7y_6Ad-D4XAuEKvCDLMnA0bxNhgHqa8o6WNwkxnxpmizrXRIXJNIcrVDrmQLuHOLGJbyjTnKKJ4DxrT2dTuA0PupLVMJJl9ipGOuHEuAYW2PMcEmxDXelPGfwrtczFWNZLsWVXaVqRtFbojlk0IPqXmFcHGH_e36yFR3yaKcjHgD8mjegSVN9SF4oJ3hKtJ2_zg3w8-hFU6q2CQR9AoXl7tsUtVCn0Cy2fv0YmfkB_oGumC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH3-L6zMFr3TZt0l1vIsr6WgRd8BYmaSor67q4FW_-djNt6gtBEHpqM6WZZB5Jv_kCsK-lyDs6zoLQChMk2uVwyE0S2NgIa_Iw5YIKnK96sttPzu_E3RQc17UwBKv0vr_y6aW39ndaXput8WDQuiEAPZVVctqiFkJOw0wi4pRwfQdvnzgPF4LbNcE3Na_r50qQF204W2Iy5FHJ3lkyNf8an3546jL8nC7Bgs8b2VH1acswZUcrsFifycC8ia7A_BeCwVXo3TziURH0e7Y4ZNdEZDH2nNxs9PRqcEKgZ0bY93uGbPKIwyEjws0SAlmKsa9_Gtagf3pye9wN_AkKgXHLvCLIMHMWbBBjg3nY4W0tbRRmOjPOEHWujQ6RawpQbuWQC-nS7cwiplJ2co4iitehMXoa2Q1gyJ20lokko-9gpCNunENAoS3PMcEmxLXelPFdoVMuhqrGkT2oStuKtK1Cd8WyCcGH1Lii1_ijfVoPifo2TZSLAH9IbtcjqLyZThQXvC3cijTlm_9-8R7Mdm-vLtXlWe9iC-boSQWI3IZG8fxid1zSUujdclK-A-Fe6k0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SmaAt-UNet%3A+Precipitation+nowcasting+using+a+small+attention-UNet+architecture&rft.jtitle=Pattern+recognition+letters&rft.au=Trebing%2C+Kevin&rft.au=Sta%C7%B9czyk%2C+Tomasz&rft.au=Mehrkanoon%2C+Siamak&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=145&rft.spage=178&rft.epage=186&rft_id=info:doi/10.1016%2Fj.patrec.2021.01.036&rft.externalDocID=S0167865521000556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon