A Sequential Algorithm for Signal Segmentation

The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neit...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 20; no. 1; p. 55
Main Authors Hubert, Paulo, Padovese, Linilson, Stern, Julio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2018
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e20010055

Cover

Abstract The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods.
AbstractList The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods.
The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods.The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods.
Author Hubert, Paulo
Padovese, Linilson
Stern, Julio
AuthorAffiliation 1 Instituto de Matemática e Estatística, University of São Paulo (IME-USP), São Paulo 05508-090, Brazil
2 Mechanical Engineering Department, Escola Politécnica—University of São Paulo (EP-USP), São Paulo 05508-010, Brazil
AuthorAffiliation_xml – name: 2 Mechanical Engineering Department, Escola Politécnica—University of São Paulo (EP-USP), São Paulo 05508-010, Brazil
– name: 1 Instituto de Matemática e Estatística, University of São Paulo (IME-USP), São Paulo 05508-090, Brazil
Author_xml – sequence: 1
  givenname: Paulo
  surname: Hubert
  fullname: Hubert, Paulo
– sequence: 2
  givenname: Linilson
  surname: Padovese
  fullname: Padovese, Linilson
– sequence: 3
  givenname: Julio
  orcidid: 0000-0003-2720-3871
  surname: Stern
  fullname: Stern, Julio
BookMark eNp9kUtr3DAUhUVJyXvRfzDQTVOYRG9bm8IQ2iQQ6GKatbiWrx0NsjWV7YT8-yh1CEkIXUmce_RxdO4B2eljj4R8YfRUCEPPkFPKKFXqE9ln1JilFJTuvLrvkYNh2FDKBWd6l-wJwbViku-T09VijX8n7EcPYbEKbUx-vO0WTUyLtW_7LK6x7fIcRh_7I_K5gTDg8fN5SG5-_fxzfrm8_n1xdb66Xjop9bh0WjLFGa-kqaQEMFVWaq1MlSM1WBrOoQSNTiMvsWxMIRUqlEBdUdSMikNyNXPrCBu7Tb6D9GAjePtPiKm1kEbvAlonKsCCSw6qkk5kuGlKZ2qkgkvDRWZ9n1lTv4WHewjhBciofSrQvhSYzT9m83aqOqxd_niC8CbB20nvb20b72yhGOeKZcC3Z0CKuddhtJ0fHIYAPcZpsFxqXehSliZbv76zbuKUcuXZlXdVlEyopypOZpdLcRgSNv9Nf_bO6_y8uJzVhw9ePAKeqK3d
CitedBy_id crossref_primary_10_46300_9106_2021_15_144
crossref_primary_10_1007_s10439_019_02380_4
crossref_primary_10_1007_s40863_020_00171_7
crossref_primary_10_1016_j_eswa_2022_117758
crossref_primary_10_1121_1_5126522
crossref_primary_10_1007_s00170_021_07703_1
crossref_primary_10_1109_TASLP_2022_3171969
Cites_doi 10.1109/PROC.1982.12425
10.1007/978-1-4684-9399-3
10.1137/130932831
10.1016/S0167-7152(02)00314-0
10.1016/j.ymssp.2016.09.035
10.1590/S1415-47572009000300028
10.1109/OCEANS.2012.6404775
10.3390/e1040099
10.1007/978-94-009-3961-5
10.1016/j.spl.2013.10.018
10.1063/1.3275617
10.2478/amcs-2014-0019
10.1080/01621459.1992.10475256
10.1615/Int.J.UncertaintyQuantification.2012003641
10.1007/978-3-319-91143-4_19
10.1214/11-AOS943
10.1109/TSSC.1968.300117
10.1109/POWERI.2006.1632488
10.1007/978-1-4612-0717-7
10.1080/01621459.2016.1240684
ContentType Journal Article
Copyright Copyright MDPI AG 2018
2018 by the authors. 2018
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e20010055
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_c3bae7242a5b4c3e899f8c9de0324923
10.3390/e20010055
PMC7512251
10_3390_e20010055
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c446t-c6415212b49b44aa9bc64d659b109fe8922a8a6ec6e28e8f9745e5e4a0c77d103
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Fri Oct 03 12:51:08 EDT 2025
Sun Oct 26 04:05:03 EDT 2025
Tue Sep 30 15:58:36 EDT 2025
Thu Oct 02 09:58:59 EDT 2025
Fri Jul 25 11:59:35 EDT 2025
Thu Oct 16 04:40:04 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c6415212b49b44aa9bc64d659b109fe8922a8a6ec6e28e8f9745e5e4a0c77d103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2720-3871
0000-0001-7036-1504
0000-0001-6228-8941
OpenAccessLink https://www.proquest.com/docview/2002781350?pq-origsite=%requestingapplication%&accountid=15518
PMID 33265142
PQID 2002781350
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_c3bae7242a5b4c3e899f8c9de0324923
unpaywall_primary_10_3390_e20010055
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512251
proquest_miscellaneous_2466768489
proquest_journals_2002781350
crossref_primary_10_3390_e20010055
crossref_citationtrail_10_3390_e20010055
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Makowsky (ref_9) 2014; 24
Kuntamalla (ref_12) 2014; 97
Lauretto (ref_23) 2009; 32
Bretthorst (ref_5) 1990; 88
Pereira (ref_19) 1993; 7
Jaynes (ref_15) 1968; 4
Chiachio (ref_29) 2017; 88
Jeffreys (ref_16) 1946; Volume 186
ref_10
Good (ref_17) 1992; 87
Perez (ref_18) 2014; 85
Chakrabarty (ref_21) 2017; 112
Bretthorst (ref_7) 1990; 88
Chiachio (ref_26) 2014; 36
Schwartzman (ref_11) 2011; 39
Thedorou (ref_13) 2014; 11
Jaynes (ref_14) 1982; 70
ref_25
ref_1
ref_3
ref_2
Bretthorst (ref_6) 1990; 88
Beck (ref_28) 2014; 3
Stern (ref_24) 2002; 60
ref_27
ref_8
Pereira (ref_20) 1999; 1
ref_4
Hubert (ref_22) 2009; 1193
References_xml – volume: 70
  start-page: 939
  year: 1982
  ident: ref_14
  article-title: On the Rationale of Maximum-Entropy Methods
  publication-title: IEEE Proc.
  doi: 10.1109/PROC.1982.12425
– volume: 88
  start-page: 552
  year: 1990
  ident: ref_6
  article-title: Bayesian Analysis. II. Signal Detection and Model Selection
  publication-title: J. Magn. Reson.
– volume: 88
  start-page: 533
  year: 1990
  ident: ref_5
  article-title: Bayesian Analysis. I. Parameter Estimation Using Quadrature NMR Models
  publication-title: J. Magn. Reson.
– ident: ref_2
  doi: 10.1007/978-1-4684-9399-3
– volume: 36
  start-page: A1339
  year: 2014
  ident: ref_26
  article-title: Approximate Bayesian Computation by Subset Simulation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130932831
– volume: 60
  start-page: 313
  year: 2002
  ident: ref_24
  article-title: Testing the Independence of Poisson Variates Under the Holgate Bivariate Distribution: The Power of a New Evidence Test
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/S0167-7152(02)00314-0
– volume: 88
  start-page: 462
  year: 2017
  ident: ref_29
  article-title: A Multilevel Bayesian Method for Ultrasound-Based Damage Identification in Composites Laminates
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.09.035
– volume: 32
  start-page: 619
  year: 2009
  ident: ref_23
  article-title: A Straightforward Multiallelic Significance Test for the Hardy-Weinberg Equilibrium Law
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/S1415-47572009000300028
– ident: ref_1
  doi: 10.1109/OCEANS.2012.6404775
– volume: 1
  start-page: 99
  year: 1999
  ident: ref_20
  article-title: Evidence and credibility: Full Bayesian significance test for precise hypotheses
  publication-title: Entropy
  doi: 10.3390/e1040099
– volume: 7
  start-page: 159
  year: 1993
  ident: ref_19
  article-title: On the Concept of P-value
  publication-title: Revis. Bras. Probab. Estat.
– volume: 97
  start-page: 19
  year: 2014
  ident: ref_12
  article-title: An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals
  publication-title: Int. J. Comput. Appl.
– ident: ref_25
– ident: ref_3
  doi: 10.1007/978-94-009-3961-5
– volume: 85
  start-page: 20
  year: 2014
  ident: ref_18
  article-title: Changing Statistical Significance with the Amount of Information: The Adaptative α Significance Level
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2013.10.018
– volume: 1193
  start-page: 210
  year: 2009
  ident: ref_22
  article-title: FBST for Generalized Poisson Distributions
  publication-title: AIP Conf. Procee.
  doi: 10.1063/1.3275617
– ident: ref_27
– volume: 88
  start-page: 571
  year: 1990
  ident: ref_7
  article-title: Bayesian Analysis. III. Applications to NMR Signal Detection, Model Selection and Parameter Estimation
  publication-title: J. Magn. Reson.
– volume: 24
  start-page: 259
  year: 2014
  ident: ref_9
  article-title: Automatic Speech Signal Segmentation Based on the Innovation Adaptive Filter
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/amcs-2014-0019
– volume: 87
  start-page: 597
  year: 1992
  ident: ref_17
  article-title: The Bayes/Non-bayes compromise: A Brief Review
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1992.10475256
– volume: 3
  start-page: 271
  year: 2014
  ident: ref_28
  article-title: Prior and Posterior Robust Stochastic Predictions for Dynamical Systems Using Probability Logic
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.2012003641
– ident: ref_8
  doi: 10.1007/978-3-319-91143-4_19
– volume: 39
  start-page: 3290
  year: 2011
  ident: ref_11
  article-title: Multiple Testing of Local Maxima for Detection of Peaks in 1D
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS943
– volume: 11
  start-page: 1
  year: 2014
  ident: ref_13
  article-title: An Overview of Automatic Audio Segmentation
  publication-title: Int. J. Inf. Technol. Comput. Sci.
– volume: 4
  start-page: 227
  year: 1968
  ident: ref_15
  article-title: Prior Probabilities
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300117
– ident: ref_10
  doi: 10.1109/POWERI.2006.1632488
– ident: ref_4
  doi: 10.1007/978-1-4612-0717-7
– volume: Volume 186
  start-page: 453
  year: 1946
  ident: ref_16
  article-title: An Invariant Form for the Prior Probability in Estimation Problems
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 112
  start-page: 561
  year: 2017
  ident: ref_21
  article-title: A New Bayesian Test to Test for the Intractability-Countering Hypothesis
  publication-title: JASA
  doi: 10.1080/01621459.2016.1240684
SSID ssj0023216
Score 2.1886716
Snippet The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 55
SubjectTerms Acoustic noise
Algorithms
audio segmentation
Bayesian analysis
bayesian methods
Economic models
hypothesis testing
signal detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yF72IomL9on4cvFTTNGmSo4oigl5WwVtJ0unuwm5XdBfx3ztpu8WK4sVrM4VkJmHeS6dvCDlhLkdQLSGKWe4JilWR4iKOrOMSN5iQ1vr7jvuH9PaJ3z2L5y-tvnxNWC0PXDvu3CXWgMREYoTlLgHkB4VyOgeaeLG7SueTKr0gUw3VSlic1jpCCZL6c_CVQ15uqpN9KpH-DrL8Xhe5PC9fzMe7GY-_JJ2bNbLaoMXwop7lOlmCcoOcXYT9qgAaDyeOjQdTJPjDSYjwM-yPBv6FPgwmzU9F5SZ5url-vLqNmrYHkUNuNotcWiVVZrm2nBujLT7JU6FtTHWBDmDMKJOCS4EpUAUyAgECuKFOyjymyRbpldMStknoGLi4yBHWARrRwjArIKGaWq8bp11AThfuyFyjCe5bU4wz5Abec1nruYActaYvtRDGT0aX3qetgdeurh5gRLMmotlfEQ3I3iIiWXOg3ny3TCZVnAgakMN2GI-C_75hSpjO0Yb7gl3FlQ6I7ESyM6HuSDkaVqLaEpEPYr2AHLcx_32dO_-xzl2yguhL1fc5e6Q3e53DPiKcmT2oNvMn5qH37A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ALDwEisKDwOHBJ6_gROydUEKsVEiukUmk5RbYz6VbbTas2ZbX8esaJNyIrkBBXeyzZmRnPN_bkMyFvmSsRVCtIUlb6BMXqRAuZJtYJhQYmlbX-vOPLSXY8F59P5WmozdmFskpMxZftJu1vbRLBKcUUfZJOpJxsyur9j3CQ5EOxUhwN6DY5yCRC8RE5mJ98nX5vbzjD0I5NiGNqPwFfP-RJpwYxqKXqH-DLm9WRd_b1xlxdmtXqt9BzdL97X3XXMhb6ipPz8b6xY_fzBp_jf6_qAbkXQGk87azoIbkF9SMynsazts4a9wDsWy3W22VzdhEjyo1ny4UfMIPFRfh3qX5M5kefvn08TsLrConDFLBJXNbGbmZFboUwJrfYUuJ3tDjBCnTOmNEmA5cB06ArTDwkSBCGOqXKlPInZFSva3hKYsfApVWJ6BFQiFaGWQmc5tR6errcReTd9fcuXKAe9y9grApMQbxqil41EXndi246vo0_CX3wSusFPEV227DeLorgcYXj1oBCBGKkFY7jgvJKu7wEyj1LIo_I4bXKi-C3O_8oJ1M65ZJG5FXfjR7nr1FMDes9yghfF6yFziOiBqYymNCwp16etdzdCgEWQsqIvOmN6u_rfPZPUs_JXURxujsXOiSjZruHF4iUGvsy-MMvNnUMIQ
  priority: 102
  providerName: Unpaywall
Title A Sequential Algorithm for Signal Segmentation
URI https://www.proquest.com/docview/2002781350
https://www.proquest.com/docview/2466768489
https://pubmed.ncbi.nlm.nih.gov/PMC7512251
https://www.mdpi.com/1099-4300/20/1/55/pdf?version=1515773638
https://doaj.org/article/c3bae7242a5b4c3e899f8c9de0324923
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry (Selected full-text)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QO8IBAgMkYVPh54CUtsJ7EfEOrQugmJaqJUKk-R7Vy6SV3aba0Q_z1nNwkEAS95sC-Sv87-3fn8O4A3zJYEqnOMElY6A8XISIo0iYwVOS2wNDfG-Ts-T7Lzmfg0T-d7MGnfwriwynZP9Bt1ubLOR37M_B1ZwtP4w_omclmj3O1qm0JDN6kVyveeYmwfDphjxhrAwcnp5OJLZ4JxlmQ7fiFOxv4xuogiR0PVO5U8eX8Pcf4ZL3lvW6_1j-96ufztMBo_hAcNigxHu2l_BHtYP4Z3o3DqA6NJaaluuaDmby6vQ4Kl4fRq4X6Y4uK6eWxUP4HZ-PTrx_OoSYcQWbLZNpHN_GHLjFBGCK2VoZIyS5VJYlWhVIxpqTO0GTKJsiJLIcUUhY5tnpdJzJ_CoF7V-AxCy9AmVUlwD0korjQzKfJYxcbxySkbwNt2OArbcIW7lBXLgmwGN3JFN3IBvOpE1zuCjL8Jnbgx7QQcp7UvWN0uikZFCsuNxpwgg06NsJw6pCppVYkxd7SGPICjdkaKRtHuil_LIoCXXTWpiLv30DWutiQjXCCvFFIFkPdmstegfk19denJtnNCRIQBA3jdzfm_-3n4_yY-h_uEt-TOg3MEg83tFl8QptmYIezL8dmwWa5D7xmg79k8obLZ5GL07SdsNPop
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONBLRdVWDY82fUm9pCS2k9gHhKAFLQVWVRckbsF2JgvSkt3CrhB_rr-NcTZJm6rtjas9iewZP76xx98AvGc2J1CdYhCx3DkoRgZSxFFgrEhpgMWpMe6847if9E7F17P4bAF-Nm9hXFhlsyZWC3U-tu6MfJNVd2QRj8PtyY_AZY1yt6tNCg1dp1bItyqKsfphxyHe3ZILd7N18IXs_YGx_b2Tz72gzjIQWHKFpoFNqj2MGaGMEForQyV5EisThapAqRjTUidoE2QSZUEAPMYYhQ5tmuZRyOm_j2BJcKHI-Vva3et_-966fJxFyZzPiHMVbqKLYHK0V51dsEoW0EG4f8ZnLs_Kib671aPRb5vf_go8qVGrvzMfZk9hActn8GnHH1SB2LRIUN1oSOqaXlz5BIP9weXQfTDA4VX9uKl8DqcPopgXsFiOS3wJvmVooyIneIkkFBaamRh5qELj-OuU9eBjo47M1tzkLkXGKCMfxWkuazXnwdtWdDIn5Pib0K7TaSvgOLSrgvH1MKunZGa50ZgSRNGxEZZTh1Qhrcox5I5GkXuw3lgkqyf2TfZrGHrwpq2mKenuWXSJ4xnJCBc4LIVUHqQdS3Ya1K0pLy8qcu-UEBhhTg_etTb_dz9X_9_E17DcOzk-yo4O-odr8JiwnpyfHq3D4vR6hhuEp6bmVT1ofTh_6HlyD4JiMjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXBAJEoEB4SVzCJrYT2weECmVpKVRIS6XeUtuZbCtts0u7q6p_jV_HOC8IAm692pMoGc_Y39jjbwBeMFcQqJYYJazwAYpVkRJpElknJBlYKq31-x1f9rLtffHpID1Ygx_dXRifVtnNifVEXcyd3yMfsfqMLOFpPCrbtIivW-O3i--RryDlT1q7chqNiezixTmFb2dvdrZorF8yNv7w7f121FYYiByFQcvIZfX6xazQVghjtKWWIku1TWJdotKMGWUydBkyhaok8J1iisLETsoiiTm99wpclZ7F3d9SH3_sgz3OkqxhMuJcxyP0uUue8Gqw_tVlAgbY9s_MzOuramEuzs1s9tuyN74FN1u8Gm42BnYb1rC6A683w0mdgk3TA_XNpqSc5dFJSAA4nBxP_QMTnJ6015qqu7B_KWq5B-vVvML7EDqGLikLApZIQnFpmE2Rxzq2nrlOuwBederIXctK7otjzHKKTrzm8l5zATzrRRcNFcffhN55nfYCnj27bpifTvPWGXPHrUFJ4MSkVjhOP6RL5XSBMfcEijyAjW5E8talz_JfBhjA076bnNGfsJgK5yuSET5lWAmlA5CDkRx80LCnOj6qab0lYS9CmwE878f83__54P-f-ASukXfkn3f2dh_CDQJ5qtk22oD15ekKHxGQWtrHtcWGcHjZLvITJP4v0g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ALDwEisKDwOHBJ6_gROydUEKsVEiukUmk5RbYz6VbbTas2ZbX8esaJNyIrkBBXeyzZmRnPN_bkMyFvmSsRVCtIUlb6BMXqRAuZJtYJhQYmlbX-vOPLSXY8F59P5WmozdmFskpMxZftJu1vbRLBKcUUfZJOpJxsyur9j3CQ5EOxUhwN6DY5yCRC8RE5mJ98nX5vbzjD0I5NiGNqPwFfP-RJpwYxqKXqH-DLm9WRd_b1xlxdmtXqt9BzdL97X3XXMhb6ipPz8b6xY_fzBp_jf6_qAbkXQGk87azoIbkF9SMynsazts4a9wDsWy3W22VzdhEjyo1ny4UfMIPFRfh3qX5M5kefvn08TsLrConDFLBJXNbGbmZFboUwJrfYUuJ3tDjBCnTOmNEmA5cB06ArTDwkSBCGOqXKlPInZFSva3hKYsfApVWJ6BFQiFaGWQmc5tR6errcReTd9fcuXKAe9y9grApMQbxqil41EXndi246vo0_CX3wSusFPEV227DeLorgcYXj1oBCBGKkFY7jgvJKu7wEyj1LIo_I4bXKi-C3O_8oJ1M65ZJG5FXfjR7nr1FMDes9yghfF6yFziOiBqYymNCwp16etdzdCgEWQsqIvOmN6u_rfPZPUs_JXURxujsXOiSjZruHF4iUGvsy-MMvNnUMIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sequential+Algorithm+for+Signal+Segmentation&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Hubert%2C+Paulo&rft.au=Padovese%2C+Linilson&rft.au=Stern%2C+Julio+Michael&rft.date=2018-01-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=20&rft.issue=1&rft.spage=55&rft_id=info:doi/10.3390%2Fe20010055&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon