A Sequential Algorithm for Signal Segmentation
The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neit...
Saved in:
| Published in | Entropy (Basel, Switzerland) Vol. 20; no. 1; p. 55 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2018
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1099-4300 1099-4300 |
| DOI | 10.3390/e20010055 |
Cover
| Abstract | The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods. |
|---|---|
| AbstractList | The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods. The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods.The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods. |
| Author | Hubert, Paulo Padovese, Linilson Stern, Julio |
| AuthorAffiliation | 1 Instituto de Matemática e Estatística, University of São Paulo (IME-USP), São Paulo 05508-090, Brazil 2 Mechanical Engineering Department, Escola Politécnica—University of São Paulo (EP-USP), São Paulo 05508-010, Brazil |
| AuthorAffiliation_xml | – name: 2 Mechanical Engineering Department, Escola Politécnica—University of São Paulo (EP-USP), São Paulo 05508-010, Brazil – name: 1 Instituto de Matemática e Estatística, University of São Paulo (IME-USP), São Paulo 05508-090, Brazil |
| Author_xml | – sequence: 1 givenname: Paulo surname: Hubert fullname: Hubert, Paulo – sequence: 2 givenname: Linilson surname: Padovese fullname: Padovese, Linilson – sequence: 3 givenname: Julio orcidid: 0000-0003-2720-3871 surname: Stern fullname: Stern, Julio |
| BookMark | eNp9kUtr3DAUhUVJyXvRfzDQTVOYRG9bm8IQ2iQQ6GKatbiWrx0NsjWV7YT8-yh1CEkIXUmce_RxdO4B2eljj4R8YfRUCEPPkFPKKFXqE9ln1JilFJTuvLrvkYNh2FDKBWd6l-wJwbViku-T09VijX8n7EcPYbEKbUx-vO0WTUyLtW_7LK6x7fIcRh_7I_K5gTDg8fN5SG5-_fxzfrm8_n1xdb66Xjop9bh0WjLFGa-kqaQEMFVWaq1MlSM1WBrOoQSNTiMvsWxMIRUqlEBdUdSMikNyNXPrCBu7Tb6D9GAjePtPiKm1kEbvAlonKsCCSw6qkk5kuGlKZ2qkgkvDRWZ9n1lTv4WHewjhBciofSrQvhSYzT9m83aqOqxd_niC8CbB20nvb20b72yhGOeKZcC3Z0CKuddhtJ0fHIYAPcZpsFxqXehSliZbv76zbuKUcuXZlXdVlEyopypOZpdLcRgSNv9Nf_bO6_y8uJzVhw9ePAKeqK3d |
| CitedBy_id | crossref_primary_10_46300_9106_2021_15_144 crossref_primary_10_1007_s10439_019_02380_4 crossref_primary_10_1007_s40863_020_00171_7 crossref_primary_10_1016_j_eswa_2022_117758 crossref_primary_10_1121_1_5126522 crossref_primary_10_1007_s00170_021_07703_1 crossref_primary_10_1109_TASLP_2022_3171969 |
| Cites_doi | 10.1109/PROC.1982.12425 10.1007/978-1-4684-9399-3 10.1137/130932831 10.1016/S0167-7152(02)00314-0 10.1016/j.ymssp.2016.09.035 10.1590/S1415-47572009000300028 10.1109/OCEANS.2012.6404775 10.3390/e1040099 10.1007/978-94-009-3961-5 10.1016/j.spl.2013.10.018 10.1063/1.3275617 10.2478/amcs-2014-0019 10.1080/01621459.1992.10475256 10.1615/Int.J.UncertaintyQuantification.2012003641 10.1007/978-3-319-91143-4_19 10.1214/11-AOS943 10.1109/TSSC.1968.300117 10.1109/POWERI.2006.1632488 10.1007/978-1-4612-0717-7 10.1080/01621459.2016.1240684 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2018 2018 by the authors. 2018 |
| Copyright_xml | – notice: Copyright MDPI AG 2018 – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/e20010055 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_c3bae7242a5b4c3e899f8c9de0324923 10.3390/e20010055 PMC7512251 10_3390_e20010055 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c446t-c6415212b49b44aa9bc64d659b109fe8922a8a6ec6e28e8f9745e5e4a0c77d103 |
| IEDL.DBID | BENPR |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:51:08 EDT 2025 Sun Oct 26 04:05:03 EDT 2025 Tue Sep 30 15:58:36 EDT 2025 Thu Oct 02 09:58:59 EDT 2025 Fri Jul 25 11:59:35 EDT 2025 Thu Oct 16 04:40:04 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-c6415212b49b44aa9bc64d659b109fe8922a8a6ec6e28e8f9745e5e4a0c77d103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2720-3871 0000-0001-7036-1504 0000-0001-6228-8941 |
| OpenAccessLink | https://www.proquest.com/docview/2002781350?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 33265142 |
| PQID | 2002781350 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c3bae7242a5b4c3e899f8c9de0324923 unpaywall_primary_10_3390_e20010055 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512251 proquest_miscellaneous_2466768489 proquest_journals_2002781350 crossref_primary_10_3390_e20010055 crossref_citationtrail_10_3390_e20010055 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationYear | 2018 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Makowsky (ref_9) 2014; 24 Kuntamalla (ref_12) 2014; 97 Lauretto (ref_23) 2009; 32 Bretthorst (ref_5) 1990; 88 Pereira (ref_19) 1993; 7 Jaynes (ref_15) 1968; 4 Chiachio (ref_29) 2017; 88 Jeffreys (ref_16) 1946; Volume 186 ref_10 Good (ref_17) 1992; 87 Perez (ref_18) 2014; 85 Chakrabarty (ref_21) 2017; 112 Bretthorst (ref_7) 1990; 88 Chiachio (ref_26) 2014; 36 Schwartzman (ref_11) 2011; 39 Thedorou (ref_13) 2014; 11 Jaynes (ref_14) 1982; 70 ref_25 ref_1 ref_3 ref_2 Bretthorst (ref_6) 1990; 88 Beck (ref_28) 2014; 3 Stern (ref_24) 2002; 60 ref_27 ref_8 Pereira (ref_20) 1999; 1 ref_4 Hubert (ref_22) 2009; 1193 |
| References_xml | – volume: 70 start-page: 939 year: 1982 ident: ref_14 article-title: On the Rationale of Maximum-Entropy Methods publication-title: IEEE Proc. doi: 10.1109/PROC.1982.12425 – volume: 88 start-page: 552 year: 1990 ident: ref_6 article-title: Bayesian Analysis. II. Signal Detection and Model Selection publication-title: J. Magn. Reson. – volume: 88 start-page: 533 year: 1990 ident: ref_5 article-title: Bayesian Analysis. I. Parameter Estimation Using Quadrature NMR Models publication-title: J. Magn. Reson. – ident: ref_2 doi: 10.1007/978-1-4684-9399-3 – volume: 36 start-page: A1339 year: 2014 ident: ref_26 article-title: Approximate Bayesian Computation by Subset Simulation publication-title: SIAM J. Sci. Comput. doi: 10.1137/130932831 – volume: 60 start-page: 313 year: 2002 ident: ref_24 article-title: Testing the Independence of Poisson Variates Under the Holgate Bivariate Distribution: The Power of a New Evidence Test publication-title: Stat. Probab. Lett. doi: 10.1016/S0167-7152(02)00314-0 – volume: 88 start-page: 462 year: 2017 ident: ref_29 article-title: A Multilevel Bayesian Method for Ultrasound-Based Damage Identification in Composites Laminates publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.09.035 – volume: 32 start-page: 619 year: 2009 ident: ref_23 article-title: A Straightforward Multiallelic Significance Test for the Hardy-Weinberg Equilibrium Law publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-47572009000300028 – ident: ref_1 doi: 10.1109/OCEANS.2012.6404775 – volume: 1 start-page: 99 year: 1999 ident: ref_20 article-title: Evidence and credibility: Full Bayesian significance test for precise hypotheses publication-title: Entropy doi: 10.3390/e1040099 – volume: 7 start-page: 159 year: 1993 ident: ref_19 article-title: On the Concept of P-value publication-title: Revis. Bras. Probab. Estat. – volume: 97 start-page: 19 year: 2014 ident: ref_12 article-title: An Efficient and Automatic Systolic Peak Detection Algorithm for Photoplethysmographic Signals publication-title: Int. J. Comput. Appl. – ident: ref_25 – ident: ref_3 doi: 10.1007/978-94-009-3961-5 – volume: 85 start-page: 20 year: 2014 ident: ref_18 article-title: Changing Statistical Significance with the Amount of Information: The Adaptative α Significance Level publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2013.10.018 – volume: 1193 start-page: 210 year: 2009 ident: ref_22 article-title: FBST for Generalized Poisson Distributions publication-title: AIP Conf. Procee. doi: 10.1063/1.3275617 – ident: ref_27 – volume: 88 start-page: 571 year: 1990 ident: ref_7 article-title: Bayesian Analysis. III. Applications to NMR Signal Detection, Model Selection and Parameter Estimation publication-title: J. Magn. Reson. – volume: 24 start-page: 259 year: 2014 ident: ref_9 article-title: Automatic Speech Signal Segmentation Based on the Innovation Adaptive Filter publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.2478/amcs-2014-0019 – volume: 87 start-page: 597 year: 1992 ident: ref_17 article-title: The Bayes/Non-bayes compromise: A Brief Review publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1992.10475256 – volume: 3 start-page: 271 year: 2014 ident: ref_28 article-title: Prior and Posterior Robust Stochastic Predictions for Dynamical Systems Using Probability Logic publication-title: Int. J. Uncertain. Quantif. doi: 10.1615/Int.J.UncertaintyQuantification.2012003641 – ident: ref_8 doi: 10.1007/978-3-319-91143-4_19 – volume: 39 start-page: 3290 year: 2011 ident: ref_11 article-title: Multiple Testing of Local Maxima for Detection of Peaks in 1D publication-title: Ann. Stat. doi: 10.1214/11-AOS943 – volume: 11 start-page: 1 year: 2014 ident: ref_13 article-title: An Overview of Automatic Audio Segmentation publication-title: Int. J. Inf. Technol. Comput. Sci. – volume: 4 start-page: 227 year: 1968 ident: ref_15 article-title: Prior Probabilities publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300117 – ident: ref_10 doi: 10.1109/POWERI.2006.1632488 – ident: ref_4 doi: 10.1007/978-1-4612-0717-7 – volume: Volume 186 start-page: 453 year: 1946 ident: ref_16 article-title: An Invariant Form for the Prior Probability in Estimation Problems publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 112 start-page: 561 year: 2017 ident: ref_21 article-title: A New Bayesian Test to Test for the Intractability-Countering Hypothesis publication-title: JASA doi: 10.1080/01621459.2016.1240684 |
| SSID | ssj0023216 |
| Score | 2.1886716 |
| Snippet | The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 55 |
| SubjectTerms | Acoustic noise Algorithms audio segmentation Bayesian analysis bayesian methods Economic models hypothesis testing signal detection |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yF72IomL9on4cvFTTNGmSo4oigl5WwVtJ0unuwm5XdBfx3ztpu8WK4sVrM4VkJmHeS6dvCDlhLkdQLSGKWe4JilWR4iKOrOMSN5iQ1vr7jvuH9PaJ3z2L5y-tvnxNWC0PXDvu3CXWgMREYoTlLgHkB4VyOgeaeLG7SueTKr0gUw3VSlic1jpCCZL6c_CVQ15uqpN9KpH-DrL8Xhe5PC9fzMe7GY-_JJ2bNbLaoMXwop7lOlmCcoOcXYT9qgAaDyeOjQdTJPjDSYjwM-yPBv6FPgwmzU9F5SZ5url-vLqNmrYHkUNuNotcWiVVZrm2nBujLT7JU6FtTHWBDmDMKJOCS4EpUAUyAgECuKFOyjymyRbpldMStknoGLi4yBHWARrRwjArIKGaWq8bp11AThfuyFyjCe5bU4wz5Abec1nruYActaYvtRDGT0aX3qetgdeurh5gRLMmotlfEQ3I3iIiWXOg3ny3TCZVnAgakMN2GI-C_75hSpjO0Yb7gl3FlQ6I7ESyM6HuSDkaVqLaEpEPYr2AHLcx_32dO_-xzl2yguhL1fc5e6Q3e53DPiKcmT2oNvMn5qH37A priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ALDwEisKDwOHBJ6_gROydUEKsVEiukUmk5RbYz6VbbTas2ZbX8esaJNyIrkBBXeyzZmRnPN_bkMyFvmSsRVCtIUlb6BMXqRAuZJtYJhQYmlbX-vOPLSXY8F59P5WmozdmFskpMxZftJu1vbRLBKcUUfZJOpJxsyur9j3CQ5EOxUhwN6DY5yCRC8RE5mJ98nX5vbzjD0I5NiGNqPwFfP-RJpwYxqKXqH-DLm9WRd_b1xlxdmtXqt9BzdL97X3XXMhb6ipPz8b6xY_fzBp_jf6_qAbkXQGk87azoIbkF9SMynsazts4a9wDsWy3W22VzdhEjyo1ny4UfMIPFRfh3qX5M5kefvn08TsLrConDFLBJXNbGbmZFboUwJrfYUuJ3tDjBCnTOmNEmA5cB06ArTDwkSBCGOqXKlPInZFSva3hKYsfApVWJ6BFQiFaGWQmc5tR6errcReTd9fcuXKAe9y9grApMQbxqil41EXndi246vo0_CX3wSusFPEV227DeLorgcYXj1oBCBGKkFY7jgvJKu7wEyj1LIo_I4bXKi-C3O_8oJ1M65ZJG5FXfjR7nr1FMDes9yghfF6yFziOiBqYymNCwp16etdzdCgEWQsqIvOmN6u_rfPZPUs_JXURxujsXOiSjZruHF4iUGvsy-MMvNnUMIQ priority: 102 providerName: Unpaywall |
| Title | A Sequential Algorithm for Signal Segmentation |
| URI | https://www.proquest.com/docview/2002781350 https://www.proquest.com/docview/2466768489 https://pubmed.ncbi.nlm.nih.gov/PMC7512251 https://www.mdpi.com/1099-4300/20/1/55/pdf?version=1515773638 https://doaj.org/article/c3bae7242a5b4c3e899f8c9de0324923 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Selected full-text) customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QO8IBAgMkYVPh54CUtsJ7EfEOrQugmJaqJUKk-R7Vy6SV3aba0Q_z1nNwkEAS95sC-Sv87-3fn8O4A3zJYEqnOMElY6A8XISIo0iYwVOS2wNDfG-Ts-T7Lzmfg0T-d7MGnfwriwynZP9Bt1ubLOR37M_B1ZwtP4w_omclmj3O1qm0JDN6kVyveeYmwfDphjxhrAwcnp5OJLZ4JxlmQ7fiFOxv4xuogiR0PVO5U8eX8Pcf4ZL3lvW6_1j-96ufztMBo_hAcNigxHu2l_BHtYP4Z3o3DqA6NJaaluuaDmby6vQ4Kl4fRq4X6Y4uK6eWxUP4HZ-PTrx_OoSYcQWbLZNpHN_GHLjFBGCK2VoZIyS5VJYlWhVIxpqTO0GTKJsiJLIcUUhY5tnpdJzJ_CoF7V-AxCy9AmVUlwD0korjQzKfJYxcbxySkbwNt2OArbcIW7lBXLgmwGN3JFN3IBvOpE1zuCjL8Jnbgx7QQcp7UvWN0uikZFCsuNxpwgg06NsJw6pCppVYkxd7SGPICjdkaKRtHuil_LIoCXXTWpiLv30DWutiQjXCCvFFIFkPdmstegfk19denJtnNCRIQBA3jdzfm_-3n4_yY-h_uEt-TOg3MEg83tFl8QptmYIezL8dmwWa5D7xmg79k8obLZ5GL07SdsNPop |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONBLRdVWDY82fUm9pCS2k9gHhKAFLQVWVRckbsF2JgvSkt3CrhB_rr-NcTZJm6rtjas9iewZP76xx98AvGc2J1CdYhCx3DkoRgZSxFFgrEhpgMWpMe6847if9E7F17P4bAF-Nm9hXFhlsyZWC3U-tu6MfJNVd2QRj8PtyY_AZY1yt6tNCg1dp1bItyqKsfphxyHe3ZILd7N18IXs_YGx_b2Tz72gzjIQWHKFpoFNqj2MGaGMEForQyV5EisThapAqRjTUidoE2QSZUEAPMYYhQ5tmuZRyOm_j2BJcKHI-Vva3et_-966fJxFyZzPiHMVbqKLYHK0V51dsEoW0EG4f8ZnLs_Kib671aPRb5vf_go8qVGrvzMfZk9hActn8GnHH1SB2LRIUN1oSOqaXlz5BIP9weXQfTDA4VX9uKl8DqcPopgXsFiOS3wJvmVooyIneIkkFBaamRh5qELj-OuU9eBjo47M1tzkLkXGKCMfxWkuazXnwdtWdDIn5Pib0K7TaSvgOLSrgvH1MKunZGa50ZgSRNGxEZZTh1Qhrcox5I5GkXuw3lgkqyf2TfZrGHrwpq2mKenuWXSJ4xnJCBc4LIVUHqQdS3Ya1K0pLy8qcu-UEBhhTg_etTb_dz9X_9_E17DcOzk-yo4O-odr8JiwnpyfHq3D4vR6hhuEp6bmVT1ofTh_6HlyD4JiMjg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXBAJEoEB4SVzCJrYT2weECmVpKVRIS6XeUtuZbCtts0u7q6p_jV_HOC8IAm692pMoGc_Y39jjbwBeMFcQqJYYJazwAYpVkRJpElknJBlYKq31-x1f9rLtffHpID1Ygx_dXRifVtnNifVEXcyd3yMfsfqMLOFpPCrbtIivW-O3i--RryDlT1q7chqNiezixTmFb2dvdrZorF8yNv7w7f121FYYiByFQcvIZfX6xazQVghjtKWWIku1TWJdotKMGWUydBkyhaok8J1iisLETsoiiTm99wpclZ7F3d9SH3_sgz3OkqxhMuJcxyP0uUue8Gqw_tVlAgbY9s_MzOuramEuzs1s9tuyN74FN1u8Gm42BnYb1rC6A683w0mdgk3TA_XNpqSc5dFJSAA4nBxP_QMTnJ6015qqu7B_KWq5B-vVvML7EDqGLikLApZIQnFpmE2Rxzq2nrlOuwBederIXctK7otjzHKKTrzm8l5zATzrRRcNFcffhN55nfYCnj27bpifTvPWGXPHrUFJ4MSkVjhOP6RL5XSBMfcEijyAjW5E8talz_JfBhjA076bnNGfsJgK5yuSET5lWAmlA5CDkRx80LCnOj6qab0lYS9CmwE878f83__54P-f-ASukXfkn3f2dh_CDQJ5qtk22oD15ekKHxGQWtrHtcWGcHjZLvITJP4v0g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ALDwEisKDwOHBJ6_gROydUEKsVEiukUmk5RbYz6VbbTas2ZbX8esaJNyIrkBBXeyzZmRnPN_bkMyFvmSsRVCtIUlb6BMXqRAuZJtYJhQYmlbX-vOPLSXY8F59P5WmozdmFskpMxZftJu1vbRLBKcUUfZJOpJxsyur9j3CQ5EOxUhwN6DY5yCRC8RE5mJ98nX5vbzjD0I5NiGNqPwFfP-RJpwYxqKXqH-DLm9WRd_b1xlxdmtXqt9BzdL97X3XXMhb6ipPz8b6xY_fzBp_jf6_qAbkXQGk87azoIbkF9SMynsazts4a9wDsWy3W22VzdhEjyo1ny4UfMIPFRfh3qX5M5kefvn08TsLrConDFLBJXNbGbmZFboUwJrfYUuJ3tDjBCnTOmNEmA5cB06ArTDwkSBCGOqXKlPInZFSva3hKYsfApVWJ6BFQiFaGWQmc5tR6errcReTd9fcuXKAe9y9grApMQbxqil41EXndi246vo0_CX3wSusFPEV227DeLorgcYXj1oBCBGKkFY7jgvJKu7wEyj1LIo_I4bXKi-C3O_8oJ1M65ZJG5FXfjR7nr1FMDes9yghfF6yFziOiBqYymNCwp16etdzdCgEWQsqIvOmN6u_rfPZPUs_JXURxujsXOiSjZruHF4iUGvsy-MMvNnUMIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sequential+Algorithm+for+Signal+Segmentation&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Hubert%2C+Paulo&rft.au=Padovese%2C+Linilson&rft.au=Stern%2C+Julio+Michael&rft.date=2018-01-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=20&rft.issue=1&rft.spage=55&rft_id=info:doi/10.3390%2Fe20010055&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |