Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review
In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups o...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 14; p. 3889 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s20143889 |
Cover
Abstract | In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2–Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed. |
---|---|
AbstractList | In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group's work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2-Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group's work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2-Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed. In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H 2 ), alcohols (R-OH), methane (CH 4 ), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur-dioxide (SO 2 ), ammonia (NH 3 ), hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H 2 gas sensing, whereas the GaN/(TiO 2 –Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO 2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed. In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2–Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed. |
Author | Rao, Mulpuri V. Khan, Md Ashfaque Hossain |
AuthorAffiliation | Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA; rmulpuri@gmu.edu |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA; rmulpuri@gmu.edu |
Author_xml | – sequence: 1 givenname: Md Ashfaque Hossain orcidid: 0000-0002-0070-8872 surname: Khan fullname: Khan, Md Ashfaque Hossain – sequence: 2 givenname: Mulpuri V. surname: Rao fullname: Rao, Mulpuri V. |
BookMark | eNptkU1r3DAQhkVJaT7aQ_-BoZfksI2kkfXRQyGEZhsIm9KmZyHL440Wr7SV7IT--3izITShJwnNo2deZg7JXkwRCfnI6GcAQ08Lp0yA1uYNOWCCi5nmnO79c98nh6WsKOUAoN-RfeBSagnigFzPXd-HcV0twpBDi9Xx3C1OqoWLqQx59MOYsVQuttXNLYZczV2pfmEsIS6rHzltMA8By5fqrPqJdwHv35O3nesLfng6j8jvi283599nV9fzy_Ozq5kXQg6zxitseUsFZ-CUqUVNa6YaJyUwpzTQGhgYJzrPOHaOGikkN1xR1UjdUANH5HLnbZNb2U0Oa5f_2uSCfXxIeWndFM33aLU3LdYGBEMlJHADHYDq5DQczT1Tk-vrzrUZmzW2HuOQXf9C-rISw61dpjurBONC1JPg-EmQ058Ry2DXoXjsexcxjcXyqZUAxbWY0E-v0FUac5xG9UhJWnOzFZ7sKJ9TKRm75zCM2u3K7fPKJ_b0FevD4IaQtllD_58fDxC5qe4 |
CitedBy_id | crossref_primary_10_1002_adts_202400194 crossref_primary_10_1007_s11664_023_10216_0 crossref_primary_10_1016_j_inoche_2025_114274 crossref_primary_10_32604_jrm_2023_023698 crossref_primary_10_46670_JSST_2021_30_1_1 crossref_primary_10_1016_j_apsusc_2023_159103 crossref_primary_10_1016_j_jcis_2021_06_126 crossref_primary_10_3390_nano12203611 crossref_primary_10_1016_j_colsurfa_2023_131276 crossref_primary_10_1021_acsami_3c06864 crossref_primary_10_1007_s10854_022_08715_7 crossref_primary_10_1016_j_ceramint_2022_06_066 crossref_primary_10_1063_10_0028760 crossref_primary_10_1088_1742_6596_2131_5_052089 crossref_primary_10_1149_2162_8777_ad0874 crossref_primary_10_1021_acsami_1c04469 crossref_primary_10_1007_s00339_024_07900_1 crossref_primary_10_1016_j_snb_2023_135209 crossref_primary_10_1007_s00894_023_05567_8 crossref_primary_10_1007_s11664_023_10602_8 crossref_primary_10_1103_PhysRevB_108_235313 crossref_primary_10_1016_j_snb_2022_132163 crossref_primary_10_1016_j_snb_2023_133430 crossref_primary_10_1088_1361_6641_abf46d crossref_primary_10_1063_5_0220740 crossref_primary_10_3390_nano11020456 crossref_primary_10_1007_s11664_022_09795_1 crossref_primary_10_1016_j_nxnano_2025_100155 crossref_primary_10_1109_TDMR_2020_3028786 crossref_primary_10_1021_jacs_1c09061 crossref_primary_10_3390_s21020624 crossref_primary_10_1016_j_colsurfa_2023_133120 crossref_primary_10_1039_D1NA00773D crossref_primary_10_1016_j_ijleo_2022_168930 crossref_primary_10_1016_j_mtcomm_2022_104704 crossref_primary_10_1021_acs_cgd_3c00070 crossref_primary_10_1038_s41598_024_82889_4 crossref_primary_10_1016_j_molstruc_2023_137214 crossref_primary_10_1063_5_0108890 crossref_primary_10_1080_00268976_2023_2203781 crossref_primary_10_1088_1361_6501_abd5f0 crossref_primary_10_1007_s10853_024_09724_z crossref_primary_10_3390_chemosensors10100405 crossref_primary_10_3390_s20236781 crossref_primary_10_1007_s11468_025_02790_2 crossref_primary_10_1088_1742_6596_2837_1_012022 crossref_primary_10_1016_j_comptc_2024_114769 crossref_primary_10_1016_j_comptc_2024_114646 crossref_primary_10_1088_1361_648X_ac5310 crossref_primary_10_1016_j_snb_2025_137417 crossref_primary_10_1088_1361_6528_ac2427 crossref_primary_10_1007_s11664_021_09210_1 crossref_primary_10_1007_s13391_022_00400_5 crossref_primary_10_1002_qua_27348 crossref_primary_10_1134_S1990793124010330 crossref_primary_10_1016_j_geoen_2023_212416 crossref_primary_10_1016_j_snb_2023_134629 crossref_primary_10_1016_j_ces_2024_120519 crossref_primary_10_1016_j_comptc_2024_114914 crossref_primary_10_1016_j_matchemphys_2024_129430 crossref_primary_10_1016_j_susc_2021_121988 crossref_primary_10_1016_j_jcis_2024_09_033 crossref_primary_10_1016_j_snb_2022_132583 crossref_primary_10_1063_5_0160486 |
Cites_doi | 10.1016/j.snb.2011.01.034 10.1088/0022-3727/39/21/R01 10.1002/wene.102 10.1088/0957-4484/23/17/175501 10.1016/j.snb.2012.06.022 10.1088/1361-6501/abd5f0 10.1016/j.snb.2011.05.004 10.7567/JJAP.53.114302 10.1016/j.snb.2008.06.055 10.1016/j.snb.2014.06.040 10.1177/0003702816665126 10.3390/s100302088 10.1016/j.snb.2015.07.070 10.3390/s90402895 10.1016/j.snb.2014.02.002 10.1016/j.spmi.2018.02.011 10.1021/cr980102w 10.1088/0268-1242/21/12/002 10.1021/acsomega.9b01609 10.1016/S0921-5107(02)00050-8 10.1016/j.ijhydene.2014.03.120 10.1088/1361-6528/ab6685 10.1016/j.ijhydene.2012.07.072 10.1063/1.4975258 10.1063/1.3548872 10.1149/2.0341810jes 10.1016/j.snb.2007.11.032 10.1021/acsami.9b09769 10.1021/ac9510954 10.1063/1.2195420 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y 10.1109/MCOM.2016.7588225 10.1016/j.dss.2018.02.005 10.1016/j.jallcom.2009.08.124 10.1016/j.snb.2012.05.018 10.1016/j.nima.2004.05.071 10.12691/ajn-6-1-1 10.1088/0957-4484/18/25/255202 10.1016/j.spmi.2016.03.028 10.1021/acsomega.7b01586 10.1016/j.ijhydene.2012.12.131 10.3390/s19112551 10.1002/chin.200248217 10.3390/s120302610 10.1016/j.jcrysgro.2016.03.033 10.1088/0953-8984/15/20/201 10.1119/1.1645289 10.1016/S0925-4005(02)00034-5 10.1109/COMMAD.2012.6472367 10.3390/s19040905 10.1039/c3an36917j 10.1016/j.snb.2009.04.009 10.1016/j.snb.2014.07.112 10.1063/1.2975173 10.1109/ICGCIoT.2015.7380568 10.1039/C8DT04709J 10.3390/jsan8040057 10.1016/j.snb.2020.128223 10.2991/pecteam-18.2018.42 10.1109/LED.2012.2194129 10.1007/s11664-008-0596-z 10.1016/j.snb.2017.04.196 10.1109/JSEN.2013.2241423 10.1016/j.progsurf.2005.09.002 10.1063/1.5116677 10.1016/j.sna.2014.01.014 10.1088/0957-4484/22/29/295503 10.1002/pssc.200303139 10.1016/j.snb.2006.11.008 10.1016/j.ijhydene.2010.11.050 10.1021/acs.jpcc.5b06971 10.1109/TRANSDUCERS.2019.8808695 10.1088/0953-8984/16/29/R02 10.1016/j.nanoen.2014.10.013 10.1080/0371750X.2010.11090816 10.1016/j.ssc.2010.08.007 10.1007/s11771-015-2678-4 10.1039/C7TA07001B 10.1063/1.3243458 10.1109/JSEN.2020.2972542 10.1039/C7RA11106A 10.1097/00005792-195312000-00002 10.1021/acs.chemrev.6b00187 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s20143889 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8c9de59341e7463293f337f642482c17 PMC7412445 10_3390_s20143889 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c446t-bc7ed2d04213a795450517ba6631a783053139a4fc12efa09646292707b68b093 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:27 EDT 2025 Thu Aug 21 18:28:36 EDT 2025 Fri Sep 05 09:33:32 EDT 2025 Fri Jul 25 20:46:06 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Tue Jul 01 03:55:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-bc7ed2d04213a795450517ba6631a783053139a4fc12efa09646292707b68b093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0070-8872 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20143889 |
PMID | 32668634 |
PQID | 2424605295 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c9de59341e7463293f337f642482c17 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7412445 proquest_miscellaneous_2424437284 proquest_journals_2424605295 crossref_primary_10_3390_s20143889 crossref_citationtrail_10_3390_s20143889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200713 |
PublicationDateYYYYMMDD | 2020-07-13 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200713 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Pearton (ref_11) 2004; 16 ref_91 Schalwig (ref_13) 2002; 93 Johnson (ref_36) 2009; 38 Zhang (ref_49) 2019; 11 ref_10 ref_19 Alreshaid (ref_16) 2018; 165 ref_18 Paul (ref_32) 2012; 173 Aluri (ref_56) 2013; 13 Khan (ref_78) 2020; 11389 Moses (ref_12) 2011; 134 Nakata (ref_72) 1996; 68 Wang (ref_79) 2010; 10 Aluri (ref_55) 2011; 22 Kente (ref_24) 2016; 444 Bennett (ref_43) 1953; 32 Basu (ref_21) 2010; 69 Patsha (ref_51) 2015; 119 Potyrailo (ref_82) 2016; 116 ref_23 Abdullah (ref_31) 2014; 204 Zhong (ref_42) 2014; 39 Ke (ref_65) 2009; 9 ref_20 ref_64 Maier (ref_61) 2014; 197 Gu (ref_2) 2014; 3 Dobrokhotov (ref_54) 2006; 99 Abdullahab (ref_40) 2018; 117 Reddeppa (ref_57) 2019; 48 Bajpai (ref_68) 2012; 33 Ji (ref_44) 2017; 250 Kim (ref_27) 2011; 36 Eickhoff (ref_14) 2003; 6 Nahhas (ref_15) 2018; 6 Costello (ref_70) 2008; 134 Song (ref_6) 2007; 18 Shen (ref_28) 2009; 488 Khan (ref_63) 2020; 318 Zhang (ref_81) 2017; 5 Fan (ref_69) 2009; 95 Lien (ref_83) 2015; 11 Yong (ref_74) 2017; 7 Chitara (ref_38) 2010; 150 Chandran (ref_58) 2019; 4 Huang (ref_80) 2007; 123 Thibaud (ref_17) 2018; 108 Michel (ref_66) 2017; 71 Kamarudin (ref_85) 2017; 1808 ref_30 Aluri (ref_29) 2012; 23 Wright (ref_33) 2009; 140 Popa (ref_53) 2006; 21 Shi (ref_60) 2019; 115 ref_73 Khan (ref_77) 2020; 99 Wang (ref_46) 2008; 131 Khan (ref_71) 2020; 20 Bajpai (ref_47) 2012; 171–172 Park (ref_34) 2015; 22 Duan (ref_4) 2000; 12 Abdulsattar (ref_76) 2016; 93 Lu (ref_3) 2006; 39 Shu (ref_90) 2016; 54 Harris (ref_1) 2004; 72 Sun (ref_22) 2012; 12 Zhong (ref_37) 2014; 209 Kim (ref_25) 2011; 157 Owens (ref_5) 2004; 531 Sahoo (ref_35) 2013; 38 Khan (ref_59) 2020; 31 Chatterjee (ref_86) 2015; 221 ref_89 Luo (ref_45) 2014; 202 Yong (ref_75) 2017; 2 ref_84 Ramizy (ref_41) 2011; 155 Batzill (ref_52) 2005; 79 Linke (ref_26) 2012; 37 Sim (ref_62) 2013; 138 ref_48 ref_9 ref_8 Lim (ref_39) 2008; 93 Ikawa (ref_7) 2014; 53 rsan (ref_87) 2003; 15 Chang (ref_67) 2002; 84 Albert (ref_88) 2000; 100 |
References_xml | – volume: 155 start-page: 699 year: 2011 ident: ref_41 article-title: Porous GaN on Si(111) and its application to hydrogen gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.01.034 – volume: 39 start-page: R387 year: 2006 ident: ref_3 article-title: Semiconductor nanowires publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/39/21/R01 – volume: 3 start-page: 424 year: 2014 ident: ref_2 article-title: Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene: Nanostructured carbon materials for electrochemical capacitor applications publication-title: WIREs Energy Environ. doi: 10.1002/wene.102 – volume: 23 start-page: 175501 year: 2012 ident: ref_29 article-title: Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO 2 –Pt) composite nanoclusters on GaN nanowires: A new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors publication-title: Nanotechnology doi: 10.1088/0957-4484/23/17/175501 – volume: 173 start-page: 120 year: 2012 ident: ref_32 article-title: Opto-chemical sensor system for the detection of H2 and hydrocarbons based on InGaN/GaN nanowires publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.06.022 – ident: ref_73 doi: 10.1088/1361-6501/abd5f0 – ident: ref_84 – volume: 157 start-page: 482 year: 2011 ident: ref_25 article-title: Characterization of porous cubic silicon carbide deposited with Pd and Pt nanoparticles as a hydroge sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.05.004 – volume: 53 start-page: 114302 year: 2014 ident: ref_7 article-title: Two-dimensional device simulation of AlGaN/GaN heterojunction FET side-gating effect publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.53.114302 – volume: 134 start-page: 945 year: 2008 ident: ref_70 article-title: Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2008.06.055 – volume: 202 start-page: 1010 year: 2014 ident: ref_45 article-title: The ethanol-sensing properties of porous GaN nanofibers synthesized by electrospinning publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.06.040 – volume: 71 start-page: 996 year: 2017 ident: ref_66 article-title: Deep Ultraviolet Light Emitting Diode (LED)-Based Sensing of Sulfur Dioxide publication-title: Appl. Spectrosc. doi: 10.1177/0003702816665126 – volume: 10 start-page: 2088 year: 2010 ident: ref_79 article-title: Metal Oxide Gas Sensors: Sensitivity and Influencing Factors publication-title: Sensors doi: 10.3390/s100302088 – volume: 221 start-page: 1170 year: 2015 ident: ref_86 article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: A review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.07.070 – volume: 9 start-page: 2895 year: 2009 ident: ref_65 article-title: A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer publication-title: Sensors doi: 10.3390/s90402895 – ident: ref_23 – volume: 197 start-page: 87 year: 2014 ident: ref_61 article-title: Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.02.002 – volume: 117 start-page: 92 year: 2018 ident: ref_40 article-title: Growth and characterization of GaN nanostructures under various ammoniating time with fabricated Schottky gas sensor based on Si substrate publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.02.011 – volume: 100 start-page: 2595 year: 2000 ident: ref_88 article-title: Cross-Reactive Chemical Sensor Arrays publication-title: Chem. Rev. doi: 10.1021/cr980102w – volume: 21 start-page: 1518 year: 2006 ident: ref_53 article-title: GaN-based two-sensor array for methane detection in an ethanol environment publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/21/12/002 – volume: 4 start-page: 17171 year: 2019 ident: ref_58 article-title: New Disposable Nitric Oxide Sensor Fabrication Using GaN Nanowires publication-title: ACS Omega doi: 10.1021/acsomega.9b01609 – volume: 93 start-page: 207 year: 2002 ident: ref_13 article-title: Group III-nitride-based gas sensors for combustion monitoring publication-title: Mater. Sci. Eng. B doi: 10.1016/S0921-5107(02)00050-8 – volume: 39 start-page: 8564 year: 2014 ident: ref_42 article-title: Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and on a planar GaN film publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.03.120 – volume: 31 start-page: 155504 year: 2020 ident: ref_59 article-title: Reliable anatase-titania nanoclusters functionalized GaN sensor devices for UV assisted NO2 gas-sensing in ppb level publication-title: Nanotechnology doi: 10.1088/1361-6528/ab6685 – volume: 37 start-page: 17523 year: 2012 ident: ref_26 article-title: Low energy hydrogen sensor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.072 – volume: 1808 start-page: 20025 year: 2017 ident: ref_85 article-title: Cross-sensitivity of metal oxide gas sensor to ambient temperature and humidity: Effects on gas distribution mapping publication-title: AIP Conf. Proc. doi: 10.1063/1.4975258 – volume: 134 start-page: 084703 year: 2011 ident: ref_12 article-title: Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN publication-title: J. Chem. Phys. doi: 10.1063/1.3548872 – volume: 165 start-page: B407 year: 2018 ident: ref_16 article-title: Review—Ink-Jet Printed Wireless Liquid and Gas Sensors for IoT, SmartAg and Smart City Applications publication-title: J. Electrochem. Soc. doi: 10.1149/2.0341810jes – volume: 131 start-page: 313 year: 2008 ident: ref_46 article-title: Synthesis and high gas sensitivity of tin oxide nanotubes publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2007.11.032 – volume: 11 start-page: 33124 year: 2019 ident: ref_49 article-title: Porous GaN Submicron Rods for Gas Sensor with High Sensitivity and Excellent Stability at High Temperature publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09769 – volume: 68 start-page: 2067 year: 1996 ident: ref_72 article-title: Gas Sensing Based on a Nonlinear Response: Discrimination between Hydrocarbons and Quantification of Individual Components in a Gas Mixture publication-title: Anal. Chem. doi: 10.1021/ac9510954 – volume: 11389 start-page: 103 year: 2020 ident: ref_78 article-title: Metal-oxide/GaN based NO2 Gas detection at room temperature: An experimental and density functional theory investigation publication-title: SPIE Defence commer. Sens. – volume: 99 start-page: 104302 year: 2006 ident: ref_54 article-title: Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.2195420 – ident: ref_10 – volume: 12 start-page: 298 year: 2000 ident: ref_4 article-title: General Synthesis of Compound Semiconductor Nanowires publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y – volume: 54 start-page: 22 year: 2016 ident: ref_90 article-title: Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.7588225 – volume: 108 start-page: 79 year: 2018 ident: ref_17 article-title: Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2018.02.005 – volume: 488 start-page: L21 year: 2009 ident: ref_28 article-title: Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.08.124 – volume: 171–172 start-page: 499 year: 2012 ident: ref_47 article-title: EUV-assisted alcohol sensing using SnO2 functionalized GaN nanowire devices publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.05.018 – volume: 531 start-page: 18 year: 2004 ident: ref_5 article-title: Compound semiconductor radiation detectors publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. doi: 10.1016/j.nima.2004.05.071 – volume: 6 start-page: 1 year: 2018 ident: ref_15 article-title: Review of GaN Nanostructured Based Devices publication-title: Am. J. Nanomater. doi: 10.12691/ajn-6-1-1 – volume: 99 start-page: 1 year: 2020 ident: ref_77 article-title: Functionalization of GaN Nanowire Sensors with Metal Oxides: An Experimental and DFT Investigation publication-title: IEEE Sens. J. – volume: 18 start-page: 255202 year: 2007 ident: ref_6 article-title: Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices publication-title: Nanotechnology doi: 10.1088/0957-4484/18/25/255202 – volume: 93 start-page: 163 year: 2016 ident: ref_76 article-title: GaN wurtzite nanocrystals approached using wurtzoids structures and their use as a hydrogen sensor: A DFT study publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2016.03.028 – volume: 2 start-page: 8888 year: 2017 ident: ref_75 article-title: Two-Dimensional Tetragonal GaN as Potential Molecule Sensors for NO and NO 2 Detection: A First-Principle Study publication-title: ACS Omega doi: 10.1021/acsomega.7b01586 – volume: 38 start-page: 3513 year: 2013 ident: ref_35 article-title: Room temperature H2 sensing using functionalized GaN nanotubes with ultra low activation energy publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.131 – ident: ref_20 doi: 10.3390/s19112551 – ident: ref_30 doi: 10.1002/chin.200248217 – volume: 12 start-page: 2610 year: 2012 ident: ref_22 article-title: Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review publication-title: Sensors doi: 10.3390/s120302610 – volume: 444 start-page: 55 year: 2016 ident: ref_24 article-title: Gallium nitride nanostructures: Synthesis, characterization and applications publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2016.03.033 – volume: 15 start-page: R813 year: 2003 ident: ref_87 article-title: Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO 2 sensors in the presence of humidity publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/20/201 – volume: 72 start-page: 415 year: 2004 ident: ref_1 article-title: Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century publication-title: Am. J. Phys. doi: 10.1119/1.1645289 – volume: 84 start-page: 258 year: 2002 ident: ref_67 article-title: The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/S0925-4005(02)00034-5 – ident: ref_8 doi: 10.1109/COMMAD.2012.6472367 – ident: ref_9 doi: 10.3390/s19040905 – volume: 138 start-page: 2432 year: 2013 ident: ref_62 article-title: Suspended GaN nanowires as NO2 sensor for high temperature applications publication-title: Analyst doi: 10.1039/c3an36917j – volume: 140 start-page: 196 year: 2009 ident: ref_33 article-title: Hydrogen sensing with Pt-functionalized GaN nanowires publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2009.04.009 – volume: 204 start-page: 497 year: 2014 ident: ref_31 article-title: Hydrogen gas sensing performance of GaN nanowires-based sensor at low operating temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.07.112 – volume: 93 start-page: 072109 year: 2008 ident: ref_39 article-title: Room temperature hydrogen detection using Pd-coated GaN nanowires publication-title: Appl. Phys. Lett. doi: 10.1063/1.2975173 – ident: ref_91 doi: 10.1109/ICGCIoT.2015.7380568 – volume: 48 start-page: 1367 year: 2019 ident: ref_57 article-title: A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p–i–n GaN nanorods publication-title: Dalton Trans. doi: 10.1039/C8DT04709J – ident: ref_18 doi: 10.3390/jsan8040057 – volume: 318 start-page: 128223 year: 2020 ident: ref_63 article-title: Scalable metal oxide functionalized GaN nanowire for precise SO2 detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128223 – ident: ref_89 doi: 10.2991/pecteam-18.2018.42 – volume: 33 start-page: 1075 year: 2012 ident: ref_68 article-title: UV-Assisted Alcohol Sensing With Zinc Oxide-Functionalized Gallium Nitride Nanowires publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2012.2194129 – volume: 38 start-page: 490 year: 2009 ident: ref_36 article-title: Growth and Characterization of GaN Nanowires for Hydrogen Sensors publication-title: J. Electron. Mater. doi: 10.1007/s11664-008-0596-z – volume: 250 start-page: 518 year: 2017 ident: ref_44 article-title: High-performance methanol sensor based on GaN nanostructures grown on silicon nanoporous pillar array publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.04.196 – volume: 13 start-page: 1883 year: 2013 ident: ref_56 article-title: Nitro-Aromatic Explosive Sensing Using GaN Nanowire-Titania Nanocluster Hybrids publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2241423 – ident: ref_50 – volume: 79 start-page: 47 year: 2005 ident: ref_52 article-title: The surface and materials science of tin oxide publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2005.09.002 – volume: 115 start-page: 121602 year: 2019 ident: ref_60 article-title: High-performance room-temperature TiO2 -functionalized GaN nanowire gas sensors publication-title: Appl. Phys. Lett. doi: 10.1063/1.5116677 – volume: 209 start-page: 52 year: 2014 ident: ref_37 article-title: Platinum/porous GaN nanonetwork metal-semiconductor Schottky diode for room temperature hydrogen sensor publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2014.01.014 – volume: 22 start-page: 295503 year: 2011 ident: ref_55 article-title: Highly selective GaN-nanowire/TiO 2 -nanocluster hybrid sensors for detection of benzene and related environment pollutants publication-title: Nanotechnology doi: 10.1088/0957-4484/22/29/295503 – volume: 6 start-page: 1908 year: 2003 ident: ref_14 article-title: Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures—Part B: Sensor applications publication-title: Phys. Stat. Solidi (c) doi: 10.1002/pssc.200303139 – volume: 123 start-page: 1040 year: 2007 ident: ref_80 article-title: Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2006.11.008 – volume: 36 start-page: 2313 year: 2011 ident: ref_27 article-title: Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the Ga2Pd5 nanodot functionalization publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.11.050 – volume: 119 start-page: 21251 year: 2015 ident: ref_51 article-title: Localized Charge Transfer Process and Surface Band Bending in Methane Sensing by GaN Nanowires publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06971 – ident: ref_64 – ident: ref_48 doi: 10.1109/TRANSDUCERS.2019.8808695 – volume: 16 start-page: R961 year: 2004 ident: ref_11 article-title: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/16/29/R02 – volume: 11 start-page: 104 year: 2015 ident: ref_83 article-title: Harsh photovoltaics using InGaN/GaN multiple quantum well schemes publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.013 – ident: ref_19 – volume: 69 start-page: 1 year: 2010 ident: ref_21 article-title: Nanostructured Ceramic Materials for Chemical Sensors: Present Status and Future Prospects publication-title: Trans. Indian Ceram. Soc. doi: 10.1080/0371750X.2010.11090816 – volume: 150 start-page: 2053 year: 2010 ident: ref_38 article-title: Room-temperature gas sensors based on gallium nitride nanoparticles publication-title: Solid State Commun. doi: 10.1016/j.ssc.2010.08.007 – volume: 22 start-page: 1614 year: 2015 ident: ref_34 article-title: Room temperature hydrogen sensing performances of multiple networked GaN nanowire sensors codecorated with Au and Pt nanoparticles publication-title: J. Cent. South Univ. doi: 10.1007/s11771-015-2678-4 – volume: 5 start-page: 20666 year: 2017 ident: ref_81 article-title: Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation publication-title: J. Mater. Chem. doi: 10.1039/C7TA07001B – volume: 95 start-page: 142106 year: 2009 ident: ref_69 article-title: UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO publication-title: Appl. Phys. Lett. doi: 10.1063/1.3243458 – volume: 20 start-page: 6020 year: 2020 ident: ref_71 article-title: Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2972542 – volume: 7 start-page: 51027 year: 2017 ident: ref_74 article-title: Adsorption of gas molecules on a graphitic GaN sheet and its implications for molecule sensors publication-title: RSC Adv. doi: 10.1039/C7RA11106A – volume: 32 start-page: 431 year: 1953 ident: ref_43 article-title: Acute Methyl Alcohol Poisoning: A Review Based on Experiences in an Outbreak of 323 Cases publication-title: Medicine doi: 10.1097/00005792-195312000-00002 – volume: 116 start-page: 11877 year: 2016 ident: ref_82 article-title: Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00187 |
SSID | ssj0023338 |
Score | 2.5448859 |
SecondaryResourceType | review_article |
Snippet | In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3889 |
SubjectTerms | Alcohol Atoms & subatomic particles Carbon Chemical vapor deposition density-functional theory (DFT) gallium nitride (GaN) gas sensing Gases Hydrogen Internet of Things Molecular beam epitaxy Nanoparticles nanostructure Nanowires Nitrogen dioxide Outdoor air quality response/recovery time Review Semiconductors sensitivity Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnqIwUEAc4FCxJmmScgMEQ0gMJEDiVuVVmDQ6xLb_j9120yohceHa-pDaceyvdj4TciJ8ql2BXeK2cLHgUsba-yQ2sOoud6n2Am8jP_Tl3au4f0vfFkZ9YU9YTQ9cK-5cu8yHNIPDNighOUSngnNVQNosNHNJdY8cwtgMTDVQiwPyqnmEOID68zFDGjuNs9wXok9F0t_KLNt9kQuB5nadrDUZIr2sV7ZBlkK5SVYXeAO3yGPPDIeD6SftDybfAx_oac_0zyiclKOaD3YKIJqa0tMXrAPQnhnTZ-xUL9_pE_59_0Ya1Qt6SevSwDZ5vb15ub6Lm8kIsQP4NomtU8EzDw6XcKMyyIKQassaSB8SozRHz-KZEYVLWCgMwBQhWcZUV1mpbTfjO2S5HJVhl1BjDVfdoKTFXjfDbOYYc6l0XikP2UxETmcay11DG47TK4Y5wAdUbj5XbkSO56JfNVfGb0JXqPa5ANJbVw_A6Hlj9Pwvo0ekMzNa3vjcOMeLLrIqXEbkaP4avAVLIKYMo2ktg5VKLSKiWsZuLaj9phx8VLzbCid1i3TvP75gn6wwRO5I0ck7ZBk2RziA9GZiD6ud_AMvd_Wy priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABUR4iUCqDOJRD1I3t2A4XVCp2KyQWJFqpt8ivlJWWpOzj_zOTZMNGQr3GI8Wa8djzecbfALyXITe-oipxV_lUCqVSE0KWWpz1RPjcBEmvkb_N1cWV_HqdX_cXbuu-rHK3J7YbdWg83ZGf0jMG1aalPt3-SalrFGVX-xYa9-FBxnEl0Uvx6WwAXALxV8cmJBDan645kdkZ6ui-dwa1VP2j-HJcHbl33EyfwOM-TmRnnWEP4V6sn8KjPfbAZ_B9ZpfLxfY3my82q0WI7GRm5x8Y7pdNxwq7RSjNbB3YJWUD2Myu2U-qV69v2A-6g18RmepHdsa6BMFzuJp-uTy_SPv-CKlHELdJndcx8IBulwmrC4yFiHDLWQwiMquNIP8ShZWVz3isLIIVqXjB9UQ7ZdykEC_goG7q-BKYdVboSdTKUcWb5a7wnPtc-aB1wJgmgZOdxkrfk4dTD4tliSCClFsOyk3g3SB62zFm_E_oM6l9ECCS6_ZDs7ope58pjS9CzAs8Z6OWSmBgUgmhK0RM0nCf6QSOdkYre89bl__WSQJvh2H0GUqE2Do2206G8pVGJqBHxh5NaDxSL3617Nua-nXL_NXdP38NDzkhc6LgFEdwgGaPbzB82bjjdo3-BSkj7sU priority: 102 providerName: ProQuest |
Title | Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review |
URI | https://www.proquest.com/docview/2424605295 https://www.proquest.com/docview/2424437284 https://pubmed.ncbi.nlm.nih.gov/PMC7412445 https://doaj.org/article/8c9de59341e7463293f337f642482c17 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ygJIeSp_EbbqopYf04HYtyZJcKCUp2Q2FbEObhb0ZWZLTha032Qe0_74ztneJIadefLDGIEYz1nya0TcA76RPjSupSrwoXSyFUrHxPoktzrovXGq8pNvIFyN1PpbfJulkBzY9NlsFLu-FdtRParyYffhz-_cLOvxnQpwI2T8uOZHUGZPtwj5uSJyM-0JukwlcIAxrSIW64gfwAIMXZZSQnV2pJu_vRJzdesk7G9DgMTxqI0d20iz1E9gJ1VN4eIdP8Bl8H9rZbLr-zUbT1WLqAzse2tF7hn_QecMTu0ZwzWzl2RXlB9jQLtlPqmCvrtklncoviF71EzthTcrgOYwHZ1dfz-O2Y0LsENat4sLp4LlHR0yE1RlGR0TBVVgMKxKrjSCPE5mVpUt4KC3CF6l4xnVfF8oU_Uy8gL1qXoVDYLawQveDVgXVwFleZI5zlyrntfYY5URwvNFY7lo6cepqMcsRVpCe862eI3i7Fb1pODTuEzoltW8FiPa6fjFfXOetF-XGZT6kGe68QUslMFQphdAlYihpuEt0BEebRcs3ppTTBRhVJzQjeLMdRi-i1IitwnzdyFAG08gIdGexOxPqjlTTXzUft6YO3jJ9-d9fvoIDTjCe-DrFEeyhRYTXGOusih7s6onGpxkMe7B_eja6_NGrzw16tY3_A9n-Af4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE8RKGAQSOUQNbGdOEFCqDy6W9ouSGylvaWO7ZSVlqTsQ4g_xW9kJo_tRkLceo1HijWep2f8DcBLaaPEFNQlnhfGlyKO_cTa0Ne460CYKLGSXiOfjOLhqfw8iSZb8Kd7C0NtlZ1NrA21rQzdke_RM4a4Lku9u_jp09Qoqq52IzQasThyv39hyrZ4e_gRz_cV5wefxh-GfjtVwDeY-iz93ChnuUVhDYVWKUYQBFOVa3S9oVaJIKkUqZaFCbkrNIb4MuYpV4HK4ySvwZfQ5F-TIpCE1a8mlwmewHyvQS8SIg32FpzA8xKaIL_h8-rRAL14tt-NueHeDm7DrTYuZfuNIN2BLVfehZsbaIX34MtAz2bT1Q82mi7nU-vY7kCPXjO0z1WDQrvC1J3p0rIxVR_YQC_YN-qPL8_ZV7rznxN46xu2z5qCxH04vRLOPYDtsirdQ2A610IFTsU5ddhpnqeGcxPFxiplMYbyYLfjWGZasHKamTHLMGkh5mZr5nrwYk160SB0_IvoPbF9TUCg2vWHan6etTqaJSa1LkrRrzslY4GBUCGEKjBDkwk3ofJgpzu0rNX0RXYplx48Xy-jjlLhRZeuWjU0VB9NpAeqd9i9DfVXyun3Gu1b0XxwGT36_8-fwfXh-OQ4Oz4cHT2GG5xuBQj-U-zANoqAe4Kh0zJ_Wssrg7OrVpC_ZCooxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBdEH8ROjta6iUB_CXXY32UQoUq13rdWzYAv3lm52N_XgTOp9UPqv-dc5k4_rBcS3vmYHsszO587sbwDeSBvGJqcu8Sw3vhRR5MfWBr7GXfeFCWMr6TXyt1F0cCq_jMPxBvxp38JQW2VrEytDbUtDd-Q9esYQVWWpXt60RRzvDz5c_PZpghRVWttxGrWIHLmrS0zf5ruH-3jWbzkffD75dOA3EwZ8g2nQws-McpZbFNxAaJVgNEGQVZlGNxxoFQuSUJFomZuAu1xjuC8jnnDVV1kUZxUQE5r_W0pIQe1kanyd7AnM_WokIyGSfm_OCUgvpmnya_6vGhPQiW27nZlrrm5wH-41MSrbq4XqAWy44iHcXUMufATfh3o6nSx_sdFkMZtYx3aGevSOoa0ua0TaJabxTBeWnVAlgg31nP2gXvninB3T_f-MgFzfsz1WFycew-mNcO4JbBZl4Z4C05kWqu9UlFG3neZZYjg3YWSsUhbjKQ92Wo6lpgEup_kZ0xQTGGJuumKuB69XpBc1Wse_iD4S21cEBLBdfShn52mjr2lsEuvCBH28UzISGBTlQqgcszUZcxMoD7baQ0sbrZ-n1zLqwavVMuorFWF04cplTUO10lh6oDqH3dlQd6WY_KyQvxXNCpfhs____CXcRtVIvx6Ojp7DHU4XBIQEKrZgEyXAvcAoapFtV-LK4Oym9eMvS_Ys_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gallium+Nitride+%28GaN%29+Nanostructures+and+Their+Gas+Sensing+Properties%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Khan%2C+Md+Ashfaque+Hossain&rft.au=Rao%2C+Mulpuri+V.&rft.date=2020-07-13&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=14&rft_id=info:doi/10.3390%2Fs20143889&rft_id=info%3Apmid%2F32668634&rft.externalDocID=PMC7412445 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |