Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review

In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups o...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 14; p. 3889
Main Authors Khan, Md Ashfaque Hossain, Rao, Mulpuri V.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.07.2020
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20143889

Cover

Abstract In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2–Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.
AbstractList In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group's work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2-Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group's work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2-Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.
In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H 2 ), alcohols (R-OH), methane (CH 4 ), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur-dioxide (SO 2 ), ammonia (NH 3 ), hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H 2 gas sensing, whereas the GaN/(TiO 2 –Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO 2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.
In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks (NNs) have been reported for gas sensing applications. In this paper, we have reviewed our group’s work and the works published by other groups on the advances in GaN nanostructures-based sensors for detection of gases such as hydrogen (H2), alcohols (R-OH), methane (CH4), benzene and its derivatives, nitric oxide (NO), nitrogen dioxide (NO2), sulfur-dioxide (SO2), ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2). The important sensing performance parameters like limit of detection, response/recovery time and operating temperature for different type of sensors have been summarized and tabulated to provide a thorough performance comparison. A novel metric, the product of response time and limit of detection, has been established, to quantify and compare the overall sensing performance of GaN nanostructure-based devices reported so far. According to this metric, it was found that the InGaN/GaN NW-based sensor exhibits superior overall sensing performance for H2 gas sensing, whereas the GaN/(TiO2–Pt) nanowire-nanoclusters (NWNCs)-based sensor is better for ethanol sensing. The GaN/TiO2 NWNC-based sensor is also well suited for TNT sensing. This paper has also reviewed density-functional theory (DFT)-based first principle studies on the interaction between gas molecules and GaN. The implementation of machine learning algorithms on GaN nanostructured sensors and sensor array has been analyzed as well. Finally, gas sensing mechanism on GaN nanostructure-based sensors at room temperature has been discussed.
Author Rao, Mulpuri V.
Khan, Md Ashfaque Hossain
AuthorAffiliation Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA; rmulpuri@gmu.edu
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA; rmulpuri@gmu.edu
Author_xml – sequence: 1
  givenname: Md Ashfaque Hossain
  orcidid: 0000-0002-0070-8872
  surname: Khan
  fullname: Khan, Md Ashfaque Hossain
– sequence: 2
  givenname: Mulpuri V.
  surname: Rao
  fullname: Rao, Mulpuri V.
BookMark eNptkU1r3DAQhkVJaT7aQ_-BoZfksI2kkfXRQyGEZhsIm9KmZyHL440Wr7SV7IT--3izITShJwnNo2deZg7JXkwRCfnI6GcAQ08Lp0yA1uYNOWCCi5nmnO79c98nh6WsKOUAoN-RfeBSagnigFzPXd-HcV0twpBDi9Xx3C1OqoWLqQx59MOYsVQuttXNLYZczV2pfmEsIS6rHzltMA8By5fqrPqJdwHv35O3nesLfng6j8jvi283599nV9fzy_Ozq5kXQg6zxitseUsFZ-CUqUVNa6YaJyUwpzTQGhgYJzrPOHaOGikkN1xR1UjdUANH5HLnbZNb2U0Oa5f_2uSCfXxIeWndFM33aLU3LdYGBEMlJHADHYDq5DQczT1Tk-vrzrUZmzW2HuOQXf9C-rISw61dpjurBONC1JPg-EmQ058Ry2DXoXjsexcxjcXyqZUAxbWY0E-v0FUac5xG9UhJWnOzFZ7sKJ9TKRm75zCM2u3K7fPKJ_b0FevD4IaQtllD_58fDxC5qe4
CitedBy_id crossref_primary_10_1002_adts_202400194
crossref_primary_10_1007_s11664_023_10216_0
crossref_primary_10_1016_j_inoche_2025_114274
crossref_primary_10_32604_jrm_2023_023698
crossref_primary_10_46670_JSST_2021_30_1_1
crossref_primary_10_1016_j_apsusc_2023_159103
crossref_primary_10_1016_j_jcis_2021_06_126
crossref_primary_10_3390_nano12203611
crossref_primary_10_1016_j_colsurfa_2023_131276
crossref_primary_10_1021_acsami_3c06864
crossref_primary_10_1007_s10854_022_08715_7
crossref_primary_10_1016_j_ceramint_2022_06_066
crossref_primary_10_1063_10_0028760
crossref_primary_10_1088_1742_6596_2131_5_052089
crossref_primary_10_1149_2162_8777_ad0874
crossref_primary_10_1021_acsami_1c04469
crossref_primary_10_1007_s00339_024_07900_1
crossref_primary_10_1016_j_snb_2023_135209
crossref_primary_10_1007_s00894_023_05567_8
crossref_primary_10_1007_s11664_023_10602_8
crossref_primary_10_1103_PhysRevB_108_235313
crossref_primary_10_1016_j_snb_2022_132163
crossref_primary_10_1016_j_snb_2023_133430
crossref_primary_10_1088_1361_6641_abf46d
crossref_primary_10_1063_5_0220740
crossref_primary_10_3390_nano11020456
crossref_primary_10_1007_s11664_022_09795_1
crossref_primary_10_1016_j_nxnano_2025_100155
crossref_primary_10_1109_TDMR_2020_3028786
crossref_primary_10_1021_jacs_1c09061
crossref_primary_10_3390_s21020624
crossref_primary_10_1016_j_colsurfa_2023_133120
crossref_primary_10_1039_D1NA00773D
crossref_primary_10_1016_j_ijleo_2022_168930
crossref_primary_10_1016_j_mtcomm_2022_104704
crossref_primary_10_1021_acs_cgd_3c00070
crossref_primary_10_1038_s41598_024_82889_4
crossref_primary_10_1016_j_molstruc_2023_137214
crossref_primary_10_1063_5_0108890
crossref_primary_10_1080_00268976_2023_2203781
crossref_primary_10_1088_1361_6501_abd5f0
crossref_primary_10_1007_s10853_024_09724_z
crossref_primary_10_3390_chemosensors10100405
crossref_primary_10_3390_s20236781
crossref_primary_10_1007_s11468_025_02790_2
crossref_primary_10_1088_1742_6596_2837_1_012022
crossref_primary_10_1016_j_comptc_2024_114769
crossref_primary_10_1016_j_comptc_2024_114646
crossref_primary_10_1088_1361_648X_ac5310
crossref_primary_10_1016_j_snb_2025_137417
crossref_primary_10_1088_1361_6528_ac2427
crossref_primary_10_1007_s11664_021_09210_1
crossref_primary_10_1007_s13391_022_00400_5
crossref_primary_10_1002_qua_27348
crossref_primary_10_1134_S1990793124010330
crossref_primary_10_1016_j_geoen_2023_212416
crossref_primary_10_1016_j_snb_2023_134629
crossref_primary_10_1016_j_ces_2024_120519
crossref_primary_10_1016_j_comptc_2024_114914
crossref_primary_10_1016_j_matchemphys_2024_129430
crossref_primary_10_1016_j_susc_2021_121988
crossref_primary_10_1016_j_jcis_2024_09_033
crossref_primary_10_1016_j_snb_2022_132583
crossref_primary_10_1063_5_0160486
Cites_doi 10.1016/j.snb.2011.01.034
10.1088/0022-3727/39/21/R01
10.1002/wene.102
10.1088/0957-4484/23/17/175501
10.1016/j.snb.2012.06.022
10.1088/1361-6501/abd5f0
10.1016/j.snb.2011.05.004
10.7567/JJAP.53.114302
10.1016/j.snb.2008.06.055
10.1016/j.snb.2014.06.040
10.1177/0003702816665126
10.3390/s100302088
10.1016/j.snb.2015.07.070
10.3390/s90402895
10.1016/j.snb.2014.02.002
10.1016/j.spmi.2018.02.011
10.1021/cr980102w
10.1088/0268-1242/21/12/002
10.1021/acsomega.9b01609
10.1016/S0921-5107(02)00050-8
10.1016/j.ijhydene.2014.03.120
10.1088/1361-6528/ab6685
10.1016/j.ijhydene.2012.07.072
10.1063/1.4975258
10.1063/1.3548872
10.1149/2.0341810jes
10.1016/j.snb.2007.11.032
10.1021/acsami.9b09769
10.1021/ac9510954
10.1063/1.2195420
10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
10.1109/MCOM.2016.7588225
10.1016/j.dss.2018.02.005
10.1016/j.jallcom.2009.08.124
10.1016/j.snb.2012.05.018
10.1016/j.nima.2004.05.071
10.12691/ajn-6-1-1
10.1088/0957-4484/18/25/255202
10.1016/j.spmi.2016.03.028
10.1021/acsomega.7b01586
10.1016/j.ijhydene.2012.12.131
10.3390/s19112551
10.1002/chin.200248217
10.3390/s120302610
10.1016/j.jcrysgro.2016.03.033
10.1088/0953-8984/15/20/201
10.1119/1.1645289
10.1016/S0925-4005(02)00034-5
10.1109/COMMAD.2012.6472367
10.3390/s19040905
10.1039/c3an36917j
10.1016/j.snb.2009.04.009
10.1016/j.snb.2014.07.112
10.1063/1.2975173
10.1109/ICGCIoT.2015.7380568
10.1039/C8DT04709J
10.3390/jsan8040057
10.1016/j.snb.2020.128223
10.2991/pecteam-18.2018.42
10.1109/LED.2012.2194129
10.1007/s11664-008-0596-z
10.1016/j.snb.2017.04.196
10.1109/JSEN.2013.2241423
10.1016/j.progsurf.2005.09.002
10.1063/1.5116677
10.1016/j.sna.2014.01.014
10.1088/0957-4484/22/29/295503
10.1002/pssc.200303139
10.1016/j.snb.2006.11.008
10.1016/j.ijhydene.2010.11.050
10.1021/acs.jpcc.5b06971
10.1109/TRANSDUCERS.2019.8808695
10.1088/0953-8984/16/29/R02
10.1016/j.nanoen.2014.10.013
10.1080/0371750X.2010.11090816
10.1016/j.ssc.2010.08.007
10.1007/s11771-015-2678-4
10.1039/C7TA07001B
10.1063/1.3243458
10.1109/JSEN.2020.2972542
10.1039/C7RA11106A
10.1097/00005792-195312000-00002
10.1021/acs.chemrev.6b00187
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20143889
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8c9de59341e7463293f337f642482c17
PMC7412445
10_3390_s20143889
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-bc7ed2d04213a795450517ba6631a783053139a4fc12efa09646292707b68b093
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:27 EDT 2025
Thu Aug 21 18:28:36 EDT 2025
Fri Sep 05 09:33:32 EDT 2025
Fri Jul 25 20:46:06 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Tue Jul 01 03:55:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-bc7ed2d04213a795450517ba6631a783053139a4fc12efa09646292707b68b093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0070-8872
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20143889
PMID 32668634
PQID 2424605295
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8c9de59341e7463293f337f642482c17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7412445
proquest_miscellaneous_2424437284
proquest_journals_2424605295
crossref_primary_10_3390_s20143889
crossref_citationtrail_10_3390_s20143889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200713
PublicationDateYYYYMMDD 2020-07-13
PublicationDate_xml – month: 7
  year: 2020
  text: 20200713
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Pearton (ref_11) 2004; 16
ref_91
Schalwig (ref_13) 2002; 93
Johnson (ref_36) 2009; 38
Zhang (ref_49) 2019; 11
ref_10
ref_19
Alreshaid (ref_16) 2018; 165
ref_18
Paul (ref_32) 2012; 173
Aluri (ref_56) 2013; 13
Khan (ref_78) 2020; 11389
Moses (ref_12) 2011; 134
Nakata (ref_72) 1996; 68
Wang (ref_79) 2010; 10
Aluri (ref_55) 2011; 22
Kente (ref_24) 2016; 444
Bennett (ref_43) 1953; 32
Basu (ref_21) 2010; 69
Patsha (ref_51) 2015; 119
Potyrailo (ref_82) 2016; 116
ref_23
Abdullah (ref_31) 2014; 204
Zhong (ref_42) 2014; 39
Ke (ref_65) 2009; 9
ref_20
ref_64
Maier (ref_61) 2014; 197
Gu (ref_2) 2014; 3
Dobrokhotov (ref_54) 2006; 99
Abdullahab (ref_40) 2018; 117
Reddeppa (ref_57) 2019; 48
Bajpai (ref_68) 2012; 33
Ji (ref_44) 2017; 250
Kim (ref_27) 2011; 36
Eickhoff (ref_14) 2003; 6
Nahhas (ref_15) 2018; 6
Costello (ref_70) 2008; 134
Song (ref_6) 2007; 18
Shen (ref_28) 2009; 488
Khan (ref_63) 2020; 318
Zhang (ref_81) 2017; 5
Fan (ref_69) 2009; 95
Lien (ref_83) 2015; 11
Yong (ref_74) 2017; 7
Chitara (ref_38) 2010; 150
Chandran (ref_58) 2019; 4
Huang (ref_80) 2007; 123
Thibaud (ref_17) 2018; 108
Michel (ref_66) 2017; 71
Kamarudin (ref_85) 2017; 1808
ref_30
Aluri (ref_29) 2012; 23
Wright (ref_33) 2009; 140
Popa (ref_53) 2006; 21
Shi (ref_60) 2019; 115
ref_73
Khan (ref_77) 2020; 99
Wang (ref_46) 2008; 131
Khan (ref_71) 2020; 20
Bajpai (ref_47) 2012; 171–172
Park (ref_34) 2015; 22
Duan (ref_4) 2000; 12
Abdulsattar (ref_76) 2016; 93
Lu (ref_3) 2006; 39
Shu (ref_90) 2016; 54
Harris (ref_1) 2004; 72
Sun (ref_22) 2012; 12
Zhong (ref_37) 2014; 209
Kim (ref_25) 2011; 157
Owens (ref_5) 2004; 531
Sahoo (ref_35) 2013; 38
Khan (ref_59) 2020; 31
Chatterjee (ref_86) 2015; 221
ref_89
Luo (ref_45) 2014; 202
Yong (ref_75) 2017; 2
ref_84
Ramizy (ref_41) 2011; 155
Batzill (ref_52) 2005; 79
Linke (ref_26) 2012; 37
Sim (ref_62) 2013; 138
ref_48
ref_9
ref_8
Lim (ref_39) 2008; 93
Ikawa (ref_7) 2014; 53
rsan (ref_87) 2003; 15
Chang (ref_67) 2002; 84
Albert (ref_88) 2000; 100
References_xml – volume: 155
  start-page: 699
  year: 2011
  ident: ref_41
  article-title: Porous GaN on Si(111) and its application to hydrogen gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.01.034
– volume: 39
  start-page: R387
  year: 2006
  ident: ref_3
  article-title: Semiconductor nanowires
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/39/21/R01
– volume: 3
  start-page: 424
  year: 2014
  ident: ref_2
  article-title: Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene: Nanostructured carbon materials for electrochemical capacitor applications
  publication-title: WIREs Energy Environ.
  doi: 10.1002/wene.102
– volume: 23
  start-page: 175501
  year: 2012
  ident: ref_29
  article-title: Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO 2 –Pt) composite nanoclusters on GaN nanowires: A new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/17/175501
– volume: 173
  start-page: 120
  year: 2012
  ident: ref_32
  article-title: Opto-chemical sensor system for the detection of H2 and hydrocarbons based on InGaN/GaN nanowires
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.06.022
– ident: ref_73
  doi: 10.1088/1361-6501/abd5f0
– ident: ref_84
– volume: 157
  start-page: 482
  year: 2011
  ident: ref_25
  article-title: Characterization of porous cubic silicon carbide deposited with Pd and Pt nanoparticles as a hydroge sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.05.004
– volume: 53
  start-page: 114302
  year: 2014
  ident: ref_7
  article-title: Two-dimensional device simulation of AlGaN/GaN heterojunction FET side-gating effect
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.114302
– volume: 134
  start-page: 945
  year: 2008
  ident: ref_70
  article-title: Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2008.06.055
– volume: 202
  start-page: 1010
  year: 2014
  ident: ref_45
  article-title: The ethanol-sensing properties of porous GaN nanofibers synthesized by electrospinning
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.06.040
– volume: 71
  start-page: 996
  year: 2017
  ident: ref_66
  article-title: Deep Ultraviolet Light Emitting Diode (LED)-Based Sensing of Sulfur Dioxide
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702816665126
– volume: 10
  start-page: 2088
  year: 2010
  ident: ref_79
  article-title: Metal Oxide Gas Sensors: Sensitivity and Influencing Factors
  publication-title: Sensors
  doi: 10.3390/s100302088
– volume: 221
  start-page: 1170
  year: 2015
  ident: ref_86
  article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: A review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.07.070
– volume: 9
  start-page: 2895
  year: 2009
  ident: ref_65
  article-title: A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer
  publication-title: Sensors
  doi: 10.3390/s90402895
– ident: ref_23
– volume: 197
  start-page: 87
  year: 2014
  ident: ref_61
  article-title: Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.02.002
– volume: 117
  start-page: 92
  year: 2018
  ident: ref_40
  article-title: Growth and characterization of GaN nanostructures under various ammoniating time with fabricated Schottky gas sensor based on Si substrate
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2018.02.011
– volume: 100
  start-page: 2595
  year: 2000
  ident: ref_88
  article-title: Cross-Reactive Chemical Sensor Arrays
  publication-title: Chem. Rev.
  doi: 10.1021/cr980102w
– volume: 21
  start-page: 1518
  year: 2006
  ident: ref_53
  article-title: GaN-based two-sensor array for methane detection in an ethanol environment
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/21/12/002
– volume: 4
  start-page: 17171
  year: 2019
  ident: ref_58
  article-title: New Disposable Nitric Oxide Sensor Fabrication Using GaN Nanowires
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01609
– volume: 93
  start-page: 207
  year: 2002
  ident: ref_13
  article-title: Group III-nitride-based gas sensors for combustion monitoring
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(02)00050-8
– volume: 39
  start-page: 8564
  year: 2014
  ident: ref_42
  article-title: Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and on a planar GaN film
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.03.120
– volume: 31
  start-page: 155504
  year: 2020
  ident: ref_59
  article-title: Reliable anatase-titania nanoclusters functionalized GaN sensor devices for UV assisted NO2 gas-sensing in ppb level
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab6685
– volume: 37
  start-page: 17523
  year: 2012
  ident: ref_26
  article-title: Low energy hydrogen sensor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.072
– volume: 1808
  start-page: 20025
  year: 2017
  ident: ref_85
  article-title: Cross-sensitivity of metal oxide gas sensor to ambient temperature and humidity: Effects on gas distribution mapping
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4975258
– volume: 134
  start-page: 084703
  year: 2011
  ident: ref_12
  article-title: Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3548872
– volume: 165
  start-page: B407
  year: 2018
  ident: ref_16
  article-title: Review—Ink-Jet Printed Wireless Liquid and Gas Sensors for IoT, SmartAg and Smart City Applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0341810jes
– volume: 131
  start-page: 313
  year: 2008
  ident: ref_46
  article-title: Synthesis and high gas sensitivity of tin oxide nanotubes
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2007.11.032
– volume: 11
  start-page: 33124
  year: 2019
  ident: ref_49
  article-title: Porous GaN Submicron Rods for Gas Sensor with High Sensitivity and Excellent Stability at High Temperature
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09769
– volume: 68
  start-page: 2067
  year: 1996
  ident: ref_72
  article-title: Gas Sensing Based on a Nonlinear Response: Discrimination between Hydrocarbons and Quantification of Individual Components in a Gas Mixture
  publication-title: Anal. Chem.
  doi: 10.1021/ac9510954
– volume: 11389
  start-page: 103
  year: 2020
  ident: ref_78
  article-title: Metal-oxide/GaN based NO2 Gas detection at room temperature: An experimental and density functional theory investigation
  publication-title: SPIE Defence commer. Sens.
– volume: 99
  start-page: 104302
  year: 2006
  ident: ref_54
  article-title: Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2195420
– ident: ref_10
– volume: 12
  start-page: 298
  year: 2000
  ident: ref_4
  article-title: General Synthesis of Compound Semiconductor Nanowires
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
– volume: 54
  start-page: 22
  year: 2016
  ident: ref_90
  article-title: Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7588225
– volume: 108
  start-page: 79
  year: 2018
  ident: ref_17
  article-title: Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.02.005
– volume: 488
  start-page: L21
  year: 2009
  ident: ref_28
  article-title: Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.08.124
– volume: 171–172
  start-page: 499
  year: 2012
  ident: ref_47
  article-title: EUV-assisted alcohol sensing using SnO2 functionalized GaN nanowire devices
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.05.018
– volume: 531
  start-page: 18
  year: 2004
  ident: ref_5
  article-title: Compound semiconductor radiation detectors
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2004.05.071
– volume: 6
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: Review of GaN Nanostructured Based Devices
  publication-title: Am. J. Nanomater.
  doi: 10.12691/ajn-6-1-1
– volume: 99
  start-page: 1
  year: 2020
  ident: ref_77
  article-title: Functionalization of GaN Nanowire Sensors with Metal Oxides: An Experimental and DFT Investigation
  publication-title: IEEE Sens. J.
– volume: 18
  start-page: 255202
  year: 2007
  ident: ref_6
  article-title: Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/25/255202
– volume: 93
  start-page: 163
  year: 2016
  ident: ref_76
  article-title: GaN wurtzite nanocrystals approached using wurtzoids structures and their use as a hydrogen sensor: A DFT study
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2016.03.028
– volume: 2
  start-page: 8888
  year: 2017
  ident: ref_75
  article-title: Two-Dimensional Tetragonal GaN as Potential Molecule Sensors for NO and NO 2 Detection: A First-Principle Study
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01586
– volume: 38
  start-page: 3513
  year: 2013
  ident: ref_35
  article-title: Room temperature H2 sensing using functionalized GaN nanotubes with ultra low activation energy
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.12.131
– ident: ref_20
  doi: 10.3390/s19112551
– ident: ref_30
  doi: 10.1002/chin.200248217
– volume: 12
  start-page: 2610
  year: 2012
  ident: ref_22
  article-title: Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review
  publication-title: Sensors
  doi: 10.3390/s120302610
– volume: 444
  start-page: 55
  year: 2016
  ident: ref_24
  article-title: Gallium nitride nanostructures: Synthesis, characterization and applications
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.03.033
– volume: 15
  start-page: R813
  year: 2003
  ident: ref_87
  article-title: Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO 2 sensors in the presence of humidity
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/20/201
– volume: 72
  start-page: 415
  year: 2004
  ident: ref_1
  article-title: Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1645289
– volume: 84
  start-page: 258
  year: 2002
  ident: ref_67
  article-title: The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(02)00034-5
– ident: ref_8
  doi: 10.1109/COMMAD.2012.6472367
– ident: ref_9
  doi: 10.3390/s19040905
– volume: 138
  start-page: 2432
  year: 2013
  ident: ref_62
  article-title: Suspended GaN nanowires as NO2 sensor for high temperature applications
  publication-title: Analyst
  doi: 10.1039/c3an36917j
– volume: 140
  start-page: 196
  year: 2009
  ident: ref_33
  article-title: Hydrogen sensing with Pt-functionalized GaN nanowires
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.04.009
– volume: 204
  start-page: 497
  year: 2014
  ident: ref_31
  article-title: Hydrogen gas sensing performance of GaN nanowires-based sensor at low operating temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.07.112
– volume: 93
  start-page: 072109
  year: 2008
  ident: ref_39
  article-title: Room temperature hydrogen detection using Pd-coated GaN nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2975173
– ident: ref_91
  doi: 10.1109/ICGCIoT.2015.7380568
– volume: 48
  start-page: 1367
  year: 2019
  ident: ref_57
  article-title: A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p–i–n GaN nanorods
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04709J
– ident: ref_18
  doi: 10.3390/jsan8040057
– volume: 318
  start-page: 128223
  year: 2020
  ident: ref_63
  article-title: Scalable metal oxide functionalized GaN nanowire for precise SO2 detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128223
– ident: ref_89
  doi: 10.2991/pecteam-18.2018.42
– volume: 33
  start-page: 1075
  year: 2012
  ident: ref_68
  article-title: UV-Assisted Alcohol Sensing With Zinc Oxide-Functionalized Gallium Nitride Nanowires
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2012.2194129
– volume: 38
  start-page: 490
  year: 2009
  ident: ref_36
  article-title: Growth and Characterization of GaN Nanowires for Hydrogen Sensors
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-008-0596-z
– volume: 250
  start-page: 518
  year: 2017
  ident: ref_44
  article-title: High-performance methanol sensor based on GaN nanostructures grown on silicon nanoporous pillar array
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.04.196
– volume: 13
  start-page: 1883
  year: 2013
  ident: ref_56
  article-title: Nitro-Aromatic Explosive Sensing Using GaN Nanowire-Titania Nanocluster Hybrids
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2241423
– ident: ref_50
– volume: 79
  start-page: 47
  year: 2005
  ident: ref_52
  article-title: The surface and materials science of tin oxide
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2005.09.002
– volume: 115
  start-page: 121602
  year: 2019
  ident: ref_60
  article-title: High-performance room-temperature TiO2 -functionalized GaN nanowire gas sensors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5116677
– volume: 209
  start-page: 52
  year: 2014
  ident: ref_37
  article-title: Platinum/porous GaN nanonetwork metal-semiconductor Schottky diode for room temperature hydrogen sensor
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2014.01.014
– volume: 22
  start-page: 295503
  year: 2011
  ident: ref_55
  article-title: Highly selective GaN-nanowire/TiO 2 -nanocluster hybrid sensors for detection of benzene and related environment pollutants
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/29/295503
– volume: 6
  start-page: 1908
  year: 2003
  ident: ref_14
  article-title: Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures—Part B: Sensor applications
  publication-title: Phys. Stat. Solidi (c)
  doi: 10.1002/pssc.200303139
– volume: 123
  start-page: 1040
  year: 2007
  ident: ref_80
  article-title: Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.11.008
– volume: 36
  start-page: 2313
  year: 2011
  ident: ref_27
  article-title: Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the Ga2Pd5 nanodot functionalization
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.11.050
– volume: 119
  start-page: 21251
  year: 2015
  ident: ref_51
  article-title: Localized Charge Transfer Process and Surface Band Bending in Methane Sensing by GaN Nanowires
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06971
– ident: ref_64
– ident: ref_48
  doi: 10.1109/TRANSDUCERS.2019.8808695
– volume: 16
  start-page: R961
  year: 2004
  ident: ref_11
  article-title: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/16/29/R02
– volume: 11
  start-page: 104
  year: 2015
  ident: ref_83
  article-title: Harsh photovoltaics using InGaN/GaN multiple quantum well schemes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.013
– ident: ref_19
– volume: 69
  start-page: 1
  year: 2010
  ident: ref_21
  article-title: Nanostructured Ceramic Materials for Chemical Sensors: Present Status and Future Prospects
  publication-title: Trans. Indian Ceram. Soc.
  doi: 10.1080/0371750X.2010.11090816
– volume: 150
  start-page: 2053
  year: 2010
  ident: ref_38
  article-title: Room-temperature gas sensors based on gallium nitride nanoparticles
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2010.08.007
– volume: 22
  start-page: 1614
  year: 2015
  ident: ref_34
  article-title: Room temperature hydrogen sensing performances of multiple networked GaN nanowire sensors codecorated with Au and Pt nanoparticles
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-015-2678-4
– volume: 5
  start-page: 20666
  year: 2017
  ident: ref_81
  article-title: Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA07001B
– volume: 95
  start-page: 142106
  year: 2009
  ident: ref_69
  article-title: UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3243458
– volume: 20
  start-page: 6020
  year: 2020
  ident: ref_71
  article-title: Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2972542
– volume: 7
  start-page: 51027
  year: 2017
  ident: ref_74
  article-title: Adsorption of gas molecules on a graphitic GaN sheet and its implications for molecule sensors
  publication-title: RSC Adv.
  doi: 10.1039/C7RA11106A
– volume: 32
  start-page: 431
  year: 1953
  ident: ref_43
  article-title: Acute Methyl Alcohol Poisoning: A Review Based on Experiences in an Outbreak of 323 Cases
  publication-title: Medicine
  doi: 10.1097/00005792-195312000-00002
– volume: 116
  start-page: 11877
  year: 2016
  ident: ref_82
  article-title: Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00187
SSID ssj0023338
Score 2.5448859
SecondaryResourceType review_article
Snippet In the last two decades, GaN nanostructures of various forms like nanowires (NWs), nanotubes (NTs), nanofibers (NFs), nanoparticles (NPs) and nanonetworks...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3889
SubjectTerms Alcohol
Atoms & subatomic particles
Carbon
Chemical vapor deposition
density-functional theory (DFT)
gallium nitride (GaN)
gas sensing
Gases
Hydrogen
Internet of Things
Molecular beam epitaxy
Nanoparticles
nanostructure
Nanowires
Nitrogen dioxide
Outdoor air quality
response/recovery time
Review
Semiconductors
sensitivity
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnqIwUEAc4FCxJmmScgMEQ0gMJEDiVuVVmDQ6xLb_j9120yohceHa-pDaceyvdj4TciJ8ql2BXeK2cLHgUsba-yQ2sOoud6n2Am8jP_Tl3au4f0vfFkZ9YU9YTQ9cK-5cu8yHNIPDNighOUSngnNVQNosNHNJdY8cwtgMTDVQiwPyqnmEOID68zFDGjuNs9wXok9F0t_KLNt9kQuB5nadrDUZIr2sV7ZBlkK5SVYXeAO3yGPPDIeD6SftDybfAx_oac_0zyiclKOaD3YKIJqa0tMXrAPQnhnTZ-xUL9_pE_59_0Ya1Qt6SevSwDZ5vb15ub6Lm8kIsQP4NomtU8EzDw6XcKMyyIKQassaSB8SozRHz-KZEYVLWCgMwBQhWcZUV1mpbTfjO2S5HJVhl1BjDVfdoKTFXjfDbOYYc6l0XikP2UxETmcay11DG47TK4Y5wAdUbj5XbkSO56JfNVfGb0JXqPa5ANJbVw_A6Hlj9Pwvo0ekMzNa3vjcOMeLLrIqXEbkaP4avAVLIKYMo2ktg5VKLSKiWsZuLaj9phx8VLzbCid1i3TvP75gn6wwRO5I0ck7ZBk2RziA9GZiD6ud_AMvd_Wy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABUR4iUCqDOJRD1I3t2A4XVCp2KyQWJFqpt8ivlJWWpOzj_zOTZMNGQr3GI8Wa8djzecbfALyXITe-oipxV_lUCqVSE0KWWpz1RPjcBEmvkb_N1cWV_HqdX_cXbuu-rHK3J7YbdWg83ZGf0jMG1aalPt3-SalrFGVX-xYa9-FBxnEl0Uvx6WwAXALxV8cmJBDan645kdkZ6ui-dwa1VP2j-HJcHbl33EyfwOM-TmRnnWEP4V6sn8KjPfbAZ_B9ZpfLxfY3my82q0WI7GRm5x8Y7pdNxwq7RSjNbB3YJWUD2Myu2U-qV69v2A-6g18RmepHdsa6BMFzuJp-uTy_SPv-CKlHELdJndcx8IBulwmrC4yFiHDLWQwiMquNIP8ShZWVz3isLIIVqXjB9UQ7ZdykEC_goG7q-BKYdVboSdTKUcWb5a7wnPtc-aB1wJgmgZOdxkrfk4dTD4tliSCClFsOyk3g3SB62zFm_E_oM6l9ECCS6_ZDs7ope58pjS9CzAs8Z6OWSmBgUgmhK0RM0nCf6QSOdkYre89bl__WSQJvh2H0GUqE2Do2206G8pVGJqBHxh5NaDxSL3617Nua-nXL_NXdP38NDzkhc6LgFEdwgGaPbzB82bjjdo3-BSkj7sU
  priority: 102
  providerName: ProQuest
Title Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review
URI https://www.proquest.com/docview/2424605295
https://www.proquest.com/docview/2424437284
https://pubmed.ncbi.nlm.nih.gov/PMC7412445
https://doaj.org/article/8c9de59341e7463293f337f642482c17
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ygJIeSp_EbbqopYf04HYtyZJcKCUp2Q2FbEObhb0ZWZLTha032Qe0_74ztneJIadefLDGIEYz1nya0TcA76RPjSupSrwoXSyFUrHxPoktzrovXGq8pNvIFyN1PpbfJulkBzY9NlsFLu-FdtRParyYffhz-_cLOvxnQpwI2T8uOZHUGZPtwj5uSJyM-0JukwlcIAxrSIW64gfwAIMXZZSQnV2pJu_vRJzdesk7G9DgMTxqI0d20iz1E9gJ1VN4eIdP8Bl8H9rZbLr-zUbT1WLqAzse2tF7hn_QecMTu0ZwzWzl2RXlB9jQLtlPqmCvrtklncoviF71EzthTcrgOYwHZ1dfz-O2Y0LsENat4sLp4LlHR0yE1RlGR0TBVVgMKxKrjSCPE5mVpUt4KC3CF6l4xnVfF8oU_Uy8gL1qXoVDYLawQveDVgXVwFleZI5zlyrntfYY5URwvNFY7lo6cepqMcsRVpCe862eI3i7Fb1pODTuEzoltW8FiPa6fjFfXOetF-XGZT6kGe68QUslMFQphdAlYihpuEt0BEebRcs3ppTTBRhVJzQjeLMdRi-i1IitwnzdyFAG08gIdGexOxPqjlTTXzUft6YO3jJ9-d9fvoIDTjCe-DrFEeyhRYTXGOusih7s6onGpxkMe7B_eja6_NGrzw16tY3_A9n-Af4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE8RKGAQSOUQNbGdOEFCqDy6W9ouSGylvaWO7ZSVlqTsQ4g_xW9kJo_tRkLceo1HijWep2f8DcBLaaPEFNQlnhfGlyKO_cTa0Ne460CYKLGSXiOfjOLhqfw8iSZb8Kd7C0NtlZ1NrA21rQzdke_RM4a4Lku9u_jp09Qoqq52IzQasThyv39hyrZ4e_gRz_cV5wefxh-GfjtVwDeY-iz93ChnuUVhDYVWKUYQBFOVa3S9oVaJIKkUqZaFCbkrNIb4MuYpV4HK4ySvwZfQ5F-TIpCE1a8mlwmewHyvQS8SIg32FpzA8xKaIL_h8-rRAL14tt-NueHeDm7DrTYuZfuNIN2BLVfehZsbaIX34MtAz2bT1Q82mi7nU-vY7kCPXjO0z1WDQrvC1J3p0rIxVR_YQC_YN-qPL8_ZV7rznxN46xu2z5qCxH04vRLOPYDtsirdQ2A610IFTsU5ddhpnqeGcxPFxiplMYbyYLfjWGZasHKamTHLMGkh5mZr5nrwYk160SB0_IvoPbF9TUCg2vWHan6etTqaJSa1LkrRrzslY4GBUCGEKjBDkwk3ofJgpzu0rNX0RXYplx48Xy-jjlLhRZeuWjU0VB9NpAeqd9i9DfVXyun3Gu1b0XxwGT36_8-fwfXh-OQ4Oz4cHT2GG5xuBQj-U-zANoqAe4Kh0zJ_Wssrg7OrVpC_ZCooxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBdEH8ROjta6iUB_CXXY32UQoUq13rdWzYAv3lm52N_XgTOp9UPqv-dc5k4_rBcS3vmYHsszO587sbwDeSBvGJqcu8Sw3vhRR5MfWBr7GXfeFCWMr6TXyt1F0cCq_jMPxBvxp38JQW2VrEytDbUtDd-Q9esYQVWWpXt60RRzvDz5c_PZpghRVWttxGrWIHLmrS0zf5ruH-3jWbzkffD75dOA3EwZ8g2nQws-McpZbFNxAaJVgNEGQVZlGNxxoFQuSUJFomZuAu1xjuC8jnnDVV1kUZxUQE5r_W0pIQe1kanyd7AnM_WokIyGSfm_OCUgvpmnya_6vGhPQiW27nZlrrm5wH-41MSrbq4XqAWy44iHcXUMufATfh3o6nSx_sdFkMZtYx3aGevSOoa0ua0TaJabxTBeWnVAlgg31nP2gXvninB3T_f-MgFzfsz1WFycew-mNcO4JbBZl4Z4C05kWqu9UlFG3neZZYjg3YWSsUhbjKQ92Wo6lpgEup_kZ0xQTGGJuumKuB69XpBc1Wse_iD4S21cEBLBdfShn52mjr2lsEuvCBH28UzISGBTlQqgcszUZcxMoD7baQ0sbrZ-n1zLqwavVMuorFWF04cplTUO10lh6oDqH3dlQd6WY_KyQvxXNCpfhs____CXcRtVIvx6Ojp7DHU4XBIQEKrZgEyXAvcAoapFtV-LK4Oym9eMvS_Ys_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gallium+Nitride+%28GaN%29+Nanostructures+and+Their+Gas+Sensing+Properties%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Khan%2C+Md+Ashfaque+Hossain&rft.au=Rao%2C+Mulpuri+V.&rft.date=2020-07-13&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=14&rft_id=info:doi/10.3390%2Fs20143889&rft_id=info%3Apmid%2F32668634&rft.externalDocID=PMC7412445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon