Fault Diagnosis of a Wind Turbine Gearbox Based on Improved Variational Mode Algorithm and Information Entropy

The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a s...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 23; no. 7; p. 794
Main Authors Zhang, Fan, Sun, Wenlei, Wang, Hongwei, Xu, Tiantian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.06.2021
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e23070794

Cover

Abstract The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods.
AbstractList The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods.
The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods.The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods.
Author Sun, Wenlei
Xu, Tiantian
Zhang, Fan
Wang, Hongwei
AuthorAffiliation School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China; zhangfan@stu.xju.edu.cn (F.Z.); wanghongwei@stu.xju.edu.cn (H.W.); xutiantian@stu.xju.edu.cn (T.X.)
AuthorAffiliation_xml – name: School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China; zhangfan@stu.xju.edu.cn (F.Z.); wanghongwei@stu.xju.edu.cn (H.W.); xutiantian@stu.xju.edu.cn (T.X.)
Author_xml – sequence: 1
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
– sequence: 2
  givenname: Wenlei
  surname: Sun
  fullname: Sun, Wenlei
– sequence: 3
  givenname: Hongwei
  surname: Wang
  fullname: Wang, Hongwei
– sequence: 4
  givenname: Tiantian
  surname: Xu
  fullname: Xu, Tiantian
BookMark eNp9kV1rFDEUhoNU7Ide-A8C3qiwNpNkspkboda2LlS8qXoZTibJNksm2SYz1f33prul2CJCIIeTJw_n8B6ivZiiReh1Qz4w1pFjSxmZk3nHn6GDhnTdjDNC9v6q99FhKStCKKONeIH2Gaek4YIdoHgOUxjxZw_LmIovODkM-KePBl9NWfto8YWFrNNv_AmKNThFvBjWOd3W-gdkD6NPEQL-mozFJ2GZsh-vBwxVsIgu5WEL4LM45rTevETPHYRiX93fR-j7-dnV6ZfZ5beLxenJ5aznXIwzkJyCc7R3VBBjHbTGGcHrEdBJQw2da91zy3Rbt-i05rThRtO-FY3gjWFHaLHzmgQrtc5-gLxRCbzaNlJeKsij74NV2raW61ZrPWdcOwaS9UJK5jh01hhWXe93rimuYfMLQngQNkTdBaAeAqjwxx28nvRgTW_r3hAeTfD4JfprtUy3SjIiBCdV8PZekNPNZMuoBl96GwJEm6aiaMslJ1xIWtE3T9BVmnIN445qeUukbEWl3u2oPqdSsnX_nf74Cdv7cRtgndWHf_z4A-6cxwY
CitedBy_id crossref_primary_10_1007_s42417_024_01532_8
crossref_primary_10_3390_e23111372
crossref_primary_10_3390_s22218129
crossref_primary_10_1007_s11071_024_10451_y
crossref_primary_10_3390_e26010048
crossref_primary_10_3390_e25030424
crossref_primary_10_3390_e24081135
crossref_primary_10_3390_pr10122532
crossref_primary_10_3390_app14145991
crossref_primary_10_3390_app14073129
crossref_primary_10_3390_e24040478
crossref_primary_10_1142_S021812662350247X
crossref_primary_10_1155_2022_7674421
crossref_primary_10_1007_s10462_023_10435_1
crossref_primary_10_3390_machines10060469
crossref_primary_10_3390_pr10091691
crossref_primary_10_1177_14759217241233711
crossref_primary_10_3390_e23091128
crossref_primary_10_3390_eng4030102
crossref_primary_10_3390_s24061726
crossref_primary_10_3390_pr11102981
crossref_primary_10_1007_s12145_025_01852_7
crossref_primary_10_1109_ACCESS_2023_3327707
Cites_doi 10.1016/j.crme.2019.08.003
10.1016/j.ymssp.2018.12.022
10.1016/j.compind.2019.103132
10.3390/s21051686
10.1016/j.dt.2020.09.001
10.1016/j.measurement.2019.107441
10.1016/j.ymssp.2006.02.009
10.1016/j.enconman.2019.02.086
10.1016/j.renene.2020.12.136
10.1016/j.compeleceng.2020.106754
10.1177/1475921719887496
10.1002/we.2570
10.3390/s18041278
10.1016/j.measurement.2021.109317
10.1016/j.measurement.2020.108333
10.1016/j.isatra.2020.12.054
10.1109/TCST.2013.2259235
10.1016/j.jclepro.2018.09.143
10.1016/j.measurement.2020.108580
10.7498/aps.68.20191005
10.1016/j.isatra.2019.01.038
10.3390/e22121347
10.1016/j.apacoust.2020.107738
10.1016/j.physa.2019.123641
10.1371/journal.pone.0248515
10.1109/TSP.2013.2288675
10.1080/21642583.2019.1708830
10.1155/2019/4954920
10.1016/j.measurement.2020.108224
10.1088/1361-6501/aba3f3
10.1109/TCST.2014.2322777
10.1016/j.measurement.2020.108402
10.1109/TCST.2014.2364956
10.1002/etep.2625
10.1016/j.measurement.2020.108067
10.1155/2020/8882653
10.1016/j.neucom.2018.05.002
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e23070794
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_be5e4b5bbb734bf3a83c6883f4a9edd3
10.3390/e23070794
PMC8306640
10_3390_e23070794
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c446t-a842aff2cf260defa5dfd64d646a98d2d27bbc4e3b54639bb4214db2c561641d3
IEDL.DBID UNPAY
ISSN 1099-4300
IngestDate Fri Oct 03 12:50:48 EDT 2025
Sun Oct 26 03:30:55 EDT 2025
Tue Sep 30 16:49:38 EDT 2025
Thu Sep 04 17:35:06 EDT 2025
Fri Jul 25 12:04:44 EDT 2025
Thu Oct 16 04:40:03 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-a842aff2cf260defa5dfd64d646a98d2d27bbc4e3b54639bb4214db2c561641d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/23/7/794/pdf?version=1624428256
PMID 34201463
PQID 2554508856
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_be5e4b5bbb734bf3a83c6883f4a9edd3
unpaywall_primary_10_3390_e23070794
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306640
proquest_miscellaneous_2548404682
proquest_journals_2554508856
crossref_primary_10_3390_e23070794
crossref_citationtrail_10_3390_e23070794
PublicationCentury 2000
PublicationDate 20210623
PublicationDateYYYYMMDD 2021-06-23
PublicationDate_xml – month: 6
  year: 2021
  text: 20210623
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dibaj (ref_14) 2019; 19
Ziani (ref_8) 2019; 347
Zhang (ref_12) 2020; 163
Wang (ref_35) 2021; 114
Sharma (ref_21) 2021; 24
Minhas (ref_9) 2020; 154
Odgaard (ref_4) 2013; 21
Ma (ref_6) 2021; 170
Li (ref_32) 2018; 205
ref_33
Yan (ref_20) 2007; 21
Badihi (ref_5) 2015; 23
Ding (ref_22) 2020; 2020
Xie (ref_36) 2020; 166
Yan (ref_18) 2019; 122
ref_37
Cheng (ref_10) 2019; 91
Zhou (ref_23) 2020; 31
Inturi (ref_7) 2021; 174
Casau (ref_3) 2014; 23
Pan (ref_13) 2021; 177
Fei (ref_30) 2019; 2019
Dragomiretskiy (ref_11) 2014; 62
ref_24
Zhao (ref_25) 2021; 168
Kumar (ref_17) 2021; 168
ref_1
Xu (ref_38) 2019; 68
Noshirvani (ref_2) 2018; 28
Yan (ref_31) 2018; 313
Fu (ref_15) 2019; 187
Zheng (ref_19) 2020; 545
ref_26
Xu (ref_27) 2020; 2020
Pang (ref_28) 2020; 87
Shao (ref_16) 2021; 173
Xue (ref_34) 2020; 8
Liang (ref_29) 2019; 113
References_xml – volume: 347
  start-page: 663
  year: 2019
  ident: ref_8
  article-title: Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector
  publication-title: Comptes Rendus Mécanique
  doi: 10.1016/j.crme.2019.08.003
– volume: 122
  start-page: 56
  year: 2019
  ident: ref_18
  article-title: Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.12.022
– volume: 113
  start-page: 103132
  year: 2019
  ident: ref_29
  article-title: Compound Fault Diagnosis of Gearboxes via Multi-label Convolutional Neural Network and Wavelet Transform
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.103132
– volume: 2020
  start-page: 3152174
  year: 2020
  ident: ref_27
  article-title: DC-NNMN: Across Components Fault Diagnosis Based on Deep Few-Shot Learning
  publication-title: Shock Vib.
– ident: ref_1
  doi: 10.3390/s21051686
– ident: ref_26
  doi: 10.1016/j.dt.2020.09.001
– volume: 154
  start-page: 107441
  year: 2020
  ident: ref_9
  article-title: A novel method to classify bearing faults by integrating standard deviation to refined composite multi-scale fuzzy entropy
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107441
– volume: 21
  start-page: 824
  year: 2007
  ident: ref_20
  article-title: Approximate Entropy as a diagnostic tool for machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.02.009
– volume: 187
  start-page: 356
  year: 2019
  ident: ref_15
  article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.02.086
– volume: 170
  start-page: 141
  year: 2021
  ident: ref_6
  article-title: A Novel Blind Deconvolution Based on Sparse Subspace Recoding for Condition Monitoring of Wind Turbine Gearbox
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.12.136
– volume: 87
  start-page: 106754
  year: 2020
  ident: ref_28
  article-title: Design and implementation of automatic fault diagnosis system for wind turbine
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106754
– volume: 19
  start-page: 1453
  year: 2019
  ident: ref_14
  article-title: Fine-tuned variational mode decomposition for fault diagnosis of rotary machinery
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719887496
– volume: 24
  start-page: 246
  year: 2021
  ident: ref_21
  article-title: Gear fault detection based on instantaneous frequency estimation using variational mode decomposition and permutation entropy under real speed scenarios
  publication-title: Wind Energy
  doi: 10.1002/we.2570
– ident: ref_24
  doi: 10.3390/s18041278
– volume: 177
  start-page: 109317
  year: 2021
  ident: ref_13
  article-title: Research on gear fault diagnosis based on feature fusion optimization and improved two hidden layer extreme learning machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109317
– volume: 168
  start-page: 108333
  year: 2021
  ident: ref_25
  article-title: Parallel multi-scale entropy and it’s application in rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108333
– volume: 114
  start-page: 470
  year: 2021
  ident: ref_35
  article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.12.054
– volume: 21
  start-page: 1168
  year: 2013
  ident: ref_4
  article-title: Fault-Tolerant Control of Wind Turbines: A Benchmark Model
  publication-title: IEEE Trans. Control. Syst. Technol.
  doi: 10.1109/TCST.2013.2259235
– volume: 205
  start-page: 909
  year: 2018
  ident: ref_32
  article-title: Short-term wind power prediction based on data mining technology and improved support vector machine method: A case study in Northwest China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.143
– volume: 173
  start-page: 108580
  year: 2021
  ident: ref_16
  article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108580
– volume: 68
  start-page: 292
  year: 2019
  ident: ref_38
  article-title: Application of the proposed optimized recursive variational mode decomposition in nonlinear decomposition
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.68.20191005
– volume: 91
  start-page: 218
  year: 2019
  ident: ref_10
  article-title: An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.01.038
– ident: ref_37
  doi: 10.3390/e22121347
– volume: 174
  start-page: 107738
  year: 2021
  ident: ref_7
  article-title: Comprehensive fault diagnostics of wind turbine gearbox through adaptive condition monitoring scheme
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107738
– volume: 545
  start-page: 123641
  year: 2020
  ident: ref_19
  article-title: Refined time-shift multiscale normalised dispersion entropy and its application to fault diagnosis of rolling bearing
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.123641
– ident: ref_33
  doi: 10.1371/journal.pone.0248515
– volume: 62
  start-page: 531
  year: 2014
  ident: ref_11
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_34
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 2019
  start-page: 4954920
  year: 2019
  ident: ref_30
  article-title: The Hybrid Method of VMD-PSR-SVD and Improved Binary PSO-KNN for Fault Diagnosis of Bearing
  publication-title: Shock. Vib.
  doi: 10.1155/2019/4954920
– volume: 166
  start-page: 108224
  year: 2020
  ident: ref_36
  article-title: Comprehensive fatigue estimation and fault diagnosis based on Refined Generalized Multi-Scale Entropy method of centrifugal fan blades
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108224
– volume: 31
  start-page: 125004
  year: 2020
  ident: ref_23
  article-title: A parameter-adaptive variational mode decomposition approach based on weighted fuzzy-distribution entropy for noise source separation
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aba3f3
– volume: 23
  start-page: 245
  year: 2014
  ident: ref_3
  article-title: A Set-Valued Approach to FDI and FTC of Wind Turbines
  publication-title: IEEE Trans. Control. Syst. Technol.
  doi: 10.1109/TCST.2014.2322777
– volume: 168
  start-page: 108402
  year: 2021
  ident: ref_17
  article-title: Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108402
– volume: 23
  start-page: 1351
  year: 2015
  ident: ref_5
  article-title: Wind Turbine Fault Diagnosis and Fault-Tolerant Torque Load Control Against Actuator Faults
  publication-title: IEEE Trans. Control. Syst. Technol.
  doi: 10.1109/TCST.2014.2364956
– volume: 28
  start-page: e2625
  year: 2018
  ident: ref_2
  article-title: A robust fault detection and isolation filter for the pitch system of a variable speed wind turbine
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2625
– volume: 163
  start-page: 108067
  year: 2020
  ident: ref_12
  article-title: A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108067
– volume: 2020
  start-page: 8882653
  year: 2020
  ident: ref_22
  article-title: Gear Fault Diagnosis Based on VMD Sample Entropy and Discrete Hopfield Neural Network
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/8882653
– volume: 313
  start-page: 47
  year: 2018
  ident: ref_31
  article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.002
SSID ssj0023216
Score 2.3874245
Snippet The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 794
SubjectTerms Algorithms
Bandwidths
Bearings
Complexity
Decomposition
Energy dissipation
Entropy
Entropy (Information theory)
Fault diagnosis
Fault tolerance
Feature extraction
Gearboxes
Kurtosis
Methods
Noise
Optimization
Parameters
Search algorithms
Sliding friction
sparrow search algorithm
support vector machine
Support vector machines
Time series
time-shifting multi-scale sample entropy
Turbines
variational mode decomposition
Wavelet transforms
wind turbine gearbox
Wind turbines
Working conditions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBIEAESmUeBy5RE3vi2McWulRIcGqht8hPulKarLaJoP--4yQbNQjEBSmHKB5F9sxYns8ef0PIOyWdtapUqYcipOA1pFIoSFXhjHKeWxhueH_5Kk7P4fNFcXGn1FfMCRvpgUfFHRpfeDCFMabkYALXklshJQ-glXdu4PnMpNqBqQlqcZaLkUeII6g_9DHdOSsVLFafgaR_EVn-nhd5v282-uanrus7i87qEXk4RYv0aOzlY3LPN09Is9J93dGPY5Lc-pq2gWr6HcE1Peu3iHQ9_YT-a9pf9BjXKEfbho57B_j-DbHxtP9HYx00elT_aLfr7vKKavzBdDspCtCTmMS-uXlKzlcnZx9O06lsQhoV26VaAtMhMBsQqzgfdOGCE4CP0Gga5lhpjAXPTaTCV8YAy8EZZjGUEpA7_ozsNW3jnxOqs-CFtzxnpQblMJr0zAM4cIyHkLuEvN-ps7ITp3gsbVFXiC2i5qtZ8wl5M4tuRiKNPwkdR5vMApH7eviAHlFNHlH9yyMSsr-zaDVNyOsKkRPEWLQQCXk9N-NUiucjuvFtH2UA4S4IyRJSLjxh0aFlS7O-HEi5JWIvAVlC3s4-8_dxvvgf43xJHrCYYJOJlPF9stdte_8KI6TOHAyT4RYO3hPH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAXBAJESkHmceASdWNPnPhQoS7sUiGxQqiF3iI7tttKIVm2iUr_PeO8IAiQcojiUWSPx_Z89vgbQl7J1OS5TGRoIXYhWAVhKiSEMjZaGstzaG94f1yL41P4cBaf7ZD1cBfGh1UOc2I7UZsq93vkB-j6gncmYvFm8z30WaP86eqQQkP1qRXMYUsxdovsMs-MNSO7i-X60-cRgnEWiY5fiCPYP7A-DHqeSJisSi15_8Tj_DNe8nZTbtTNtSqK3xaj1T1yt_ci6VHX7ffJji0fkHKlmqKm77rgucsrWjmq6FcE3fSk2SICtvQ92rWuftAFrl2GViXt9hTw_Qti5n5fkPr8aPSoOMfm1xffqMIf9LeWvABd-uD2zc1Dcrpanrw9Dvt0CqFXeB2qFJhyjuUOMYyxTsXGGQH4CIVdxgxLtM7Bcu0p8qXWwCIwmuXoYgmIDH9EZmVV2seEqrmzwuY8YokCadDLtMwCGDCMOxeZgLwe1JnlPde4T3lRZIg5vOazUfMBeTGKbjqCjb8JLXyfjAKeE7v9UG3Ps36IZdrGFnSstU44aMdVynORptyBktYYHpD9oUezfqBeZb_MKiDPx2IcYv7cRJW2arwMIAwGkbKAJBNLmFRoWlJeXrRk3SliMgHzgLwcbebf7dz7fxWfkDvMh9TMRcj4PpnV28Y-RZ-o1s96Q_8JJtgQMg
  priority: 102
  providerName: ProQuest
Title Fault Diagnosis of a Wind Turbine Gearbox Based on Improved Variational Mode Algorithm and Information Entropy
URI https://www.proquest.com/docview/2554508856
https://www.proquest.com/docview/2548404682
https://pubmed.ncbi.nlm.nih.gov/PMC8306640
https://www.mdpi.com/1099-4300/23/7/794/pdf?version=1624428256
https://doaj.org/article/be5e4b5bbb734bf3a83c6883f4a9edd3
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9MwDI-47QFe-BAgCscUPh546W1N3LR9QhtsOyExndANxlOVNMndxGinrQWOvx6n7SZ2AgkhVVXVuFVS27V_juMQ8jKJdZYlUeIbCK0PRoIfiwT8JNQq0YZnUK_wfj8Tp3N4twgXbcBt26ZVIhRf1j9pN2vjAx8M-oz3oz6KTn-t7etvbSQpEGib3NpLcUS6IkRfvEO689nZ8HM9xdk-25QT4ojt-8ZlPQ-iBA6MUF2r_8DBvJ4eebPK1_Lqu1ytfrM9kzsk3fW6STn5clKV6iT7ea2g4_8P6y653bqldNjI0T1yw-T3ST6R1aqkb5tsvOWWFpZK-glRPD2vNgipDZ2ioqjiBx2hMdS0yGkTpMDrjwjC20AjdRuu0eHqotgsy8uvVOIL2mVQjoCOXbb8-uoBmU_G529O_XZ_Bt9xsPRlDExayzKLoEgbK0NttQA8hEQZYJpFSmVguHI19xOlgAWgFcvQZxMQaP6QdPIiN48IlQNrhMl4wCIJicYPZJgB0KAZtzbQHnm1Y1iatcXL3R4aqxRBjONtuuetR57vSddNxY4_EY0c1_cErsh2faPYXKStzqbKhAZUqJSKOCjLZcwzEcfcgkyM1twjxzuZSVvN36YI0cA5vaHwyLN9M-qsm4iRuSkqRwOIq0HEzCPRgawddOiwJV9e1tW_YwR5AgYeebGXyr-P8_E_UT0ht5hL1RkIn_Fj0ik3lXmKvlapeuQonkx7pDsaz84-9OqIBZ6ni6DXqtov-hErZA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXBAJEoIB5SVyi7toTJz5UqEt32dJ2hdAWegt2bLeVlmTZh8r-OX4b42wSCAJulXKI4lFkj8f299njGUJeysRkmYxlaCFyIVgFYSIkhDIyWhrLMyhveJ-MxPAU3p9FZxvkR30XxrtV1nNiOVGbIvN75LsIfcGDiUi8mX4LfdYof7pap9BQVWoFs1eGGKsudhzZ1RVSuPne4QH29yvGBv3x22FYZRkIfT0WoUqAKedY5hDaG-tUZJwRgI9Q2BJmWKx1BpZrHzleag2sC0azDJGHgK7h-N8bZAs4SCR_W73-6MPHhvJx1hXreEacy86u9W7XnVhCaxUskwW0EO6f_pnby3yqVldqMvlt8RvcJrcq1Er312Z2h2zY_C7JB2o5WdCDtbPe5ZwWjir6GUk-HS9nyLgtfYcK0sV32sO10tAip-s9DHz_hBy92oekPh8b3Z-co7oXF1-pwh9Ut6S8AO17Z_rp6h45vRbF3iebeZHbB4SqjrPCZrzLYgXSIKq1zAIYMIw71zUBeV2rM82q2OY-xcYkRY7jNZ82mg_I80Z0ug7o8Tehnu-TRsDH4C4_FLPztBrSqbaRBR1prWMO2nGV8EwkCXegpDWGB2Sn7tG0mhjm6S8zDsizphiHtD-nUbktll4GkHaDSFhA4pYltCrULskvL8rg4AlyQAGdgLxobObf7Xz4_yo-JdvD8clxenw4OnpEbjLvztMRIeM7ZHMxW9rHiMcW-kll9JR8ue5x9hOJrE5e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYBLBQJEoIB5SVyizdoTJz4g1LJNWwoVhxZ6C3Zst5W2ybIPlf1r_DrGecEi4FYphygeRfZ4xv7GngchL2VqikImMrQQuxCsgjAVEkIZGy2N5QXUEd4fD8XeMbw_iU_WyI8uFsa7VXZrYr1Qm6rwZ-QDhL7gwUQsBq51i_g0yt5OvoW-gpS_ae3KaTQicmCXl2i-zd7sj3CuXzGW7Ry92wvbCgOh78M8VCkw5RwrHMJ6Y52KjTMC8BEKR8EMS7QuwHLts8ZLrYENwWhWIOoQMDQc_3uNXE98FncfpZ7t9sYeZ0PRZDLiXEYD6x2uo0TCyv5XlwlYwbZ_embeXJQTtbxU4_Fv2152m2y0eJVuNQJ2h6zZ8i4pM7UYz-mocdM7n9HKUUW_oHlPjxZTtLUt3UX26Oo73cZd0tCqpM3pBb5_Ruu8PYGkvhIb3RqfInPnZxdU4Q_a-ChPQHe8G_1keY8cXwlb75P1sirtA0JV5KywBR-yRIE0iGctswAGDOPODU1AXnfszIs2q7kvrjHO0brxnM97zgfkeU86aVJ5_I1o289JT-Czb9cfqulp3ipzrm1sQcda64SDdlylvBBpyh0oaY3hAdnsZjRvl4RZ_kuAA_Ksb0Zl9jc0qrTVwtMAGtwgUhaQZEUSVjq02lKen9VpwVO0_gREAXnRy8y_x_nw_118Sm6gduUf9g8PHpFbzPvxRCJkfJOsz6cL-xiB2Fw_qSWekq9XrWI_AX48S_g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge4ALBQEiUJD5OHBJN2tPnOSEttClQqLi0IVyiuzYblddktVuUii_nnHijUgFEkLKIUomkZ2Zycyzx8-EvMpSXRRZkoUGYhuCkRCmIoMwi7XKtOEFtCu8Px6Lozl8OI1P_YDbxpdVIhRftD9pN2sTAo-iMePjZIymM15p--bSjyRNBMYmt_ZS3CQ7IsZcfER25sefpl_bKU7_bEcnxBHbj42reo6SDAZBqOXqHySY18sjbzXlSl59l8vlb7Fntkvybau7kpOL_aZW-8XPa4SO_9-tu-SOT0vptLOje-SGKe-TciabZU3fddV4iw2tLJX0C6J4etKsEVIb-h4dRVU_6AEGQ02rknaDFHj-GUG4H2ikbsM1Ol2eVetFff6NSnyBXwblBOihq5ZfXT0g89nhyduj0O_PEDoN1qFMgUlrWWERFGljZaytFoCHkGgDTLNEqQIMV45zP1MK2AS0YgXmbAImmj8ko7IqzSNCZWSNMAWfsERCpvEDGWYANGjGrZ3ogLzeKiwvPHm520NjmSOIcbrNe90G5EUvuuoYO_4kdOC03gs4ku32QrU-y73P5srEBlSslEo4KMtlyguRptyCzIzWPCB7W5vJvedvcoRo4JLeWATkeX8bfdZNxMjSVI2TAcTVIFIWkGRga4MGDe-Ui_OW_TtFkCcgCsjL3ir_3s_H_yT1hNxmrlQnEiHje2RUrxvzFHOtWj3zDvUL1Wcm_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+of+a+Wind+Turbine+Gearbox+Based+on+Improved+Variational+Mode+Algorithm+and+Information+Entropy&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Fan&rft.au=Sun%2C+Wenlei&rft.au=Wang%2C+Hongwei&rft.au=Xu%2C+Tiantian&rft.date=2021-06-23&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=23&rft.issue=7&rft.spage=794&rft_id=info:doi/10.3390%2Fe23070794&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e23070794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon