Fault Diagnosis of a Wind Turbine Gearbox Based on Improved Variational Mode Algorithm and Information Entropy
The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a s...
Saved in:
| Published in | Entropy (Basel, Switzerland) Vol. 23; no. 7; p. 794 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
23.06.2021
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1099-4300 1099-4300 |
| DOI | 10.3390/e23070794 |
Cover
| Abstract | The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods. |
|---|---|
| AbstractList | The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods. The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods.The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault diagnosis method based on improved variational mode decomposition (IVMD), combined with time-shift multi-scale sample entropy (TSMSE) and a sparrow search algorithm-based support vector machine (SSA-SVM), is proposed. Firstly, a novel algorithm, IVMD, is presented for solving the problem where VMD parameters (K and α) need to be selected in advance, which mainly contains two steps: the maximum kurtosis index is employed to preliminarily determine a series of local optimal decomposition parameters (K and α), then from the local parameters, the global optimum parameters are selected based on the minimum energy loss coefficient (ELC). After decomposition by IVMD, the raw signal is divided into K intrinsic mode functions (IMFs), the optimal IMF(s) with abundant fault information is (are) chosen based on the minimum envelopment entropy criterion. Secondly, the time-shift technique is introduced to information entropy, the time-shift multi-scale sample entropy algorithm is applied for the analysis of the complexity of the chosen optimal IMF and extract fault feature vectors. Finally, the sparrow search algorithm, which takes the classification error rate of SVM as the fitness function, is used to adaptively optimize the SVM parameters. Next, the extracted TSMSEs are input into the SSA-SVM model as the feature vector to identify the gear signal types under different conditions. The simulation and experimental results confirm that the proposed method is feasible and superior in gearbox fault diagnosis when compared with other methods. |
| Author | Sun, Wenlei Xu, Tiantian Zhang, Fan Wang, Hongwei |
| AuthorAffiliation | School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China; zhangfan@stu.xju.edu.cn (F.Z.); wanghongwei@stu.xju.edu.cn (H.W.); xutiantian@stu.xju.edu.cn (T.X.) |
| AuthorAffiliation_xml | – name: School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China; zhangfan@stu.xju.edu.cn (F.Z.); wanghongwei@stu.xju.edu.cn (H.W.); xutiantian@stu.xju.edu.cn (T.X.) |
| Author_xml | – sequence: 1 givenname: Fan surname: Zhang fullname: Zhang, Fan – sequence: 2 givenname: Wenlei surname: Sun fullname: Sun, Wenlei – sequence: 3 givenname: Hongwei surname: Wang fullname: Wang, Hongwei – sequence: 4 givenname: Tiantian surname: Xu fullname: Xu, Tiantian |
| BookMark | eNp9kV1rFDEUhoNU7Ide-A8C3qiwNpNkspkboda2LlS8qXoZTibJNksm2SYz1f33prul2CJCIIeTJw_n8B6ivZiiReh1Qz4w1pFjSxmZk3nHn6GDhnTdjDNC9v6q99FhKStCKKONeIH2Gaek4YIdoHgOUxjxZw_LmIovODkM-KePBl9NWfto8YWFrNNv_AmKNThFvBjWOd3W-gdkD6NPEQL-mozFJ2GZsh-vBwxVsIgu5WEL4LM45rTevETPHYRiX93fR-j7-dnV6ZfZ5beLxenJ5aznXIwzkJyCc7R3VBBjHbTGGcHrEdBJQw2da91zy3Rbt-i05rThRtO-FY3gjWFHaLHzmgQrtc5-gLxRCbzaNlJeKsij74NV2raW61ZrPWdcOwaS9UJK5jh01hhWXe93rimuYfMLQngQNkTdBaAeAqjwxx28nvRgTW_r3hAeTfD4JfprtUy3SjIiBCdV8PZekNPNZMuoBl96GwJEm6aiaMslJ1xIWtE3T9BVmnIN445qeUukbEWl3u2oPqdSsnX_nf74Cdv7cRtgndWHf_z4A-6cxwY |
| CitedBy_id | crossref_primary_10_1007_s42417_024_01532_8 crossref_primary_10_3390_e23111372 crossref_primary_10_3390_s22218129 crossref_primary_10_1007_s11071_024_10451_y crossref_primary_10_3390_e26010048 crossref_primary_10_3390_e25030424 crossref_primary_10_3390_e24081135 crossref_primary_10_3390_pr10122532 crossref_primary_10_3390_app14145991 crossref_primary_10_3390_app14073129 crossref_primary_10_3390_e24040478 crossref_primary_10_1142_S021812662350247X crossref_primary_10_1155_2022_7674421 crossref_primary_10_1007_s10462_023_10435_1 crossref_primary_10_3390_machines10060469 crossref_primary_10_3390_pr10091691 crossref_primary_10_1177_14759217241233711 crossref_primary_10_3390_e23091128 crossref_primary_10_3390_eng4030102 crossref_primary_10_3390_s24061726 crossref_primary_10_3390_pr11102981 crossref_primary_10_1007_s12145_025_01852_7 crossref_primary_10_1109_ACCESS_2023_3327707 |
| Cites_doi | 10.1016/j.crme.2019.08.003 10.1016/j.ymssp.2018.12.022 10.1016/j.compind.2019.103132 10.3390/s21051686 10.1016/j.dt.2020.09.001 10.1016/j.measurement.2019.107441 10.1016/j.ymssp.2006.02.009 10.1016/j.enconman.2019.02.086 10.1016/j.renene.2020.12.136 10.1016/j.compeleceng.2020.106754 10.1177/1475921719887496 10.1002/we.2570 10.3390/s18041278 10.1016/j.measurement.2021.109317 10.1016/j.measurement.2020.108333 10.1016/j.isatra.2020.12.054 10.1109/TCST.2013.2259235 10.1016/j.jclepro.2018.09.143 10.1016/j.measurement.2020.108580 10.7498/aps.68.20191005 10.1016/j.isatra.2019.01.038 10.3390/e22121347 10.1016/j.apacoust.2020.107738 10.1016/j.physa.2019.123641 10.1371/journal.pone.0248515 10.1109/TSP.2013.2288675 10.1080/21642583.2019.1708830 10.1155/2019/4954920 10.1016/j.measurement.2020.108224 10.1088/1361-6501/aba3f3 10.1109/TCST.2014.2322777 10.1016/j.measurement.2020.108402 10.1109/TCST.2014.2364956 10.1002/etep.2625 10.1016/j.measurement.2020.108067 10.1155/2020/8882653 10.1016/j.neucom.2018.05.002 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/e23070794 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_be5e4b5bbb734bf3a83c6883f4a9edd3 10.3390/e23070794 PMC8306640 10_3390_e23070794 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c446t-a842aff2cf260defa5dfd64d646a98d2d27bbc4e3b54639bb4214db2c561641d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Sun Oct 26 03:30:55 EDT 2025 Tue Sep 30 16:49:38 EDT 2025 Thu Sep 04 17:35:06 EDT 2025 Fri Jul 25 12:04:44 EDT 2025 Thu Oct 16 04:40:03 EDT 2025 Thu Apr 24 22:53:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-a842aff2cf260defa5dfd64d646a98d2d27bbc4e3b54639bb4214db2c561641d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/23/7/794/pdf?version=1624428256 |
| PMID | 34201463 |
| PQID | 2554508856 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_be5e4b5bbb734bf3a83c6883f4a9edd3 unpaywall_primary_10_3390_e23070794 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306640 proquest_miscellaneous_2548404682 proquest_journals_2554508856 crossref_primary_10_3390_e23070794 crossref_citationtrail_10_3390_e23070794 |
| PublicationCentury | 2000 |
| PublicationDate | 20210623 |
| PublicationDateYYYYMMDD | 2021-06-23 |
| PublicationDate_xml | – month: 6 year: 2021 text: 20210623 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Dibaj (ref_14) 2019; 19 Ziani (ref_8) 2019; 347 Zhang (ref_12) 2020; 163 Wang (ref_35) 2021; 114 Sharma (ref_21) 2021; 24 Minhas (ref_9) 2020; 154 Odgaard (ref_4) 2013; 21 Ma (ref_6) 2021; 170 Li (ref_32) 2018; 205 ref_33 Yan (ref_20) 2007; 21 Badihi (ref_5) 2015; 23 Ding (ref_22) 2020; 2020 Xie (ref_36) 2020; 166 Yan (ref_18) 2019; 122 ref_37 Cheng (ref_10) 2019; 91 Zhou (ref_23) 2020; 31 Inturi (ref_7) 2021; 174 Casau (ref_3) 2014; 23 Pan (ref_13) 2021; 177 Fei (ref_30) 2019; 2019 Dragomiretskiy (ref_11) 2014; 62 ref_24 Zhao (ref_25) 2021; 168 Kumar (ref_17) 2021; 168 ref_1 Xu (ref_38) 2019; 68 Noshirvani (ref_2) 2018; 28 Yan (ref_31) 2018; 313 Fu (ref_15) 2019; 187 Zheng (ref_19) 2020; 545 ref_26 Xu (ref_27) 2020; 2020 Pang (ref_28) 2020; 87 Shao (ref_16) 2021; 173 Xue (ref_34) 2020; 8 Liang (ref_29) 2019; 113 |
| References_xml | – volume: 347 start-page: 663 year: 2019 ident: ref_8 article-title: Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector publication-title: Comptes Rendus Mécanique doi: 10.1016/j.crme.2019.08.003 – volume: 122 start-page: 56 year: 2019 ident: ref_18 article-title: Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.12.022 – volume: 113 start-page: 103132 year: 2019 ident: ref_29 article-title: Compound Fault Diagnosis of Gearboxes via Multi-label Convolutional Neural Network and Wavelet Transform publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.103132 – volume: 2020 start-page: 3152174 year: 2020 ident: ref_27 article-title: DC-NNMN: Across Components Fault Diagnosis Based on Deep Few-Shot Learning publication-title: Shock Vib. – ident: ref_1 doi: 10.3390/s21051686 – ident: ref_26 doi: 10.1016/j.dt.2020.09.001 – volume: 154 start-page: 107441 year: 2020 ident: ref_9 article-title: A novel method to classify bearing faults by integrating standard deviation to refined composite multi-scale fuzzy entropy publication-title: Measurement doi: 10.1016/j.measurement.2019.107441 – volume: 21 start-page: 824 year: 2007 ident: ref_20 article-title: Approximate Entropy as a diagnostic tool for machine health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.02.009 – volume: 187 start-page: 356 year: 2019 ident: ref_15 article-title: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid GWO-SCA optimization and ELM publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.02.086 – volume: 170 start-page: 141 year: 2021 ident: ref_6 article-title: A Novel Blind Deconvolution Based on Sparse Subspace Recoding for Condition Monitoring of Wind Turbine Gearbox publication-title: Renew. Energy doi: 10.1016/j.renene.2020.12.136 – volume: 87 start-page: 106754 year: 2020 ident: ref_28 article-title: Design and implementation of automatic fault diagnosis system for wind turbine publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106754 – volume: 19 start-page: 1453 year: 2019 ident: ref_14 article-title: Fine-tuned variational mode decomposition for fault diagnosis of rotary machinery publication-title: Struct. Health Monit. doi: 10.1177/1475921719887496 – volume: 24 start-page: 246 year: 2021 ident: ref_21 article-title: Gear fault detection based on instantaneous frequency estimation using variational mode decomposition and permutation entropy under real speed scenarios publication-title: Wind Energy doi: 10.1002/we.2570 – ident: ref_24 doi: 10.3390/s18041278 – volume: 177 start-page: 109317 year: 2021 ident: ref_13 article-title: Research on gear fault diagnosis based on feature fusion optimization and improved two hidden layer extreme learning machine publication-title: Measurement doi: 10.1016/j.measurement.2021.109317 – volume: 168 start-page: 108333 year: 2021 ident: ref_25 article-title: Parallel multi-scale entropy and it’s application in rolling bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2020.108333 – volume: 114 start-page: 470 year: 2021 ident: ref_35 article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.054 – volume: 21 start-page: 1168 year: 2013 ident: ref_4 article-title: Fault-Tolerant Control of Wind Turbines: A Benchmark Model publication-title: IEEE Trans. Control. Syst. Technol. doi: 10.1109/TCST.2013.2259235 – volume: 205 start-page: 909 year: 2018 ident: ref_32 article-title: Short-term wind power prediction based on data mining technology and improved support vector machine method: A case study in Northwest China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.143 – volume: 173 start-page: 108580 year: 2021 ident: ref_16 article-title: Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing publication-title: Measurement doi: 10.1016/j.measurement.2020.108580 – volume: 68 start-page: 292 year: 2019 ident: ref_38 article-title: Application of the proposed optimized recursive variational mode decomposition in nonlinear decomposition publication-title: Acta Phys. Sin. doi: 10.7498/aps.68.20191005 – volume: 91 start-page: 218 year: 2019 ident: ref_10 article-title: An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.01.038 – ident: ref_37 doi: 10.3390/e22121347 – volume: 174 start-page: 107738 year: 2021 ident: ref_7 article-title: Comprehensive fault diagnostics of wind turbine gearbox through adaptive condition monitoring scheme publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107738 – volume: 545 start-page: 123641 year: 2020 ident: ref_19 article-title: Refined time-shift multiscale normalised dispersion entropy and its application to fault diagnosis of rolling bearing publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123641 – ident: ref_33 doi: 10.1371/journal.pone.0248515 – volume: 62 start-page: 531 year: 2014 ident: ref_11 article-title: Variational Mode Decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 8 start-page: 22 year: 2020 ident: ref_34 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – volume: 2019 start-page: 4954920 year: 2019 ident: ref_30 article-title: The Hybrid Method of VMD-PSR-SVD and Improved Binary PSO-KNN for Fault Diagnosis of Bearing publication-title: Shock. Vib. doi: 10.1155/2019/4954920 – volume: 166 start-page: 108224 year: 2020 ident: ref_36 article-title: Comprehensive fatigue estimation and fault diagnosis based on Refined Generalized Multi-Scale Entropy method of centrifugal fan blades publication-title: Measurement doi: 10.1016/j.measurement.2020.108224 – volume: 31 start-page: 125004 year: 2020 ident: ref_23 article-title: A parameter-adaptive variational mode decomposition approach based on weighted fuzzy-distribution entropy for noise source separation publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aba3f3 – volume: 23 start-page: 245 year: 2014 ident: ref_3 article-title: A Set-Valued Approach to FDI and FTC of Wind Turbines publication-title: IEEE Trans. Control. Syst. Technol. doi: 10.1109/TCST.2014.2322777 – volume: 168 start-page: 108402 year: 2021 ident: ref_17 article-title: Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects publication-title: Measurement doi: 10.1016/j.measurement.2020.108402 – volume: 23 start-page: 1351 year: 2015 ident: ref_5 article-title: Wind Turbine Fault Diagnosis and Fault-Tolerant Torque Load Control Against Actuator Faults publication-title: IEEE Trans. Control. Syst. Technol. doi: 10.1109/TCST.2014.2364956 – volume: 28 start-page: e2625 year: 2018 ident: ref_2 article-title: A robust fault detection and isolation filter for the pitch system of a variable speed wind turbine publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2625 – volume: 163 start-page: 108067 year: 2020 ident: ref_12 article-title: A GOA-MSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions publication-title: Measurement doi: 10.1016/j.measurement.2020.108067 – volume: 2020 start-page: 8882653 year: 2020 ident: ref_22 article-title: Gear Fault Diagnosis Based on VMD Sample Entropy and Discrete Hopfield Neural Network publication-title: Math. Probl. Eng. doi: 10.1155/2020/8882653 – volume: 313 start-page: 47 year: 2018 ident: ref_31 article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.002 |
| SSID | ssj0023216 |
| Score | 2.3874245 |
| Snippet | The working environment of wind turbine gearboxes is complex, complicating the effective monitoring of their running state. In this paper, a new gearbox fault... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 794 |
| SubjectTerms | Algorithms Bandwidths Bearings Complexity Decomposition Energy dissipation Entropy Entropy (Information theory) Fault diagnosis Fault tolerance Feature extraction Gearboxes Kurtosis Methods Noise Optimization Parameters Search algorithms Sliding friction sparrow search algorithm support vector machine Support vector machines Time series time-shifting multi-scale sample entropy Turbines variational mode decomposition Wavelet transforms wind turbine gearbox Wind turbines Working conditions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBIEAESmUeBy5RE3vi2McWulRIcGqht8hPulKarLaJoP--4yQbNQjEBSmHKB5F9sxYns8ef0PIOyWdtapUqYcipOA1pFIoSFXhjHKeWxhueH_5Kk7P4fNFcXGn1FfMCRvpgUfFHRpfeDCFMabkYALXklshJQ-glXdu4PnMpNqBqQlqcZaLkUeII6g_9DHdOSsVLFafgaR_EVn-nhd5v282-uanrus7i87qEXk4RYv0aOzlY3LPN09Is9J93dGPY5Lc-pq2gWr6HcE1Peu3iHQ9_YT-a9pf9BjXKEfbho57B_j-DbHxtP9HYx00elT_aLfr7vKKavzBdDspCtCTmMS-uXlKzlcnZx9O06lsQhoV26VaAtMhMBsQqzgfdOGCE4CP0Gga5lhpjAXPTaTCV8YAy8EZZjGUEpA7_ozsNW3jnxOqs-CFtzxnpQblMJr0zAM4cIyHkLuEvN-ps7ITp3gsbVFXiC2i5qtZ8wl5M4tuRiKNPwkdR5vMApH7eviAHlFNHlH9yyMSsr-zaDVNyOsKkRPEWLQQCXk9N-NUiucjuvFtH2UA4S4IyRJSLjxh0aFlS7O-HEi5JWIvAVlC3s4-8_dxvvgf43xJHrCYYJOJlPF9stdte_8KI6TOHAyT4RYO3hPH priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAXBAJESkHmceASdWNPnPhQoS7sUiGxQqiF3iI7tttKIVm2iUr_PeO8IAiQcojiUWSPx_Z89vgbQl7J1OS5TGRoIXYhWAVhKiSEMjZaGstzaG94f1yL41P4cBaf7ZD1cBfGh1UOc2I7UZsq93vkB-j6gncmYvFm8z30WaP86eqQQkP1qRXMYUsxdovsMs-MNSO7i-X60-cRgnEWiY5fiCPYP7A-DHqeSJisSi15_8Tj_DNe8nZTbtTNtSqK3xaj1T1yt_ci6VHX7ffJji0fkHKlmqKm77rgucsrWjmq6FcE3fSk2SICtvQ92rWuftAFrl2GViXt9hTw_Qti5n5fkPr8aPSoOMfm1xffqMIf9LeWvABd-uD2zc1Dcrpanrw9Dvt0CqFXeB2qFJhyjuUOMYyxTsXGGQH4CIVdxgxLtM7Bcu0p8qXWwCIwmuXoYgmIDH9EZmVV2seEqrmzwuY8YokCadDLtMwCGDCMOxeZgLwe1JnlPde4T3lRZIg5vOazUfMBeTGKbjqCjb8JLXyfjAKeE7v9UG3Ps36IZdrGFnSstU44aMdVynORptyBktYYHpD9oUezfqBeZb_MKiDPx2IcYv7cRJW2arwMIAwGkbKAJBNLmFRoWlJeXrRk3SliMgHzgLwcbebf7dz7fxWfkDvMh9TMRcj4PpnV28Y-RZ-o1s96Q_8JJtgQMg priority: 102 providerName: ProQuest |
| Title | Fault Diagnosis of a Wind Turbine Gearbox Based on Improved Variational Mode Algorithm and Information Entropy |
| URI | https://www.proquest.com/docview/2554508856 https://www.proquest.com/docview/2548404682 https://pubmed.ncbi.nlm.nih.gov/PMC8306640 https://www.mdpi.com/1099-4300/23/7/794/pdf?version=1624428256 https://doaj.org/article/be5e4b5bbb734bf3a83c6883f4a9edd3 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9MwDI-47QFe-BAgCscUPh546W1N3LR9QhtsOyExndANxlOVNMndxGinrQWOvx6n7SZ2AgkhVVXVuFVS27V_juMQ8jKJdZYlUeIbCK0PRoIfiwT8JNQq0YZnUK_wfj8Tp3N4twgXbcBt26ZVIhRf1j9pN2vjAx8M-oz3oz6KTn-t7etvbSQpEGib3NpLcUS6IkRfvEO689nZ8HM9xdk-25QT4ojt-8ZlPQ-iBA6MUF2r_8DBvJ4eebPK1_Lqu1ytfrM9kzsk3fW6STn5clKV6iT7ea2g4_8P6y653bqldNjI0T1yw-T3ST6R1aqkb5tsvOWWFpZK-glRPD2vNgipDZ2ioqjiBx2hMdS0yGkTpMDrjwjC20AjdRuu0eHqotgsy8uvVOIL2mVQjoCOXbb8-uoBmU_G529O_XZ_Bt9xsPRlDExayzKLoEgbK0NttQA8hEQZYJpFSmVguHI19xOlgAWgFcvQZxMQaP6QdPIiN48IlQNrhMl4wCIJicYPZJgB0KAZtzbQHnm1Y1iatcXL3R4aqxRBjONtuuetR57vSddNxY4_EY0c1_cErsh2faPYXKStzqbKhAZUqJSKOCjLZcwzEcfcgkyM1twjxzuZSVvN36YI0cA5vaHwyLN9M-qsm4iRuSkqRwOIq0HEzCPRgawddOiwJV9e1tW_YwR5AgYeebGXyr-P8_E_UT0ht5hL1RkIn_Fj0ik3lXmKvlapeuQonkx7pDsaz84-9OqIBZ6ni6DXqtov-hErZA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXBAJEoIB5SVyi7toTJz5UqEt32dJ2hdAWegt2bLeVlmTZh8r-OX4b42wSCAJulXKI4lFkj8f299njGUJeysRkmYxlaCFyIVgFYSIkhDIyWhrLMyhveJ-MxPAU3p9FZxvkR30XxrtV1nNiOVGbIvN75LsIfcGDiUi8mX4LfdYof7pap9BQVWoFs1eGGKsudhzZ1RVSuPne4QH29yvGBv3x22FYZRkIfT0WoUqAKedY5hDaG-tUZJwRgI9Q2BJmWKx1BpZrHzleag2sC0azDJGHgK7h-N8bZAs4SCR_W73-6MPHhvJx1hXreEacy86u9W7XnVhCaxUskwW0EO6f_pnby3yqVldqMvlt8RvcJrcq1Er312Z2h2zY_C7JB2o5WdCDtbPe5ZwWjir6GUk-HS9nyLgtfYcK0sV32sO10tAip-s9DHz_hBy92oekPh8b3Z-co7oXF1-pwh9Ut6S8AO17Z_rp6h45vRbF3iebeZHbB4SqjrPCZrzLYgXSIKq1zAIYMIw71zUBeV2rM82q2OY-xcYkRY7jNZ82mg_I80Z0ug7o8Tehnu-TRsDH4C4_FLPztBrSqbaRBR1prWMO2nGV8EwkCXegpDWGB2Sn7tG0mhjm6S8zDsizphiHtD-nUbktll4GkHaDSFhA4pYltCrULskvL8rg4AlyQAGdgLxobObf7Xz4_yo-JdvD8clxenw4OnpEbjLvztMRIeM7ZHMxW9rHiMcW-kll9JR8ue5x9hOJrE5e |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYBLBQJEoIB5SVyizdoTJz4g1LJNWwoVhxZ6C3Zst5W2ybIPlf1r_DrGecEi4FYphygeRfZ4xv7GngchL2VqikImMrQQuxCsgjAVEkIZGy2N5QXUEd4fD8XeMbw_iU_WyI8uFsa7VXZrYr1Qm6rwZ-QDhL7gwUQsBq51i_g0yt5OvoW-gpS_ae3KaTQicmCXl2i-zd7sj3CuXzGW7Ry92wvbCgOh78M8VCkw5RwrHMJ6Y52KjTMC8BEKR8EMS7QuwHLts8ZLrYENwWhWIOoQMDQc_3uNXE98FncfpZ7t9sYeZ0PRZDLiXEYD6x2uo0TCyv5XlwlYwbZ_embeXJQTtbxU4_Fv2152m2y0eJVuNQJ2h6zZ8i4pM7UYz-mocdM7n9HKUUW_oHlPjxZTtLUt3UX26Oo73cZd0tCqpM3pBb5_Ruu8PYGkvhIb3RqfInPnZxdU4Q_a-ChPQHe8G_1keY8cXwlb75P1sirtA0JV5KywBR-yRIE0iGctswAGDOPODU1AXnfszIs2q7kvrjHO0brxnM97zgfkeU86aVJ5_I1o289JT-Czb9cfqulp3ipzrm1sQcda64SDdlylvBBpyh0oaY3hAdnsZjRvl4RZ_kuAA_Ksb0Zl9jc0qrTVwtMAGtwgUhaQZEUSVjq02lKen9VpwVO0_gREAXnRy8y_x_nw_118Sm6gduUf9g8PHpFbzPvxRCJkfJOsz6cL-xiB2Fw_qSWekq9XrWI_AX48S_g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge4ALBQEiUJD5OHBJN2tPnOSEttClQqLi0IVyiuzYblddktVuUii_nnHijUgFEkLKIUomkZ2Zycyzx8-EvMpSXRRZkoUGYhuCkRCmIoMwi7XKtOEFtCu8Px6Lozl8OI1P_YDbxpdVIhRftD9pN2sTAo-iMePjZIymM15p--bSjyRNBMYmt_ZS3CQ7IsZcfER25sefpl_bKU7_bEcnxBHbj42reo6SDAZBqOXqHySY18sjbzXlSl59l8vlb7Fntkvybau7kpOL_aZW-8XPa4SO_9-tu-SOT0vptLOje-SGKe-TciabZU3fddV4iw2tLJX0C6J4etKsEVIb-h4dRVU_6AEGQ02rknaDFHj-GUG4H2ikbsM1Ol2eVetFff6NSnyBXwblBOihq5ZfXT0g89nhyduj0O_PEDoN1qFMgUlrWWERFGljZaytFoCHkGgDTLNEqQIMV45zP1MK2AS0YgXmbAImmj8ko7IqzSNCZWSNMAWfsERCpvEDGWYANGjGrZ3ogLzeKiwvPHm520NjmSOIcbrNe90G5EUvuuoYO_4kdOC03gs4ku32QrU-y73P5srEBlSslEo4KMtlyguRptyCzIzWPCB7W5vJvedvcoRo4JLeWATkeX8bfdZNxMjSVI2TAcTVIFIWkGRga4MGDe-Ui_OW_TtFkCcgCsjL3ir_3s_H_yT1hNxmrlQnEiHje2RUrxvzFHOtWj3zDvUL1Wcm_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+of+a+Wind+Turbine+Gearbox+Based+on+Improved+Variational+Mode+Algorithm+and+Information+Entropy&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Fan&rft.au=Sun%2C+Wenlei&rft.au=Wang%2C+Hongwei&rft.au=Xu%2C+Tiantian&rft.date=2021-06-23&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=23&rft.issue=7&rft.spage=794&rft_id=info:doi/10.3390%2Fe23070794&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e23070794 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |