Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression
Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment...
Saved in:
| Published in | Journal of affective disorders Vol. 230; pp. 84 - 86 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-0327 1573-2517 1573-2517 |
| DOI | 10.1016/j.jad.2018.01.006 |
Cover
| Abstract | Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not.
A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response.
Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision).
Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.
The sample size was small and replication is required to strengthen inferences on these results.
•Interview data from 17 patients with treatment-resistant depression was recorded.•Automated Emotional Analysis, a natural language processing method, was used to quantify emotional content of baseline interviews.•A machine learning algorithm was used to identify patterns in emotional analysis results.•Detected patterns predict therapeutic effectiveness of psilocybin for treatment-resistant depression. |
|---|---|
| AbstractList | Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not.
A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response.
Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision).
Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.
The sample size was small and replication is required to strengthen inferences on these results.
•Interview data from 17 patients with treatment-resistant depression was recorded.•Automated Emotional Analysis, a natural language processing method, was used to quantify emotional content of baseline interviews.•A machine learning algorithm was used to identify patterns in emotional analysis results.•Detected patterns predict therapeutic effectiveness of psilocybin for treatment-resistant depression. Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not.BACKGROUNDNatural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not.A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response.METHODSA baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response.Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision).RESULTSSpeech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision).Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.CONCLUSIONSAutomatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.The sample size was small and replication is required to strengthen inferences on these results.LIMITATIONSThe sample size was small and replication is required to strengthen inferences on these results. Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not. A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response. Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision). Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity. The sample size was small and replication is required to strengthen inferences on these results. |
| Author | Ashton, Philip Carrillo, Facundo Fernández Slezak, Diego Sigman, Mariano Nutt, David J. Fitzgerald, Lily Stroud, Jack Carhart-Harris, Robin L. |
| Author_xml | – sequence: 1 givenname: Facundo surname: Carrillo fullname: Carrillo, Facundo email: fcarrillo@dc.uba.ar organization: Applied Artificial Intelligence Lab, Computer Science Department, School of Science, Buenos Aires University, CONICET, Buenos Aires 1428, Argentina – sequence: 2 givenname: Mariano surname: Sigman fullname: Sigman, Mariano organization: Integrative Neuroscience Lab, Universidad Torcuato Di Tella, CONICET, Buenos Aires 1428, Argentina – sequence: 3 givenname: Diego surname: Fernández Slezak fullname: Fernández Slezak, Diego organization: Applied Artificial Intelligence Lab, Computer Science Department, School of Science, Buenos Aires University, CONICET, Buenos Aires 1428, Argentina – sequence: 4 givenname: Philip surname: Ashton fullname: Ashton, Philip organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK – sequence: 5 givenname: Lily surname: Fitzgerald fullname: Fitzgerald, Lily organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK – sequence: 6 givenname: Jack surname: Stroud fullname: Stroud, Jack organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK – sequence: 7 givenname: David J. surname: Nutt fullname: Nutt, David J. organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK – sequence: 8 givenname: Robin L. surname: Carhart-Harris fullname: Carhart-Harris, Robin L. organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29407543$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkr1uFDEUhS0URDaBB6BBLmlmsD0_HosKRfxJETRQW3c8d1gvHnuwvVnte_DAOGygSBGo3HzfudI5viBnPngk5DlnNWe8f7WrdzDVgvGhZrxmrH9ENryTTSU6Ls_IpjBdxRohz8lFSjtWCCXZE3IuVMtk1zYb8vMT5H0ER9OKaLYU3LcQbd4uFNbVWZxoDnSEhM56pNZnjDcWD3SCDNSAp2vEyZpMD1tb9BWyRZ8TPVjnaMS0Bv87Yk3WBXMcradziDRHhLwUsiqMTRl8phOWrJRs8E_J4xlcwmd37yX5-u7tl6sP1fXn9x-v3lxXpm37XCnAqRkN9GoA3vVy6EHNQ9_1QsxcKqUkdiNj3dwOfEQl5rnlQ8t70cq5kaZvLok45e79CscDOKfXaBeIR82Zvq1Y73SpWN9WrBnXpcAivTxJaww_9piyXmwy6Bx4DPukeTnMFeeCFfTFHbofF5z-hv-pvwD8BJgYUoo4_9d9ec8xNpfag88RrHvQfH0ysXRaVow6mbKWKQNGNFlPwT5oq3u2KX_CGnDf8fgP9xcc4NTq |
| CitedBy_id | crossref_primary_10_1017_S0033291722002951 crossref_primary_10_1016_j_jad_2024_02_089 crossref_primary_10_3389_fphar_2022_812227 crossref_primary_10_1016_j_neuropharm_2018_03_010 crossref_primary_10_1016_j_survophthal_2018_09_002 crossref_primary_10_1186_s40708_023_00188_6 crossref_primary_10_1097_j_pain_0000000000002808 crossref_primary_10_3758_s13428_023_02240_z crossref_primary_10_1176_appi_ajp_20230682 crossref_primary_10_1016_j_concog_2020_103070 crossref_primary_10_1192_j_eurpsy_2021_2236 crossref_primary_10_3389_fpsyg_2021_752238 crossref_primary_10_1017_S0033291724003295 crossref_primary_10_1038_s41398_023_02592_2 crossref_primary_10_2196_42045 crossref_primary_10_13105_wjma_v11_i4_79 crossref_primary_10_3389_fnins_2022_832375 crossref_primary_10_3389_fphar_2018_00897 crossref_primary_10_1177_20503245221085222 crossref_primary_10_1080_10508619_2022_2078591 crossref_primary_10_1080_00952990_2021_1910830 crossref_primary_10_1111_nyas_15229 crossref_primary_10_1002_j_2371_9621_2021_tb00009_x crossref_primary_10_3390_jcm13174997 crossref_primary_10_1097_HRP_0000000000000356 crossref_primary_10_1093_schbul_sbac215 crossref_primary_10_1016_j_jad_2019_08_009 crossref_primary_10_1016_j_jpsychires_2024_05_051 crossref_primary_10_1016_j_jad_2019_09_044 crossref_primary_10_3389_fnint_2019_00005 crossref_primary_10_1007_s00213_022_06062_3 crossref_primary_10_1371_journal_pone_0242903 crossref_primary_10_1016_j_jpsychires_2021_03_002 crossref_primary_10_2196_45405 |
| Cites_doi | 10.1016/j.neunet.2011.03.001 10.1016/j.neuron.2014.10.018 10.1007/978-3-319-45174-9_4 10.1126/science.1199644 10.1017/S0033291700008370 10.3115/1572306.1572327 10.1109/MCI.2014.2307227 10.1038/npp.2017.84 10.1177/2167702614565359 10.1016/S2215-0366(16)30065-7 10.1109/ACSSC.2016.7869165 10.1145/2464464.2464480 10.1016/j.biopsych.2012.03.015 10.1038/npjschz.2015.30 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018. Published by Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018. Published by Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.jad.2018.01.006 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1573-2517 |
| EndPage | 86 |
| ExternalDocumentID | 10.1016/j.jad.2018.01.006 29407543 10_1016_j_jad_2018_01_006 S0165032717311643 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO ABBQC ABFNM ABIVO ABJNI ABLJU ABMAC ABMZM ACDAQ ACGFS ACHQT ACIEU ACIUM ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ HMW IHE J1W KOM M29 M2V M39 M3V M41 MO0 N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSZ T5K UV1 Z5R ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG ZA5 29J 53G AAEDT AAGKA AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AFJKZ AGHFR AGQPQ AIGII APXCP ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HEG HMK HMO HVGLF HZ~ R2- SEW SNS SPS WUQ ZGI NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c446t-9aed3bca698a156786a9f865622f179997e5b005f481be92ff418416247f37c63 |
| IEDL.DBID | .~1 |
| ISSN | 0165-0327 1573-2517 |
| IngestDate | Wed Oct 01 16:35:52 EDT 2025 Sun Sep 28 13:46:47 EDT 2025 Wed Feb 19 02:43:27 EST 2025 Wed Oct 01 02:47:20 EDT 2025 Thu Apr 24 22:49:58 EDT 2025 Fri Feb 23 02:22:47 EST 2024 Tue Oct 14 19:38:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Natural speech analysis Computational psychiatry Machine learning Treatment-resistant depression Depression Psilocybin treatment Predict therapeutic effectiveness |
| Language | English |
| License | Copyright © 2018. Published by Elsevier B.V. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-9aed3bca698a156786a9f865622f179997e5b005f481be92ff418416247f37c63 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0165032717311643 |
| PMID | 29407543 |
| PQID | 1999191120 |
| PQPubID | 23479 |
| PageCount | 3 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jad_2018_01_006 proquest_miscellaneous_1999191120 pubmed_primary_29407543 crossref_primary_10_1016_j_jad_2018_01_006 crossref_citationtrail_10_1016_j_jad_2018_01_006 elsevier_sciencedirect_doi_10_1016_j_jad_2018_01_006 elsevier_clinicalkey_doi_10_1016_j_jad_2018_01_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of affective disorders |
| PublicationTitleAlternate | J Affect Disord |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Carhart-Harris (bib4) 2016; 3 De Choudhury, Gamon, Counts, Horvitz (bib8) 2013; 2 Huys, Moutoussis, Williams (bib11) 2011; 24 De Choudhury, M., Counts, S., Horvitz, E., 2013. Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, 47-56 (ACM). Michel (bib13) 2011; 331 Wiecki, Poland, Frank (bib19) 2015; 3 Cambria, White (bib2) 2014; 9 Wang, Krystal (bib18) 2014; 84 Bedi (bib1) 2015; 1 John, G.H., Langley, P., 1995. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 338–345 (Morgan Kaufmann Publishers Inc.). Mundt, Vogel, Feltner, Lenderking (bib16) 2012; 72 Pestian, J.P., Matykiewicz, P., Grupp-Phelan, J., 2008. Using natural language processing to classify suicide notes. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, 96-97 (Association for Computational Linguistics). Carhart-Harris, Goodwin (bib3) 2017 Carrillo, F., et al. 2014. Automated speech analysis for psychosis evaluation. In: International Workshop on Machine Learning and Interpretation in Neuroimaging, 31-39 (Springer International Publishing). Carrillo, F. et al. 2016. Emotional intensity analysis in bipolar subjects. arXiv preprint arXiv:1606.02231. Carrillo, Cecchi, Sigman, Slezak (bib6) 2015; 2015 Mota, N., Carrillo, F., Slezak, D., Copelli, M., Ribeiro, S., 2016. Characterization of the relationship between semantic and structural language features in psychiatric diagnosis. In: Proceedings of the 50th Asilomar Conference on Signals, Systems and Computers, 2016, 836-838 (IEEE). Williams, Scott (bib20) 1988; 18 Mikolov, Sutskever, Chen, Corrado, Dean (bib14) 2013 Esuli, Sebastiani (bib10) 2007 Bedi (10.1016/j.jad.2018.01.006_bib1) 2015; 1 Michel (10.1016/j.jad.2018.01.006_bib13) 2011; 331 Cambria (10.1016/j.jad.2018.01.006_bib2) 2014; 9 Esuli (10.1016/j.jad.2018.01.006_bib10) 2007 10.1016/j.jad.2018.01.006_bib15 Carrillo (10.1016/j.jad.2018.01.006_bib6) 2015; 2015 Carhart-Harris (10.1016/j.jad.2018.01.006_bib3) 2017 10.1016/j.jad.2018.01.006_bib17 Wang (10.1016/j.jad.2018.01.006_bib18) 2014; 84 Wiecki (10.1016/j.jad.2018.01.006_bib19) 2015; 3 10.1016/j.jad.2018.01.006_bib12 Huys (10.1016/j.jad.2018.01.006_bib11) 2011; 24 Williams (10.1016/j.jad.2018.01.006_bib20) 1988; 18 10.1016/j.jad.2018.01.006_bib5 10.1016/j.jad.2018.01.006_bib7 Mikolov (10.1016/j.jad.2018.01.006_bib14) 2013 10.1016/j.jad.2018.01.006_bib9 Mundt (10.1016/j.jad.2018.01.006_bib16) 2012; 72 De Choudhury (10.1016/j.jad.2018.01.006_bib8) 2013; 2 Carhart-Harris (10.1016/j.jad.2018.01.006_bib4) 2016; 3 |
| References_xml | – reference: Mota, N., Carrillo, F., Slezak, D., Copelli, M., Ribeiro, S., 2016. Characterization of the relationship between semantic and structural language features in psychiatric diagnosis. In: Proceedings of the 50th Asilomar Conference on Signals, Systems and Computers, 2016, 836-838 (IEEE). – reference: Pestian, J.P., Matykiewicz, P., Grupp-Phelan, J., 2008. Using natural language processing to classify suicide notes. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, 96-97 (Association for Computational Linguistics). – start-page: 1 year: 2007 end-page: 26 ident: bib10 article-title: Sentiwordnet: a high-coverage lexical resource for opinion mining publication-title: Evaluation – volume: 2015 year: 2015 ident: bib6 article-title: Fast distributed dynamics of semantic networks via social media publication-title: Comput. Intell. Neurosci. – reference: Carrillo, F. et al. 2016. Emotional intensity analysis in bipolar subjects. arXiv preprint arXiv:1606.02231. – volume: 1 start-page: 15030 year: 2015 ident: bib1 article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths publication-title: NPJ Schizophr. – volume: 9 start-page: 48 year: 2014 end-page: 57 ident: bib2 article-title: Jumping nlp curves: a review of natural language processing research publication-title: IEEE Comput. Intell. Mag. – volume: 331 start-page: 176 year: 2011 end-page: 182 ident: bib13 article-title: Quantitative analysis of culture using millions of digitized books publication-title: Science – volume: 72 start-page: 580 year: 2012 end-page: 587 ident: bib16 article-title: Vocal acoustic biomarkers of depression severity and treatment response publication-title: Biol. Psychiatry – reference: De Choudhury, M., Counts, S., Horvitz, E., 2013. Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, 47-56 (ACM). – year: 2017 ident: bib3 article-title: The therapeutic potential of psychedelic drugs: past, present and future publication-title: Neuropsychopharmacology – volume: 3 start-page: 378 year: 2015 end-page: 399 ident: bib19 article-title: Model-based cognitive neuroscience approaches to computational psychiatry clustering and classification publication-title: Clin. Psychol. Sci. – volume: 84 start-page: 638 year: 2014 end-page: 654 ident: bib18 article-title: Computational psychiatry publication-title: Neuron – volume: 24 start-page: 544 year: 2011 end-page: 551 ident: bib11 article-title: Are computational models of any use to psychiatry? publication-title: Neural Netw. – start-page: 3111 year: 2013 end-page: 3119 ident: bib14 article-title: Distributed representations of words and phrases and their compositionality publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 689 year: 1988 end-page: 695 ident: bib20 article-title: Autobiographical memory in depression publication-title: Psychol. Med. – volume: 2 year: 2013 ident: bib8 article-title: Predicting depression via social media publication-title: ICWSM – volume: 3 start-page: 619 year: 2016 end-page: 627 ident: bib4 article-title: Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study publication-title: Lancet Psychiatry – reference: John, G.H., Langley, P., 1995. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 338–345 (Morgan Kaufmann Publishers Inc.). – reference: Carrillo, F., et al. 2014. Automated speech analysis for psychosis evaluation. In: International Workshop on Machine Learning and Interpretation in Neuroimaging, 31-39 (Springer International Publishing). – volume: 24 start-page: 544 year: 2011 ident: 10.1016/j.jad.2018.01.006_bib11 article-title: Are computational models of any use to psychiatry? publication-title: Neural Netw. doi: 10.1016/j.neunet.2011.03.001 – start-page: 3111 year: 2013 ident: 10.1016/j.jad.2018.01.006_bib14 article-title: Distributed representations of words and phrases and their compositionality publication-title: Adv. Neural Inf. Process. Syst. – volume: 84 start-page: 638 year: 2014 ident: 10.1016/j.jad.2018.01.006_bib18 article-title: Computational psychiatry publication-title: Neuron doi: 10.1016/j.neuron.2014.10.018 – ident: 10.1016/j.jad.2018.01.006_bib5 doi: 10.1007/978-3-319-45174-9_4 – volume: 331 start-page: 176 year: 2011 ident: 10.1016/j.jad.2018.01.006_bib13 article-title: Quantitative analysis of culture using millions of digitized books publication-title: Science doi: 10.1126/science.1199644 – volume: 2 year: 2013 ident: 10.1016/j.jad.2018.01.006_bib8 article-title: Predicting depression via social media publication-title: ICWSM – volume: 18 start-page: 689 year: 1988 ident: 10.1016/j.jad.2018.01.006_bib20 article-title: Autobiographical memory in depression publication-title: Psychol. Med. doi: 10.1017/S0033291700008370 – ident: 10.1016/j.jad.2018.01.006_bib7 – ident: 10.1016/j.jad.2018.01.006_bib17 doi: 10.3115/1572306.1572327 – volume: 9 start-page: 48 year: 2014 ident: 10.1016/j.jad.2018.01.006_bib2 article-title: Jumping nlp curves: a review of natural language processing research publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2014.2307227 – volume: 2015 issue: 50 year: 2015 ident: 10.1016/j.jad.2018.01.006_bib6 article-title: Fast distributed dynamics of semantic networks via social media publication-title: Comput. Intell. Neurosci. – ident: 10.1016/j.jad.2018.01.006_bib12 – start-page: 1 year: 2007 ident: 10.1016/j.jad.2018.01.006_bib10 article-title: Sentiwordnet: a high-coverage lexical resource for opinion mining publication-title: Evaluation – year: 2017 ident: 10.1016/j.jad.2018.01.006_bib3 article-title: The therapeutic potential of psychedelic drugs: past, present and future publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.84 – volume: 3 start-page: 378 year: 2015 ident: 10.1016/j.jad.2018.01.006_bib19 article-title: Model-based cognitive neuroscience approaches to computational psychiatry clustering and classification publication-title: Clin. Psychol. Sci. doi: 10.1177/2167702614565359 – volume: 3 start-page: 619 year: 2016 ident: 10.1016/j.jad.2018.01.006_bib4 article-title: Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(16)30065-7 – ident: 10.1016/j.jad.2018.01.006_bib15 doi: 10.1109/ACSSC.2016.7869165 – ident: 10.1016/j.jad.2018.01.006_bib9 doi: 10.1145/2464464.2464480 – volume: 72 start-page: 580 year: 2012 ident: 10.1016/j.jad.2018.01.006_bib16 article-title: Vocal acoustic biomarkers of depression severity and treatment response publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.03.015 – volume: 1 start-page: 15030 year: 2015 ident: 10.1016/j.jad.2018.01.006_bib1 article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths publication-title: NPJ Schizophr. doi: 10.1038/npjschz.2015.30 |
| SSID | ssj0006970 |
| Score | 2.4418101 |
| Snippet | Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry.... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 84 |
| SubjectTerms | Computational psychiatry Depression Machine learning Natural speech analysis Predict therapeutic effectiveness Psilocybin treatment Treatment-resistant depression |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5S59Dm0KT05T7CFnpq2diSVq9jCAkhUFNoDelpWa13a6WqLGwZk_yO_uDOrB60TUgoOdrMGK92NPMN8-23AO9noY6wzqdcCWxRhI4ynpks5spEwmLB1pk74f1pEp1Oxdl5eL4FR91ZGKJVtrm_yekuW7ffjNqnOaryfPSFDuKMA5_GyB6C_uABbEchAvIBbE8nnw-_NareIScbp5oaB5wEurrZpmN5XSiSC_USp91J1x7dXJ2uo88deLguK3W5UUXxR0U62YVZt5aGiPLjYF1nB_rqH5nHey52Dx63iJUdNnZPYMuUT-HXRDnBDraqjNFzporvi2Vez38y1cBaVi8YVUhCsSx3xMrcbBgRUhnuJquWNCGq2Waeo3ur7rpiiNwLtnS8XfcT1SrHanuJ7TtDdM16WjxHG0K-Zc16Lm_5DKYnx1-PTnl7wQPX2IXWPFVmFmRaRWmisI-Mk0ilNkGE6fuWlOrS2ISUJqxAcG1S31rh0ZjUF7ENYh0Fz2FQLkrzEpg21tiQBOwSjDrsCrEtCzTWXjVTiTLZEMbdxkrdqp_TJRyF7GhuFxJjQVIsyLEnMRaG8KF3qRrpj9uM_S5aZHemFbOwxMJ0m5Ponf6Kg7vc3nXhKDEZ0IRHlWaxXknSlMAG3PPHQ3jRxGn_1_0Ue_dQBEP42Afu3et69V_Wr-ERfWqYTW9gUC_X5i2Ctjrbb1_K38X-QK0 priority: 102 providerName: Unpaywall |
| Title | Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0165032717311643 https://dx.doi.org/10.1016/j.jad.2018.01.006 https://www.ncbi.nlm.nih.gov/pubmed/29407543 https://www.proquest.com/docview/1999191120 https://www.sciencedirect.com/science/article/pii/S0165032717311643 |
| UnpaywallVersion | publishedVersion |
| Volume | 230 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1573-2517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006970 issn: 0165-0327 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1573-2517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006970 issn: 0165-0327 databaseCode: ACRLP dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1573-2517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006970 issn: 0165-0327 databaseCode: AIKHN dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1573-2517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006970 issn: 0165-0327 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1573-2517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006970 issn: 0165-0327 databaseCode: AKRWK dateStart: 19790301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tlgNwQCBeZWE1SJxAoU3ivI7VilUBUSFBpeVkOa5Ns8qmUZuq2sv-Cn4wM84DEGhX4lSl8kSOPfZ8o_n8GeDVMtIxxfnMU4JSFKHj3MtNnnjKxMJSwNa5O-H9aR7PFuLDWXR2ACf9WRimVXZ7f7unu926-2fcjea4LorxFz6IMwkDLiP7BPpZ8VOIhG8xeHv1i-YRZ-7COG7sceu-suk4XueKxUL91Cl38qVH_45Nf2PPu3B7V9Xqcq_K8rd4dHof7nVAEqdtXx_Agakewo-5cjoauK2N0StU5fc1Zf-rC1Qt2sRmjRy4GFxi4fiOhdkj80SRBhnrDRduGtyvCjLvRFe3SIC6xI2j07pX1NuCguAlZdVIoBcHtrpHbRiQVg0OFNvqESxO3309mXndvQuepuSw8TJllmGuVZylitK7JI1VZlMCfkFgWUAuS0zEq9cKwrwmC6wVPlcvA5HYMNFx-BgOq3VlngJqY42NWFcuJWegZI2ypVBTSFRLlSqTj2DSj7jUnSg5341Ryp59di5pkiRPkpz4kiZpBK8Hk7pV5LiucdBPo-yPmtLmKCleXGckBqM_fPEms5e9n0hao1x4UZVZ77aSpR4oL_aDyQietA40dD3IKKWORDiCN4NH3fxdz_6vi0dwh59a5tFzOGw2O_OCQFWTH7tVcwy3pu8_zub0u5h_nn77CZCTI5g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAeKlBf2wJ1JU6t0t04zuuIEGjbwl4AiZvleO1uUJqNdrNacemv6A_ujPNoURFIvSaeyLHHnu_TfB4DHE5DHWGcTz0lkKIIHWVeZrLYUyYSFgO2ztwJ7_NJNL4SX6_D6w047s7CkKyy3fubPd3t1u2TYTuawyrPhxd0EGcUcEoj-wj6gyewJUIeEwP7_POPziNK3Y1x1Nqj5l1q04m8bhRVC_UTV7qTbj26Pzj9Cz6fwfaqrNTtWhXFXwHpdAeet0iSHTWd3YUNU76AXxPlCmmwZWWMnjFVfJ8j_Z_9YKqBm6yeM4pchC5Z7gSPuVkzEooyHGVWLShzU7P1LEfzturqkiGiLtjC6WndJ6pljlHwFmk1Q9TLerm6h20IkZY16zW25Uu4Oj25PB577cULnkZ2WHupMtMg0ypKE4X8Lk4ildoEkR_nlirIpbEJaflagaDXpNxa4VP6kovYBrGOglewWc5L8waYNtbYkArLJegNyNaQLgUaY6KaqkSZbACjbsSlbquS0-UYhezkZzcSJ0nSJMmRL3GSBvCxN6makhwPNebdNMrurCnujhIDxkNGoje644yPmX3o_ETiIqXMiyrNfLWUVOsBibHPRwN43ThQ33WeIqcORTCAT71HPf5fb_-vi-9he3x5fibPvky-vYOn9KaRIe3BZr1YmX1EWHV24FbQb_gFI30 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5S59Dm0KT05T7CFnpq2diSVq9jCAkhUFNoDelpWa13a6WqLGwZk_yO_uDOrB60TUgoOdrMGK92NPMN8-23AO9noY6wzqdcCWxRhI4ynpks5spEwmLB1pk74f1pEp1Oxdl5eL4FR91ZGKJVtrm_yekuW7ffjNqnOaryfPSFDuKMA5_GyB6C_uABbEchAvIBbE8nnw-_NareIScbp5oaB5wEurrZpmN5XSiSC_USp91J1x7dXJ2uo88deLguK3W5UUXxR0U62YVZt5aGiPLjYF1nB_rqH5nHey52Dx63iJUdNnZPYMuUT-HXRDnBDraqjNFzporvi2Vez38y1cBaVi8YVUhCsSx3xMrcbBgRUhnuJquWNCGq2Waeo3ur7rpiiNwLtnS8XfcT1SrHanuJ7TtDdM16WjxHG0K-Zc16Lm_5DKYnx1-PTnl7wQPX2IXWPFVmFmRaRWmisI-Mk0ilNkGE6fuWlOrS2ISUJqxAcG1S31rh0ZjUF7ENYh0Fz2FQLkrzEpg21tiQBOwSjDrsCrEtCzTWXjVTiTLZEMbdxkrdqp_TJRyF7GhuFxJjQVIsyLEnMRaG8KF3qRrpj9uM_S5aZHemFbOwxMJ0m5Ponf6Kg7vc3nXhKDEZ0IRHlWaxXknSlMAG3PPHQ3jRxGn_1_0Ue_dQBEP42Afu3et69V_Wr-ERfWqYTW9gUC_X5i2Ctjrbb1_K38X-QK0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+speech+algorithm+applied+to+baseline+interview+data+can+predict+which+patients+will+respond+to+psilocybin+for+treatment-resistant+depression&rft.jtitle=Journal+of+affective+disorders&rft.au=Carrillo%2C+Facundo&rft.au=Sigman%2C+Mariano&rft.au=Fern%C3%A1ndez+Slezak%2C+Diego&rft.au=Ashton%2C+Philip&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0165-0327&rft.eissn=1573-2517&rft.volume=230&rft.spage=84&rft.epage=86&rft_id=info:doi/10.1016%2Fj.jad.2018.01.006&rft.externalDocID=S0165032717311643 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0327&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0327&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0327&client=summon |