Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression

Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment...

Full description

Saved in:
Bibliographic Details
Published inJournal of affective disorders Vol. 230; pp. 84 - 86
Main Authors Carrillo, Facundo, Sigman, Mariano, Fernández Slezak, Diego, Ashton, Philip, Fitzgerald, Lily, Stroud, Jack, Nutt, David J., Carhart-Harris, Robin L.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text
ISSN0165-0327
1573-2517
1573-2517
DOI10.1016/j.jad.2018.01.006

Cover

Abstract Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not. A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response. Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision). Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity. The sample size was small and replication is required to strengthen inferences on these results. •Interview data from 17 patients with treatment-resistant depression was recorded.•Automated Emotional Analysis, a natural language processing method, was used to quantify emotional content of baseline interviews.•A machine learning algorithm was used to identify patterns in emotional analysis results.•Detected patterns predict therapeutic effectiveness of psilocybin for treatment-resistant depression.
AbstractList Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not. A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response. Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision). Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity. The sample size was small and replication is required to strengthen inferences on these results. •Interview data from 17 patients with treatment-resistant depression was recorded.•Automated Emotional Analysis, a natural language processing method, was used to quantify emotional content of baseline interviews.•A machine learning algorithm was used to identify patterns in emotional analysis results.•Detected patterns predict therapeutic effectiveness of psilocybin for treatment-resistant depression.
Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not.BACKGROUNDNatural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not.A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response.METHODSA baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response.Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision).RESULTSSpeech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision).Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.CONCLUSIONSAutomatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.The sample size was small and replication is required to strengthen inferences on these results.LIMITATIONSThe sample size was small and replication is required to strengthen inferences on these results.
Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not. A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classify between controls and patients and predict treatment response. Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision). Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity. The sample size was small and replication is required to strengthen inferences on these results.
Author Ashton, Philip
Carrillo, Facundo
Fernández Slezak, Diego
Sigman, Mariano
Nutt, David J.
Fitzgerald, Lily
Stroud, Jack
Carhart-Harris, Robin L.
Author_xml – sequence: 1
  givenname: Facundo
  surname: Carrillo
  fullname: Carrillo, Facundo
  email: fcarrillo@dc.uba.ar
  organization: Applied Artificial Intelligence Lab, Computer Science Department, School of Science, Buenos Aires University, CONICET, Buenos Aires 1428, Argentina
– sequence: 2
  givenname: Mariano
  surname: Sigman
  fullname: Sigman, Mariano
  organization: Integrative Neuroscience Lab, Universidad Torcuato Di Tella, CONICET, Buenos Aires 1428, Argentina
– sequence: 3
  givenname: Diego
  surname: Fernández Slezak
  fullname: Fernández Slezak, Diego
  organization: Applied Artificial Intelligence Lab, Computer Science Department, School of Science, Buenos Aires University, CONICET, Buenos Aires 1428, Argentina
– sequence: 4
  givenname: Philip
  surname: Ashton
  fullname: Ashton, Philip
  organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK
– sequence: 5
  givenname: Lily
  surname: Fitzgerald
  fullname: Fitzgerald, Lily
  organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK
– sequence: 6
  givenname: Jack
  surname: Stroud
  fullname: Stroud, Jack
  organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK
– sequence: 7
  givenname: David J.
  surname: Nutt
  fullname: Nutt, David J.
  organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK
– sequence: 8
  givenname: Robin L.
  surname: Carhart-Harris
  fullname: Carhart-Harris, Robin L.
  organization: Psychedelic Research Group, Centre for Psychiatry, Dept of Medicine, Imperial College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29407543$$D View this record in MEDLINE/PubMed
BookMark eNqNkr1uFDEUhS0URDaBB6BBLmlmsD0_HosKRfxJETRQW3c8d1gvHnuwvVnte_DAOGygSBGo3HzfudI5viBnPngk5DlnNWe8f7WrdzDVgvGhZrxmrH9ENryTTSU6Ls_IpjBdxRohz8lFSjtWCCXZE3IuVMtk1zYb8vMT5H0ER9OKaLYU3LcQbd4uFNbVWZxoDnSEhM56pNZnjDcWD3SCDNSAp2vEyZpMD1tb9BWyRZ8TPVjnaMS0Bv87Yk3WBXMcradziDRHhLwUsiqMTRl8phOWrJRs8E_J4xlcwmd37yX5-u7tl6sP1fXn9x-v3lxXpm37XCnAqRkN9GoA3vVy6EHNQ9_1QsxcKqUkdiNj3dwOfEQl5rnlQ8t70cq5kaZvLok45e79CscDOKfXaBeIR82Zvq1Y73SpWN9WrBnXpcAivTxJaww_9piyXmwy6Bx4DPukeTnMFeeCFfTFHbofF5z-hv-pvwD8BJgYUoo4_9d9ec8xNpfag88RrHvQfH0ysXRaVow6mbKWKQNGNFlPwT5oq3u2KX_CGnDf8fgP9xcc4NTq
CitedBy_id crossref_primary_10_1017_S0033291722002951
crossref_primary_10_1016_j_jad_2024_02_089
crossref_primary_10_3389_fphar_2022_812227
crossref_primary_10_1016_j_neuropharm_2018_03_010
crossref_primary_10_1016_j_survophthal_2018_09_002
crossref_primary_10_1186_s40708_023_00188_6
crossref_primary_10_1097_j_pain_0000000000002808
crossref_primary_10_3758_s13428_023_02240_z
crossref_primary_10_1176_appi_ajp_20230682
crossref_primary_10_1016_j_concog_2020_103070
crossref_primary_10_1192_j_eurpsy_2021_2236
crossref_primary_10_3389_fpsyg_2021_752238
crossref_primary_10_1017_S0033291724003295
crossref_primary_10_1038_s41398_023_02592_2
crossref_primary_10_2196_42045
crossref_primary_10_13105_wjma_v11_i4_79
crossref_primary_10_3389_fnins_2022_832375
crossref_primary_10_3389_fphar_2018_00897
crossref_primary_10_1177_20503245221085222
crossref_primary_10_1080_10508619_2022_2078591
crossref_primary_10_1080_00952990_2021_1910830
crossref_primary_10_1111_nyas_15229
crossref_primary_10_1002_j_2371_9621_2021_tb00009_x
crossref_primary_10_3390_jcm13174997
crossref_primary_10_1097_HRP_0000000000000356
crossref_primary_10_1093_schbul_sbac215
crossref_primary_10_1016_j_jad_2019_08_009
crossref_primary_10_1016_j_jpsychires_2024_05_051
crossref_primary_10_1016_j_jad_2019_09_044
crossref_primary_10_3389_fnint_2019_00005
crossref_primary_10_1007_s00213_022_06062_3
crossref_primary_10_1371_journal_pone_0242903
crossref_primary_10_1016_j_jpsychires_2021_03_002
crossref_primary_10_2196_45405
Cites_doi 10.1016/j.neunet.2011.03.001
10.1016/j.neuron.2014.10.018
10.1007/978-3-319-45174-9_4
10.1126/science.1199644
10.1017/S0033291700008370
10.3115/1572306.1572327
10.1109/MCI.2014.2307227
10.1038/npp.2017.84
10.1177/2167702614565359
10.1016/S2215-0366(16)30065-7
10.1109/ACSSC.2016.7869165
10.1145/2464464.2464480
10.1016/j.biopsych.2012.03.015
10.1038/npjschz.2015.30
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018. Published by Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018. Published by Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.jad.2018.01.006
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1573-2517
EndPage 86
ExternalDocumentID 10.1016/j.jad.2018.01.006
29407543
10_1016_j_jad_2018_01_006
S0165032717311643
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
ABBQC
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
HMW
IHE
J1W
KOM
M29
M2V
M39
M3V
M41
MO0
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
T5K
UV1
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
ZA5
29J
53G
AAEDT
AAGKA
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AFJKZ
AGHFR
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HEG
HMK
HMO
HVGLF
HZ~
R2-
SEW
SNS
SPS
WUQ
ZGI
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c446t-9aed3bca698a156786a9f865622f179997e5b005f481be92ff418416247f37c63
IEDL.DBID .~1
ISSN 0165-0327
1573-2517
IngestDate Wed Oct 01 16:35:52 EDT 2025
Sun Sep 28 13:46:47 EDT 2025
Wed Feb 19 02:43:27 EST 2025
Wed Oct 01 02:47:20 EDT 2025
Thu Apr 24 22:49:58 EDT 2025
Fri Feb 23 02:22:47 EST 2024
Tue Oct 14 19:38:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Natural speech analysis
Computational psychiatry
Machine learning
Treatment-resistant depression
Depression
Psilocybin treatment
Predict therapeutic effectiveness
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-9aed3bca698a156786a9f865622f179997e5b005f481be92ff418416247f37c63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S0165032717311643
PMID 29407543
PQID 1999191120
PQPubID 23479
PageCount 3
ParticipantIDs unpaywall_primary_10_1016_j_jad_2018_01_006
proquest_miscellaneous_1999191120
pubmed_primary_29407543
crossref_primary_10_1016_j_jad_2018_01_006
crossref_citationtrail_10_1016_j_jad_2018_01_006
elsevier_sciencedirect_doi_10_1016_j_jad_2018_01_006
elsevier_clinicalkey_doi_10_1016_j_jad_2018_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of affective disorders
PublicationTitleAlternate J Affect Disord
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carhart-Harris (bib4) 2016; 3
De Choudhury, Gamon, Counts, Horvitz (bib8) 2013; 2
Huys, Moutoussis, Williams (bib11) 2011; 24
De Choudhury, M., Counts, S., Horvitz, E., 2013. Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, 47-56 (ACM).
Michel (bib13) 2011; 331
Wiecki, Poland, Frank (bib19) 2015; 3
Cambria, White (bib2) 2014; 9
Wang, Krystal (bib18) 2014; 84
Bedi (bib1) 2015; 1
John, G.H., Langley, P., 1995. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 338–345 (Morgan Kaufmann Publishers Inc.).
Mundt, Vogel, Feltner, Lenderking (bib16) 2012; 72
Pestian, J.P., Matykiewicz, P., Grupp-Phelan, J., 2008. Using natural language processing to classify suicide notes. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, 96-97 (Association for Computational Linguistics).
Carhart-Harris, Goodwin (bib3) 2017
Carrillo, F., et al. 2014. Automated speech analysis for psychosis evaluation. In: International Workshop on Machine Learning and Interpretation in Neuroimaging, 31-39 (Springer International Publishing).
Carrillo, F. et al. 2016. Emotional intensity analysis in bipolar subjects. arXiv preprint arXiv:1606.02231.
Carrillo, Cecchi, Sigman, Slezak (bib6) 2015; 2015
Mota, N., Carrillo, F., Slezak, D., Copelli, M., Ribeiro, S., 2016. Characterization of the relationship between semantic and structural language features in psychiatric diagnosis. In: Proceedings of the 50th Asilomar Conference on Signals, Systems and Computers, 2016, 836-838 (IEEE).
Williams, Scott (bib20) 1988; 18
Mikolov, Sutskever, Chen, Corrado, Dean (bib14) 2013
Esuli, Sebastiani (bib10) 2007
Bedi (10.1016/j.jad.2018.01.006_bib1) 2015; 1
Michel (10.1016/j.jad.2018.01.006_bib13) 2011; 331
Cambria (10.1016/j.jad.2018.01.006_bib2) 2014; 9
Esuli (10.1016/j.jad.2018.01.006_bib10) 2007
10.1016/j.jad.2018.01.006_bib15
Carrillo (10.1016/j.jad.2018.01.006_bib6) 2015; 2015
Carhart-Harris (10.1016/j.jad.2018.01.006_bib3) 2017
10.1016/j.jad.2018.01.006_bib17
Wang (10.1016/j.jad.2018.01.006_bib18) 2014; 84
Wiecki (10.1016/j.jad.2018.01.006_bib19) 2015; 3
10.1016/j.jad.2018.01.006_bib12
Huys (10.1016/j.jad.2018.01.006_bib11) 2011; 24
Williams (10.1016/j.jad.2018.01.006_bib20) 1988; 18
10.1016/j.jad.2018.01.006_bib5
10.1016/j.jad.2018.01.006_bib7
Mikolov (10.1016/j.jad.2018.01.006_bib14) 2013
10.1016/j.jad.2018.01.006_bib9
Mundt (10.1016/j.jad.2018.01.006_bib16) 2012; 72
De Choudhury (10.1016/j.jad.2018.01.006_bib8) 2013; 2
Carhart-Harris (10.1016/j.jad.2018.01.006_bib4) 2016; 3
References_xml – reference: Mota, N., Carrillo, F., Slezak, D., Copelli, M., Ribeiro, S., 2016. Characterization of the relationship between semantic and structural language features in psychiatric diagnosis. In: Proceedings of the 50th Asilomar Conference on Signals, Systems and Computers, 2016, 836-838 (IEEE).
– reference: Pestian, J.P., Matykiewicz, P., Grupp-Phelan, J., 2008. Using natural language processing to classify suicide notes. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, 96-97 (Association for Computational Linguistics).
– start-page: 1
  year: 2007
  end-page: 26
  ident: bib10
  article-title: Sentiwordnet: a high-coverage lexical resource for opinion mining
  publication-title: Evaluation
– volume: 2015
  year: 2015
  ident: bib6
  article-title: Fast distributed dynamics of semantic networks via social media
  publication-title: Comput. Intell. Neurosci.
– reference: Carrillo, F. et al. 2016. Emotional intensity analysis in bipolar subjects. arXiv preprint arXiv:1606.02231.
– volume: 1
  start-page: 15030
  year: 2015
  ident: bib1
  article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths
  publication-title: NPJ Schizophr.
– volume: 9
  start-page: 48
  year: 2014
  end-page: 57
  ident: bib2
  article-title: Jumping nlp curves: a review of natural language processing research
  publication-title: IEEE Comput. Intell. Mag.
– volume: 331
  start-page: 176
  year: 2011
  end-page: 182
  ident: bib13
  article-title: Quantitative analysis of culture using millions of digitized books
  publication-title: Science
– volume: 72
  start-page: 580
  year: 2012
  end-page: 587
  ident: bib16
  article-title: Vocal acoustic biomarkers of depression severity and treatment response
  publication-title: Biol. Psychiatry
– reference: De Choudhury, M., Counts, S., Horvitz, E., 2013. Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, 47-56 (ACM).
– year: 2017
  ident: bib3
  article-title: The therapeutic potential of psychedelic drugs: past, present and future
  publication-title: Neuropsychopharmacology
– volume: 3
  start-page: 378
  year: 2015
  end-page: 399
  ident: bib19
  article-title: Model-based cognitive neuroscience approaches to computational psychiatry clustering and classification
  publication-title: Clin. Psychol. Sci.
– volume: 84
  start-page: 638
  year: 2014
  end-page: 654
  ident: bib18
  article-title: Computational psychiatry
  publication-title: Neuron
– volume: 24
  start-page: 544
  year: 2011
  end-page: 551
  ident: bib11
  article-title: Are computational models of any use to psychiatry?
  publication-title: Neural Netw.
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: bib14
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 689
  year: 1988
  end-page: 695
  ident: bib20
  article-title: Autobiographical memory in depression
  publication-title: Psychol. Med.
– volume: 2
  year: 2013
  ident: bib8
  article-title: Predicting depression via social media
  publication-title: ICWSM
– volume: 3
  start-page: 619
  year: 2016
  end-page: 627
  ident: bib4
  article-title: Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study
  publication-title: Lancet Psychiatry
– reference: John, G.H., Langley, P., 1995. Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 338–345 (Morgan Kaufmann Publishers Inc.).
– reference: Carrillo, F., et al. 2014. Automated speech analysis for psychosis evaluation. In: International Workshop on Machine Learning and Interpretation in Neuroimaging, 31-39 (Springer International Publishing).
– volume: 24
  start-page: 544
  year: 2011
  ident: 10.1016/j.jad.2018.01.006_bib11
  article-title: Are computational models of any use to psychiatry?
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2011.03.001
– start-page: 3111
  year: 2013
  ident: 10.1016/j.jad.2018.01.006_bib14
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 84
  start-page: 638
  year: 2014
  ident: 10.1016/j.jad.2018.01.006_bib18
  article-title: Computational psychiatry
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.018
– ident: 10.1016/j.jad.2018.01.006_bib5
  doi: 10.1007/978-3-319-45174-9_4
– volume: 331
  start-page: 176
  year: 2011
  ident: 10.1016/j.jad.2018.01.006_bib13
  article-title: Quantitative analysis of culture using millions of digitized books
  publication-title: Science
  doi: 10.1126/science.1199644
– volume: 2
  year: 2013
  ident: 10.1016/j.jad.2018.01.006_bib8
  article-title: Predicting depression via social media
  publication-title: ICWSM
– volume: 18
  start-page: 689
  year: 1988
  ident: 10.1016/j.jad.2018.01.006_bib20
  article-title: Autobiographical memory in depression
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291700008370
– ident: 10.1016/j.jad.2018.01.006_bib7
– ident: 10.1016/j.jad.2018.01.006_bib17
  doi: 10.3115/1572306.1572327
– volume: 9
  start-page: 48
  year: 2014
  ident: 10.1016/j.jad.2018.01.006_bib2
  article-title: Jumping nlp curves: a review of natural language processing research
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2014.2307227
– volume: 2015
  issue: 50
  year: 2015
  ident: 10.1016/j.jad.2018.01.006_bib6
  article-title: Fast distributed dynamics of semantic networks via social media
  publication-title: Comput. Intell. Neurosci.
– ident: 10.1016/j.jad.2018.01.006_bib12
– start-page: 1
  year: 2007
  ident: 10.1016/j.jad.2018.01.006_bib10
  article-title: Sentiwordnet: a high-coverage lexical resource for opinion mining
  publication-title: Evaluation
– year: 2017
  ident: 10.1016/j.jad.2018.01.006_bib3
  article-title: The therapeutic potential of psychedelic drugs: past, present and future
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2017.84
– volume: 3
  start-page: 378
  year: 2015
  ident: 10.1016/j.jad.2018.01.006_bib19
  article-title: Model-based cognitive neuroscience approaches to computational psychiatry clustering and classification
  publication-title: Clin. Psychol. Sci.
  doi: 10.1177/2167702614565359
– volume: 3
  start-page: 619
  year: 2016
  ident: 10.1016/j.jad.2018.01.006_bib4
  article-title: Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(16)30065-7
– ident: 10.1016/j.jad.2018.01.006_bib15
  doi: 10.1109/ACSSC.2016.7869165
– ident: 10.1016/j.jad.2018.01.006_bib9
  doi: 10.1145/2464464.2464480
– volume: 72
  start-page: 580
  year: 2012
  ident: 10.1016/j.jad.2018.01.006_bib16
  article-title: Vocal acoustic biomarkers of depression severity and treatment response
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.03.015
– volume: 1
  start-page: 15030
  year: 2015
  ident: 10.1016/j.jad.2018.01.006_bib1
  article-title: Automated analysis of free speech predicts psychosis onset in high-risk youths
  publication-title: NPJ Schizophr.
  doi: 10.1038/npjschz.2015.30
SSID ssj0006970
Score 2.4418101
Snippet Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry....
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Computational psychiatry
Depression
Machine learning
Natural speech analysis
Predict therapeutic effectiveness
Psilocybin treatment
Treatment-resistant depression
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5S59Dm0KT05T7CFnpq2diSVq9jCAkhUFNoDelpWa13a6WqLGwZk_yO_uDOrB60TUgoOdrMGK92NPMN8-23AO9noY6wzqdcCWxRhI4ynpks5spEwmLB1pk74f1pEp1Oxdl5eL4FR91ZGKJVtrm_yekuW7ffjNqnOaryfPSFDuKMA5_GyB6C_uABbEchAvIBbE8nnw-_NareIScbp5oaB5wEurrZpmN5XSiSC_USp91J1x7dXJ2uo88deLguK3W5UUXxR0U62YVZt5aGiPLjYF1nB_rqH5nHey52Dx63iJUdNnZPYMuUT-HXRDnBDraqjNFzporvi2Vez38y1cBaVi8YVUhCsSx3xMrcbBgRUhnuJquWNCGq2Waeo3ur7rpiiNwLtnS8XfcT1SrHanuJ7TtDdM16WjxHG0K-Zc16Lm_5DKYnx1-PTnl7wQPX2IXWPFVmFmRaRWmisI-Mk0ilNkGE6fuWlOrS2ISUJqxAcG1S31rh0ZjUF7ENYh0Fz2FQLkrzEpg21tiQBOwSjDrsCrEtCzTWXjVTiTLZEMbdxkrdqp_TJRyF7GhuFxJjQVIsyLEnMRaG8KF3qRrpj9uM_S5aZHemFbOwxMJ0m5Ponf6Kg7vc3nXhKDEZ0IRHlWaxXknSlMAG3PPHQ3jRxGn_1_0Ue_dQBEP42Afu3et69V_Wr-ERfWqYTW9gUC_X5i2Ctjrbb1_K38X-QK0
  priority: 102
  providerName: Unpaywall
Title Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0165032717311643
https://dx.doi.org/10.1016/j.jad.2018.01.006
https://www.ncbi.nlm.nih.gov/pubmed/29407543
https://www.proquest.com/docview/1999191120
https://www.sciencedirect.com/science/article/pii/S0165032717311643
UnpaywallVersion publishedVersion
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1573-2517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006970
  issn: 0165-0327
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1573-2517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006970
  issn: 0165-0327
  databaseCode: ACRLP
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1573-2517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006970
  issn: 0165-0327
  databaseCode: AIKHN
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1573-2517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006970
  issn: 0165-0327
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006970
  issn: 0165-0327
  databaseCode: AKRWK
  dateStart: 19790301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tlgNwQCBeZWE1SJxAoU3ivI7VilUBUSFBpeVkOa5Ns8qmUZuq2sv-Cn4wM84DEGhX4lSl8kSOPfZ8o_n8GeDVMtIxxfnMU4JSFKHj3MtNnnjKxMJSwNa5O-H9aR7PFuLDWXR2ACf9WRimVXZ7f7unu926-2fcjea4LorxFz6IMwkDLiP7BPpZ8VOIhG8xeHv1i-YRZ-7COG7sceu-suk4XueKxUL91Cl38qVH_45Nf2PPu3B7V9Xqcq_K8rd4dHof7nVAEqdtXx_Agakewo-5cjoauK2N0StU5fc1Zf-rC1Qt2sRmjRy4GFxi4fiOhdkj80SRBhnrDRduGtyvCjLvRFe3SIC6xI2j07pX1NuCguAlZdVIoBcHtrpHbRiQVg0OFNvqESxO3309mXndvQuepuSw8TJllmGuVZylitK7JI1VZlMCfkFgWUAuS0zEq9cKwrwmC6wVPlcvA5HYMNFx-BgOq3VlngJqY42NWFcuJWegZI2ypVBTSFRLlSqTj2DSj7jUnSg5341Ryp59di5pkiRPkpz4kiZpBK8Hk7pV5LiucdBPo-yPmtLmKCleXGckBqM_fPEms5e9n0hao1x4UZVZ77aSpR4oL_aDyQietA40dD3IKKWORDiCN4NH3fxdz_6vi0dwh59a5tFzOGw2O_OCQFWTH7tVcwy3pu8_zub0u5h_nn77CZCTI5g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAeKlBf2wJ1JU6t0t04zuuIEGjbwl4AiZvleO1uUJqNdrNacemv6A_ujPNoURFIvSaeyLHHnu_TfB4DHE5DHWGcTz0lkKIIHWVeZrLYUyYSFgO2ztwJ7_NJNL4SX6_D6w047s7CkKyy3fubPd3t1u2TYTuawyrPhxd0EGcUcEoj-wj6gyewJUIeEwP7_POPziNK3Y1x1Nqj5l1q04m8bhRVC_UTV7qTbj26Pzj9Cz6fwfaqrNTtWhXFXwHpdAeet0iSHTWd3YUNU76AXxPlCmmwZWWMnjFVfJ8j_Z_9YKqBm6yeM4pchC5Z7gSPuVkzEooyHGVWLShzU7P1LEfzturqkiGiLtjC6WndJ6pljlHwFmk1Q9TLerm6h20IkZY16zW25Uu4Oj25PB577cULnkZ2WHupMtMg0ypKE4X8Lk4ildoEkR_nlirIpbEJaflagaDXpNxa4VP6kovYBrGOglewWc5L8waYNtbYkArLJegNyNaQLgUaY6KaqkSZbACjbsSlbquS0-UYhezkZzcSJ0nSJMmRL3GSBvCxN6makhwPNebdNMrurCnujhIDxkNGoje644yPmX3o_ETiIqXMiyrNfLWUVOsBibHPRwN43ThQ33WeIqcORTCAT71HPf5fb_-vi-9he3x5fibPvky-vYOn9KaRIe3BZr1YmX1EWHV24FbQb_gFI30
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5S59Dm0KT05T7CFnpq2diSVq9jCAkhUFNoDelpWa13a6WqLGwZk_yO_uDOrB60TUgoOdrMGK92NPMN8-23AO9noY6wzqdcCWxRhI4ynpks5spEwmLB1pk74f1pEp1Oxdl5eL4FR91ZGKJVtrm_yekuW7ffjNqnOaryfPSFDuKMA5_GyB6C_uABbEchAvIBbE8nnw-_NareIScbp5oaB5wEurrZpmN5XSiSC_USp91J1x7dXJ2uo88deLguK3W5UUXxR0U62YVZt5aGiPLjYF1nB_rqH5nHey52Dx63iJUdNnZPYMuUT-HXRDnBDraqjNFzporvi2Vez38y1cBaVi8YVUhCsSx3xMrcbBgRUhnuJquWNCGq2Waeo3ur7rpiiNwLtnS8XfcT1SrHanuJ7TtDdM16WjxHG0K-Zc16Lm_5DKYnx1-PTnl7wQPX2IXWPFVmFmRaRWmisI-Mk0ilNkGE6fuWlOrS2ISUJqxAcG1S31rh0ZjUF7ENYh0Fz2FQLkrzEpg21tiQBOwSjDrsCrEtCzTWXjVTiTLZEMbdxkrdqp_TJRyF7GhuFxJjQVIsyLEnMRaG8KF3qRrpj9uM_S5aZHemFbOwxMJ0m5Ponf6Kg7vc3nXhKDEZ0IRHlWaxXknSlMAG3PPHQ3jRxGn_1_0Ue_dQBEP42Afu3et69V_Wr-ERfWqYTW9gUC_X5i2Ctjrbb1_K38X-QK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+speech+algorithm+applied+to+baseline+interview+data+can+predict+which+patients+will+respond+to+psilocybin+for+treatment-resistant+depression&rft.jtitle=Journal+of+affective+disorders&rft.au=Carrillo%2C+Facundo&rft.au=Sigman%2C+Mariano&rft.au=Fern%C3%A1ndez+Slezak%2C+Diego&rft.au=Ashton%2C+Philip&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0165-0327&rft.eissn=1573-2517&rft.volume=230&rft.spage=84&rft.epage=86&rft_id=info:doi/10.1016%2Fj.jad.2018.01.006&rft.externalDocID=S0165032717311643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0327&client=summon