Identifying Types of Physical Activity With a Single Accelerometer: Evaluating Laboratory-trained Algorithms in Daily Life
Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 58; no. 9; pp. 2656 - 2663 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.09.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2011.2160723 |
Cover
| Abstract | Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m 2 ). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3 %; p <; 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life. |
|---|---|
| AbstractList | Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m[Formula Omitted]). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; [Formula Omitted] < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life. Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 +/- 9; BMI: 23.0 +/- 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 +/- 4.3%, 91.4 +/- 6.7%, and 92.2 +/- 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 +/- 10.4%, 74.8 +/- 9.7%, and 72.2 +/- 10.3%; p<0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life. Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 +/- 9; BMI: 23.0 +/- 2.6 kg/m 2 ). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 +/- 4.3%, 91.4 +/- 6.7%, and 92.2 +/- 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 +/- 10.4%, 74.8 +/- 9.7%, and 72.2 +/- 10.3%; bm p <0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life. Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; p < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life. Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; p < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; p < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life. |
| Author | Gyllensten, Illapha Cuba Bonomi, Alberto G. |
| Author_xml | – sequence: 1 givenname: Illapha Cuba surname: Gyllensten fullname: Gyllensten, Illapha Cuba email: illapha@kth.se organization: Department of Care and Health Applications, Philips Research Laboratories, Eindhoven, The Netherlands – sequence: 2 givenname: Alberto G. surname: Bonomi fullname: Bonomi, Alberto G. email: alberto.bonomi@philips.com organization: Department of Medical Signal Processing, Philips Research Laboratories, Eindhoven, The Netherlands |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24473626$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21712150$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39511$$DView record from Swedish Publication Index |
| BookMark | eNqN0l2LEzEUBuBBVtzu6g8QQYKweOPUfM5kvKu7VRcqCla9DJnMmTbrdFKTzC7jrzeltcJeiFch4XmTHM45y05610OWPSV4SgiuXi_ffpxPKSZkSkmBS8oeZBMihMypYOQkm2BMZF7Rip9mZyHcpC2XvHiUnVJSEkoEnmS_rhvoo21H26_QctxCQK5Fn9djsEZ3aGaivbVxRN9tXCONviTWQTo20IF3G4jg36D5re4GHXdXLHTtvI7Oj3n02vbQoFm3cj7FNwHZHl1p241oYVt4nD1sdRfgyWE9z76-my8vP-SLT--vL2eL3HBexFzqhkrcFAaolFzrsq7LFkpo6spo1mjBQEvRkLqh2HCNNS2lMIZUtOCpdmDn2av9veEOtkOttt5utB-V01Zd2W8z5fxK_YhrxSpBSOIv93zr3c8BQlQbG1K5ne7BDUFVBBe8LP9DSimwEJSLJF_ckzdu8H2qOiEuGeW0Suj5AQ31BprjP_80K4GLA9AhNaf1ujc2_HWcl6ygRXJk74x3IXhoj4RgtRsctRsctRscdRiclCnvZYyNqaWu37Wx-2fy2T5pAeD4kqgYZ4VgvwFc5c_x |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1109_JIOT_2018_2819623 crossref_primary_10_1109_TBME_2012_2190930 crossref_primary_10_3233_JIFS_210646 crossref_primary_10_1249_MSS_0000000000001177 crossref_primary_10_1109_JIOT_2021_3075477 crossref_primary_10_1152_japplphysiol_00760_2017 crossref_primary_10_1109_ACCESS_2020_2998842 crossref_primary_10_1186_s12984_015_0060_2 crossref_primary_10_1136_bjsports_2015_095947 crossref_primary_10_1109_ACCESS_2020_3002075 crossref_primary_10_1123_jmpb_2019_0060 crossref_primary_10_3390_s23115122 crossref_primary_10_1016_j_inffus_2019_09_002 crossref_primary_10_1109_JSEN_2022_3228120 crossref_primary_10_1016_j_jesf_2013_10_002 crossref_primary_10_3390_s20123444 crossref_primary_10_3934_mbe_2022265 crossref_primary_10_3390_s20154329 crossref_primary_10_1007_s40430_021_03016_2 crossref_primary_10_1109_TBME_2021_3110432 crossref_primary_10_1109_ACCESS_2020_2986329 crossref_primary_10_1109_ACCESS_2020_3039885 crossref_primary_10_1007_s13198_024_02622_2 crossref_primary_10_1109_TSMC_2016_2562509 crossref_primary_10_1080_24725838_2019_1608873 crossref_primary_10_3390_s22020442 crossref_primary_10_1109_TBME_2012_2206384 crossref_primary_10_1123_jmpb_2018_0071 crossref_primary_10_1038_sc_2013_39 crossref_primary_10_1007_s11257_019_09238_3 crossref_primary_10_1249_MSS_0b013e3182a42a2d crossref_primary_10_3390_s23187872 crossref_primary_10_1007_s40860_021_00147_0 crossref_primary_10_1016_j_procs_2013_06_069 crossref_primary_10_1186_s12984_019_0494_z crossref_primary_10_1016_j_medengphy_2017_12_008 crossref_primary_10_1152_japplphysiol_01189_2013 crossref_primary_10_1016_j_procs_2013_06_061 crossref_primary_10_3390_s22197446 crossref_primary_10_1016_j_neucom_2016_06_074 crossref_primary_10_1016_j_jbi_2018_09_002 crossref_primary_10_1152_japplphysiol_00026_2015 crossref_primary_10_1007_s42235_023_00335_z crossref_primary_10_3390_ijerph181910419 crossref_primary_10_1152_japplphysiol_00984_2012 crossref_primary_10_1080_1091367X_2016_1192038 crossref_primary_10_1016_j_gaitpost_2017_12_028 crossref_primary_10_1371_journal_pone_0162107 crossref_primary_10_3390_s21051636 crossref_primary_10_1371_journal_pone_0188215 crossref_primary_10_3390_s23146479 crossref_primary_10_3390_s16081225 crossref_primary_10_3390_s20010317 crossref_primary_10_1109_TBME_2015_2464689 crossref_primary_10_1109_ACCESS_2020_3025938 crossref_primary_10_1016_j_patcog_2015_03_004 crossref_primary_10_3414_ME15_01_0130 crossref_primary_10_3390_s21103319 crossref_primary_10_1123_jmpb_2018_0011 crossref_primary_10_1249_MSS_0000000000002221 crossref_primary_10_1152_japplphysiol_01028_2013 crossref_primary_10_1007_s41870_021_00721_y crossref_primary_10_1249_MSS_0000000000000844 crossref_primary_10_1016_j_jsams_2016_04_013 crossref_primary_10_3390_s21237853 crossref_primary_10_1109_ACCESS_2018_2881001 crossref_primary_10_1249_MSS_0000000000002107 crossref_primary_10_1109_JIOT_2018_2846359 crossref_primary_10_1093_rheumatology_keae004 crossref_primary_10_1109_ACCESS_2018_2890004 crossref_primary_10_1038_s41598_024_59602_6 crossref_primary_10_1109_TBME_2015_2471094 crossref_primary_10_1109_TBME_2017_2750139 crossref_primary_10_1109_JBHI_2021_3076707 crossref_primary_10_1109_TBME_2015_2433935 crossref_primary_10_1016_j_procs_2014_07_009 crossref_primary_10_1111_obr_12506 crossref_primary_10_1007_s11277_020_07435_7 crossref_primary_10_1093_epirev_mxab004 crossref_primary_10_1109_JSEN_2014_2357035 crossref_primary_10_3389_fphys_2019_00075 crossref_primary_10_1249_MSS_0000000000001486 crossref_primary_10_1109_JBHI_2012_2237034 crossref_primary_10_1109_TNSRE_2017_2705285 crossref_primary_10_3390_s21248377 crossref_primary_10_1016_j_pmcj_2017_06_018 crossref_primary_10_3390_s17010066 crossref_primary_10_3390_s20030588 crossref_primary_10_1080_1091367X_2017_1337638 crossref_primary_10_1109_ACCESS_2018_2839766 crossref_primary_10_1080_00140139_2014_907450 crossref_primary_10_1186_s12938_015_0026_4 crossref_primary_10_1088_1361_6579_aadad0 crossref_primary_10_1152_japplphysiol_01443_2012 crossref_primary_10_1038_s41598_024_84253_y crossref_primary_10_1109_ACCESS_2019_2959398 crossref_primary_10_3389_fphys_2022_933987 crossref_primary_10_1249_MSS_0000000000000224 crossref_primary_10_1016_j_jsams_2016_06_003 crossref_primary_10_1186_s12887_023_03910_9 crossref_primary_10_2196_mhealth_5445 crossref_primary_10_1016_j_gaitpost_2018_12_003 crossref_primary_10_32604_iasc_2022_027233 crossref_primary_10_1088_0967_3334_35_11_2191 crossref_primary_10_3390_s20226424 crossref_primary_10_1088_0967_3334_37_10_1770 crossref_primary_10_1249_MSS_0000000000002752 crossref_primary_10_1007_s10916_015_0239_x crossref_primary_10_1016_j_isatra_2012_01_005 crossref_primary_10_1371_journal_pone_0118642 crossref_primary_10_1123_jpah_2019_0088 crossref_primary_10_1109_ACCESS_2022_3174813 crossref_primary_10_3390_computers12070141 crossref_primary_10_3414_ME15_05_0013 |
| Cites_doi | 10.2337/db07-0815 10.1016/0140-6736(91)90664-B 10.1093/ageing/afp249 10.2105/AJPH.74.2.147 10.1007/978-3-540-24646-6_1 10.1016/S8756-3282(02)00711-1 10.1249/01.mss.0000185571.49104.82 10.1093/aje/145.8.762 10.1016/j.amepre.2004.06.013 10.1088/0967-3334/30/4/R01 10.1001/jama.289.14.1785 10.1109/TITB.2005.856864 10.1093/ije/23.5.991 10.1109/TITB.2005.856863 10.1001/jama.1995.03520290054029 10.1249/MSS.0b013e3181a24536 10.1191/026921598674267844 10.1038/oby.2007.15 10.1038/oby.2003.7 10.1152/japplphysiol.00465.2009 10.1016/j.amepre.2004.03.012 10.1007/BF02347551 10.1016/j.medengphy.2008.09.005 10.1007/s00125-003-1031-x 10.1016/j.ehj.2004.10.009 10.1097/00005768-200106001-00006 10.1152/japplphysiol.00150.2009 10.1200/JCO.2005.06.069 10.1016/j.gaitpost.2008.04.012 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7TS ADTPV AOWAS D8V |
| DOI | 10.1109/TBME.2011.2160723 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Physical Education Index SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic Physical Education Index |
| DatabaseTitleList | Materials Research Database Engineering Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 2663 |
| ExternalDocumentID | oai_DiVA_org_kth_39511 2433278011 21712150 24473626 10_1109_TBME_2011_2160723 5934365 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7TS ADTPV AOWAS D8V |
| ID | FETCH-LOGICAL-c446t-8ad280d6ce2884aa7bb7fe7edb9ca3da53ea85d1bd20c4a0a2785cc19264929e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Tue Sep 09 23:55:10 EDT 2025 Tue Oct 07 09:30:54 EDT 2025 Wed Oct 01 15:03:11 EDT 2025 Mon Jun 30 08:52:47 EDT 2025 Thu Apr 03 07:07:53 EDT 2025 Mon Jul 21 09:17:21 EDT 2025 Wed Oct 01 02:57:12 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Wed Aug 27 02:53:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Performance evaluation Physical exercise Human classification algorithms Daily living Assessment of daily physical activity Algorithm intelligent device for energy expenditure and physical activity (IDEEA) physical activity Energetic cost Reproducibility Classification Accelerometer triaxial accelerometer Intelligent system Biomedical engineering |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-8ad280d6ce2884aa7bb7fe7edb9ca3da53ea85d1bd20c4a0a2785cc19264929e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 SourceType-Conference Papers & Proceedings-2 |
| PMID | 21712150 |
| PQID | 884832429 |
| PQPubID | 85474 |
| PageCount | 8 |
| ParticipantIDs | pubmed_primary_21712150 proquest_miscellaneous_885055245 pascalfrancis_primary_24473626 crossref_primary_10_1109_TBME_2011_2160723 proquest_miscellaneous_910647711 ieee_primary_5934365 proquest_journals_884832429 swepub_primary_oai_DiVA_org_kth_39511 crossref_citationtrail_10_1109_TBME_2011_2160723 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2011 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref15 ravi (ref32) 2005 ref31 ref11 ref10 quinlan (ref33) 1993 ref2 ref1 ref17 ref16 (ref14) 0 ref19 ref18 hu (ref4) 2003; 46 bao (ref22) 2004; 3001 ref24 ref23 ref26 ref25 ref20 ref21 (ref34) 0 ref28 ref27 ref8 (ref30) 0 ref7 ref9 ref3 ref6 ref5 bonomi (ref29) 2010 |
| References_xml | – ident: ref16 doi: 10.2337/db07-0815 – ident: ref5 doi: 10.1016/0140-6736(91)90664-B – ident: ref35 doi: 10.1093/ageing/afp249 – ident: ref9 doi: 10.2105/AJPH.74.2.147 – year: 0 ident: ref34 – volume: 3001 start-page: 1 year: 2004 ident: ref22 article-title: Activity recognition from user-annotated acceleration data publication-title: Pervasive Comput doi: 10.1007/978-3-540-24646-6_1 – ident: ref6 doi: 10.1016/S8756-3282(02)00711-1 – ident: ref21 doi: 10.1249/01.mss.0000185571.49104.82 – ident: ref2 doi: 10.1093/aje/145.8.762 – ident: ref11 doi: 10.1016/j.amepre.2004.06.013 – start-page: 1541 year: 2005 ident: ref32 article-title: Activity recognition from accelerometer data publication-title: Proc 18th Int Conf Innov Appl Artif Intell – ident: ref20 doi: 10.1088/0967-3334/30/4/R01 – ident: ref3 doi: 10.1001/jama.289.14.1785 – ident: ref26 doi: 10.1109/TITB.2005.856864 – year: 0 ident: ref30 – year: 1993 ident: ref33 publication-title: C4 5 Programs for Machine Learning – ident: ref13 doi: 10.1093/ije/23.5.991 – ident: ref23 doi: 10.1109/TITB.2005.856863 – ident: ref8 doi: 10.1001/jama.1995.03520290054029 – ident: ref25 doi: 10.1249/MSS.0b013e3181a24536 – ident: ref17 doi: 10.1191/026921598674267844 – ident: ref15 doi: 10.1038/oby.2007.15 – ident: ref27 doi: 10.1038/oby.2003.7 – year: 0 ident: ref14 – ident: ref19 doi: 10.1152/japplphysiol.00465.2009 – ident: ref10 doi: 10.1016/j.amepre.2004.03.012 – year: 2010 ident: ref29 publication-title: Sensing Emotions (Philips Research Book Series 12) – ident: ref24 doi: 10.1007/BF02347551 – ident: ref31 doi: 10.1016/j.medengphy.2008.09.005 – volume: 46 start-page: 322 year: 2003 ident: ref4 article-title: Occupational, commuting, and leisure-time physical activity in relation to risk for type 2 diabetes in middle-aged Finnish men and women publication-title: Diabetologia doi: 10.1007/s00125-003-1031-x – ident: ref1 doi: 10.1016/j.ehj.2004.10.009 – ident: ref12 doi: 10.1097/00005768-200106001-00006 – ident: ref18 doi: 10.1152/japplphysiol.00150.2009 – ident: ref7 doi: 10.1200/JCO.2005.06.069 – ident: ref28 doi: 10.1016/j.gaitpost.2008.04.012 |
| SSID | ssj0014846 |
| Score | 2.4043171 |
| Snippet | Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms.... |
| SourceID | swepub proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2656 |
| SubjectTerms | Acceleration Accelerometers Accuracy Activities of Daily Living - classification Adult Algorithms Artificial neural networks Assessment of daily physical activity Biological and medical sciences Classification Classification algorithms Decision Trees Female Fundamental and applied biological sciences. Psychology Humans intelligent device for energy expenditure and physical activity (IDEEA) Laboratories Locomotion - physiology Male Models, Statistical Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods Motor Activity - physiology Neural Networks (Computer) physical activity Principal Component Analysis Reproducibility of Results Support Vector Machine Support vector machines Training data triaxial accelerometer Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports |
| Title | Identifying Types of Physical Activity With a Single Accelerometer: Evaluating Laboratory-trained Algorithms in Daily Life |
| URI | https://ieeexplore.ieee.org/document/5934365 https://www.ncbi.nlm.nih.gov/pubmed/21712150 https://www.proquest.com/docview/884832429 https://www.proquest.com/docview/885055245 https://www.proquest.com/docview/910647711 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39511 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH7adkBw4MfGjzCYfIALIp3jOInDrbBOE1oREhvsFtmOzaKVBrXpYfvreY7dwKaBuFX1S1vnfe77nOf3PYBXNlHWZWxiDMVpzLnGNce0ihXTQnNDFbO92uen_OiUfzzLzjbg7VALY4zpD5-ZkXvZ5_LrVq_co7L9rEx5mmebsFmI3NdqDRkDLnxRDk1wAbOShwxmQsv9k_fTiRfrZE5OjaW9AnDhdBXotXDU91dxpyPlEm-Q9Z0tbqOeN3RF-1h0-ACm61n4IygXo1WnRvrqhsDj_07zIdwPpJSMPYoewYaZb8O9P6QKt-HONCThd-DKF_f2BVLE7WOXpLXkc3A4GWvfkIJ8a7pzIskXNJsZfFtjhHPiCOjJd2QSVMbxI449DtvFZdw3rDA1Gc--twu8_MeSNHNyIJvZJTlurHkMp4eTkw9HcWjhEGvcZ3axkDUTtHZtx4TgUhZKFdYUplallmkts9RIkdWJqhnVXFLJCpFpjbQz5-hFkz6BrXk7N8-AJLkSqqQ1kxadXVhpMayKXNZJqkRmbQR07clKB31z96tnVb_PoWXlcFA5HFQBBxG8GS756cU9_mW841w1GAYvRbB3DS7DOPKmwmn9RLC7xk8V_h-WFd4M4ahsGQEZRnFhu2yNnJt25UyQnGaMZ383Qarn6oiTJIKnHpi_vz3gO4LXHqnDiNMTP2i-jivEXHXRnVcpkuzk-e2z24W7_iG6O1T3Ara6xcq8RBbWqb1--f0CZWgtEA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwEN4pZYbHgUfLwxSKDnBhcGrLUixzCzSdAEmHGVLam0eSJeppiJnEObS_npXlGNopDLdMtE4i76fsJ6_2W4BXNlbWZWxCDMVJyJjGNUe1ChXVQjMTKWobtc_D_uiIfTrhJxvwtquFMcY0h89Mz71scvlFpVfuUdkezxKW9PkNuMkZY9xXa3U5AyZ8WU4U4xKmGWtzmHGU7U3fT4ZerpM6QTWaNBrAqVNWiC4FpKbDijsfKZd4i6zvbXEd-byiLNpEo4P7MFnPwx9COeutatXTF1ckHv93og_gXktLycDj6CFsmPkW3P1DrHALbk3aNPw2XPjy3qZEirid7JJUlnxpXU4G2rekIMdlfUok-YpmM4Nva4xxTh4BffmODFudcfyIsUditTgPm5YVpiCD2fdqgZf_WJJyTvZlOTsn49KaR3B0MJx-GIVtE4dQ406zDoUsqIgK13hMCCZlqlRqTWoKlWmZFJInRgpexKqgkWYykjQVXGsknn2GXjTJY9icV3PzFEjcV0JlUUGlRWenVloMrKIvizhRglsbQLT2ZK5bhXP3q2d5s9OJstzhIHc4yFscBPCmu-Snl_f4l_G2c1Vn2HopgN1LcOnGkTmlTu0ngJ01fvL2H2KZ480QjsxmAZBuFJe2y9fIualWzgTpKaeM_90EyZ6rJI7jAJ54YP7-9hbfAbz2SO1GnKL4fvltkCPm8rP6NE-QZsfPrp_dS7g9mk7G-fjj4ecduOMfqbsjds9hs16szAvkZLXabZbiLz38MF0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+types+of+physical+activity+with+a+single+accelerometer%3A+evaluating+laboratory-trained+algorithms+in+daily+life&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Gyllensten%2C+Illapha+Cuba&rft.au=Bonomi%2C+Alberto+G&rft.date=2011-09-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=58&rft.issue=9&rft.spage=2656&rft_id=info:doi/10.1109%2FTBME.2011.2160723&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |