Identifying Types of Physical Activity With a Single Accelerometer: Evaluating Laboratory-trained Algorithms in Daily Life

Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 58; no. 9; pp. 2656 - 2663
Main Authors Gyllensten, Illapha Cuba, Bonomi, Alberto G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2011.2160723

Cover

Abstract Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m 2 ). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3 %; p <; 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
AbstractList Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m[Formula Omitted]). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; [Formula Omitted] < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 +/- 9; BMI: 23.0 +/- 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 +/- 4.3%, 91.4 +/- 6.7%, and 92.2 +/- 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 +/- 10.4%, 74.8 +/- 9.7%, and 72.2 +/- 10.3%; p&lt;0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 +/- 9; BMI: 23.0 +/- 2.6 kg/m 2 ). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 +/- 4.3%, 91.4 +/- 6.7%, and 92.2 +/- 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 +/- 10.4%, 74.8 +/- 9.7%, and 72.2 +/- 10.3%; bm p <0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; p < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; p < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms. This methodology is then applied to free-living subjects to determine activity behavior. This study is aimed at analyzing the reproducibility of the accuracy of laboratory-trained classification algorithms in free-living subjects during daily life. A support vector machine (SVM), a feed-forward neural network (NN), and a decision tree (DT) were trained with data collected by a waist-mounted accelerometer during a laboratory trial. The reproducibility of the classification performance was tested on data collected in daily life using a multiple-site accelerometer augmented with an activity diary for 20 healthy subjects (age: 30 ± 9; BMI: 23.0 ± 2.6 kg/m(2)). Leave-one-subject-out cross validation of the training data showed accuracies of 95.1 ± 4.3%, 91.4 ± 6.7%, and 92.2 ± 6.6% for the SVM, NN, and DT, respectively. All algorithms showed a significantly decreased accuracy in daily life as compared to the reference truth represented by the IDEEA and diary classifications (75.6 ± 10.4%, 74.8 ± 9.7%, and 72.2 ± 10.3%; p < 0.05). In conclusion, cross validation of training data overestimates the accuracy of the classification algorithms in daily life.
Author Gyllensten, Illapha Cuba
Bonomi, Alberto G.
Author_xml – sequence: 1
  givenname: Illapha Cuba
  surname: Gyllensten
  fullname: Gyllensten, Illapha Cuba
  email: illapha@kth.se
  organization: Department of Care and Health Applications, Philips Research Laboratories, Eindhoven, The Netherlands
– sequence: 2
  givenname: Alberto G.
  surname: Bonomi
  fullname: Bonomi, Alberto G.
  email: alberto.bonomi@philips.com
  organization: Department of Medical Signal Processing, Philips Research Laboratories, Eindhoven, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24473626$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21712150$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39511$$DView record from Swedish Publication Index
BookMark eNqN0l2LEzEUBuBBVtzu6g8QQYKweOPUfM5kvKu7VRcqCla9DJnMmTbrdFKTzC7jrzeltcJeiFch4XmTHM45y05610OWPSV4SgiuXi_ffpxPKSZkSkmBS8oeZBMihMypYOQkm2BMZF7Rip9mZyHcpC2XvHiUnVJSEkoEnmS_rhvoo21H26_QctxCQK5Fn9djsEZ3aGaivbVxRN9tXCONviTWQTo20IF3G4jg36D5re4GHXdXLHTtvI7Oj3n02vbQoFm3cj7FNwHZHl1p241oYVt4nD1sdRfgyWE9z76-my8vP-SLT--vL2eL3HBexFzqhkrcFAaolFzrsq7LFkpo6spo1mjBQEvRkLqh2HCNNS2lMIZUtOCpdmDn2av9veEOtkOttt5utB-V01Zd2W8z5fxK_YhrxSpBSOIv93zr3c8BQlQbG1K5ne7BDUFVBBe8LP9DSimwEJSLJF_ckzdu8H2qOiEuGeW0Suj5AQ31BprjP_80K4GLA9AhNaf1ujc2_HWcl6ygRXJk74x3IXhoj4RgtRsctRsctRscdRiclCnvZYyNqaWu37Wx-2fy2T5pAeD4kqgYZ4VgvwFc5c_x
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JIOT_2018_2819623
crossref_primary_10_1109_TBME_2012_2190930
crossref_primary_10_3233_JIFS_210646
crossref_primary_10_1249_MSS_0000000000001177
crossref_primary_10_1109_JIOT_2021_3075477
crossref_primary_10_1152_japplphysiol_00760_2017
crossref_primary_10_1109_ACCESS_2020_2998842
crossref_primary_10_1186_s12984_015_0060_2
crossref_primary_10_1136_bjsports_2015_095947
crossref_primary_10_1109_ACCESS_2020_3002075
crossref_primary_10_1123_jmpb_2019_0060
crossref_primary_10_3390_s23115122
crossref_primary_10_1016_j_inffus_2019_09_002
crossref_primary_10_1109_JSEN_2022_3228120
crossref_primary_10_1016_j_jesf_2013_10_002
crossref_primary_10_3390_s20123444
crossref_primary_10_3934_mbe_2022265
crossref_primary_10_3390_s20154329
crossref_primary_10_1007_s40430_021_03016_2
crossref_primary_10_1109_TBME_2021_3110432
crossref_primary_10_1109_ACCESS_2020_2986329
crossref_primary_10_1109_ACCESS_2020_3039885
crossref_primary_10_1007_s13198_024_02622_2
crossref_primary_10_1109_TSMC_2016_2562509
crossref_primary_10_1080_24725838_2019_1608873
crossref_primary_10_3390_s22020442
crossref_primary_10_1109_TBME_2012_2206384
crossref_primary_10_1123_jmpb_2018_0071
crossref_primary_10_1038_sc_2013_39
crossref_primary_10_1007_s11257_019_09238_3
crossref_primary_10_1249_MSS_0b013e3182a42a2d
crossref_primary_10_3390_s23187872
crossref_primary_10_1007_s40860_021_00147_0
crossref_primary_10_1016_j_procs_2013_06_069
crossref_primary_10_1186_s12984_019_0494_z
crossref_primary_10_1016_j_medengphy_2017_12_008
crossref_primary_10_1152_japplphysiol_01189_2013
crossref_primary_10_1016_j_procs_2013_06_061
crossref_primary_10_3390_s22197446
crossref_primary_10_1016_j_neucom_2016_06_074
crossref_primary_10_1016_j_jbi_2018_09_002
crossref_primary_10_1152_japplphysiol_00026_2015
crossref_primary_10_1007_s42235_023_00335_z
crossref_primary_10_3390_ijerph181910419
crossref_primary_10_1152_japplphysiol_00984_2012
crossref_primary_10_1080_1091367X_2016_1192038
crossref_primary_10_1016_j_gaitpost_2017_12_028
crossref_primary_10_1371_journal_pone_0162107
crossref_primary_10_3390_s21051636
crossref_primary_10_1371_journal_pone_0188215
crossref_primary_10_3390_s23146479
crossref_primary_10_3390_s16081225
crossref_primary_10_3390_s20010317
crossref_primary_10_1109_TBME_2015_2464689
crossref_primary_10_1109_ACCESS_2020_3025938
crossref_primary_10_1016_j_patcog_2015_03_004
crossref_primary_10_3414_ME15_01_0130
crossref_primary_10_3390_s21103319
crossref_primary_10_1123_jmpb_2018_0011
crossref_primary_10_1249_MSS_0000000000002221
crossref_primary_10_1152_japplphysiol_01028_2013
crossref_primary_10_1007_s41870_021_00721_y
crossref_primary_10_1249_MSS_0000000000000844
crossref_primary_10_1016_j_jsams_2016_04_013
crossref_primary_10_3390_s21237853
crossref_primary_10_1109_ACCESS_2018_2881001
crossref_primary_10_1249_MSS_0000000000002107
crossref_primary_10_1109_JIOT_2018_2846359
crossref_primary_10_1093_rheumatology_keae004
crossref_primary_10_1109_ACCESS_2018_2890004
crossref_primary_10_1038_s41598_024_59602_6
crossref_primary_10_1109_TBME_2015_2471094
crossref_primary_10_1109_TBME_2017_2750139
crossref_primary_10_1109_JBHI_2021_3076707
crossref_primary_10_1109_TBME_2015_2433935
crossref_primary_10_1016_j_procs_2014_07_009
crossref_primary_10_1111_obr_12506
crossref_primary_10_1007_s11277_020_07435_7
crossref_primary_10_1093_epirev_mxab004
crossref_primary_10_1109_JSEN_2014_2357035
crossref_primary_10_3389_fphys_2019_00075
crossref_primary_10_1249_MSS_0000000000001486
crossref_primary_10_1109_JBHI_2012_2237034
crossref_primary_10_1109_TNSRE_2017_2705285
crossref_primary_10_3390_s21248377
crossref_primary_10_1016_j_pmcj_2017_06_018
crossref_primary_10_3390_s17010066
crossref_primary_10_3390_s20030588
crossref_primary_10_1080_1091367X_2017_1337638
crossref_primary_10_1109_ACCESS_2018_2839766
crossref_primary_10_1080_00140139_2014_907450
crossref_primary_10_1186_s12938_015_0026_4
crossref_primary_10_1088_1361_6579_aadad0
crossref_primary_10_1152_japplphysiol_01443_2012
crossref_primary_10_1038_s41598_024_84253_y
crossref_primary_10_1109_ACCESS_2019_2959398
crossref_primary_10_3389_fphys_2022_933987
crossref_primary_10_1249_MSS_0000000000000224
crossref_primary_10_1016_j_jsams_2016_06_003
crossref_primary_10_1186_s12887_023_03910_9
crossref_primary_10_2196_mhealth_5445
crossref_primary_10_1016_j_gaitpost_2018_12_003
crossref_primary_10_32604_iasc_2022_027233
crossref_primary_10_1088_0967_3334_35_11_2191
crossref_primary_10_3390_s20226424
crossref_primary_10_1088_0967_3334_37_10_1770
crossref_primary_10_1249_MSS_0000000000002752
crossref_primary_10_1007_s10916_015_0239_x
crossref_primary_10_1016_j_isatra_2012_01_005
crossref_primary_10_1371_journal_pone_0118642
crossref_primary_10_1123_jpah_2019_0088
crossref_primary_10_1109_ACCESS_2022_3174813
crossref_primary_10_3390_computers12070141
crossref_primary_10_3414_ME15_05_0013
Cites_doi 10.2337/db07-0815
10.1016/0140-6736(91)90664-B
10.1093/ageing/afp249
10.2105/AJPH.74.2.147
10.1007/978-3-540-24646-6_1
10.1016/S8756-3282(02)00711-1
10.1249/01.mss.0000185571.49104.82
10.1093/aje/145.8.762
10.1016/j.amepre.2004.06.013
10.1088/0967-3334/30/4/R01
10.1001/jama.289.14.1785
10.1109/TITB.2005.856864
10.1093/ije/23.5.991
10.1109/TITB.2005.856863
10.1001/jama.1995.03520290054029
10.1249/MSS.0b013e3181a24536
10.1191/026921598674267844
10.1038/oby.2007.15
10.1038/oby.2003.7
10.1152/japplphysiol.00465.2009
10.1016/j.amepre.2004.03.012
10.1007/BF02347551
10.1016/j.medengphy.2008.09.005
10.1007/s00125-003-1031-x
10.1016/j.ehj.2004.10.009
10.1097/00005768-200106001-00006
10.1152/japplphysiol.00150.2009
10.1200/JCO.2005.06.069
10.1016/j.gaitpost.2008.04.012
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7TS
ADTPV
AOWAS
D8V
DOI 10.1109/TBME.2011.2160723
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Physical Education Index
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
Physical Education Index
DatabaseTitleList Materials Research Database

Engineering Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2663
ExternalDocumentID oai_DiVA_org_kth_39511
2433278011
21712150
24473626
10_1109_TBME_2011_2160723
5934365
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7TS
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c446t-8ad280d6ce2884aa7bb7fe7edb9ca3da53ea85d1bd20c4a0a2785cc19264929e3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Tue Sep 09 23:55:10 EDT 2025
Tue Oct 07 09:30:54 EDT 2025
Wed Oct 01 15:03:11 EDT 2025
Mon Jun 30 08:52:47 EDT 2025
Thu Apr 03 07:07:53 EDT 2025
Mon Jul 21 09:17:21 EDT 2025
Wed Oct 01 02:57:12 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Wed Aug 27 02:53:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Performance evaluation
Physical exercise
Human
classification algorithms
Daily living
Assessment of daily physical activity
Algorithm
intelligent device for energy expenditure and physical activity (IDEEA)
physical activity
Energetic cost
Reproducibility
Classification
Accelerometer
triaxial accelerometer
Intelligent system
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-8ad280d6ce2884aa7bb7fe7edb9ca3da53ea85d1bd20c4a0a2785cc19264929e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
PMID 21712150
PQID 884832429
PQPubID 85474
PageCount 8
ParticipantIDs pubmed_primary_21712150
proquest_miscellaneous_885055245
pascalfrancis_primary_24473626
crossref_primary_10_1109_TBME_2011_2160723
proquest_miscellaneous_910647711
ieee_primary_5934365
proquest_journals_884832429
swepub_primary_oai_DiVA_org_kth_39511
crossref_citationtrail_10_1109_TBME_2011_2160723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ravi (ref32) 2005
ref31
ref11
ref10
quinlan (ref33) 1993
ref2
ref1
ref17
ref16
(ref14) 0
ref19
ref18
hu (ref4) 2003; 46
bao (ref22) 2004; 3001
ref24
ref23
ref26
ref25
ref20
ref21
(ref34) 0
ref28
ref27
ref8
(ref30) 0
ref7
ref9
ref3
ref6
ref5
bonomi (ref29) 2010
References_xml – ident: ref16
  doi: 10.2337/db07-0815
– ident: ref5
  doi: 10.1016/0140-6736(91)90664-B
– ident: ref35
  doi: 10.1093/ageing/afp249
– ident: ref9
  doi: 10.2105/AJPH.74.2.147
– year: 0
  ident: ref34
– volume: 3001
  start-page: 1
  year: 2004
  ident: ref22
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Pervasive Comput
  doi: 10.1007/978-3-540-24646-6_1
– ident: ref6
  doi: 10.1016/S8756-3282(02)00711-1
– ident: ref21
  doi: 10.1249/01.mss.0000185571.49104.82
– ident: ref2
  doi: 10.1093/aje/145.8.762
– ident: ref11
  doi: 10.1016/j.amepre.2004.06.013
– start-page: 1541
  year: 2005
  ident: ref32
  article-title: Activity recognition from accelerometer data
  publication-title: Proc 18th Int Conf Innov Appl Artif Intell
– ident: ref20
  doi: 10.1088/0967-3334/30/4/R01
– ident: ref3
  doi: 10.1001/jama.289.14.1785
– ident: ref26
  doi: 10.1109/TITB.2005.856864
– year: 0
  ident: ref30
– year: 1993
  ident: ref33
  publication-title: C4 5 Programs for Machine Learning
– ident: ref13
  doi: 10.1093/ije/23.5.991
– ident: ref23
  doi: 10.1109/TITB.2005.856863
– ident: ref8
  doi: 10.1001/jama.1995.03520290054029
– ident: ref25
  doi: 10.1249/MSS.0b013e3181a24536
– ident: ref17
  doi: 10.1191/026921598674267844
– ident: ref15
  doi: 10.1038/oby.2007.15
– ident: ref27
  doi: 10.1038/oby.2003.7
– year: 0
  ident: ref14
– ident: ref19
  doi: 10.1152/japplphysiol.00465.2009
– ident: ref10
  doi: 10.1016/j.amepre.2004.03.012
– year: 2010
  ident: ref29
  publication-title: Sensing Emotions (Philips Research Book Series 12)
– ident: ref24
  doi: 10.1007/BF02347551
– ident: ref31
  doi: 10.1016/j.medengphy.2008.09.005
– volume: 46
  start-page: 322
  year: 2003
  ident: ref4
  article-title: Occupational, commuting, and leisure-time physical activity in relation to risk for type 2 diabetes in middle-aged Finnish men and women
  publication-title: Diabetologia
  doi: 10.1007/s00125-003-1031-x
– ident: ref1
  doi: 10.1016/j.ehj.2004.10.009
– ident: ref12
  doi: 10.1097/00005768-200106001-00006
– ident: ref18
  doi: 10.1152/japplphysiol.00150.2009
– ident: ref7
  doi: 10.1200/JCO.2005.06.069
– ident: ref28
  doi: 10.1016/j.gaitpost.2008.04.012
SSID ssj0014846
Score 2.4043171
Snippet Accurate identification of physical activity types has been achieved in laboratory conditions using single-site accelerometers and classification algorithms....
SourceID swepub
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2656
SubjectTerms Acceleration
Accelerometers
Accuracy
Activities of Daily Living - classification
Adult
Algorithms
Artificial neural networks
Assessment of daily physical activity
Biological and medical sciences
Classification
Classification algorithms
Decision Trees
Female
Fundamental and applied biological sciences. Psychology
Humans
intelligent device for energy expenditure and physical activity (IDEEA)
Laboratories
Locomotion - physiology
Male
Models, Statistical
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Motor Activity - physiology
Neural Networks (Computer)
physical activity
Principal Component Analysis
Reproducibility of Results
Support Vector Machine
Support vector machines
Training data
triaxial accelerometer
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Title Identifying Types of Physical Activity With a Single Accelerometer: Evaluating Laboratory-trained Algorithms in Daily Life
URI https://ieeexplore.ieee.org/document/5934365
https://www.ncbi.nlm.nih.gov/pubmed/21712150
https://www.proquest.com/docview/884832429
https://www.proquest.com/docview/885055245
https://www.proquest.com/docview/910647711
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39511
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH7adkBw4MfGjzCYfIALIp3jOInDrbBOE1oREhvsFtmOzaKVBrXpYfvreY7dwKaBuFX1S1vnfe77nOf3PYBXNlHWZWxiDMVpzLnGNce0ihXTQnNDFbO92uen_OiUfzzLzjbg7VALY4zpD5-ZkXvZ5_LrVq_co7L9rEx5mmebsFmI3NdqDRkDLnxRDk1wAbOShwxmQsv9k_fTiRfrZE5OjaW9AnDhdBXotXDU91dxpyPlEm-Q9Z0tbqOeN3RF-1h0-ACm61n4IygXo1WnRvrqhsDj_07zIdwPpJSMPYoewYaZb8O9P6QKt-HONCThd-DKF_f2BVLE7WOXpLXkc3A4GWvfkIJ8a7pzIskXNJsZfFtjhHPiCOjJd2QSVMbxI449DtvFZdw3rDA1Gc--twu8_MeSNHNyIJvZJTlurHkMp4eTkw9HcWjhEGvcZ3axkDUTtHZtx4TgUhZKFdYUplallmkts9RIkdWJqhnVXFLJCpFpjbQz5-hFkz6BrXk7N8-AJLkSqqQ1kxadXVhpMayKXNZJqkRmbQR07clKB31z96tnVb_PoWXlcFA5HFQBBxG8GS756cU9_mW841w1GAYvRbB3DS7DOPKmwmn9RLC7xk8V_h-WFd4M4ahsGQEZRnFhu2yNnJt25UyQnGaMZ383Qarn6oiTJIKnHpi_vz3gO4LXHqnDiNMTP2i-jivEXHXRnVcpkuzk-e2z24W7_iG6O1T3Ara6xcq8RBbWqb1--f0CZWgtEA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwEN4pZYbHgUfLwxSKDnBhcGrLUixzCzSdAEmHGVLam0eSJeppiJnEObS_npXlGNopDLdMtE4i76fsJ6_2W4BXNlbWZWxCDMVJyJjGNUe1ChXVQjMTKWobtc_D_uiIfTrhJxvwtquFMcY0h89Mz71scvlFpVfuUdkezxKW9PkNuMkZY9xXa3U5AyZ8WU4U4xKmGWtzmHGU7U3fT4ZerpM6QTWaNBrAqVNWiC4FpKbDijsfKZd4i6zvbXEd-byiLNpEo4P7MFnPwx9COeutatXTF1ckHv93og_gXktLycDj6CFsmPkW3P1DrHALbk3aNPw2XPjy3qZEirid7JJUlnxpXU4G2rekIMdlfUok-YpmM4Nva4xxTh4BffmODFudcfyIsUditTgPm5YVpiCD2fdqgZf_WJJyTvZlOTsn49KaR3B0MJx-GIVtE4dQ406zDoUsqIgK13hMCCZlqlRqTWoKlWmZFJInRgpexKqgkWYykjQVXGsknn2GXjTJY9icV3PzFEjcV0JlUUGlRWenVloMrKIvizhRglsbQLT2ZK5bhXP3q2d5s9OJstzhIHc4yFscBPCmu-Snl_f4l_G2c1Vn2HopgN1LcOnGkTmlTu0ngJ01fvL2H2KZ480QjsxmAZBuFJe2y9fIualWzgTpKaeM_90EyZ6rJI7jAJ54YP7-9hbfAbz2SO1GnKL4fvltkCPm8rP6NE-QZsfPrp_dS7g9mk7G-fjj4ecduOMfqbsjds9hs16szAvkZLXabZbiLz38MF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+types+of+physical+activity+with+a+single+accelerometer%3A+evaluating+laboratory-trained+algorithms+in+daily+life&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Gyllensten%2C+Illapha+Cuba&rft.au=Bonomi%2C+Alberto+G&rft.date=2011-09-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=58&rft.issue=9&rft.spage=2656&rft_id=info:doi/10.1109%2FTBME.2011.2160723&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon