Development of a Controlled Continuous Low-Dose Feeding Process

This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviatio...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 22; no. 7; p. 247
Main Authors Fathollahi, Sara, Kruisz, Julia, Sacher, Stephan, Rehrl, Jakob, Escotet-Espinoza, M. Sebastian, DiNunzio, James, Glasser, Benjamin J., Khinast, Johannes G.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 12.10.2021
Subjects
Online AccessGet full text
ISSN1530-9932
1530-9932
DOI10.1208/s12249-021-02104-9

Cover

Abstract This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy.
AbstractList This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy.
This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy.This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy.
ArticleNumber 247
Author Fathollahi, Sara
Escotet-Espinoza, M. Sebastian
DiNunzio, James
Sacher, Stephan
Kruisz, Julia
Rehrl, Jakob
Khinast, Johannes G.
Glasser, Benjamin J.
Author_xml – sequence: 1
  givenname: Sara
  surname: Fathollahi
  fullname: Fathollahi, Sara
  organization: Research Center Pharmaceutical Engineering (RCPE) GmbH, Graz University of Technology, Institute of Process and Particle Engineering
– sequence: 2
  givenname: Julia
  surname: Kruisz
  fullname: Kruisz, Julia
  organization: Research Center Pharmaceutical Engineering (RCPE) GmbH
– sequence: 3
  givenname: Stephan
  surname: Sacher
  fullname: Sacher, Stephan
  organization: Research Center Pharmaceutical Engineering (RCPE) GmbH
– sequence: 4
  givenname: Jakob
  surname: Rehrl
  fullname: Rehrl, Jakob
  organization: Research Center Pharmaceutical Engineering (RCPE) GmbH
– sequence: 5
  givenname: M. Sebastian
  surname: Escotet-Espinoza
  fullname: Escotet-Espinoza, M. Sebastian
  organization: Oral Formulation Sciences and Technology, Merck & Co., Inc
– sequence: 6
  givenname: James
  surname: DiNunzio
  fullname: DiNunzio, James
  organization: Oral Formulation Sciences and Technology, Merck & Co., Inc
– sequence: 7
  givenname: Benjamin J.
  surname: Glasser
  fullname: Glasser, Benjamin J.
  organization: Department of Chemical and Biochemical Engineering, Rutgers University
– sequence: 8
  givenname: Johannes G.
  surname: Khinast
  fullname: Khinast, Johannes G.
  email: khinast@tugraz.at
  organization: Research Center Pharmaceutical Engineering (RCPE) GmbH, Graz University of Technology, Institute of Process and Particle Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34642863$$D View this record in MEDLINE/PubMed
BookMark eNp9UclOwzAQtVARtMAPcEA5cgl4S2JfQKhlkyrBAc6W606KUWoXOyni73EXEHDgYHnkect43gD1nHeA0DHBZ4RicR4JpVzmmJLVwTyXO6hPCoZzKRnt_aj30SDGV4wpI5LtoX3GS05FyfrocgRLaPxiDq7NfJ3pbOhdG3zTwHRdWtf5LmZj_56PfITsBmBq3Sx7DN5AjIdot9ZNhKPtfYCeb66fhnf5-OH2fng1zg3nZZuLNF5ZGWMAT8CUEyoELclECyKmtUw9RioGNeO1rmrMC0JlRWuGNS00T-_sAF1sdBfdZA5Tk8YNulGLYOc6fCivrfrdcfZFzfxSiYJgycokcLoVCP6tg9iquY0GmkY7SB9UtBCkkrioigQ9-en1bfK1tQSgG4AJPsYA9TeEYLWKRm2iUSkWtY5GyUQSf0jGtrq1q3Vr2_xPZRtqTD5uBkG9-i64tO__WJ-XUKJa
CitedBy_id crossref_primary_10_3390_powders3040026
crossref_primary_10_1016_j_ijpharm_2023_122691
crossref_primary_10_1007_s12247_021_09599_6
crossref_primary_10_1016_j_ijpharm_2024_124528
Cites_doi 10.1016/j.powtec.2015.06.001
10.1016/j.ijpharm.2020.119969
10.1016/j.ijpharm.2017.04.004
10.1016/j.powtec.2018.03.027
10.1016/j.ijpharm.2015.09.029
10.1007/s12247-010-9077-z
10.1007/s12247-019-09394-4
10.1016/j.ijpharm.2020.119353
10.1007/s12247-018-9313-5
10.1007/s12247-014-9206-1
10.1016/j.powtec.2012.05.058
10.1016/j.powtec.2010.11.038
10.1016/j.ijpharm.2014.06.045
10.1016/j.ijpharm.2016.06.024
10.1016/j.powtec.2016.02.027
10.1016/j.cep.2008.01.009
10.1016/j.apt.2020.05.027
10.1007/s12247-010-9076-0
10.1021/ac60214a047
10.3390/pr3020339
10.1016/j.cherd.2019.11.032
10.1016/j.powtec.2012.04.034
10.1016/j.powtec.2016.12.010
10.1016/S1526-6125(06)80007-1
10.1016/j.ijpharm.2019.118457
10.23919/ChiCC.2018.8483962
10.1208/s12249-020-01835-5
10.1016/j.ijpharm.2020.119223
10.1080/10837450.2017.1339197
10.1016/j.sigpro.2014.04.016
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1208/s12249-021-02104-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1530-9932
ExternalDocumentID PMC8510936
34642863
10_1208_s12249_021_02104_9
Genre Journal Article
GrantInformation_xml – fundername: Graz University of Technology
– fundername: ;
GroupedDBID ---
.86
.VR
06C
06D
0R~
0VY
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
408
40D
40E
53G
5GY
5VS
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYFIA
B-.
BA0
BAWUL
BGNMA
C6C
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HG6
HH5
HMJXF
HRMNR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OK1
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TR2
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
ZMTXR
ZOVNA
~A9
-Y2
2VQ
4.4
AANXM
AARHV
AAYXX
ABBRH
ABFSG
ABULA
ACBXY
ACMFV
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AOIJS
ATHPR
BDATZ
BSONS
C1A
CAG
CITATION
COF
EJD
EN4
FINBP
FSGXE
GX1
H13
HYE
HZ~
LGEZI
LOTEE
NADUK
NXXTH
O9-
OVD
S1Z
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABRTQ
5PM
ID FETCH-LOGICAL-c446t-810467ccce0bec6b288261ba818df90463173ef34fa7f04512972f30a25a4ef33
IEDL.DBID C6C
ISSN 1530-9932
IngestDate Thu Aug 21 13:45:40 EDT 2025
Thu Sep 04 22:54:43 EDT 2025
Thu Apr 03 07:02:01 EDT 2025
Tue Jul 01 01:55:52 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Mar 12 00:36:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Loss-in-weight feeder
Low dose feeding
Feed forward control
Continuous feeding
Iterative learning control
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-810467ccce0bec6b288261ba818df90463173ef34fa7f04512972f30a25a4ef33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1208/s12249-021-02104-9
PMID 34642863
PQID 2581790575
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8510936
proquest_miscellaneous_2581790575
pubmed_primary_34642863
crossref_primary_10_1208_s12249_021_02104_9
crossref_citationtrail_10_1208_s12249_021_02104_9
springer_journals_10_1208_s12249_021_02104_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-12
PublicationDateYYYYMMDD 2021-10-12
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-12
  day: 12
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle AAPS PharmSciTech
PublicationTitleAbbrev AAPS PharmSciTech
PublicationTitleAlternate AAPS PharmSciTech
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Moghtadernejad, Escotet-Espinoza, Oka, Singh, Liu, Román-Ospino, Li, Razavi, Panikar, Scicolone, Callegari, Hausner, Muzzio (CR8) 2018; 13
Rehrl, Kruisz, Sacher, Khinast, Horn (CR27) 2016; 510
Hsu, Reklaitis, Venkatasubramanian (CR21) 2010; 5
Engisch, Muzzio (CR11) 2014; 10
Berthiaux, Marikh, Gatumel (CR14) 2008; 47
CR13
CR34
CR32
Savitzky, Golay (CR33) 1964; 36
CR30
Vanarase, Muzzio (CR15) 2011; 208
Fathollahi, Faulhammer, Glasser, Khinast (CR19) 2020; 31
Hanson (CR6) 2018; 331
Singh, Román-Ospino, Romañach, Ierapetritou, Ramachandran (CR26) 2015; 495
Engisch, Muzzio (CR10) 2015; 283
Li, Scicolone, Sanchez, Muzzio (CR9) 2020; 15
Kirchengast, Celikovic, Rehrl, Sacher, Kruisz, Khinast, Horn (CR23) 2019; 567
Sacher, Heindl, Afonso Urich, Kruisz, Khinast (CR31) 2020; 591
CR2
CR4
CR5
Wang, Koynov, Glasser, Muzzio (CR7) 2016; 294
Thayalan, Landers (CR18) 2006; 8
CR29
Markl, Warman, Dumarey, Bergman, Folestad, Shi (CR1) 2020; 582
CR28
Singh, Sahay, Karry, Muzzio, Ierapetritou, Ramachandran (CR20) 2014; 473
Engisch, Muzzio (CR12) 2012; 228
Hattori, Otsuka (CR24) 2017; 524
Singh, Muzzio, Ierapetritou, Ramachandran (CR3) 2015; 3
Celikovic, Kirchengast, Rehrl, Kruisz, Sacher, Khinast (CR25) 2019; 154
Hsu, Reklaitis, Venkatasubramania (CR22) 2010; 5
Wang, Li, Muzzio, Glasser (CR17) 2017; 308
Cartwright, Robertson, D’Haene, Burke, Hennenkamp (CR16) 2013; 238
SH Hsu (2104_CR22) 2010; 5
WE Engisch (2104_CR10) 2015; 283
D Markl (2104_CR1) 2020; 582
J Rehrl (2104_CR27) 2016; 510
2104_CR28
2104_CR29
V Thayalan (2104_CR18) 2006; 8
S Sacher (2104_CR31) 2020; 591
AU Vanarase (2104_CR15) 2011; 208
2104_CR4
2104_CR5
2104_CR2
WE Engisch (2104_CR11) 2014; 10
R Singh (2104_CR20) 2014; 473
Y Wang (2104_CR17) 2017; 308
Y Wang (2104_CR7) 2016; 294
S Fathollahi (2104_CR19) 2020; 31
S Moghtadernejad (2104_CR8) 2018; 13
SH Hsu (2104_CR21) 2010; 5
M Kirchengast (2104_CR23) 2019; 567
R Singh (2104_CR26) 2015; 495
Y Hattori (2104_CR24) 2017; 524
2104_CR30
R Singh (2104_CR3) 2015; 3
2104_CR32
S Celikovic (2104_CR25) 2019; 154
2104_CR34
2104_CR13
A Savitzky (2104_CR33) 1964; 36
J Hanson (2104_CR6) 2018; 331
JJ Cartwright (2104_CR16) 2013; 238
T Li (2104_CR9) 2020; 15
WE Engisch (2104_CR12) 2012; 228
H Berthiaux (2104_CR14) 2008; 47
References_xml – volume: 283
  start-page: 389
  year: 2015
  end-page: 400
  ident: CR10
  article-title: Feedrate deviations caused by hopper refill of loss-in-weight feeders
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2015.06.001
– volume: 591
  start-page: 119969
  issue: October
  year: 2020
  ident: CR31
  article-title: A solution for low-dose feeding in continuous pharmaceutical processes
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2020.119969
– ident: CR4
– ident: CR2
– ident: CR30
– volume: 524
  start-page: 407
  issue: 1–2
  year: 2017
  end-page: 413
  ident: CR24
  article-title: Modeling of feed-forward control using the partial least squares regression method in the tablet compression process
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2017.04.004
– volume: 331
  start-page: 236
  year: 2018
  end-page: 243
  ident: CR6
  article-title: Control of a system of loss-in-weight feeders for drug product continuous manufacturing
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.03.027
– volume: 495
  start-page: 612
  issue: 1
  year: 2015
  end-page: 625
  ident: CR26
  article-title: Real time monitoring of powder blend bulk density for coupled feed-forward/feed-back control of a continuous direct compaction tablet manufacturing process
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2015.09.029
– volume: 5
  start-page: 24
  issue: 1–2
  year: 2010
  end-page: 36
  ident: CR22
  article-title: Modeling and control of roller compaction for pharmaceutical manufacturing: Part II: control system design
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-010-9077-z
– ident: CR29
– volume: 15
  start-page: 482
  issue: 3
  year: 2020
  end-page: 495
  ident: CR9
  article-title: Identifying a loss-in-weight feeder design space based on performance and material properties
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-019-09394-4
– volume: 582
  start-page: 119353
  year: 2020
  ident: CR1
  article-title: Review of real-time release testing of pharmaceutical tablets: state-of-the art, challenges and future perspective
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2020.119353
– volume: 13
  start-page: 155
  issue: 2
  year: 2018
  end-page: 187
  ident: CR8
  article-title: A training on: continuous manufacturing (direct compaction) of solid dose pharmaceutical products
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-018-9313-5
– volume: 10
  start-page: 56
  issue: 1
  year: 2014
  end-page: 75
  ident: CR11
  article-title: Loss-in-weight feeding trials case study: pharmaceutical formulation
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-014-9206-1
– volume: 228
  start-page: 395
  year: 2012
  end-page: 403
  ident: CR12
  article-title: Method for characterization of loss-in-weight feeder equipment
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2012.05.058
– volume: 208
  start-page: 26
  issue: 1
  year: 2011
  end-page: 36
  ident: CR15
  article-title: Effect of operating conditions and design parameters in a continuous powder mixer
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2010.11.038
– volume: 473
  start-page: 38
  issue: 1–2
  year: 2014
  end-page: 54
  ident: CR20
  article-title: Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2014.06.045
– volume: 510
  start-page: 100
  issue: 1
  year: 2016
  end-page: 115
  ident: CR27
  article-title: Optimized continuous pharmaceutical manufacturing via model-predictive control
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2016.06.024
– volume: 294
  start-page: 105
  year: 2016
  end-page: 112
  ident: CR7
  article-title: A method to analyze shear cell data of powders measured under different initial consolidation stresses
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2016.02.027
– ident: CR13
– volume: 47
  start-page: 2315
  issue: 12
  year: 2008
  end-page: 2322
  ident: CR14
  article-title: Continuous mixing of powder mixtures with pharmaceutical process constraints
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/j.cep.2008.01.009
– volume: 31
  start-page: 2991
  issue: 7
  year: 2020
  end-page: 3003
  ident: CR19
  article-title: Impact of powder composition on processing-relevant properties of pharmaceutical materials: an experimental study
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2020.05.027
– ident: CR32
– ident: CR34
– volume: 5
  start-page: 14
  issue: 1–2
  year: 2010
  end-page: 23
  ident: CR21
  article-title: Modeling and control of roller compaction for pharmaceutical manufacturing. Part I: process dynamics and control framework
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-010-9076-0
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  end-page: 1639
  ident: CR33
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– ident: CR5
– volume: 3
  start-page: 339
  issue: 2
  year: 2015
  end-page: 356
  ident: CR3
  article-title: A combined feed-forward/feed-back control system for a QbD-based continuous tablet manufacturing process
  publication-title: Processes.
  doi: 10.3390/pr3020339
– volume: 154
  start-page: 101
  year: 2019
  end-page: 114
  ident: CR25
  article-title: Model predictive control for continuous pharmaceutical feeding blending units
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.11.032
– ident: CR28
– volume: 238
  start-page: 116
  year: 2013
  end-page: 121
  ident: CR16
  article-title: Twin screw wet granulation: loss in weight feeding of a poorly flowing active pharmaceutical ingredient
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2012.04.034
– volume: 308
  start-page: 135
  year: 2017
  end-page: 148
  ident: CR17
  article-title: Predicting feeder performance based on material flow properties
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2016.12.010
– volume: 8
  start-page: 121
  issue: 2
  year: 2006
  end-page: 132
  ident: CR18
  article-title: Regulation of powder mass flow rate in gravity-fed powder feeder systems
  publication-title: J Manuf Process
  doi: 10.1016/S1526-6125(06)80007-1
– volume: 567
  start-page: 118457
  issue: 858704
  year: 2019
  ident: CR23
  article-title: Ensuring tablet quality via model-based control of a continuous direct compaction process ☆
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2019.118457
– volume: 294
  start-page: 105
  year: 2016
  ident: 2104_CR7
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2016.02.027
– volume: 228
  start-page: 395
  year: 2012
  ident: 2104_CR12
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2012.05.058
– volume: 591
  start-page: 119969
  issue: October
  year: 2020
  ident: 2104_CR31
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2020.119969
– volume: 13
  start-page: 155
  issue: 2
  year: 2018
  ident: 2104_CR8
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-018-9313-5
– volume: 510
  start-page: 100
  issue: 1
  year: 2016
  ident: 2104_CR27
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2016.06.024
– volume: 582
  start-page: 119353
  year: 2020
  ident: 2104_CR1
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2020.119353
– volume: 47
  start-page: 2315
  issue: 12
  year: 2008
  ident: 2104_CR14
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/j.cep.2008.01.009
– ident: 2104_CR29
  doi: 10.23919/ChiCC.2018.8483962
– ident: 2104_CR2
– ident: 2104_CR30
  doi: 10.1208/s12249-020-01835-5
– volume: 5
  start-page: 14
  issue: 1–2
  year: 2010
  ident: 2104_CR21
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-010-9076-0
– volume: 473
  start-page: 38
  issue: 1–2
  year: 2014
  ident: 2104_CR20
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2014.06.045
– ident: 2104_CR32
– volume: 283
  start-page: 389
  year: 2015
  ident: 2104_CR10
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2015.06.001
– volume: 331
  start-page: 236
  year: 2018
  ident: 2104_CR6
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.03.027
– volume: 8
  start-page: 121
  issue: 2
  year: 2006
  ident: 2104_CR18
  publication-title: J Manuf Process
  doi: 10.1016/S1526-6125(06)80007-1
– ident: 2104_CR28
  doi: 10.23919/ChiCC.2018.8483962
– volume: 10
  start-page: 56
  issue: 1
  year: 2014
  ident: 2104_CR11
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-014-9206-1
– volume: 3
  start-page: 339
  issue: 2
  year: 2015
  ident: 2104_CR3
  publication-title: Processes.
  doi: 10.3390/pr3020339
– volume: 154
  start-page: 101
  year: 2019
  ident: 2104_CR25
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.11.032
– volume: 15
  start-page: 482
  issue: 3
  year: 2020
  ident: 2104_CR9
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-019-09394-4
– volume: 31
  start-page: 2991
  issue: 7
  year: 2020
  ident: 2104_CR19
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2020.05.027
– ident: 2104_CR4
  doi: 10.1016/j.ijpharm.2020.119223
– ident: 2104_CR13
  doi: 10.1080/10837450.2017.1339197
– volume: 5
  start-page: 24
  issue: 1–2
  year: 2010
  ident: 2104_CR22
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-010-9077-z
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 2104_CR33
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– ident: 2104_CR5
– ident: 2104_CR34
  doi: 10.1016/j.sigpro.2014.04.016
– volume: 308
  start-page: 135
  year: 2017
  ident: 2104_CR17
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2016.12.010
– volume: 524
  start-page: 407
  issue: 1–2
  year: 2017
  ident: 2104_CR24
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2017.04.004
– volume: 208
  start-page: 26
  issue: 1
  year: 2011
  ident: 2104_CR15
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2010.11.038
– volume: 567
  start-page: 118457
  issue: 858704
  year: 2019
  ident: 2104_CR23
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2019.118457
– volume: 238
  start-page: 116
  year: 2013
  ident: 2104_CR16
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2012.04.034
– volume: 495
  start-page: 612
  issue: 1
  year: 2015
  ident: 2104_CR26
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2015.09.029
SSID ssj0023193
Score 2.312833
Snippet This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 247
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Pharmacology/Toxicology
Pharmacy
Powders
Research Article
Technology, Pharmaceutical
Title Development of a Controlled Continuous Low-Dose Feeding Process
URI https://link.springer.com/article/10.1208/s12249-021-02104-9
https://www.ncbi.nlm.nih.gov/pubmed/34642863
https://www.proquest.com/docview/2581790575
https://pubmed.ncbi.nlm.nih.gov/PMC8510936
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vvgiflu_iCB7ccEuaZv2ScZ0Dr_Ywwb6FJo2RUE6cRPxv_eu7TanIvhSSpuEcHfJ3eXufgE4FmmY-sqmPAxtxnGX9DjqccPTIHONMRHqXDrvuL0LugPv6t6_r2ByqBbma_xeuOHpiCI_EadEAvJOcKRFWPJx4yVpbgftqXOFoiSropjf-80rnh_W5M-kyG-R0ULhdFZhpbIUWatk7Ros2Hwd6r0SavqjwfqzyqlRg9VZbwZC_bEBZ1-ygdgwYzFrl0npzzYtXp_yN3T62c3wnZ8PR5Z1SjXGqsqBTRh0LvrtLq8uS-AJenRjHlKwViVJYl1kS2AEms5B08SokNMsIlywppI2k14Wq4xAZUSkRCbdWPixh9_lFtTyYW53gNFCjq1MUmObnlVRZJSSaSI8n9DTEteB5oSSOqmQxOlCi2dNHgVSX5fU10h5XVBfRw6cTPu8lDgaf7Y-mjBIo7hTDCPOLVJFC5wDYYop34HtkmHT8aRHzlQgHVBzrJw2ICjt-T_502MBqY12pxvJwIHGhOm6WsujP6a5-7_me7AsSCCLfJh9qI1f3-wBmjRjcwhLrcuH64vDQqbxORCtT6JI758
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eNAX8dv6GUF8ccEuaZv2SWQ6ps6xhwm-haZNUZBO3Ibsv_eu7aZTEXwr7SWEu0vvLnf3C8CJSMPUVzblYWgzjn9Jj6MdNzwNMtcYE6HNpfOO-07QevBuH_3HCiaHemG-5u-FG54PKPMTcSokoOgEZ5qHRcpcEk5-I2hMgytUJVk1xfw-btbw_PAmfxZFfsuMFganuQorlafILkvRrsGczdfhtFtCTY9rrPfZOTWosVPW_QShHm_AxZdqINbPWMwaZVH6i02Lx-d8hEE_a_ff-VV_YFmzNGOs6hzYhIfmda_R4tVlCTzBiG7IQ0rWqiRJrItiCYxA1zmomxgNcppFhAtWV9Jm0stilRGojIiUyKQbCz_28L3cgoW8n9sdYLSRYyuT1Ni6Z1UUGaVkmgjPJ_S0xHWgPuGkTiokcbrQ4kVTRIHc1yX3NXJeF9zXkQNn0zGvJY7Gn9THEwFpVHfKYcS5Ra5ogWsgTDHlO7BdCmw6n_QomAqkA2pGlFMCgtKe_ZI_PxWQ2uh3upEMHKhNhK6rvTz4Y5m7_yM_gqVW776t2zeduz1YFqScRW3MPiwM30b2AN2boTks9PoD5TDwEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRap66QvapvThSogLa8jGSZycKgRsaaFoDyDRkxW_VARKEMmqor8eT5wsLCCkqrcosa148tkzk5n5DLAa6Uwn3GiaZcZSt0vG1OlxSXVqQyll7nQu_u_4eZjuHcc_TpKTW1X8bbZ7H5L0NQ3I0lQ2mxfaejaEMNusMR6UU0wvQJ_Fjf8EFmM8Q2IAi1vffu3vzpwuBzHWFcs83HNeId2zMu8nS96JmLaKaPwCin4KPv_kbGPayA319w674__M8SU876xUsuVh9QoWTPka1iae5vpqSI5uqrbqIVkjkxsC7Ksl-HorE4lUlhRk2yfEnxvdXp6W02pak4PqD92pakPGXoWSrmphGY7Hu0fbe7Q7qIEq5002NMNAMVdKmdBBIpWRM9vTkSycMaBtjpxkI86MZbEtuEVCmyjnkWVhESVF7O6zNzAoq9K8A4KbSGGY0tKMYsPzXHLOtIriBJnbVBjAqP9aQnUs5niYxrlAb8bJTXi5CScz0cpN5AGsz_pceA6PR1t_6UEg3FLD-ElRGicVEbl3QD4zngTw1oNiNh6L0ZFLWQB8Di6zBkjjPf-kPP3d0nk7mzfMWRrAsMeE6PaR-pHXfP9vzT_D08nOWBx8P9xfgWcRoqpNy_kAg-Zyaj46y6qRn7rFcw0YExoV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Controlled+Continuous+Low-Dose+Feeding+Process&rft.jtitle=AAPS+PharmSciTech&rft.au=Fathollahi%2C+Sara&rft.au=Kruisz%2C+Julia&rft.au=Sacher%2C+Stephan&rft.au=Rehrl%2C+Jakob&rft.date=2021-10-12&rft.eissn=1530-9932&rft.volume=22&rft.issue=7&rft.spage=247&rft_id=info:doi/10.1208%2Fs12249-021-02104-9&rft_id=info%3Apmid%2F34642863&rft.externalDocID=34642863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon