Development of a Controlled Continuous Low-Dose Feeding Process
This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviatio...
Saved in:
Published in | AAPS PharmSciTech Vol. 22; no. 7; p. 247 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
12.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-9932 1530-9932 |
DOI | 10.1208/s12249-021-02104-9 |
Cover
Abstract | This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy. |
---|---|
AbstractList | This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy. This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy.This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy. |
ArticleNumber | 247 |
Author | Fathollahi, Sara Escotet-Espinoza, M. Sebastian DiNunzio, James Sacher, Stephan Kruisz, Julia Rehrl, Jakob Khinast, Johannes G. Glasser, Benjamin J. |
Author_xml | – sequence: 1 givenname: Sara surname: Fathollahi fullname: Fathollahi, Sara organization: Research Center Pharmaceutical Engineering (RCPE) GmbH, Graz University of Technology, Institute of Process and Particle Engineering – sequence: 2 givenname: Julia surname: Kruisz fullname: Kruisz, Julia organization: Research Center Pharmaceutical Engineering (RCPE) GmbH – sequence: 3 givenname: Stephan surname: Sacher fullname: Sacher, Stephan organization: Research Center Pharmaceutical Engineering (RCPE) GmbH – sequence: 4 givenname: Jakob surname: Rehrl fullname: Rehrl, Jakob organization: Research Center Pharmaceutical Engineering (RCPE) GmbH – sequence: 5 givenname: M. Sebastian surname: Escotet-Espinoza fullname: Escotet-Espinoza, M. Sebastian organization: Oral Formulation Sciences and Technology, Merck & Co., Inc – sequence: 6 givenname: James surname: DiNunzio fullname: DiNunzio, James organization: Oral Formulation Sciences and Technology, Merck & Co., Inc – sequence: 7 givenname: Benjamin J. surname: Glasser fullname: Glasser, Benjamin J. organization: Department of Chemical and Biochemical Engineering, Rutgers University – sequence: 8 givenname: Johannes G. surname: Khinast fullname: Khinast, Johannes G. email: khinast@tugraz.at organization: Research Center Pharmaceutical Engineering (RCPE) GmbH, Graz University of Technology, Institute of Process and Particle Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34642863$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UclOwzAQtVARtMAPcEA5cgl4S2JfQKhlkyrBAc6W606KUWoXOyni73EXEHDgYHnkect43gD1nHeA0DHBZ4RicR4JpVzmmJLVwTyXO6hPCoZzKRnt_aj30SDGV4wpI5LtoX3GS05FyfrocgRLaPxiDq7NfJ3pbOhdG3zTwHRdWtf5LmZj_56PfITsBmBq3Sx7DN5AjIdot9ZNhKPtfYCeb66fhnf5-OH2fng1zg3nZZuLNF5ZGWMAT8CUEyoELclECyKmtUw9RioGNeO1rmrMC0JlRWuGNS00T-_sAF1sdBfdZA5Tk8YNulGLYOc6fCivrfrdcfZFzfxSiYJgycokcLoVCP6tg9iquY0GmkY7SB9UtBCkkrioigQ9-en1bfK1tQSgG4AJPsYA9TeEYLWKRm2iUSkWtY5GyUQSf0jGtrq1q3Vr2_xPZRtqTD5uBkG9-i64tO__WJ-XUKJa |
CitedBy_id | crossref_primary_10_3390_powders3040026 crossref_primary_10_1016_j_ijpharm_2023_122691 crossref_primary_10_1007_s12247_021_09599_6 crossref_primary_10_1016_j_ijpharm_2024_124528 |
Cites_doi | 10.1016/j.powtec.2015.06.001 10.1016/j.ijpharm.2020.119969 10.1016/j.ijpharm.2017.04.004 10.1016/j.powtec.2018.03.027 10.1016/j.ijpharm.2015.09.029 10.1007/s12247-010-9077-z 10.1007/s12247-019-09394-4 10.1016/j.ijpharm.2020.119353 10.1007/s12247-018-9313-5 10.1007/s12247-014-9206-1 10.1016/j.powtec.2012.05.058 10.1016/j.powtec.2010.11.038 10.1016/j.ijpharm.2014.06.045 10.1016/j.ijpharm.2016.06.024 10.1016/j.powtec.2016.02.027 10.1016/j.cep.2008.01.009 10.1016/j.apt.2020.05.027 10.1007/s12247-010-9076-0 10.1021/ac60214a047 10.3390/pr3020339 10.1016/j.cherd.2019.11.032 10.1016/j.powtec.2012.04.034 10.1016/j.powtec.2016.12.010 10.1016/S1526-6125(06)80007-1 10.1016/j.ijpharm.2019.118457 10.23919/ChiCC.2018.8483962 10.1208/s12249-020-01835-5 10.1016/j.ijpharm.2020.119223 10.1080/10837450.2017.1339197 10.1016/j.sigpro.2014.04.016 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1208/s12249-021-02104-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1530-9932 |
ExternalDocumentID | PMC8510936 34642863 10_1208_s12249_021_02104_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Graz University of Technology – fundername: ; |
GroupedDBID | --- .86 .VR 06C 06D 0R~ 0VY 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 406 408 40D 40E 53G 5GY 5VS 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACKNC ACMDZ ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYFIA B-. BA0 BAWUL BGNMA C6C CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EMOBN ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 HG6 HH5 HMJXF HRMNR IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LLZTM M4Y MA- NPVJJ NQJWS NU0 O93 O9I O9J OK1 P2P PF0 PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TR2 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 ZMTXR ZOVNA ~A9 -Y2 2VQ 4.4 AANXM AARHV AAYXX ABBRH ABFSG ABULA ACBXY ACMFV ACSTC AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW AOIJS ATHPR BDATZ BSONS C1A CAG CITATION COF EJD EN4 FINBP FSGXE GX1 H13 HYE HZ~ LGEZI LOTEE NADUK NXXTH O9- OVD S1Z TEORI CGR CUY CVF ECM EIF NPM 7X8 ABRTQ 5PM |
ID | FETCH-LOGICAL-c446t-810467ccce0bec6b288261ba818df90463173ef34fa7f04512972f30a25a4ef33 |
IEDL.DBID | C6C |
ISSN | 1530-9932 |
IngestDate | Thu Aug 21 13:45:40 EDT 2025 Thu Sep 04 22:54:43 EDT 2025 Thu Apr 03 07:02:01 EDT 2025 Tue Jul 01 01:55:52 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Wed Mar 12 00:36:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Loss-in-weight feeder Low dose feeding Feed forward control Continuous feeding Iterative learning control |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-810467ccce0bec6b288261ba818df90463173ef34fa7f04512972f30a25a4ef33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1208/s12249-021-02104-9 |
PMID | 34642863 |
PQID | 2581790575 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8510936 proquest_miscellaneous_2581790575 pubmed_primary_34642863 crossref_primary_10_1208_s12249_021_02104_9 crossref_citationtrail_10_1208_s12249_021_02104_9 springer_journals_10_1208_s12249_021_02104_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-12 |
PublicationDateYYYYMMDD | 2021-10-12 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | AAPS PharmSciTech |
PublicationTitleAbbrev | AAPS PharmSciTech |
PublicationTitleAlternate | AAPS PharmSciTech |
PublicationYear | 2021 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Moghtadernejad, Escotet-Espinoza, Oka, Singh, Liu, Román-Ospino, Li, Razavi, Panikar, Scicolone, Callegari, Hausner, Muzzio (CR8) 2018; 13 Rehrl, Kruisz, Sacher, Khinast, Horn (CR27) 2016; 510 Hsu, Reklaitis, Venkatasubramanian (CR21) 2010; 5 Engisch, Muzzio (CR11) 2014; 10 Berthiaux, Marikh, Gatumel (CR14) 2008; 47 CR13 CR34 CR32 Savitzky, Golay (CR33) 1964; 36 CR30 Vanarase, Muzzio (CR15) 2011; 208 Fathollahi, Faulhammer, Glasser, Khinast (CR19) 2020; 31 Hanson (CR6) 2018; 331 Singh, Román-Ospino, Romañach, Ierapetritou, Ramachandran (CR26) 2015; 495 Engisch, Muzzio (CR10) 2015; 283 Li, Scicolone, Sanchez, Muzzio (CR9) 2020; 15 Kirchengast, Celikovic, Rehrl, Sacher, Kruisz, Khinast, Horn (CR23) 2019; 567 Sacher, Heindl, Afonso Urich, Kruisz, Khinast (CR31) 2020; 591 CR2 CR4 CR5 Wang, Koynov, Glasser, Muzzio (CR7) 2016; 294 Thayalan, Landers (CR18) 2006; 8 CR29 Markl, Warman, Dumarey, Bergman, Folestad, Shi (CR1) 2020; 582 CR28 Singh, Sahay, Karry, Muzzio, Ierapetritou, Ramachandran (CR20) 2014; 473 Engisch, Muzzio (CR12) 2012; 228 Hattori, Otsuka (CR24) 2017; 524 Singh, Muzzio, Ierapetritou, Ramachandran (CR3) 2015; 3 Celikovic, Kirchengast, Rehrl, Kruisz, Sacher, Khinast (CR25) 2019; 154 Hsu, Reklaitis, Venkatasubramania (CR22) 2010; 5 Wang, Li, Muzzio, Glasser (CR17) 2017; 308 Cartwright, Robertson, D’Haene, Burke, Hennenkamp (CR16) 2013; 238 SH Hsu (2104_CR22) 2010; 5 WE Engisch (2104_CR10) 2015; 283 D Markl (2104_CR1) 2020; 582 J Rehrl (2104_CR27) 2016; 510 2104_CR28 2104_CR29 V Thayalan (2104_CR18) 2006; 8 S Sacher (2104_CR31) 2020; 591 AU Vanarase (2104_CR15) 2011; 208 2104_CR4 2104_CR5 2104_CR2 WE Engisch (2104_CR11) 2014; 10 R Singh (2104_CR20) 2014; 473 Y Wang (2104_CR17) 2017; 308 Y Wang (2104_CR7) 2016; 294 S Fathollahi (2104_CR19) 2020; 31 S Moghtadernejad (2104_CR8) 2018; 13 SH Hsu (2104_CR21) 2010; 5 M Kirchengast (2104_CR23) 2019; 567 R Singh (2104_CR26) 2015; 495 Y Hattori (2104_CR24) 2017; 524 2104_CR30 R Singh (2104_CR3) 2015; 3 2104_CR32 S Celikovic (2104_CR25) 2019; 154 2104_CR34 2104_CR13 A Savitzky (2104_CR33) 1964; 36 J Hanson (2104_CR6) 2018; 331 JJ Cartwright (2104_CR16) 2013; 238 T Li (2104_CR9) 2020; 15 WE Engisch (2104_CR12) 2012; 228 H Berthiaux (2104_CR14) 2008; 47 |
References_xml | – volume: 283 start-page: 389 year: 2015 end-page: 400 ident: CR10 article-title: Feedrate deviations caused by hopper refill of loss-in-weight feeders publication-title: Powder Technol doi: 10.1016/j.powtec.2015.06.001 – volume: 591 start-page: 119969 issue: October year: 2020 ident: CR31 article-title: A solution for low-dose feeding in continuous pharmaceutical processes publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119969 – ident: CR4 – ident: CR2 – ident: CR30 – volume: 524 start-page: 407 issue: 1–2 year: 2017 end-page: 413 ident: CR24 article-title: Modeling of feed-forward control using the partial least squares regression method in the tablet compression process publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2017.04.004 – volume: 331 start-page: 236 year: 2018 end-page: 243 ident: CR6 article-title: Control of a system of loss-in-weight feeders for drug product continuous manufacturing publication-title: Powder Technol doi: 10.1016/j.powtec.2018.03.027 – volume: 495 start-page: 612 issue: 1 year: 2015 end-page: 625 ident: CR26 article-title: Real time monitoring of powder blend bulk density for coupled feed-forward/feed-back control of a continuous direct compaction tablet manufacturing process publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2015.09.029 – volume: 5 start-page: 24 issue: 1–2 year: 2010 end-page: 36 ident: CR22 article-title: Modeling and control of roller compaction for pharmaceutical manufacturing: Part II: control system design publication-title: J Pharm Innov doi: 10.1007/s12247-010-9077-z – ident: CR29 – volume: 15 start-page: 482 issue: 3 year: 2020 end-page: 495 ident: CR9 article-title: Identifying a loss-in-weight feeder design space based on performance and material properties publication-title: J Pharm Innov doi: 10.1007/s12247-019-09394-4 – volume: 582 start-page: 119353 year: 2020 ident: CR1 article-title: Review of real-time release testing of pharmaceutical tablets: state-of-the art, challenges and future perspective publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119353 – volume: 13 start-page: 155 issue: 2 year: 2018 end-page: 187 ident: CR8 article-title: A training on: continuous manufacturing (direct compaction) of solid dose pharmaceutical products publication-title: J Pharm Innov doi: 10.1007/s12247-018-9313-5 – volume: 10 start-page: 56 issue: 1 year: 2014 end-page: 75 ident: CR11 article-title: Loss-in-weight feeding trials case study: pharmaceutical formulation publication-title: J Pharm Innov doi: 10.1007/s12247-014-9206-1 – volume: 228 start-page: 395 year: 2012 end-page: 403 ident: CR12 article-title: Method for characterization of loss-in-weight feeder equipment publication-title: Powder Technol doi: 10.1016/j.powtec.2012.05.058 – volume: 208 start-page: 26 issue: 1 year: 2011 end-page: 36 ident: CR15 article-title: Effect of operating conditions and design parameters in a continuous powder mixer publication-title: Powder Technol doi: 10.1016/j.powtec.2010.11.038 – volume: 473 start-page: 38 issue: 1–2 year: 2014 end-page: 54 ident: CR20 article-title: Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2014.06.045 – volume: 510 start-page: 100 issue: 1 year: 2016 end-page: 115 ident: CR27 article-title: Optimized continuous pharmaceutical manufacturing via model-predictive control publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2016.06.024 – volume: 294 start-page: 105 year: 2016 end-page: 112 ident: CR7 article-title: A method to analyze shear cell data of powders measured under different initial consolidation stresses publication-title: Powder Technol doi: 10.1016/j.powtec.2016.02.027 – ident: CR13 – volume: 47 start-page: 2315 issue: 12 year: 2008 end-page: 2322 ident: CR14 article-title: Continuous mixing of powder mixtures with pharmaceutical process constraints publication-title: Chem Eng Process Process Intensif doi: 10.1016/j.cep.2008.01.009 – volume: 31 start-page: 2991 issue: 7 year: 2020 end-page: 3003 ident: CR19 article-title: Impact of powder composition on processing-relevant properties of pharmaceutical materials: an experimental study publication-title: Adv Powder Technol doi: 10.1016/j.apt.2020.05.027 – ident: CR32 – ident: CR34 – volume: 5 start-page: 14 issue: 1–2 year: 2010 end-page: 23 ident: CR21 article-title: Modeling and control of roller compaction for pharmaceutical manufacturing. Part I: process dynamics and control framework publication-title: J Pharm Innov doi: 10.1007/s12247-010-9076-0 – volume: 36 start-page: 1627 issue: 8 year: 1964 end-page: 1639 ident: CR33 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal Chem doi: 10.1021/ac60214a047 – ident: CR5 – volume: 3 start-page: 339 issue: 2 year: 2015 end-page: 356 ident: CR3 article-title: A combined feed-forward/feed-back control system for a QbD-based continuous tablet manufacturing process publication-title: Processes. doi: 10.3390/pr3020339 – volume: 154 start-page: 101 year: 2019 end-page: 114 ident: CR25 article-title: Model predictive control for continuous pharmaceutical feeding blending units publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.11.032 – ident: CR28 – volume: 238 start-page: 116 year: 2013 end-page: 121 ident: CR16 article-title: Twin screw wet granulation: loss in weight feeding of a poorly flowing active pharmaceutical ingredient publication-title: Powder Technol doi: 10.1016/j.powtec.2012.04.034 – volume: 308 start-page: 135 year: 2017 end-page: 148 ident: CR17 article-title: Predicting feeder performance based on material flow properties publication-title: Powder Technol doi: 10.1016/j.powtec.2016.12.010 – volume: 8 start-page: 121 issue: 2 year: 2006 end-page: 132 ident: CR18 article-title: Regulation of powder mass flow rate in gravity-fed powder feeder systems publication-title: J Manuf Process doi: 10.1016/S1526-6125(06)80007-1 – volume: 567 start-page: 118457 issue: 858704 year: 2019 ident: CR23 article-title: Ensuring tablet quality via model-based control of a continuous direct compaction process ☆ publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2019.118457 – volume: 294 start-page: 105 year: 2016 ident: 2104_CR7 publication-title: Powder Technol doi: 10.1016/j.powtec.2016.02.027 – volume: 228 start-page: 395 year: 2012 ident: 2104_CR12 publication-title: Powder Technol doi: 10.1016/j.powtec.2012.05.058 – volume: 591 start-page: 119969 issue: October year: 2020 ident: 2104_CR31 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119969 – volume: 13 start-page: 155 issue: 2 year: 2018 ident: 2104_CR8 publication-title: J Pharm Innov doi: 10.1007/s12247-018-9313-5 – volume: 510 start-page: 100 issue: 1 year: 2016 ident: 2104_CR27 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2016.06.024 – volume: 582 start-page: 119353 year: 2020 ident: 2104_CR1 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119353 – volume: 47 start-page: 2315 issue: 12 year: 2008 ident: 2104_CR14 publication-title: Chem Eng Process Process Intensif doi: 10.1016/j.cep.2008.01.009 – ident: 2104_CR29 doi: 10.23919/ChiCC.2018.8483962 – ident: 2104_CR2 – ident: 2104_CR30 doi: 10.1208/s12249-020-01835-5 – volume: 5 start-page: 14 issue: 1–2 year: 2010 ident: 2104_CR21 publication-title: J Pharm Innov doi: 10.1007/s12247-010-9076-0 – volume: 473 start-page: 38 issue: 1–2 year: 2014 ident: 2104_CR20 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2014.06.045 – ident: 2104_CR32 – volume: 283 start-page: 389 year: 2015 ident: 2104_CR10 publication-title: Powder Technol doi: 10.1016/j.powtec.2015.06.001 – volume: 331 start-page: 236 year: 2018 ident: 2104_CR6 publication-title: Powder Technol doi: 10.1016/j.powtec.2018.03.027 – volume: 8 start-page: 121 issue: 2 year: 2006 ident: 2104_CR18 publication-title: J Manuf Process doi: 10.1016/S1526-6125(06)80007-1 – ident: 2104_CR28 doi: 10.23919/ChiCC.2018.8483962 – volume: 10 start-page: 56 issue: 1 year: 2014 ident: 2104_CR11 publication-title: J Pharm Innov doi: 10.1007/s12247-014-9206-1 – volume: 3 start-page: 339 issue: 2 year: 2015 ident: 2104_CR3 publication-title: Processes. doi: 10.3390/pr3020339 – volume: 154 start-page: 101 year: 2019 ident: 2104_CR25 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.11.032 – volume: 15 start-page: 482 issue: 3 year: 2020 ident: 2104_CR9 publication-title: J Pharm Innov doi: 10.1007/s12247-019-09394-4 – volume: 31 start-page: 2991 issue: 7 year: 2020 ident: 2104_CR19 publication-title: Adv Powder Technol doi: 10.1016/j.apt.2020.05.027 – ident: 2104_CR4 doi: 10.1016/j.ijpharm.2020.119223 – ident: 2104_CR13 doi: 10.1080/10837450.2017.1339197 – volume: 5 start-page: 24 issue: 1–2 year: 2010 ident: 2104_CR22 publication-title: J Pharm Innov doi: 10.1007/s12247-010-9077-z – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 2104_CR33 publication-title: Anal Chem doi: 10.1021/ac60214a047 – ident: 2104_CR5 – ident: 2104_CR34 doi: 10.1016/j.sigpro.2014.04.016 – volume: 308 start-page: 135 year: 2017 ident: 2104_CR17 publication-title: Powder Technol doi: 10.1016/j.powtec.2016.12.010 – volume: 524 start-page: 407 issue: 1–2 year: 2017 ident: 2104_CR24 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2017.04.004 – volume: 208 start-page: 26 issue: 1 year: 2011 ident: 2104_CR15 publication-title: Powder Technol doi: 10.1016/j.powtec.2010.11.038 – volume: 567 start-page: 118457 issue: 858704 year: 2019 ident: 2104_CR23 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2019.118457 – volume: 238 start-page: 116 year: 2013 ident: 2104_CR16 publication-title: Powder Technol doi: 10.1016/j.powtec.2012.04.034 – volume: 495 start-page: 612 issue: 1 year: 2015 ident: 2104_CR26 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2015.09.029 |
SSID | ssj0023193 |
Score | 2.312833 |
Snippet | This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 247 |
SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Pharmacology/Toxicology Pharmacy Powders Research Article Technology, Pharmaceutical |
Title | Development of a Controlled Continuous Low-Dose Feeding Process |
URI | https://link.springer.com/article/10.1208/s12249-021-02104-9 https://www.ncbi.nlm.nih.gov/pubmed/34642863 https://www.proquest.com/docview/2581790575 https://pubmed.ncbi.nlm.nih.gov/PMC8510936 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vvgiflu_iCB7ccEuaZv2ScZ0Dr_Ywwb6FJo2RUE6cRPxv_eu7TanIvhSSpuEcHfJ3eXufgE4FmmY-sqmPAxtxnGX9DjqccPTIHONMRHqXDrvuL0LugPv6t6_r2ByqBbma_xeuOHpiCI_EadEAvJOcKRFWPJx4yVpbgftqXOFoiSropjf-80rnh_W5M-kyG-R0ULhdFZhpbIUWatk7Ros2Hwd6r0SavqjwfqzyqlRg9VZbwZC_bEBZ1-ygdgwYzFrl0npzzYtXp_yN3T62c3wnZ8PR5Z1SjXGqsqBTRh0LvrtLq8uS-AJenRjHlKwViVJYl1kS2AEms5B08SokNMsIlywppI2k14Wq4xAZUSkRCbdWPixh9_lFtTyYW53gNFCjq1MUmObnlVRZJSSaSI8n9DTEteB5oSSOqmQxOlCi2dNHgVSX5fU10h5XVBfRw6cTPu8lDgaf7Y-mjBIo7hTDCPOLVJFC5wDYYop34HtkmHT8aRHzlQgHVBzrJw2ICjt-T_502MBqY12pxvJwIHGhOm6WsujP6a5-7_me7AsSCCLfJh9qI1f3-wBmjRjcwhLrcuH64vDQqbxORCtT6JI758 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eNAX8dv6GUF8ccEuaZv2SWQ6ps6xhwm-haZNUZBO3Ibsv_eu7aZTEXwr7SWEu0vvLnf3C8CJSMPUVzblYWgzjn9Jj6MdNzwNMtcYE6HNpfOO-07QevBuH_3HCiaHemG-5u-FG54PKPMTcSokoOgEZ5qHRcpcEk5-I2hMgytUJVk1xfw-btbw_PAmfxZFfsuMFganuQorlafILkvRrsGczdfhtFtCTY9rrPfZOTWosVPW_QShHm_AxZdqINbPWMwaZVH6i02Lx-d8hEE_a_ff-VV_YFmzNGOs6hzYhIfmda_R4tVlCTzBiG7IQ0rWqiRJrItiCYxA1zmomxgNcppFhAtWV9Jm0stilRGojIiUyKQbCz_28L3cgoW8n9sdYLSRYyuT1Ni6Z1UUGaVkmgjPJ_S0xHWgPuGkTiokcbrQ4kVTRIHc1yX3NXJeF9zXkQNn0zGvJY7Gn9THEwFpVHfKYcS5Ra5ogWsgTDHlO7BdCmw6n_QomAqkA2pGlFMCgtKe_ZI_PxWQ2uh3upEMHKhNhK6rvTz4Y5m7_yM_gqVW776t2zeduz1YFqScRW3MPiwM30b2AN2boTks9PoD5TDwEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRap66QvapvThSogLa8jGSZycKgRsaaFoDyDRkxW_VARKEMmqor8eT5wsLCCkqrcosa148tkzk5n5DLAa6Uwn3GiaZcZSt0vG1OlxSXVqQyll7nQu_u_4eZjuHcc_TpKTW1X8bbZ7H5L0NQ3I0lQ2mxfaejaEMNusMR6UU0wvQJ_Fjf8EFmM8Q2IAi1vffu3vzpwuBzHWFcs83HNeId2zMu8nS96JmLaKaPwCin4KPv_kbGPayA319w674__M8SU876xUsuVh9QoWTPka1iae5vpqSI5uqrbqIVkjkxsC7Ksl-HorE4lUlhRk2yfEnxvdXp6W02pak4PqD92pakPGXoWSrmphGY7Hu0fbe7Q7qIEq5002NMNAMVdKmdBBIpWRM9vTkSycMaBtjpxkI86MZbEtuEVCmyjnkWVhESVF7O6zNzAoq9K8A4KbSGGY0tKMYsPzXHLOtIriBJnbVBjAqP9aQnUs5niYxrlAb8bJTXi5CScz0cpN5AGsz_pceA6PR1t_6UEg3FLD-ElRGicVEbl3QD4zngTw1oNiNh6L0ZFLWQB8Di6zBkjjPf-kPP3d0nk7mzfMWRrAsMeE6PaR-pHXfP9vzT_D08nOWBx8P9xfgWcRoqpNy_kAg-Zyaj46y6qRn7rFcw0YExoV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Controlled+Continuous+Low-Dose+Feeding+Process&rft.jtitle=AAPS+PharmSciTech&rft.au=Fathollahi%2C+Sara&rft.au=Kruisz%2C+Julia&rft.au=Sacher%2C+Stephan&rft.au=Rehrl%2C+Jakob&rft.date=2021-10-12&rft.eissn=1530-9932&rft.volume=22&rft.issue=7&rft.spage=247&rft_id=info:doi/10.1208%2Fs12249-021-02104-9&rft_id=info%3Apmid%2F34642863&rft.externalDocID=34642863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon |