Machine Learning Analysis for Phenolic Compound Monitoring Using a Mobile Phone-Based ECL Sensor

Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a nov...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 18; p. 6004
Main Authors Taylor, Joseph, Ccopa-Rivera, Elmer, Kim, Solomon, Campbell, Reise, Summerscales, Rodney, Kwon, Hyun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.09.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21186004

Cover

Abstract Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.
AbstractList Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.
Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.
Author Kim, Solomon
Summerscales, Rodney
Campbell, Reise
Taylor, Joseph
Ccopa-Rivera, Elmer
Kwon, Hyun
AuthorAffiliation 1 School of Engineering, Andrews University, Berrien Springs, MI 49104, USA; tjoseph@andrews.edu (J.T.); ccoparivera@andrews.edu (E.C.-R.)
2 Department of Computing, Andrews University, Berrien Springs, MI 49104, USA; ksolomon@andrews.edu (S.K.); reise@andrews.edu (R.C.); summersc@andrews.edu (R.S.)
AuthorAffiliation_xml – name: 1 School of Engineering, Andrews University, Berrien Springs, MI 49104, USA; tjoseph@andrews.edu (J.T.); ccoparivera@andrews.edu (E.C.-R.)
– name: 2 Department of Computing, Andrews University, Berrien Springs, MI 49104, USA; ksolomon@andrews.edu (S.K.); reise@andrews.edu (R.C.); summersc@andrews.edu (R.S.)
Author_xml – sequence: 1
  givenname: Joseph
  surname: Taylor
  fullname: Taylor, Joseph
– sequence: 2
  givenname: Elmer
  surname: Ccopa-Rivera
  fullname: Ccopa-Rivera, Elmer
– sequence: 3
  givenname: Solomon
  surname: Kim
  fullname: Kim, Solomon
– sequence: 4
  givenname: Reise
  surname: Campbell
  fullname: Campbell, Reise
– sequence: 5
  givenname: Rodney
  orcidid: 0000-0002-9429-4948
  surname: Summerscales
  fullname: Summerscales, Rodney
– sequence: 6
  givenname: Hyun
  surname: Kwon
  fullname: Kwon, Hyun
BookMark eNp1kd9vFCEQx4mpsT_0wf9gE1-sybbAwMK-mNRL1SbXaKJ9RpZl77hwcMJuzf33cr2maRt9YcjwmS_fmTlGByEGi9Bbgs8AWnyeKSGywZi9QEeEUVZLSvHBo_shOs55hTEFAPkKHQLjQlACR-jXtTZLF2w1tzoFFxbVRdB-m12uhpiq70sbonemmsX1Jk6hr65jcGNMO_Im705dUp3ztrDFVf1JZ9tXl7N59cOGHNNr9HLQPts39_EE3Xy-_Dn7Ws-_fbmaXcxrw1gz1gIMbpkRjErBjWRScwABUEwOnHeyp4xRTGxvJEjK7NAwDlQD7y0fsJBwgq72un3UK7VJbq3TVkXt1F0ipoXSaXTGW6UNJhrMAEA4k4J02DYDbinDbQeCt0Xrw15rChu9_aO9fxAkWO1Grh5GXuCPe3gzdeviz4Yxaf_EwdOX4JZqEW-VZAIY4CLw_l4gxd-TzaNau2ys9zrYOGVFy64Yl5KIgr57hq7ilMrC7qiGtQXihTrfUybFnJMdlHGjHl3c_e_8P3s4fVbx_37_AjAhvgA
CitedBy_id crossref_primary_10_1016_j_trac_2024_117613
crossref_primary_10_3390_mi15081059
crossref_primary_10_1016_j_scitotenv_2024_172310
crossref_primary_10_1016_j_biosx_2022_100187
crossref_primary_10_1016_j_diamond_2025_112053
crossref_primary_10_1016_j_talanta_2025_127639
crossref_primary_10_1016_j_cclet_2022_107799
Cites_doi 10.1007/s00449-018-1990-4
10.1016/j.trac.2015.10.019
10.1039/C8AN00065D
10.1016/j.rechem.2020.100029
10.1016/j.trac.2017.04.001
10.1002/open.202100151
10.1002/anie.201901443
10.1149/2.0291807jss
10.1038/s41893-018-0142-9
10.1021/acs.analchem.6b04675
10.1109/JPROC.2021.3060483
10.1155/2014/598129
10.7551/mitpress/3206.001.0001
10.1246/bcsj.20200359
10.1021/acssensors.0c01424
10.3390/s20030625
10.1007/s10462-018-9614-6
10.1002/open.202000165
10.1002/aisy.202000063
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s21186004
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ac01a3cf33154871b0e6f092409b3759
10.3390/s21186004
PMC8473430
10_3390_s21186004
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c446t-73c094c742875c848a533733213f55b8d244201edc83824ef64532a35de5f0783
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 19:04:09 EDT 2025
Sun Oct 26 04:12:52 EDT 2025
Tue Sep 30 16:58:44 EDT 2025
Fri Sep 05 09:13:45 EDT 2025
Tue Oct 07 07:14:09 EDT 2025
Thu Oct 16 04:21:49 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-73c094c742875c848a533733213f55b8d244201edc83824ef64532a35de5f0783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9429-4948
OpenAccessLink https://doaj.org/article/ac01a3cf33154871b0e6f092409b3759
PMID 34577213
PQID 2576498175
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ac01a3cf33154871b0e6f092409b3759
unpaywall_primary_10_3390_s21186004
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8473430
proquest_miscellaneous_2577458817
proquest_journals_2576498175
crossref_citationtrail_10_3390_s21186004
crossref_primary_10_3390_s21186004
PublicationCentury 2000
PublicationDate 20210908
PublicationDateYYYYMMDD 2021-09-08
PublicationDate_xml – month: 9
  year: 2021
  text: 20210908
  day: 8
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_20) 2014; 22
Kwon (ref_14) 2020; 2
Hino (ref_5) 2018; 1
Neto (ref_10) 2021; 94
Rong (ref_7) 2018; 143
ref_12
ref_11
Li (ref_13) 2017; 89
ref_21
Rivera (ref_16) 2018; 41
Ha (ref_4) 2020; 2
Cui (ref_6) 2020; 5
Chauhan (ref_19) 2019; 52
You (ref_8) 2014; 2014
Zarei (ref_1) 2017; 91
Roda (ref_2) 2016; 79
Samek (ref_18) 2021; 109
Syu (ref_3) 2018; 7
Rivera (ref_15) 2020; 9
Tittl (ref_9) 2019; 58
Rivera (ref_17) 2021; 10
References_xml – volume: 41
  start-page: 1651
  year: 2018
  ident: ref_16
  article-title: Resolving mismatches in the flexible production of ethanol and butanol from eucalyptus wood with vacuum fermentation
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-018-1990-4
– volume: 22
  start-page: 115
  year: 2014
  ident: ref_20
  article-title: Introduction to boosted trees
  publication-title: Univ. Wash. Comput. Sci.
– volume: 79
  start-page: 317
  year: 2016
  ident: ref_2
  article-title: Smartphone-based biosensors: A critical review and perspectives
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2015.10.019
– volume: 143
  start-page: 2066
  year: 2018
  ident: ref_7
  article-title: Post hoc support vector machine learning for impedimetric biosensors based on weak protein–ligand interactions
  publication-title: Analyst
  doi: 10.1039/C8AN00065D
– volume: 2
  start-page: 100029
  year: 2020
  ident: ref_14
  article-title: Development of smartphone-based ECL sensor for dopamine detection: Practical approaches
  publication-title: Results Chem.
  doi: 10.1016/j.rechem.2020.100029
– ident: ref_11
– volume: 91
  start-page: 26
  year: 2017
  ident: ref_1
  article-title: Portable biosensing devices for point-of-care diagnostics: Recent developments and applications
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2017.04.001
– volume: 10
  start-page: 842
  year: 2021
  ident: ref_17
  article-title: Quenching Behavior of the Electrochemiluminescence of Ru(bpy) 3 2+ /TPrA System by Phenols on a Smartphone-Based Sensor
  publication-title: ChemistryOpen
  doi: 10.1002/open.202100151
– volume: 58
  start-page: 14810
  year: 2019
  ident: ref_9
  article-title: Metasurface-Based Molecular Biosensing Aided by Artificial Intelligence
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901443
– volume: 7
  start-page: Q3196
  year: 2018
  ident: ref_3
  article-title: Review—Field-Effect Transistor Biosensing: Devices and Clinical Applications
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0291807jss
– volume: 1
  start-page: 583
  year: 2018
  ident: ref_5
  article-title: Machine learning for environmental monitoring
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-018-0142-9
– volume: 89
  start-page: 358
  year: 2017
  ident: ref_13
  article-title: Recent Advances in Electrochemiluminescence Analysis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04675
– volume: 109
  start-page: 247
  year: 2021
  ident: ref_18
  article-title: Explaining deep neural networks and beyond: A review of methods and applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3060483
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_8
  article-title: Large-Scale Protein-Protein Interactions Detection by Integrating Big Biosensing Data with Computational Model
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/598129
– ident: ref_21
  doi: 10.7551/mitpress/3206.001.0001
– volume: 94
  start-page: 1553
  year: 2021
  ident: ref_10
  article-title: Machine Learning Used to Create a Multidimensional Calibration Space for Sensing and Biosensing Data
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20200359
– volume: 5
  start-page: 3346
  year: 2020
  ident: ref_6
  article-title: Advancing Biosensors with Machine Learning
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c01424
– ident: ref_12
  doi: 10.3390/s20030625
– volume: 52
  start-page: 803
  year: 2019
  ident: ref_19
  article-title: Problem formulations and solvers in linear SVM: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9614-6
– volume: 9
  start-page: 854
  year: 2020
  ident: ref_15
  article-title: Electrochemiluminescence Mechanisms Investigated with Smartphone-Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
  publication-title: ChemistryOpen
  doi: 10.1002/open.202000165
– volume: 2
  start-page: 2000063
  year: 2020
  ident: ref_4
  article-title: Machine Learning-Enabled Smart Sensor Systems
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202000063
SSID ssj0023338
Score 2.3897297
Snippet Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6004
SubjectTerms Acids
Algorithms
Biosensors
Cameras
Cellular telephones
Data analysis
Datasets
ECL
Electrodes
Experiments
Light
low-cost sensor
mobile phone-based sensor
Partial differential equations
Sensors
Time series
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ei3oQn1hfxMfBS7HdJJvsUUURURFU8FbTNFFh6YruIv57Z9Ju2YriRegpmdJmMtOZr5l8Adh3xEbtchFLVbhYSMPjvJBF7KV1RKieFpZ-6F9dd8_vxcWDfJg46otqwip64Epxh8YmqeHWcx6S6zRPXNcniBqSXs6VDFv3Et0bg6kaanFEXhWPEEdQf_iOMEdjaBet6BNI-luZ5fe6yJlR-Wo-P0y_PxF0zhZgvs4W2VH1losw5colmJvgEFyGx6tQDulYzZT6xMY8IwzzUXbz7Eqi_mXk-HSEEqu8mG5moV6AGWzK8eOAsoPSxccY1wp2enLJbhHiDt5W4P7s9O7kPK6PTYgtYrthrLhFzGYVgSFptdAGUzrFeSflXspcFxjRMezjMDXXHeF8V0jeMVwWTnpa1VuF6RKftwYsFcY6leSYpCGO1lZ7vBJlpPGiVzgfwcFYnZmtOcXpaIt-htiCNJ81mo9gtxF9rYg0fhI6pjlpBIj7OjSgRWS1RWR_WUQEm-MZzWqHfM8IV4mexmQpgp2mG12J1kdM6QajIKNo426qIlAtS2i9ULunfHkOpNwY5bngSQR7jc38Ps71_xjnBsx2qMCGVrf0JkwP30ZuCzOkYb4dnOELOy0MyQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IJ4ipSDzOHCJmsT22ntAiK22qhBdVUCl3oLjR4u0Spbtrir-PTPeJDQIkHKyJ0r8nPk8428A3nhio_aVSKVyPhXS8LRy0qVBWk-E6rmzdKB_Mh8fn4mP5_J8B-bdXRgKq-z2xLhRu8bSGfkBGcZiolHbvV_-SClrFHlXuxQapk2t4N5FirFbsFsQM9YIdqez-ennHoJxRGRbfiGOYP_gCuGPRpUvBlopkvcPLM4_4yVvb-ql-XltFosbyujoPtxrrUj2YTvsD2DH1w_h7g1uwUfw7SSGSXrWMqhesI5_hKGdyk4vfU2UwIw2BEqtxLarm15mMY6AGSyqcNNA2ab26RT1nWOzw0_sC0LfZvUYzo5mXw-P0zadQmoR861TxS1iOasIJEmrhTZo6inOi5wHKSvtUNOjOYDN1FwXwoexkLwwXDovA3n7nsCoxu89BZYLY73KKjTeEF9rqwM-mTLSBDFxPiTwtuvO0rZc45TyYlEi5qCeL_ueT-BVL7rcEmz8TWhKY9ILECd2LGhWF2W7xEpjs9xwGziPMCyvMj8OGeLLbFJxJScJ7HcjWrYL9ar8Pa0SeNlX4xIjv4mpfbOJMoou9OYqATWYCYMfGtbU3y8jWTdqfy54lsDrfs78u517___FZ3CnoJAa8mfpfRitVxv_HG2idfWinei_AJu4DAA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceCNCW2QeBy5uHrbX3hNqq1YVolUlWKmcguPYbcUqu9ruguDXdybJRpuqSEhIOSXjJM7Ynu-Lx58B3ntSo_aF5EqXnktlBS9KVfKgnCdB9bR09EP_-GR4NJafztTZ2ip-SqtEKn5ZD9K0CotjBEviLI1TE2NwlvGsDB9_tv-SEEykyQhBv74LG0OFaHwAG-OT091v9aKitnQjKCSQ3cdXyHcM3aYXhmq1_h7EvJkgeW9ZzezvX3YyWYs-h4_Art67STr5sbNcFDvuzw1Jx_-p2GN42EJTttu0pSdwx1dP4cGaYOEz-H5c51561sqynrOVqAlD8MtOL3xFOsOMRhnar4k1QwYVZnVyArN4qsCRCG2nled7GERLdrD_mX1BPj2dP4fx4cHX_SPe7tHAHRLJBdfCIUF0mpiXckYai_hRC5GlIihVmBLhA2IM_JRGmEz6MJRKZFao0qtAU4gvYFDh814CS6V1XicFIkIk7caZgEeirbJBjkofIviwclnuWgFz2kdjkiORIe_mnXcjeNuZzhrVjtuM9sjvnQEJbdcnpvPzvO23uXVJaoULQtTcLi0SPwzoGaTFhdBqFMHWqtXkbe-_yonEyZFBZBbBm-4y9luajLGVny5rG02rhFMdge61tt4L9a9Ulxe1AjhCCiFFEsG7rl3-vZ6v_slqE-5nlK5Dc2VmCwaL-dJvI95aFK_bLnUNCeYjbg
  priority: 102
  providerName: Unpaywall
Title Machine Learning Analysis for Phenolic Compound Monitoring Using a Mobile Phone-Based ECL Sensor
URI https://www.proquest.com/docview/2576498175
https://www.proquest.com/docview/2577458817
https://pubmed.ncbi.nlm.nih.gov/PMC8473430
https://www.mdpi.com/1424-8220/21/18/6004/pdf?version=1631092877
https://doaj.org/article/ac01a3cf33154871b0e6f092409b3759
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEE8RWCrzOHAJJLFdOweEtquWFaJVBVQqp-A4zi5SlXa7rWD_PTNuEm3QIiFVOTiTJrFnMvNlJt8AvHbERu1yEUpVuFBIw8O8kEVYSuuIUD0uLL3QH0_6pzPxaS7ne9CUNdcTeHkjtKN-UrP14u3vi6sPaPDvCXEiZH93iSBG92m1Vxch9ZOivGvdXGMfDtFnpdTUYSza_ELCue9xTZ95hegiox3nUPffOp7KE_p3otC_ayhvbauVufplFotrDmp0D-7WkSU73qnCfdhz1QO4c41v8CH8GPvSScdqVtUz1nCSMIxd2fTcVUQTzOghQe2W2M7i6WDmawuYwaEcHyQou6xcOEAfWLDhyWf2FeHwcv0IZqPht5PTsG6xEFrEgZtQcYv4zioCTtJqoQ2Gf4rzJOallLku0PtjiIC3qblOhCv7QvLEcFk4WVIG8DEcVHi-J8BiYaxTUY4BHWJubXWJv0gZaUqRFq4M4E0znZmt-cepDcYiQxxCM5-1Mx_Ay1Z0tSPduEloQGvSChBPth9Yrs-y2uwyY6PYcFty7qFZnEeuX0YpqUTOlUwDOGpWNGt0LyMMJlKNgVUAL9rdaHaUSzGVW269jKKPfGMVgOpoQueCunuqn-eewBsjAi54FMCrVmf-fZ9P_-MansHthGptKNGlj-Bgs9665xgsbfIe7Ku5wq0efezB4WA4mX7p-RcPPW8RODabTI-__wH64xhB
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEE8RWsC8JC5Rk9heOweEaGm1pbsVEq20t9RxnBZplWz3oap_it_ITF5tEHCrtKdkdjexxzPfF0--AXjvSI3apcKXKnO-kIb7aSYzP5fWkaB6mFl6oD8-GgxPxLeJnKzBr_ZdGCqrbGNiFaiz0tIz8m0CxiLWmO0-zy586hpFu6ttC43aLQ7d1SVStsWng684vx-iaH_veHfoN10FfIvUZ-krbpHSWEVcQVottEHEoziPQp5LmeoMEx5mRZdZzXUkXD4QkkeGy8zJnDa98HfvwF3BMZbg-lGTa4LHke_V6kWcx8H2AsmVRkAhejmvag3Qw7N_VmNurIqZubo00-mNVLf_EB40GJV9qZ3qEay54jHcv6Fc-AROx1URpmONPusZa9VNGKJg9v3cFSQ4zCjcUOMmVscO-jKrqhSYwUMphiS0LQvn72A2zdje7oj9QGJdzp_Cya0M6zNYL_D_ngMLhbFOBSlCQ2Tv2uocP4Ey0uQizlzuwcd2OBPbKJlTQ41pgoyGRj7pRt6Dt53prJbv-JvRDs1JZ0CK29WBcn6WNAs4MTYIDbc55xXJC9PADfIA2WsQp1zJ2IOtdkaTJgwskmun9eBNdxoXMO3KmMKVq8pG0evCofJA9Tyhd0H9M8XP80oKHLEFR0_04F3nM_--zxf_v8TXsDE8Ho-S0cHR4Sbci6h4h3bO9BasL-cr9xLR1zJ9Vbk8g9PbXmO_AerLPy0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8IK6KQAFzSbxEm8T22nlAiB6rlh6qBJX2LXUcp620SrZ7qOpf49cxk6sNAt4q5SmeJI49npkvnnwD8NERG7VLhS9V5nwhDffTTGZ-Lq0jQvUws_RB_-BwuHMsvo_leAV-tf_CUFplaxMrQ52Vlr6RDygwFrFGbzfIm7SIo63R1-mFTxWkaKe1LadRq8ieu7pE-Db_sruFc_0pikbbPzd3_KbCgG8RBi18xS3CG6sIN0irhTYY_SjOo5DnUqY6Q-eHHtJlVnMdCZcPheSR4TJzMqcNMLzvHbiLV8SUTqjG12CPI_armYywMRjMEWhpDC5Ez_9VZQJ6se2fmZn3l8XUXF2ayeSG2xs9hkdNvMq-1Qr2BFZc8RQe3mAxfAYnB1VCpmMNV-spa5lOGEbE7OjMFUQ-zMj0UBEnVtsRuphVGQvM4KkUzRPKloXzN9CzZmx7c5_9QJBdzp7D8a0M6xqsFvi8F8BCYaxTQYphIiJ5bXWOR6CMNLmIM5d78LkdzsQ2rOZUXGOSILqhkU-6kffgfSc6rak8_ia0QXPSCRD7dnWinJ0mzWJOjA1Cw23OeQX4wjRwwzxAJBvEKVcy9mC9ndGkMQnz5FqBPXjXNeNiph0aU7hyWcko-nU4VB6onib0OtRvKc7PKlpwjDO44IEHHzqd-fd7vvx_F9_CPVxdyf7u4d4reBBRHg9toul1WF3Mlu41BmKL9E2l8QxObnuJ_QYJe0Nw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceCNCW2QeBy5uHrbX3hNqq1YVolUlWKmcguPYbcUqu9ruguDXdybJRpuqSEhIOSXjJM7Ynu-Lx58B3ntSo_aF5EqXnktlBS9KVfKgnCdB9bR09EP_-GR4NJafztTZ2ip-SqtEKn5ZD9K0CotjBEviLI1TE2NwlvGsDB9_tv-SEEykyQhBv74LG0OFaHwAG-OT091v9aKitnQjKCSQ3cdXyHcM3aYXhmq1_h7EvJkgeW9ZzezvX3YyWYs-h4_Art67STr5sbNcFDvuzw1Jx_-p2GN42EJTttu0pSdwx1dP4cGaYOEz-H5c51561sqynrOVqAlD8MtOL3xFOsOMRhnar4k1QwYVZnVyArN4qsCRCG2nled7GERLdrD_mX1BPj2dP4fx4cHX_SPe7tHAHRLJBdfCIUF0mpiXckYai_hRC5GlIihVmBLhA2IM_JRGmEz6MJRKZFao0qtAU4gvYFDh814CS6V1XicFIkIk7caZgEeirbJBjkofIviwclnuWgFz2kdjkiORIe_mnXcjeNuZzhrVjtuM9sjvnQEJbdcnpvPzvO23uXVJaoULQtTcLi0SPwzoGaTFhdBqFMHWqtXkbe-_yonEyZFBZBbBm-4y9luajLGVny5rG02rhFMdge61tt4L9a9Ulxe1AjhCCiFFEsG7rl3-vZ6v_slqE-5nlK5Dc2VmCwaL-dJvI95aFK_bLnUNCeYjbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Analysis+for+Phenolic+Compound+Monitoring+Using+a+Mobile+Phone-Based+ECL+Sensor&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Taylor%2C+Joseph&rft.au=Ccopa-Rivera%2C+Elmer&rft.au=Kim%2C+Solomon&rft.au=Campbell%2C+Reise&rft.date=2021-09-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=18&rft_id=info:doi/10.3390%2Fs21186004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon