Machine Learning Analysis for Phenolic Compound Monitoring Using a Mobile Phone-Based ECL Sensor
Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a nov...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 21; no. 18; p. 6004 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        08.09.2021
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s21186004 | 
Cover
| Abstract | Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations. | 
    
|---|---|
| AbstractList | Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations. Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a novel approach based on ML algorithms (neural nets, Gaussian Process Regression, among others) to model the electrochemiluminescence (ECL) quenching mechanism of the [Ru(bpy)3]2+/TPrA system by phenolic compounds, thus allowing their detection and quantification. The relationships between the concentration of phenolic compounds and their effect on the ECL intensity and current data measured using a mobile phone-based ECL sensor is investigated. The ML regression tasks with a tri-layer neural net using minimally processed time series data showed better or comparable detection performance compared to the performance using extracted key features without extra preprocessing. Combined multimodal characteristics produced an 80% more enhanced performance with multilayer neural net algorithms than a single feature based-regression analysis. The results demonstrated that the ML could provide a robust analysis framework for sensor data with noises and variability. It demonstrates that ML strategies can play a crucial role in chemical or biosensor data analysis, providing a robust model by maximizing all the obtained information and integrating nonlinearity and sensor-to-sensor variations.  | 
    
| Author | Kim, Solomon Summerscales, Rodney Campbell, Reise Taylor, Joseph Ccopa-Rivera, Elmer Kwon, Hyun  | 
    
| AuthorAffiliation | 1 School of Engineering, Andrews University, Berrien Springs, MI 49104, USA; tjoseph@andrews.edu (J.T.); ccoparivera@andrews.edu (E.C.-R.) 2 Department of Computing, Andrews University, Berrien Springs, MI 49104, USA; ksolomon@andrews.edu (S.K.); reise@andrews.edu (R.C.); summersc@andrews.edu (R.S.)  | 
    
| AuthorAffiliation_xml | – name: 1 School of Engineering, Andrews University, Berrien Springs, MI 49104, USA; tjoseph@andrews.edu (J.T.); ccoparivera@andrews.edu (E.C.-R.) – name: 2 Department of Computing, Andrews University, Berrien Springs, MI 49104, USA; ksolomon@andrews.edu (S.K.); reise@andrews.edu (R.C.); summersc@andrews.edu (R.S.)  | 
    
| Author_xml | – sequence: 1 givenname: Joseph surname: Taylor fullname: Taylor, Joseph – sequence: 2 givenname: Elmer surname: Ccopa-Rivera fullname: Ccopa-Rivera, Elmer – sequence: 3 givenname: Solomon surname: Kim fullname: Kim, Solomon – sequence: 4 givenname: Reise surname: Campbell fullname: Campbell, Reise – sequence: 5 givenname: Rodney orcidid: 0000-0002-9429-4948 surname: Summerscales fullname: Summerscales, Rodney – sequence: 6 givenname: Hyun surname: Kwon fullname: Kwon, Hyun  | 
    
| BookMark | eNp1kd9vFCEQx4mpsT_0wf9gE1-sybbAwMK-mNRL1SbXaKJ9RpZl77hwcMJuzf33cr2maRt9YcjwmS_fmTlGByEGi9Bbgs8AWnyeKSGywZi9QEeEUVZLSvHBo_shOs55hTEFAPkKHQLjQlACR-jXtTZLF2w1tzoFFxbVRdB-m12uhpiq70sbonemmsX1Jk6hr65jcGNMO_Im705dUp3ztrDFVf1JZ9tXl7N59cOGHNNr9HLQPts39_EE3Xy-_Dn7Ws-_fbmaXcxrw1gz1gIMbpkRjErBjWRScwABUEwOnHeyp4xRTGxvJEjK7NAwDlQD7y0fsJBwgq72un3UK7VJbq3TVkXt1F0ipoXSaXTGW6UNJhrMAEA4k4J02DYDbinDbQeCt0Xrw15rChu9_aO9fxAkWO1Grh5GXuCPe3gzdeviz4Yxaf_EwdOX4JZqEW-VZAIY4CLw_l4gxd-TzaNau2ys9zrYOGVFy64Yl5KIgr57hq7ilMrC7qiGtQXihTrfUybFnJMdlHGjHl3c_e_8P3s4fVbx_37_AjAhvgA | 
    
| CitedBy_id | crossref_primary_10_1016_j_trac_2024_117613 crossref_primary_10_3390_mi15081059 crossref_primary_10_1016_j_scitotenv_2024_172310 crossref_primary_10_1016_j_biosx_2022_100187 crossref_primary_10_1016_j_diamond_2025_112053 crossref_primary_10_1016_j_talanta_2025_127639 crossref_primary_10_1016_j_cclet_2022_107799  | 
    
| Cites_doi | 10.1007/s00449-018-1990-4 10.1016/j.trac.2015.10.019 10.1039/C8AN00065D 10.1016/j.rechem.2020.100029 10.1016/j.trac.2017.04.001 10.1002/open.202100151 10.1002/anie.201901443 10.1149/2.0291807jss 10.1038/s41893-018-0142-9 10.1021/acs.analchem.6b04675 10.1109/JPROC.2021.3060483 10.1155/2014/598129 10.7551/mitpress/3206.001.0001 10.1246/bcsj.20200359 10.1021/acssensors.0c01424 10.3390/s20030625 10.1007/s10462-018-9614-6 10.1002/open.202000165 10.1002/aisy.202000063  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021  | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021  | 
    
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s21186004 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_ac01a3cf33154871b0e6f092409b3759 10.3390/s21186004 PMC8473430 10_3390_s21186004  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c446t-73c094c742875c848a533733213f55b8d244201edc83824ef64532a35de5f0783 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Tue Oct 14 19:04:09 EDT 2025 Sun Oct 26 04:12:52 EDT 2025 Tue Sep 30 16:58:44 EDT 2025 Fri Sep 05 09:13:45 EDT 2025 Tue Oct 07 07:14:09 EDT 2025 Thu Oct 16 04:21:49 EDT 2025 Thu Apr 24 22:57:25 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 18 | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c446t-73c094c742875c848a533733213f55b8d244201edc83824ef64532a35de5f0783 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-9429-4948 | 
    
| OpenAccessLink | https://doaj.org/article/ac01a3cf33154871b0e6f092409b3759 | 
    
| PMID | 34577213 | 
    
| PQID | 2576498175 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ac01a3cf33154871b0e6f092409b3759 unpaywall_primary_10_3390_s21186004 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8473430 proquest_miscellaneous_2577458817 proquest_journals_2576498175 crossref_citationtrail_10_3390_s21186004 crossref_primary_10_3390_s21186004  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210908 | 
    
| PublicationDateYYYYMMDD | 2021-09-08 | 
    
| PublicationDate_xml | – month: 9 year: 2021 text: 20210908 day: 8  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Chen (ref_20) 2014; 22 Kwon (ref_14) 2020; 2 Hino (ref_5) 2018; 1 Neto (ref_10) 2021; 94 Rong (ref_7) 2018; 143 ref_12 ref_11 Li (ref_13) 2017; 89 ref_21 Rivera (ref_16) 2018; 41 Ha (ref_4) 2020; 2 Cui (ref_6) 2020; 5 Chauhan (ref_19) 2019; 52 You (ref_8) 2014; 2014 Zarei (ref_1) 2017; 91 Roda (ref_2) 2016; 79 Samek (ref_18) 2021; 109 Syu (ref_3) 2018; 7 Rivera (ref_15) 2020; 9 Tittl (ref_9) 2019; 58 Rivera (ref_17) 2021; 10  | 
    
| References_xml | – volume: 41 start-page: 1651 year: 2018 ident: ref_16 article-title: Resolving mismatches in the flexible production of ethanol and butanol from eucalyptus wood with vacuum fermentation publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-018-1990-4 – volume: 22 start-page: 115 year: 2014 ident: ref_20 article-title: Introduction to boosted trees publication-title: Univ. Wash. Comput. Sci. – volume: 79 start-page: 317 year: 2016 ident: ref_2 article-title: Smartphone-based biosensors: A critical review and perspectives publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2015.10.019 – volume: 143 start-page: 2066 year: 2018 ident: ref_7 article-title: Post hoc support vector machine learning for impedimetric biosensors based on weak protein–ligand interactions publication-title: Analyst doi: 10.1039/C8AN00065D – volume: 2 start-page: 100029 year: 2020 ident: ref_14 article-title: Development of smartphone-based ECL sensor for dopamine detection: Practical approaches publication-title: Results Chem. doi: 10.1016/j.rechem.2020.100029 – ident: ref_11 – volume: 91 start-page: 26 year: 2017 ident: ref_1 article-title: Portable biosensing devices for point-of-care diagnostics: Recent developments and applications publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2017.04.001 – volume: 10 start-page: 842 year: 2021 ident: ref_17 article-title: Quenching Behavior of the Electrochemiluminescence of Ru(bpy) 3 2+ /TPrA System by Phenols on a Smartphone-Based Sensor publication-title: ChemistryOpen doi: 10.1002/open.202100151 – volume: 58 start-page: 14810 year: 2019 ident: ref_9 article-title: Metasurface-Based Molecular Biosensing Aided by Artificial Intelligence publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901443 – volume: 7 start-page: Q3196 year: 2018 ident: ref_3 article-title: Review—Field-Effect Transistor Biosensing: Devices and Clinical Applications publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0291807jss – volume: 1 start-page: 583 year: 2018 ident: ref_5 article-title: Machine learning for environmental monitoring publication-title: Nat. Sustain. doi: 10.1038/s41893-018-0142-9 – volume: 89 start-page: 358 year: 2017 ident: ref_13 article-title: Recent Advances in Electrochemiluminescence Analysis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04675 – volume: 109 start-page: 247 year: 2021 ident: ref_18 article-title: Explaining deep neural networks and beyond: A review of methods and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3060483 – volume: 2014 start-page: 1 year: 2014 ident: ref_8 article-title: Large-Scale Protein-Protein Interactions Detection by Integrating Big Biosensing Data with Computational Model publication-title: BioMed Res. Int. doi: 10.1155/2014/598129 – ident: ref_21 doi: 10.7551/mitpress/3206.001.0001 – volume: 94 start-page: 1553 year: 2021 ident: ref_10 article-title: Machine Learning Used to Create a Multidimensional Calibration Space for Sensing and Biosensing Data publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20200359 – volume: 5 start-page: 3346 year: 2020 ident: ref_6 article-title: Advancing Biosensors with Machine Learning publication-title: ACS Sens. doi: 10.1021/acssensors.0c01424 – ident: ref_12 doi: 10.3390/s20030625 – volume: 52 start-page: 803 year: 2019 ident: ref_19 article-title: Problem formulations and solvers in linear SVM: A review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9614-6 – volume: 9 start-page: 854 year: 2020 ident: ref_15 article-title: Electrochemiluminescence Mechanisms Investigated with Smartphone-Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis publication-title: ChemistryOpen doi: 10.1002/open.202000165 – volume: 2 start-page: 2000063 year: 2020 ident: ref_4 article-title: Machine Learning-Enabled Smart Sensor Systems publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000063  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.3897297 | 
    
| Snippet | Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 6004 | 
    
| SubjectTerms | Acids Algorithms Biosensors Cameras Cellular telephones Data analysis Datasets ECL Electrodes Experiments Light low-cost sensor mobile phone-based sensor Partial differential equations Sensors Time series  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ei3oQn1hfxMfBS7HdJJvsUUURURFU8FbTNFFh6YruIv57Z9Ju2YriRegpmdJmMtOZr5l8Adh3xEbtchFLVbhYSMPjvJBF7KV1RKieFpZ-6F9dd8_vxcWDfJg46otqwip64Epxh8YmqeHWcx6S6zRPXNcniBqSXs6VDFv3Et0bg6kaanFEXhWPEEdQf_iOMEdjaBet6BNI-luZ5fe6yJlR-Wo-P0y_PxF0zhZgvs4W2VH1losw5colmJvgEFyGx6tQDulYzZT6xMY8IwzzUXbz7Eqi_mXk-HSEEqu8mG5moV6AGWzK8eOAsoPSxccY1wp2enLJbhHiDt5W4P7s9O7kPK6PTYgtYrthrLhFzGYVgSFptdAGUzrFeSflXspcFxjRMezjMDXXHeF8V0jeMVwWTnpa1VuF6RKftwYsFcY6leSYpCGO1lZ7vBJlpPGiVzgfwcFYnZmtOcXpaIt-htiCNJ81mo9gtxF9rYg0fhI6pjlpBIj7OjSgRWS1RWR_WUQEm-MZzWqHfM8IV4mexmQpgp2mG12J1kdM6QajIKNo426qIlAtS2i9ULunfHkOpNwY5bngSQR7jc38Ps71_xjnBsx2qMCGVrf0JkwP30ZuCzOkYb4dnOELOy0MyQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IJ4ipSDzOHCJmsT22ntAiK22qhBdVUCl3oLjR4u0Spbtrir-PTPeJDQIkHKyJ0r8nPk8428A3nhio_aVSKVyPhXS8LRy0qVBWk-E6rmzdKB_Mh8fn4mP5_J8B-bdXRgKq-z2xLhRu8bSGfkBGcZiolHbvV_-SClrFHlXuxQapk2t4N5FirFbsFsQM9YIdqez-ennHoJxRGRbfiGOYP_gCuGPRpUvBlopkvcPLM4_4yVvb-ql-XltFosbyujoPtxrrUj2YTvsD2DH1w_h7g1uwUfw7SSGSXrWMqhesI5_hKGdyk4vfU2UwIw2BEqtxLarm15mMY6AGSyqcNNA2ab26RT1nWOzw0_sC0LfZvUYzo5mXw-P0zadQmoR861TxS1iOasIJEmrhTZo6inOi5wHKSvtUNOjOYDN1FwXwoexkLwwXDovA3n7nsCoxu89BZYLY73KKjTeEF9rqwM-mTLSBDFxPiTwtuvO0rZc45TyYlEi5qCeL_ueT-BVL7rcEmz8TWhKY9ILECd2LGhWF2W7xEpjs9xwGziPMCyvMj8OGeLLbFJxJScJ7HcjWrYL9ar8Pa0SeNlX4xIjv4mpfbOJMoou9OYqATWYCYMfGtbU3y8jWTdqfy54lsDrfs78u517___FZ3CnoJAa8mfpfRitVxv_HG2idfWinei_AJu4DAA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceCNCW2QeBy5uHrbX3hNqq1YVolUlWKmcguPYbcUqu9ruguDXdybJRpuqSEhIOSXjJM7Ynu-Lx58B3ntSo_aF5EqXnktlBS9KVfKgnCdB9bR09EP_-GR4NJafztTZ2ip-SqtEKn5ZD9K0CotjBEviLI1TE2NwlvGsDB9_tv-SEEykyQhBv74LG0OFaHwAG-OT091v9aKitnQjKCSQ3cdXyHcM3aYXhmq1_h7EvJkgeW9ZzezvX3YyWYs-h4_Art67STr5sbNcFDvuzw1Jx_-p2GN42EJTttu0pSdwx1dP4cGaYOEz-H5c51561sqynrOVqAlD8MtOL3xFOsOMRhnar4k1QwYVZnVyArN4qsCRCG2nled7GERLdrD_mX1BPj2dP4fx4cHX_SPe7tHAHRLJBdfCIUF0mpiXckYai_hRC5GlIihVmBLhA2IM_JRGmEz6MJRKZFao0qtAU4gvYFDh814CS6V1XicFIkIk7caZgEeirbJBjkofIviwclnuWgFz2kdjkiORIe_mnXcjeNuZzhrVjtuM9sjvnQEJbdcnpvPzvO23uXVJaoULQtTcLi0SPwzoGaTFhdBqFMHWqtXkbe-_yonEyZFBZBbBm-4y9luajLGVny5rG02rhFMdge61tt4L9a9Ulxe1AjhCCiFFEsG7rl3-vZ6v_slqE-5nlK5Dc2VmCwaL-dJvI95aFK_bLnUNCeYjbg priority: 102 providerName: Unpaywall  | 
    
| Title | Machine Learning Analysis for Phenolic Compound Monitoring Using a Mobile Phone-Based ECL Sensor | 
    
| URI | https://www.proquest.com/docview/2576498175 https://www.proquest.com/docview/2577458817 https://pubmed.ncbi.nlm.nih.gov/PMC8473430 https://www.mdpi.com/1424-8220/21/18/6004/pdf?version=1631092877 https://doaj.org/article/ac01a3cf33154871b0e6f092409b3759  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEE8RWCrzOHAJJLFdOweEtquWFaJVBVQqp-A4zi5SlXa7rWD_PTNuEm3QIiFVOTiTJrFnMvNlJt8AvHbERu1yEUpVuFBIw8O8kEVYSuuIUD0uLL3QH0_6pzPxaS7ne9CUNdcTeHkjtKN-UrP14u3vi6sPaPDvCXEiZH93iSBG92m1Vxch9ZOivGvdXGMfDtFnpdTUYSza_ELCue9xTZ95hegiox3nUPffOp7KE_p3otC_ayhvbauVufplFotrDmp0D-7WkSU73qnCfdhz1QO4c41v8CH8GPvSScdqVtUz1nCSMIxd2fTcVUQTzOghQe2W2M7i6WDmawuYwaEcHyQou6xcOEAfWLDhyWf2FeHwcv0IZqPht5PTsG6xEFrEgZtQcYv4zioCTtJqoQ2Gf4rzJOallLku0PtjiIC3qblOhCv7QvLEcFk4WVIG8DEcVHi-J8BiYaxTUY4BHWJubXWJv0gZaUqRFq4M4E0znZmt-cepDcYiQxxCM5-1Mx_Ay1Z0tSPduEloQGvSChBPth9Yrs-y2uwyY6PYcFty7qFZnEeuX0YpqUTOlUwDOGpWNGt0LyMMJlKNgVUAL9rdaHaUSzGVW269jKKPfGMVgOpoQueCunuqn-eewBsjAi54FMCrVmf-fZ9P_-MansHthGptKNGlj-Bgs9665xgsbfIe7Ku5wq0efezB4WA4mX7p-RcPPW8RODabTI-__wH64xhB | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEE8RWsC8JC5Rk9heOweEaGm1pbsVEq20t9RxnBZplWz3oap_it_ITF5tEHCrtKdkdjexxzPfF0--AXjvSI3apcKXKnO-kIb7aSYzP5fWkaB6mFl6oD8-GgxPxLeJnKzBr_ZdGCqrbGNiFaiz0tIz8m0CxiLWmO0-zy586hpFu6ttC43aLQ7d1SVStsWng684vx-iaH_veHfoN10FfIvUZ-krbpHSWEVcQVottEHEoziPQp5LmeoMEx5mRZdZzXUkXD4QkkeGy8zJnDa98HfvwF3BMZbg-lGTa4LHke_V6kWcx8H2AsmVRkAhejmvag3Qw7N_VmNurIqZubo00-mNVLf_EB40GJV9qZ3qEay54jHcv6Fc-AROx1URpmONPusZa9VNGKJg9v3cFSQ4zCjcUOMmVscO-jKrqhSYwUMphiS0LQvn72A2zdje7oj9QGJdzp_Cya0M6zNYL_D_ngMLhbFOBSlCQ2Tv2uocP4Ey0uQizlzuwcd2OBPbKJlTQ41pgoyGRj7pRt6Dt53prJbv-JvRDs1JZ0CK29WBcn6WNAs4MTYIDbc55xXJC9PADfIA2WsQp1zJ2IOtdkaTJgwskmun9eBNdxoXMO3KmMKVq8pG0evCofJA9Tyhd0H9M8XP80oKHLEFR0_04F3nM_--zxf_v8TXsDE8Ho-S0cHR4Sbci6h4h3bO9BasL-cr9xLR1zJ9Vbk8g9PbXmO_AerLPy0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8IK6KQAFzSbxEm8T22nlAiB6rlh6qBJX2LXUcp620SrZ7qOpf49cxk6sNAt4q5SmeJI49npkvnnwD8NERG7VLhS9V5nwhDffTTGZ-Lq0jQvUws_RB_-BwuHMsvo_leAV-tf_CUFplaxMrQ52Vlr6RDygwFrFGbzfIm7SIo63R1-mFTxWkaKe1LadRq8ieu7pE-Db_sruFc_0pikbbPzd3_KbCgG8RBi18xS3CG6sIN0irhTYY_SjOo5DnUqY6Q-eHHtJlVnMdCZcPheSR4TJzMqcNMLzvHbiLV8SUTqjG12CPI_armYywMRjMEWhpDC5Ez_9VZQJ6se2fmZn3l8XUXF2ayeSG2xs9hkdNvMq-1Qr2BFZc8RQe3mAxfAYnB1VCpmMNV-spa5lOGEbE7OjMFUQ-zMj0UBEnVtsRuphVGQvM4KkUzRPKloXzN9CzZmx7c5_9QJBdzp7D8a0M6xqsFvi8F8BCYaxTQYphIiJ5bXWOR6CMNLmIM5d78LkdzsQ2rOZUXGOSILqhkU-6kffgfSc6rak8_ia0QXPSCRD7dnWinJ0mzWJOjA1Cw23OeQX4wjRwwzxAJBvEKVcy9mC9ndGkMQnz5FqBPXjXNeNiph0aU7hyWcko-nU4VB6onib0OtRvKc7PKlpwjDO44IEHHzqd-fd7vvx_F9_CPVxdyf7u4d4reBBRHg9toul1WF3Mlu41BmKL9E2l8QxObnuJ_QYJe0Nw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceCNCW2QeBy5uHrbX3hNqq1YVolUlWKmcguPYbcUqu9ruguDXdybJRpuqSEhIOSXjJM7Ynu-Lx58B3ntSo_aF5EqXnktlBS9KVfKgnCdB9bR09EP_-GR4NJafztTZ2ip-SqtEKn5ZD9K0CotjBEviLI1TE2NwlvGsDB9_tv-SEEykyQhBv74LG0OFaHwAG-OT091v9aKitnQjKCSQ3cdXyHcM3aYXhmq1_h7EvJkgeW9ZzezvX3YyWYs-h4_Art67STr5sbNcFDvuzw1Jx_-p2GN42EJTttu0pSdwx1dP4cGaYOEz-H5c51561sqynrOVqAlD8MtOL3xFOsOMRhnar4k1QwYVZnVyArN4qsCRCG2nled7GERLdrD_mX1BPj2dP4fx4cHX_SPe7tHAHRLJBdfCIUF0mpiXckYai_hRC5GlIihVmBLhA2IM_JRGmEz6MJRKZFao0qtAU4gvYFDh814CS6V1XicFIkIk7caZgEeirbJBjkofIviwclnuWgFz2kdjkiORIe_mnXcjeNuZzhrVjtuM9sjvnQEJbdcnpvPzvO23uXVJaoULQtTcLi0SPwzoGaTFhdBqFMHWqtXkbe-_yonEyZFBZBbBm-4y9luajLGVny5rG02rhFMdge61tt4L9a9Ulxe1AjhCCiFFEsG7rl3-vZ6v_slqE-5nlK5Dc2VmCwaL-dJvI95aFK_bLnUNCeYjbg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Analysis+for+Phenolic+Compound+Monitoring+Using+a+Mobile+Phone-Based+ECL+Sensor&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Taylor%2C+Joseph&rft.au=Ccopa-Rivera%2C+Elmer&rft.au=Kim%2C+Solomon&rft.au=Campbell%2C+Reise&rft.date=2021-09-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=18&rft_id=info:doi/10.3390%2Fs21186004&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |