Effects of Seawater on Mechanical Performance of Composite Sandwich Structures: A Machine Learning Framework

Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structu...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 11; p. 2549
Main Authors Osa-uwagboe, Norman, Udu, Amadi Gabriel, Silberschmidt, Vadim V., Baxevanakis, Konstantinos P., Demirci, Emrah
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.05.2024
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma17112549

Cover

Abstract Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications.
AbstractList Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications.
Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications.Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications.
Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A -means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications.
Audience Academic
Author Udu, Amadi Gabriel
Silberschmidt, Vadim V.
Baxevanakis, Konstantinos P.
Osa-uwagboe, Norman
Demirci, Emrah
AuthorAffiliation 1 Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; n.osa-uwagboe@lboro.ac.uk (N.O.-u.); k.baxevanakis@lboro.ac.uk (K.P.B.); e.demirci@lboro.ac.uk (E.D.)
2 Air Force Research and Development Centre, Nigerian Air Force Base, Kaduna PMB 2104, Nigeria
3 School of Engineering, University of Leicester, Leicester LE1 7RH, UK
AuthorAffiliation_xml – name: 1 Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; n.osa-uwagboe@lboro.ac.uk (N.O.-u.); k.baxevanakis@lboro.ac.uk (K.P.B.); e.demirci@lboro.ac.uk (E.D.)
– name: 3 School of Engineering, University of Leicester, Leicester LE1 7RH, UK
– name: 2 Air Force Research and Development Centre, Nigerian Air Force Base, Kaduna PMB 2104, Nigeria
Author_xml – sequence: 1
  givenname: Norman
  orcidid: 0000-0002-6560-445X
  surname: Osa-uwagboe
  fullname: Osa-uwagboe, Norman
– sequence: 2
  givenname: Amadi Gabriel
  orcidid: 0000-0001-8944-4940
  surname: Udu
  fullname: Udu, Amadi Gabriel
– sequence: 3
  givenname: Vadim V.
  orcidid: 0000-0003-3338-3311
  surname: Silberschmidt
  fullname: Silberschmidt, Vadim V.
– sequence: 4
  givenname: Konstantinos P.
  orcidid: 0000-0002-4826-3454
  surname: Baxevanakis
  fullname: Baxevanakis, Konstantinos P.
– sequence: 5
  givenname: Emrah
  surname: Demirci
  fullname: Demirci, Emrah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38893813$$D View this record in MEDLINE/PubMed
BookMark eNp9klFv0zAQxyM0xMbYCx8AWeIFgTrs2IkTXlBVbYDUCaTCc3S5nFuPxC52QrVvj6sONiaE_eCT_fuf7_720-zIeUdZ9lzwcylr_nYAoYXIC1U_yk5EXZczUSt1dC8-zs5ivOZpSCmqvH6SHcuqqmUl5EnWXxhDOEbmDVsR7GCkwLxjV4QbcBahZ18oGB8GcEh7auGHrY92JLYC1-0sbthqDBOOU6D4js3ZFeDGOmJLguCsW7PLAAPtfPj-LHtsoI90drueZt8uL74uPs6Wnz98WsyXM1SqHGc6R6qogM60WBSpzkqVZEplOoOIOSGWpSapO90WpmxRFjWi7mSrFFcgc3mavTnkndwWbnbQ98022AHCTSN4s7etubMt0e8P9HZqB-qQ3BjgTuHBNn-fOLtp1v5nI4TQUqgqZXh1myH4HxPFsRlsROp7cOSn2EiuecWFKEVCXz5Ar_0UXHIjUaUuuBJaJ-r8QK2hp8Y649PFmGZHg8X0AYxN-3Nd6zqJ9L7jF_d7-FP874dOwOsDgMHHGMj83xH-AEY7wmj9vn_b_0vyC9iLybw
CitedBy_id crossref_primary_10_1080_17445302_2025_2455987
crossref_primary_10_1007_s10924_024_03485_1
Cites_doi 10.1016/j.compscitech.2021.109094
10.1007/s10921-023-01014-z
10.1016/j.compstruct.2009.09.046
10.1016/j.engstruct.2011.11.023
10.3390/ma15134450
10.1016/j.eswa.2023.122778
10.3390/ma17010061
10.1016/j.jmatprotec.2023.118144
10.1016/S0263-8223(00)00175-6
10.3390/ma13225207
10.3390/app131810017
10.1007/s10853-022-06917-2
10.1016/j.dt.2018.02.001
10.1016/j.polymertesting.2017.05.014
10.1016/j.paerosci.2024.100994
10.1007/s10489-021-03041-7
10.1109/ICMLA58977.2023.00159
10.3390/ma16247512
10.1016/j.engstruct.2024.117970
10.1016/j.conbuildmat.2017.04.135
10.1016/j.matdes.2023.111745
10.1002/widm.1249
10.1134/S1061830923600314
10.1016/j.compscitech.2008.02.034
10.1080/00949655.2017.1327588
10.3390/polym13132182
10.1016/0013-7944(94)90062-0
10.1016/j.optlastec.2023.110152
10.1109/ACCESS.2020.2988796
10.1002/widm.1484
10.3390/ma16145036
10.1002/pc.25957
10.3390/ma16010300
10.3390/ma15124270
10.1016/j.coco.2020.02.002
10.1007/978-3-031-39847-6_42
10.1177/07316844241236696
10.1016/j.matdes.2020.109201
10.3390/app13126861
10.3390/ma16113913
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ma17112549
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID 10.3390/ma17112549
PMC11173148
A797906772
38893813
10_3390_ma17112549
Genre Journal Article
GeographicLocations United Kingdom
United Kingdom--UK
GeographicLocations_xml – name: United Kingdom
– name: United Kingdom--UK
GrantInformation_xml – fundername: Nigerian Air Force
  grantid: OPS/1282DTG27145AJUL21
– fundername: Royal Society
  grantid: RGS\R1\221368
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c446t-72ce8e5adfbc55381846ef64fdfccc2ecc667e37d7b5f6bc359cc7d3b4404a323
IEDL.DBID UNPAY
ISSN 1996-1944
IngestDate Sun Oct 26 04:18:15 EDT 2025
Tue Sep 30 17:09:00 EDT 2025
Thu Sep 04 18:17:38 EDT 2025
Fri Jul 25 12:02:59 EDT 2025
Mon Oct 20 16:59:32 EDT 2025
Mon Jul 21 05:49:49 EDT 2025
Thu Oct 16 04:47:28 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords damage prediction
seawater exposure
acoustic emission
composite sandwich
machine learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-72ce8e5adfbc55381846ef64fdfccc2ecc667e37d7b5f6bc359cc7d3b4404a323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4826-3454
0000-0001-8944-4940
0000-0003-3338-3311
0000-0002-6560-445X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1944/17/11/2549/pdf?version=1716625871
PMID 38893813
PQID 3067504177
PQPubID 2032366
ParticipantIDs unpaywall_primary_10_3390_ma17112549
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173148
proquest_miscellaneous_3070801161
proquest_journals_3067504177
gale_infotracacademiconefile_A797906772
pubmed_primary_38893813
crossref_primary_10_3390_ma17112549
crossref_citationtrail_10_3390_ma17112549
PublicationCentury 2000
PublicationDate 20240525
PublicationDateYYYYMMDD 2024-05-25
PublicationDate_xml – month: 5
  year: 2024
  text: 20240525
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mouritz (ref_2) 2001; 53
Langdon (ref_4) 2012; 36
Ghabezi (ref_14) 2022; 57
Khan (ref_38) 2024; 244
ref_12
ref_11
ref_32
ref_31
Pal (ref_17) 2023; 42
ref_30
Pedregosa (ref_34) 2011; 127
Studzinski (ref_8) 2013; 61
Gargano (ref_10) 2020; 19
ref_18
ref_39
Pandiyan (ref_15) 2023; 321
Redondo (ref_43) 2022; 52
Udu (ref_46) 2024; 308
Geren (ref_29) 2021; 42
Manalo (ref_3) 2010; 92
Silberschimdt (ref_6) 2023; 23
Prasad (ref_9) 1994; 47
Li (ref_16) 2024; 169
Almeida (ref_21) 2023; 227
Yoder (ref_36) 2017; 87
Sinaga (ref_35) 2020; 8
Bischl (ref_40) 2023; 13
Sagi (ref_37) 2018; 8
ref_25
Xie (ref_41) 2021; 197
ref_23
ref_45
ref_44
Siriruk (ref_5) 2009; 69
(ref_1) 2018; 14
ref_20
ref_42
Li (ref_33) 2017; 50
(ref_13) 2017; 147
Lee (ref_22) 2022; 218
Guo (ref_24) 2023; 59
Monaco (ref_19) 2024; 146
ref_28
ref_26
Arumugam (ref_27) 2017; 61
ref_7
References_xml – volume: 218
  start-page: 109094
  year: 2022
  ident: ref_22
  article-title: Bin Advanced Non-Destructive Evaluation of Impact Damage Growth in Carbon-Fiber-Reinforced Plastic by Electromechanical Analysis and Machine Learning Clustering
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.109094
– volume: 42
  start-page: 102
  year: 2023
  ident: ref_17
  article-title: Assessing the Influence of Welded Joint on Health Monitoring of Rail Sections: An Experimental Study Employing SVM and ANN Models
  publication-title: J. Nondestr. Eval.
  doi: 10.1007/s10921-023-01014-z
– volume: 92
  start-page: 984
  year: 2010
  ident: ref_3
  article-title: Flexural Behaviour of Structural Fibre Composite Sandwich Beams in Flatwise and Edgewise Positions
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2009.09.046
– volume: 36
  start-page: 104
  year: 2012
  ident: ref_4
  article-title: The Response of Sandwich Structures with Composite Face Sheets and Polymer Foam Cores to Air-Blast Loading: Preliminary Experiments
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.11.023
– ident: ref_26
  doi: 10.3390/ma15134450
– volume: 127
  start-page: 2825
  year: 2011
  ident: ref_34
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 244
  start-page: 122778
  year: 2024
  ident: ref_38
  article-title: A Review of Ensemble Learning and Data Augmentation Models for Class Imbalanced Problems: Combination, Implementation and Evaluation
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.122778
– ident: ref_7
  doi: 10.3390/ma17010061
– volume: 321
  start-page: 118144
  year: 2023
  ident: ref_15
  article-title: Optimizing In-Situ Monitoring for Laser Powder Bed Fusion Process: Deciphering Acoustic Emission and Sensor Sensitivity with Explainable Machine Learning
  publication-title: J. Mater. Process Technol.
  doi: 10.1016/j.jmatprotec.2023.118144
– volume: 53
  start-page: 21
  year: 2001
  ident: ref_2
  article-title: Review of Advanced Composite Structures for Naval Ships and Submarines
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(00)00175-6
– ident: ref_28
  doi: 10.3390/ma13225207
– volume: 23
  start-page: 109963622311704
  year: 2023
  ident: ref_6
  article-title: Mechanical Behaviour of Fabric-Reinforced Plastic Sandwich Structures: A State-of-the-Art Review
  publication-title: J. Sandw. Struct. Mater.
– volume: 61
  start-page: 201
  year: 2013
  ident: ref_8
  article-title: Sensitivity Analysis of Sandwich Beams and Plates Accounting for Variable Support Conditions
  publication-title: Bull. Pol. Acad. Sci. Tech. Sci.
– volume: 50
  start-page: 1
  year: 2017
  ident: ref_33
  article-title: Feature Selection: A Data Perspective
  publication-title: ACM Comput. Surv.
– ident: ref_20
  doi: 10.3390/app131810017
– volume: 57
  start-page: 4239
  year: 2022
  ident: ref_14
  article-title: Hygrothermal Deterioration in Carbon/Epoxy and Glass/Epoxy Composite Laminates Aged in Marine-Based Environment (Degradation Mechanism, Mechanical and Physicochemical Properties)
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-022-06917-2
– volume: 14
  start-page: 318
  year: 2018
  ident: ref_1
  article-title: A Review on Machinability of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) Composite Materials
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2018.02.001
– volume: 61
  start-page: 132
  year: 2017
  ident: ref_27
  article-title: Quasi-Static Indentation Properties of Damaged Glass/Epoxy Composite Laminates Repaired by the Application of Intra-Ply Hybrid Patches
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.05.014
– volume: 146
  start-page: 100994
  year: 2024
  ident: ref_19
  article-title: Machine Learning Algorithms for Delaminations Detection on Composites Panels by Wave Propagation Signals Analysis: Review, Experiences and Results
  publication-title: Progress Aerosp. Sci.
  doi: 10.1016/j.paerosci.2024.100994
– volume: 52
  start-page: 12049
  year: 2022
  ident: ref_43
  article-title: General Performance Score for Classification Problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03041-7
– ident: ref_39
  doi: 10.1109/ICMLA58977.2023.00159
– ident: ref_18
  doi: 10.3390/ma16247512
– volume: 308
  start-page: 117970
  year: 2024
  ident: ref_46
  article-title: A Machine Learning-Enabled Prediction of Damage Properties for Fiber-Reinforced Polymer Composites under out-of-Plane Loading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.117970
– volume: 147
  start-page: 66
  year: 2017
  ident: ref_13
  article-title: Performance Evaluation and Microstructural Characterization of GFRP Bars in Seawater-Contaminated Concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.04.135
– volume: 227
  start-page: 111745
  year: 2023
  ident: ref_21
  article-title: Identifying Damage Mechanisms of Composites by Acoustic Emission and Supervised Machine Learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.111745
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_37
  article-title: Ensemble Learning: A Survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 59
  start-page: 665
  year: 2023
  ident: ref_24
  article-title: Deep Learning for Time Series-Based Acoustic Emission Damage Classification in Composite Materials
  publication-title: Russ. J. Nondestruct. Test.
  doi: 10.1134/S1061830923600314
– volume: 69
  start-page: 814
  year: 2009
  ident: ref_5
  article-title: Polymeric Foams and Sandwich Composites: Material Properties, Environmental Effects, and Shear-Lag Modeling
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2008.02.034
– ident: ref_25
– ident: ref_31
– volume: 87
  start-page: 2597
  year: 2017
  ident: ref_36
  article-title: Semi-Supervised k-Means++
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2017.1327588
– ident: ref_11
  doi: 10.3390/polym13132182
– volume: 47
  start-page: 825
  year: 1994
  ident: ref_9
  article-title: Debonding and Crack Kinking in Foam Core Sandwich Beams-II. Experimental Investigation
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(94)90062-0
– volume: 169
  start-page: 110152
  year: 2024
  ident: ref_16
  article-title: In Situ Identification of Laser Directed Energy Deposition Condition Based on Acoustic Emission
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2023.110152
– volume: 8
  start-page: 80716
  year: 2020
  ident: ref_35
  article-title: Unsupervised K-Means Clustering Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 13
  start-page: e1484
  year: 2023
  ident: ref_40
  article-title: Hyperparameter Optimization: Foundations, Algorithms, Best Practices, and Open Challenges
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1484
– ident: ref_30
  doi: 10.3390/ma16145036
– volume: 42
  start-page: 2037
  year: 2021
  ident: ref_29
  article-title: The Effect of Boron Carbide Additive on the Low-Velocity Impact Properties of Low-Density Foam Core Composite Sandwich Structures
  publication-title: Polym. Compos.
  doi: 10.1002/pc.25957
– ident: ref_23
  doi: 10.3390/ma16010300
– ident: ref_44
  doi: 10.3390/ma15124270
– volume: 19
  start-page: 11
  year: 2020
  ident: ref_10
  article-title: Importance of Fibre Sizing on the Seawater Durability of Carbon Fibre Laminates
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2020.02.002
– ident: ref_32
  doi: 10.1007/978-3-031-39847-6_42
– ident: ref_45
  doi: 10.1177/07316844241236696
– volume: 197
  start-page: 109201
  year: 2021
  ident: ref_41
  article-title: Online Prediction of Mechanical Properties of Hot Rolled Steel Plate Using Machine Learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109201
– ident: ref_42
  doi: 10.3390/app13126861
– ident: ref_12
  doi: 10.3390/ma16113913
SSID ssj0000331829
Score 2.426798
Snippet Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2549
SubjectTerms Acoustic emission
Algorithms
Cluster analysis
Clustering
Composite materials
Composite structures
Corrosion resistance
Damage detection
Data mining
Ensemble learning
Fiber reinforced plastics
Glass fibers
Hardness tests
Indenters
Interfacial bonding
Machine learning
Mechanical properties
Moisture absorption
Moisture resistance
Polyvinyl chloride
Prediction models
Sandwich structures
Sea vessels
Sea-water
Seawater
Strength to weight ratio
Structural health monitoring
Structural integrity
Temperature
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7IH4brbJiQXwIvexmsxdB5JQeRbijeBb6FjazG1s4k6vtcfjfO5Ovuxbpc4awu_O9O_MbgAPyAhQnD0fhCHUaxpgXYT7UMlSJdpEhB5XXMyOns-T4NP5-ps92YNb1wnBZZWcTa0PtKuQ78sM6tB3GkTFflpchT43i19VuhIZtRyu4zzXE2D3YlYyMNYDdr0ezkx_9rctQkQzLtMEpVZTvH_62kaGYQzOY5pZnum2ftxzU7eLJ-6tyaf-u7WKx5Zkmj-BhG1KKcSMDj2HHl09gbwto8CksGpDiK1EVYu7tmgLMP6IqxdRz4y_zSZxsOgiYiu0E13N5MbelW1_guZjXULMrys8_ibGY1lWYXrQArb_EpCvzegank6Of347Dds5CiJQMXodGoh95bV2Ro9bswuPEF0lcuAIRJTE5SYxXxplcF0mOSqeIxqmcsQWtkuo5DMqq9C9BxNa7OJGxl4iUClG84W1UmIisKJJlwQA-dmecYQtCzrMwFhklI8yPbMOPAN73tMsGeuO_VB-YVRnrI_0JbdtWQOthZKtsbFKTMkyeDGC_42bWKupVthGrAN71n0nF-N3Elr5aMQ1thB-sogBeNMzvF0SintKJqQBGN8SiJ2D47ptfyovzGsabvIxRlI0GcNBL0B0bfXX38l_DA0nxFhc2SL0PAxIJ_4bipev8basE_wA2mRbS
  priority: 102
  providerName: ProQuest
Title Effects of Seawater on Mechanical Performance of Composite Sandwich Structures: A Machine Learning Framework
URI https://www.ncbi.nlm.nih.gov/pubmed/38893813
https://www.proquest.com/docview/3067504177
https://www.proquest.com/docview/3070801161
https://pubmed.ncbi.nlm.nih.gov/PMC11173148
https://www.mdpi.com/1996-1944/17/11/2549/pdf?version=1716625871
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-0fVAf_P6InmXFA_Ehl26SzSa-SJXrHUJLsRbqU9hsdr1iTYvXWvSvdyZJc20REXwMmQ3Z7Hz9sjO_BTjGKIB5cjd2Yy0SN9SZdbOu8N0gEjmXGKCy8szIwTA6n4QfpmK608VPZZUIxWelky4rZBFlhx6XHucegRlvmdu3P-p_ScT1ggl8TE3k7UhgNt6C9mQ46n0uN5Pr0RUraYDo3vumcAin5-zFoUNvvBOODkslb6yLpfq5UfP5Thzq3wG1nUFVfvL1ZL3KTvSvA3LH_5niXbhdJ6msV2nVPbhmivtwa4e68AHMK9rjS7awbGzUBlPW72xRsIGhVmJaeTa66kkgKfI8VCFm2FgV-WamL9i4JK9dI-J_w3psUNZ1GlZTvn5h_W3h2EOY9E8_vT9365MbXI3wcuVKX5vYCJXbTAtBSUEYGRuFNrdaax_VJoqkCWQuM2GjTAci0VrmQUZshSrwg0fQKhaFeQIsVCYPIz80vtYIrjCDMYpbydEva_RV2oHX23VMdU1rTqdrzFOEN7Tm6dWaO_CykV1WZB5_lHpF6pCSheOTtKobFfB9iCsr7clEJkS85ztwtNWYtDb9y7TEYN2QS-nAi-Y2Gi3txKjCLNYkgxOhLTDuwONKwZoXQuNJ8IsFDsR7qtcIECH4_p1idlESg2PckgHiWweOGy39y0Sf_pvYM7jpYyZHJRO-OIIWqoZ5jpnYKuvA9bh_1oH2u9Ph6CNenU15pzbA300fMeM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8heGB7mPa9MLZ5GtO0h4jEjuNmEpq6jaoMWqEVJN6C4ziA1CUdpar45_a37S5fLWjijeecItv3bd_9DmALvQDGyV7H7RgZuYFJMjfxJHdFKFNfoYNKypmRg2HYPw5-nsiTFfjb9MJQWWVjE0tDnRaG7si3y9DWC3ylvk7-uDQ1il5XmxEauh6tkO6UEGN1Y8e-vZ5jCjfd2fuB_P7IeW_36HvfracMuAZToStXcWM7Vuo0S4yU5MCC0GZhkKWZMYbjFsNQWaFSlcgsTIyQkTEqFQkh62lBwAfoAtYCEUSY_K192x0e_mpveTyBOsOjChdViMjb_q19hTGOJPDOJU942x8sOcTbxZrrs3yir-d6PF7yhL3H8KgOYVm3krknsGLzp_BwCdjwGYwrUOQpKzI2snqOAe0lK3I2sNRoTHLBDhcdC0RFdonqxywb6TydX5hzNiqhbWeXdvqFddmgrPq0rAaEPWO9pqzsORzfy4m_gNW8yO0rYIG2aRDywHJjMPXC-MZqP1M-Wm2Dlsw48Lk549jUoOc0e2McY_JD_IgX_HDgQ0s7qaA-_kv1iVgVk_7jn4yu2xhwPYSkFXdVpCKC5eMObDbcjGvDMI0XYuzA-_YzqjS90-jcFjOiwY3QA5nvwMuK-e2CULUiPDHhQOeGWLQEBBd-80t-cV7ChqNXUwKzXwe2Wgm6Y6Mbdy__Haz3jwYH8cHecP81POAY61FRBZebsIriYd9grHaVvK0VgsHpfevgP0-fVfI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBT8exG-jVVesiA-hyW42exFEDmtsrVcKZ6FvcbPZtYUzOXs9jv5r_nXO5OuuRfrW5wxhd-d7d-Y3AJvoBTBODgb-wMjEj0zu_DyQ3BexLEKFDiqvZ0aO9uOdw-jbkTxag79dLwyVVXY2sTbURWXojnyrDm2DiMCSXFsWcbCdfpr-8WmCFL20duM0GhHZs-cLTN9mH3e3kddvOU-__Pi847cTBnyDadCZr7ixAyt14XIjJTmvKLYujlzhjDEctxfHygpVqFy6ODdCJsaoQuSEqqcFgR6g-b-hCMWdutTTr_39TiBQW3jSIKIKkQRbv3WoMLqRBNu54gMve4IVV3i5TPPWvJzq84WeTFZ8YHoP7rbBKxs20nYf1mz5AO6sQBo-hEkDhzxjlWNjqxcYyp6yqmQjSy3GJBHsYNmrQFRkkahyzLKxLovFiTlm4xrUdn5qZx_YkI3qek_LWijYXyztCsoeweG1nPdjWC-r0j4FFmlbRDGPLDcGky6MbKwOnQrRXhu0YcaD990ZZ6aFO6epG5MM0x7iR7bkhwdvetppA_LxX6p3xKqMNB__ZHTbwIDrIQytbKgSlRAgH_dgo-Nm1pqEWbYUYA9e959RmemFRpe2mhMNboSexkIPnjTM7xeESpXgiQkPBhfEoicgoPCLX8qT4xowHP2ZEpj3erDZS9AVG3129fJfwU3UvOz77v7ec7jNMcijagouN2AdpcO-wCDtLH9ZawODn9etfv8ADzdTjA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-k96A--P0RPWXFA_EhlyabzSa-SBHLIfQ4qIXzKWwmm7tiTYvXWvSvdybZ5toiIvi8syGbna9fdua3AEcUBShP7qd-iirzYywqv-iryJeJKkNNAapo7owcnSYnk_jTuTrf6uLnskqC4tPGSTcVsoSy4yDUQRgGDGaCRVm9_-H-JTHXCyXwKTeRHySKsvEeHExOzwZfmsNkN7tlJZWE7oNvhqaE_JydOLTvjbfC0X6p5M1VvTA_12Y224pDw7tgNitoy0--Hq-WxTH-2iN3_J8l3oM7LkkVg1ar7sMNWz-A21vUhQ9h1tIeX4l5JcbWrCll_S7mtRhZbiXmnRdn1z0JLMWehyvErBibulxP8VKMG_LaFSH-d2IgRk1dpxWO8vVCDDeFY49gMvz4-cOJ725u8JHg5dLXEdrUKlNWBSrFSUGc2CqJq7JCxIjUJkm0lbrUhaqSAqXKEHUpC2YrNDKSj6FXz2v7FERsbBknUWwjRAJXlMFYE1Y6JL-M5KvQg7ebfczR0Zrz7RqznOAN73l-vecevO5kFy2Zxx-l3rA65Gzh9CQ0rlGB3oe5svKBznTGxHuRB4cbjcmd6V_lDQbrx6HWHrzqhslo-STG1Ha-YhlaCB-BhR48aRWseyEynoy-mPQg3VG9ToAJwXdH6ullQwxOcUtLwrceHHVa-peFPvs3sedwK6JMjksmInUIPVIN-4IysWXx0hnbb5IKLnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Seawater+on+Mechanical+Performance+of+Composite+Sandwich+Structures%3A+A+Machine+Learning+Framework&rft.jtitle=Materials&rft.au=Osa-uwagboe%2C+Norman&rft.au=Udu%2C+Amadi+Gabriel&rft.au=Silberschmidt%2C+Vadim+V&rft.au=Baxevanakis%2C+Konstantinos+P&rft.date=2024-05-25&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=11&rft_id=info:doi/10.3390%2Fma17112549&rft.externalDocID=A797906772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon