Effects of Seawater on Mechanical Performance of Composite Sandwich Structures: A Machine Learning Framework
Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structu...
Saved in:
| Published in | Materials Vol. 17; no. 11; p. 2549 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
25.05.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1944 1996-1944 |
| DOI | 10.3390/ma17112549 |
Cover
| Abstract | Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications. |
|---|---|
| AbstractList | Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications. Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications.Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications. Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Understanding their mechanical performance after moisture uptake and the implications of moisture uptake for their structural integrity and safety within out-of-plane loading regimes is vital for material optimisation. The use of modern methods such as acoustic emission (AE) and machine learning (ML) could provide effective techniques for the assessment of mechanical behaviour and structural health monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed. Time- and frequency-domain features were then used to capture the relevant information and patterns within the AE data. A -means++ algorithm was utilized for clustering analysis, providing insights into the principal damage modes of the studied structures. Three ensemble learning algorithms were employed to develop a damage-prediction model for samples exposed and unexposed to seawater and were loaded with indenters of different geometries. The developed models effectively identified all damage modes for the various indenter geometries under different loading conditions with accuracy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction of damage evolution in composite structures for marine applications. |
| Audience | Academic |
| Author | Udu, Amadi Gabriel Silberschmidt, Vadim V. Baxevanakis, Konstantinos P. Osa-uwagboe, Norman Demirci, Emrah |
| AuthorAffiliation | 1 Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; n.osa-uwagboe@lboro.ac.uk (N.O.-u.); k.baxevanakis@lboro.ac.uk (K.P.B.); e.demirci@lboro.ac.uk (E.D.) 2 Air Force Research and Development Centre, Nigerian Air Force Base, Kaduna PMB 2104, Nigeria 3 School of Engineering, University of Leicester, Leicester LE1 7RH, UK |
| AuthorAffiliation_xml | – name: 1 Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; n.osa-uwagboe@lboro.ac.uk (N.O.-u.); k.baxevanakis@lboro.ac.uk (K.P.B.); e.demirci@lboro.ac.uk (E.D.) – name: 3 School of Engineering, University of Leicester, Leicester LE1 7RH, UK – name: 2 Air Force Research and Development Centre, Nigerian Air Force Base, Kaduna PMB 2104, Nigeria |
| Author_xml | – sequence: 1 givenname: Norman orcidid: 0000-0002-6560-445X surname: Osa-uwagboe fullname: Osa-uwagboe, Norman – sequence: 2 givenname: Amadi Gabriel orcidid: 0000-0001-8944-4940 surname: Udu fullname: Udu, Amadi Gabriel – sequence: 3 givenname: Vadim V. orcidid: 0000-0003-3338-3311 surname: Silberschmidt fullname: Silberschmidt, Vadim V. – sequence: 4 givenname: Konstantinos P. orcidid: 0000-0002-4826-3454 surname: Baxevanakis fullname: Baxevanakis, Konstantinos P. – sequence: 5 givenname: Emrah surname: Demirci fullname: Demirci, Emrah |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38893813$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9klFv0zAQxyM0xMbYCx8AWeIFgTrs2IkTXlBVbYDUCaTCc3S5nFuPxC52QrVvj6sONiaE_eCT_fuf7_720-zIeUdZ9lzwcylr_nYAoYXIC1U_yk5EXZczUSt1dC8-zs5ivOZpSCmqvH6SHcuqqmUl5EnWXxhDOEbmDVsR7GCkwLxjV4QbcBahZ18oGB8GcEh7auGHrY92JLYC1-0sbthqDBOOU6D4js3ZFeDGOmJLguCsW7PLAAPtfPj-LHtsoI90drueZt8uL74uPs6Wnz98WsyXM1SqHGc6R6qogM60WBSpzkqVZEplOoOIOSGWpSapO90WpmxRFjWi7mSrFFcgc3mavTnkndwWbnbQ98022AHCTSN4s7etubMt0e8P9HZqB-qQ3BjgTuHBNn-fOLtp1v5nI4TQUqgqZXh1myH4HxPFsRlsROp7cOSn2EiuecWFKEVCXz5Ar_0UXHIjUaUuuBJaJ-r8QK2hp8Y649PFmGZHg8X0AYxN-3Nd6zqJ9L7jF_d7-FP874dOwOsDgMHHGMj83xH-AEY7wmj9vn_b_0vyC9iLybw |
| CitedBy_id | crossref_primary_10_1080_17445302_2025_2455987 crossref_primary_10_1007_s10924_024_03485_1 |
| Cites_doi | 10.1016/j.compscitech.2021.109094 10.1007/s10921-023-01014-z 10.1016/j.compstruct.2009.09.046 10.1016/j.engstruct.2011.11.023 10.3390/ma15134450 10.1016/j.eswa.2023.122778 10.3390/ma17010061 10.1016/j.jmatprotec.2023.118144 10.1016/S0263-8223(00)00175-6 10.3390/ma13225207 10.3390/app131810017 10.1007/s10853-022-06917-2 10.1016/j.dt.2018.02.001 10.1016/j.polymertesting.2017.05.014 10.1016/j.paerosci.2024.100994 10.1007/s10489-021-03041-7 10.1109/ICMLA58977.2023.00159 10.3390/ma16247512 10.1016/j.engstruct.2024.117970 10.1016/j.conbuildmat.2017.04.135 10.1016/j.matdes.2023.111745 10.1002/widm.1249 10.1134/S1061830923600314 10.1016/j.compscitech.2008.02.034 10.1080/00949655.2017.1327588 10.3390/polym13132182 10.1016/0013-7944(94)90062-0 10.1016/j.optlastec.2023.110152 10.1109/ACCESS.2020.2988796 10.1002/widm.1484 10.3390/ma16145036 10.1002/pc.25957 10.3390/ma16010300 10.3390/ma15124270 10.1016/j.coco.2020.02.002 10.1007/978-3-031-39847-6_42 10.1177/07316844241236696 10.1016/j.matdes.2020.109201 10.3390/app13126861 10.3390/ma16113913 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.3390/ma17112549 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | 10.3390/ma17112549 PMC11173148 A797906772 38893813 10_3390_ma17112549 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom United Kingdom--UK |
| GeographicLocations_xml | – name: United Kingdom – name: United Kingdom--UK |
| GrantInformation_xml | – fundername: Nigerian Air Force grantid: OPS/1282DTG27145AJUL21 – fundername: Royal Society grantid: RGS\R1\221368 |
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c446t-72ce8e5adfbc55381846ef64fdfccc2ecc667e37d7b5f6bc359cc7d3b4404a323 |
| IEDL.DBID | UNPAY |
| ISSN | 1996-1944 |
| IngestDate | Sun Oct 26 04:18:15 EDT 2025 Tue Sep 30 17:09:00 EDT 2025 Thu Sep 04 18:17:38 EDT 2025 Fri Jul 25 12:02:59 EDT 2025 Mon Oct 20 16:59:32 EDT 2025 Mon Jul 21 05:49:49 EDT 2025 Thu Oct 16 04:47:28 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | damage prediction seawater exposure acoustic emission composite sandwich machine learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-72ce8e5adfbc55381846ef64fdfccc2ecc667e37d7b5f6bc359cc7d3b4404a323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4826-3454 0000-0001-8944-4940 0000-0003-3338-3311 0000-0002-6560-445X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1944/17/11/2549/pdf?version=1716625871 |
| PMID | 38893813 |
| PQID | 3067504177 |
| PQPubID | 2032366 |
| ParticipantIDs | unpaywall_primary_10_3390_ma17112549 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173148 proquest_miscellaneous_3070801161 proquest_journals_3067504177 gale_infotracacademiconefile_A797906772 pubmed_primary_38893813 crossref_primary_10_3390_ma17112549 crossref_citationtrail_10_3390_ma17112549 |
| PublicationCentury | 2000 |
| PublicationDate | 20240525 |
| PublicationDateYYYYMMDD | 2024-05-25 |
| PublicationDate_xml | – month: 5 year: 2024 text: 20240525 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Materials |
| PublicationTitleAlternate | Materials (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Mouritz (ref_2) 2001; 53 Langdon (ref_4) 2012; 36 Ghabezi (ref_14) 2022; 57 Khan (ref_38) 2024; 244 ref_12 ref_11 ref_32 ref_31 Pal (ref_17) 2023; 42 ref_30 Pedregosa (ref_34) 2011; 127 Studzinski (ref_8) 2013; 61 Gargano (ref_10) 2020; 19 ref_18 ref_39 Pandiyan (ref_15) 2023; 321 Redondo (ref_43) 2022; 52 Udu (ref_46) 2024; 308 Geren (ref_29) 2021; 42 Manalo (ref_3) 2010; 92 Silberschimdt (ref_6) 2023; 23 Prasad (ref_9) 1994; 47 Li (ref_16) 2024; 169 Almeida (ref_21) 2023; 227 Yoder (ref_36) 2017; 87 Sinaga (ref_35) 2020; 8 Bischl (ref_40) 2023; 13 Sagi (ref_37) 2018; 8 ref_25 Xie (ref_41) 2021; 197 ref_23 ref_45 ref_44 Siriruk (ref_5) 2009; 69 (ref_1) 2018; 14 ref_20 ref_42 Li (ref_33) 2017; 50 (ref_13) 2017; 147 Lee (ref_22) 2022; 218 Guo (ref_24) 2023; 59 Monaco (ref_19) 2024; 146 ref_28 ref_26 Arumugam (ref_27) 2017; 61 ref_7 |
| References_xml | – volume: 218 start-page: 109094 year: 2022 ident: ref_22 article-title: Bin Advanced Non-Destructive Evaluation of Impact Damage Growth in Carbon-Fiber-Reinforced Plastic by Electromechanical Analysis and Machine Learning Clustering publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.109094 – volume: 42 start-page: 102 year: 2023 ident: ref_17 article-title: Assessing the Influence of Welded Joint on Health Monitoring of Rail Sections: An Experimental Study Employing SVM and ANN Models publication-title: J. Nondestr. Eval. doi: 10.1007/s10921-023-01014-z – volume: 92 start-page: 984 year: 2010 ident: ref_3 article-title: Flexural Behaviour of Structural Fibre Composite Sandwich Beams in Flatwise and Edgewise Positions publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2009.09.046 – volume: 36 start-page: 104 year: 2012 ident: ref_4 article-title: The Response of Sandwich Structures with Composite Face Sheets and Polymer Foam Cores to Air-Blast Loading: Preliminary Experiments publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2011.11.023 – ident: ref_26 doi: 10.3390/ma15134450 – volume: 127 start-page: 2825 year: 2011 ident: ref_34 article-title: Scikit-Learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 244 start-page: 122778 year: 2024 ident: ref_38 article-title: A Review of Ensemble Learning and Data Augmentation Models for Class Imbalanced Problems: Combination, Implementation and Evaluation publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2023.122778 – ident: ref_7 doi: 10.3390/ma17010061 – volume: 321 start-page: 118144 year: 2023 ident: ref_15 article-title: Optimizing In-Situ Monitoring for Laser Powder Bed Fusion Process: Deciphering Acoustic Emission and Sensor Sensitivity with Explainable Machine Learning publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2023.118144 – volume: 53 start-page: 21 year: 2001 ident: ref_2 article-title: Review of Advanced Composite Structures for Naval Ships and Submarines publication-title: Compos. Struct. doi: 10.1016/S0263-8223(00)00175-6 – ident: ref_28 doi: 10.3390/ma13225207 – volume: 23 start-page: 109963622311704 year: 2023 ident: ref_6 article-title: Mechanical Behaviour of Fabric-Reinforced Plastic Sandwich Structures: A State-of-the-Art Review publication-title: J. Sandw. Struct. Mater. – volume: 61 start-page: 201 year: 2013 ident: ref_8 article-title: Sensitivity Analysis of Sandwich Beams and Plates Accounting for Variable Support Conditions publication-title: Bull. Pol. Acad. Sci. Tech. Sci. – volume: 50 start-page: 1 year: 2017 ident: ref_33 article-title: Feature Selection: A Data Perspective publication-title: ACM Comput. Surv. – ident: ref_20 doi: 10.3390/app131810017 – volume: 57 start-page: 4239 year: 2022 ident: ref_14 article-title: Hygrothermal Deterioration in Carbon/Epoxy and Glass/Epoxy Composite Laminates Aged in Marine-Based Environment (Degradation Mechanism, Mechanical and Physicochemical Properties) publication-title: J. Mater. Sci. doi: 10.1007/s10853-022-06917-2 – volume: 14 start-page: 318 year: 2018 ident: ref_1 article-title: A Review on Machinability of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) Composite Materials publication-title: Def. Technol. doi: 10.1016/j.dt.2018.02.001 – volume: 61 start-page: 132 year: 2017 ident: ref_27 article-title: Quasi-Static Indentation Properties of Damaged Glass/Epoxy Composite Laminates Repaired by the Application of Intra-Ply Hybrid Patches publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.05.014 – volume: 146 start-page: 100994 year: 2024 ident: ref_19 article-title: Machine Learning Algorithms for Delaminations Detection on Composites Panels by Wave Propagation Signals Analysis: Review, Experiences and Results publication-title: Progress Aerosp. Sci. doi: 10.1016/j.paerosci.2024.100994 – volume: 52 start-page: 12049 year: 2022 ident: ref_43 article-title: General Performance Score for Classification Problems publication-title: Appl. Intell. doi: 10.1007/s10489-021-03041-7 – ident: ref_39 doi: 10.1109/ICMLA58977.2023.00159 – ident: ref_18 doi: 10.3390/ma16247512 – volume: 308 start-page: 117970 year: 2024 ident: ref_46 article-title: A Machine Learning-Enabled Prediction of Damage Properties for Fiber-Reinforced Polymer Composites under out-of-Plane Loading publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.117970 – volume: 147 start-page: 66 year: 2017 ident: ref_13 article-title: Performance Evaluation and Microstructural Characterization of GFRP Bars in Seawater-Contaminated Concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.04.135 – volume: 227 start-page: 111745 year: 2023 ident: ref_21 article-title: Identifying Damage Mechanisms of Composites by Acoustic Emission and Supervised Machine Learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.111745 – volume: 8 start-page: e1249 year: 2018 ident: ref_37 article-title: Ensemble Learning: A Survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 – volume: 59 start-page: 665 year: 2023 ident: ref_24 article-title: Deep Learning for Time Series-Based Acoustic Emission Damage Classification in Composite Materials publication-title: Russ. J. Nondestruct. Test. doi: 10.1134/S1061830923600314 – volume: 69 start-page: 814 year: 2009 ident: ref_5 article-title: Polymeric Foams and Sandwich Composites: Material Properties, Environmental Effects, and Shear-Lag Modeling publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.02.034 – ident: ref_25 – ident: ref_31 – volume: 87 start-page: 2597 year: 2017 ident: ref_36 article-title: Semi-Supervised k-Means++ publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2017.1327588 – ident: ref_11 doi: 10.3390/polym13132182 – volume: 47 start-page: 825 year: 1994 ident: ref_9 article-title: Debonding and Crack Kinking in Foam Core Sandwich Beams-II. Experimental Investigation publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(94)90062-0 – volume: 169 start-page: 110152 year: 2024 ident: ref_16 article-title: In Situ Identification of Laser Directed Energy Deposition Condition Based on Acoustic Emission publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2023.110152 – volume: 8 start-page: 80716 year: 2020 ident: ref_35 article-title: Unsupervised K-Means Clustering Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 – volume: 13 start-page: e1484 year: 2023 ident: ref_40 article-title: Hyperparameter Optimization: Foundations, Algorithms, Best Practices, and Open Challenges publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1484 – ident: ref_30 doi: 10.3390/ma16145036 – volume: 42 start-page: 2037 year: 2021 ident: ref_29 article-title: The Effect of Boron Carbide Additive on the Low-Velocity Impact Properties of Low-Density Foam Core Composite Sandwich Structures publication-title: Polym. Compos. doi: 10.1002/pc.25957 – ident: ref_23 doi: 10.3390/ma16010300 – ident: ref_44 doi: 10.3390/ma15124270 – volume: 19 start-page: 11 year: 2020 ident: ref_10 article-title: Importance of Fibre Sizing on the Seawater Durability of Carbon Fibre Laminates publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.02.002 – ident: ref_32 doi: 10.1007/978-3-031-39847-6_42 – ident: ref_45 doi: 10.1177/07316844241236696 – volume: 197 start-page: 109201 year: 2021 ident: ref_41 article-title: Online Prediction of Mechanical Properties of Hot Rolled Steel Plate Using Machine Learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109201 – ident: ref_42 doi: 10.3390/app13126861 – ident: ref_12 doi: 10.3390/ma16113913 |
| SSID | ssj0000331829 |
| Score | 2.426798 |
| Snippet | Sandwich structures made with fibre-reinforced plastics are commonly used in maritime vessels thanks to their high strength-to-weight ratios, corrosion... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2549 |
| SubjectTerms | Acoustic emission Algorithms Cluster analysis Clustering Composite materials Composite structures Corrosion resistance Damage detection Data mining Ensemble learning Fiber reinforced plastics Glass fibers Hardness tests Indenters Interfacial bonding Machine learning Mechanical properties Moisture absorption Moisture resistance Polyvinyl chloride Prediction models Sandwich structures Sea vessels Sea-water Seawater Strength to weight ratio Structural health monitoring Structural integrity Temperature |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7IH4brbJiQXwIvexmsxdB5JQeRbijeBb6FjazG1s4k6vtcfjfO5Ovuxbpc4awu_O9O_MbgAPyAhQnD0fhCHUaxpgXYT7UMlSJdpEhB5XXMyOns-T4NP5-ps92YNb1wnBZZWcTa0PtKuQ78sM6tB3GkTFflpchT43i19VuhIZtRyu4zzXE2D3YlYyMNYDdr0ezkx_9rctQkQzLtMEpVZTvH_62kaGYQzOY5pZnum2ftxzU7eLJ-6tyaf-u7WKx5Zkmj-BhG1KKcSMDj2HHl09gbwto8CksGpDiK1EVYu7tmgLMP6IqxdRz4y_zSZxsOgiYiu0E13N5MbelW1_guZjXULMrys8_ibGY1lWYXrQArb_EpCvzegank6Of347Dds5CiJQMXodGoh95bV2Ro9bswuPEF0lcuAIRJTE5SYxXxplcF0mOSqeIxqmcsQWtkuo5DMqq9C9BxNa7OJGxl4iUClG84W1UmIisKJJlwQA-dmecYQtCzrMwFhklI8yPbMOPAN73tMsGeuO_VB-YVRnrI_0JbdtWQOthZKtsbFKTMkyeDGC_42bWKupVthGrAN71n0nF-N3Elr5aMQ1thB-sogBeNMzvF0SintKJqQBGN8SiJ2D47ptfyovzGsabvIxRlI0GcNBL0B0bfXX38l_DA0nxFhc2SL0PAxIJ_4bipev8basE_wA2mRbS priority: 102 providerName: ProQuest |
| Title | Effects of Seawater on Mechanical Performance of Composite Sandwich Structures: A Machine Learning Framework |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38893813 https://www.proquest.com/docview/3067504177 https://www.proquest.com/docview/3070801161 https://pubmed.ncbi.nlm.nih.gov/PMC11173148 https://www.mdpi.com/1996-1944/17/11/2549/pdf?version=1716625871 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: HH5 dateStart: 20080101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-0fVAf_P6InmXFA_Ehl26SzSa-SJXrHUJLsRbqU9hsdr1iTYvXWvSvdyZJc20REXwMmQ3Z7Hz9sjO_BTjGKIB5cjd2Yy0SN9SZdbOu8N0gEjmXGKCy8szIwTA6n4QfpmK608VPZZUIxWelky4rZBFlhx6XHucegRlvmdu3P-p_ScT1ggl8TE3k7UhgNt6C9mQ46n0uN5Pr0RUraYDo3vumcAin5-zFoUNvvBOODkslb6yLpfq5UfP5Thzq3wG1nUFVfvL1ZL3KTvSvA3LH_5niXbhdJ6msV2nVPbhmivtwa4e68AHMK9rjS7awbGzUBlPW72xRsIGhVmJaeTa66kkgKfI8VCFm2FgV-WamL9i4JK9dI-J_w3psUNZ1GlZTvn5h_W3h2EOY9E8_vT9365MbXI3wcuVKX5vYCJXbTAtBSUEYGRuFNrdaax_VJoqkCWQuM2GjTAci0VrmQUZshSrwg0fQKhaFeQIsVCYPIz80vtYIrjCDMYpbydEva_RV2oHX23VMdU1rTqdrzFOEN7Tm6dWaO_CykV1WZB5_lHpF6pCSheOTtKobFfB9iCsr7clEJkS85ztwtNWYtDb9y7TEYN2QS-nAi-Y2Gi3txKjCLNYkgxOhLTDuwONKwZoXQuNJ8IsFDsR7qtcIECH4_p1idlESg2PckgHiWweOGy39y0Sf_pvYM7jpYyZHJRO-OIIWqoZ5jpnYKuvA9bh_1oH2u9Ph6CNenU15pzbA300fMeM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8heGB7mPa9MLZ5GtO0h4jEjuNmEpq6jaoMWqEVJN6C4ziA1CUdpar45_a37S5fLWjijeecItv3bd_9DmALvQDGyV7H7RgZuYFJMjfxJHdFKFNfoYNKypmRg2HYPw5-nsiTFfjb9MJQWWVjE0tDnRaG7si3y9DWC3ylvk7-uDQ1il5XmxEauh6tkO6UEGN1Y8e-vZ5jCjfd2fuB_P7IeW_36HvfracMuAZToStXcWM7Vuo0S4yU5MCC0GZhkKWZMYbjFsNQWaFSlcgsTIyQkTEqFQkh62lBwAfoAtYCEUSY_K192x0e_mpveTyBOsOjChdViMjb_q19hTGOJPDOJU942x8sOcTbxZrrs3yir-d6PF7yhL3H8KgOYVm3krknsGLzp_BwCdjwGYwrUOQpKzI2snqOAe0lK3I2sNRoTHLBDhcdC0RFdonqxywb6TydX5hzNiqhbWeXdvqFddmgrPq0rAaEPWO9pqzsORzfy4m_gNW8yO0rYIG2aRDywHJjMPXC-MZqP1M-Wm2Dlsw48Lk549jUoOc0e2McY_JD_IgX_HDgQ0s7qaA-_kv1iVgVk_7jn4yu2xhwPYSkFXdVpCKC5eMObDbcjGvDMI0XYuzA-_YzqjS90-jcFjOiwY3QA5nvwMuK-e2CULUiPDHhQOeGWLQEBBd-80t-cV7ChqNXUwKzXwe2Wgm6Y6Mbdy__Haz3jwYH8cHecP81POAY61FRBZebsIriYd9grHaVvK0VgsHpfevgP0-fVfI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9KBT8exG-jVVesiA-hyW42exFEDmtsrVcKZ6FvcbPZtYUzOXs9jv5r_nXO5OuuRfrW5wxhd-d7d-Y3AJvoBTBODgb-wMjEj0zu_DyQ3BexLEKFDiqvZ0aO9uOdw-jbkTxag79dLwyVVXY2sTbURWXojnyrDm2DiMCSXFsWcbCdfpr-8WmCFL20duM0GhHZs-cLTN9mH3e3kddvOU-__Pi847cTBnyDadCZr7ixAyt14XIjJTmvKLYujlzhjDEctxfHygpVqFy6ODdCJsaoQuSEqqcFgR6g-b-hCMWdutTTr_39TiBQW3jSIKIKkQRbv3WoMLqRBNu54gMve4IVV3i5TPPWvJzq84WeTFZ8YHoP7rbBKxs20nYf1mz5AO6sQBo-hEkDhzxjlWNjqxcYyp6yqmQjSy3GJBHsYNmrQFRkkahyzLKxLovFiTlm4xrUdn5qZx_YkI3qek_LWijYXyztCsoeweG1nPdjWC-r0j4FFmlbRDGPLDcGky6MbKwOnQrRXhu0YcaD990ZZ6aFO6epG5MM0x7iR7bkhwdvetppA_LxX6p3xKqMNB__ZHTbwIDrIQytbKgSlRAgH_dgo-Nm1pqEWbYUYA9e959RmemFRpe2mhMNboSexkIPnjTM7xeESpXgiQkPBhfEoicgoPCLX8qT4xowHP2ZEpj3erDZS9AVG3129fJfwU3UvOz77v7ec7jNMcijagouN2AdpcO-wCDtLH9ZawODn9etfv8ADzdTjA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-k96A--P0RPWXFA_EhlyabzSa-SBHLIfQ4qIXzKWwmm7tiTYvXWvSvdybZ5toiIvi8syGbna9fdua3AEcUBShP7qd-iirzYywqv-iryJeJKkNNAapo7owcnSYnk_jTuTrf6uLnskqC4tPGSTcVsoSy4yDUQRgGDGaCRVm9_-H-JTHXCyXwKTeRHySKsvEeHExOzwZfmsNkN7tlJZWE7oNvhqaE_JydOLTvjbfC0X6p5M1VvTA_12Y224pDw7tgNitoy0--Hq-WxTH-2iN3_J8l3oM7LkkVg1ar7sMNWz-A21vUhQ9h1tIeX4l5JcbWrCll_S7mtRhZbiXmnRdn1z0JLMWehyvErBibulxP8VKMG_LaFSH-d2IgRk1dpxWO8vVCDDeFY49gMvz4-cOJ725u8JHg5dLXEdrUKlNWBSrFSUGc2CqJq7JCxIjUJkm0lbrUhaqSAqXKEHUpC2YrNDKSj6FXz2v7FERsbBknUWwjRAJXlMFYE1Y6JL-M5KvQg7ebfczR0Zrz7RqznOAN73l-vecevO5kFy2Zxx-l3rA65Gzh9CQ0rlGB3oe5svKBznTGxHuRB4cbjcmd6V_lDQbrx6HWHrzqhslo-STG1Ha-YhlaCB-BhR48aRWseyEynoy-mPQg3VG9ToAJwXdH6ullQwxOcUtLwrceHHVa-peFPvs3sedwK6JMjksmInUIPVIN-4IysWXx0hnbb5IKLnI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Seawater+on+Mechanical+Performance+of+Composite+Sandwich+Structures%3A+A+Machine+Learning+Framework&rft.jtitle=Materials&rft.au=Osa-uwagboe%2C+Norman&rft.au=Udu%2C+Amadi+Gabriel&rft.au=Silberschmidt%2C+Vadim+V&rft.au=Baxevanakis%2C+Konstantinos+P&rft.date=2024-05-25&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=11&rft_id=info:doi/10.3390%2Fma17112549&rft.externalDocID=A797906772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |