Picometre-level surface control of a closed-loop, adaptive X-ray mirror with integrated real-time interferometric feedback

We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light a...

Full description

Saved in:
Bibliographic Details
Published inJournal of synchrotron radiation Vol. 32; no. 1; pp. 133 - 144
Main Authors Nistea, Ioana-Theodora, Alcock, Simon G., Foster, Andrew, Badami, Vivek, Signorato, Riccardo, Fusco, Matteo
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.01.2025
International Union of Crystallography
Subjects
Online AccessGet full text
ISSN1600-5775
0909-0495
1600-5775
DOI10.1107/S1600577524011007

Cover

Abstract We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror's optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the `junction effect' or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.
AbstractList We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror's optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the `junction effect' or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror's optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the `junction effect' or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.
We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror's optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the `junction effect' or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.
A closed-loop, adaptive deformable X-ray mirror system has been developed that enables synchrotron and XFEL beamlines to rapidly change and stabilize the size and shape of the X-ray beam. The optical surface is stabilized to the demand profile to <200 pm via voltage corrections applied autonomously to individual piezo actuators at 1 Hz, based on 20 kHz feedback from an array of interferometric sensors. We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror’s optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the ‘junction effect’ or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.
Author Alcock, Simon G.
Nistea, Ioana-Theodora
Foster, Andrew
Signorato, Riccardo
Fusco, Matteo
Badami, Vivek
Author_xml – sequence: 1
  givenname: Ioana-Theodora
  orcidid: 0000-0003-3499-216X
  surname: Nistea
  fullname: Nistea, Ioana-Theodora
– sequence: 2
  givenname: Simon G.
  orcidid: 0000-0003-2932-5047
  surname: Alcock
  fullname: Alcock, Simon G.
– sequence: 3
  givenname: Andrew
  surname: Foster
  fullname: Foster, Andrew
– sequence: 4
  givenname: Vivek
  surname: Badami
  fullname: Badami, Vivek
– sequence: 5
  givenname: Riccardo
  surname: Signorato
  fullname: Signorato, Riccardo
– sequence: 6
  givenname: Matteo
  surname: Fusco
  fullname: Fusco, Matteo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39692725$$D View this record in MEDLINE/PubMed
BookMark eNplkstu1DAUhi1URC_wAGyQJTYsGvA1TlaoqrhUqgQSILGLTpyTqQcnHuxkquHp65kpVS8rW7__8_ncjsnBGEYk5DVn7zln5sMPXjKmjdFCsSww84wcbaViqx3cux-S45SWjPHSCPmCHMq6rIUR-oj8--5sGHCKWHhco6dpjj1YpDaMUwyehp4CtT4k7AofwuqUQgerya2R_i4ibOjgYgyRXrvpirpxwkWECTsaEXwxuQF3Yuwx7r5xlvaIXQv2z0vyvAef8NXteUJ-ff708_xrcfnty8X52WVhlSqnQremRNmCNLpFZVQullvou5Zx1MJWoKWoodZG25pptGUlGXSiUrlIVVkjT8jFntsFWDar6AaImyaAa3ZCiIsG4uSsx8ZUrNMCyxY4qkp3ba81r6StFVrZ71hiz5rHFWyuwfs7IGfNdihNejyUHPRxH7Sa2wE7i7mz4B9k8vBldFfNIqwzz7Cq0iIT3t0SYvg7Y5qawSWL3sOIYU6N5KqstVSqzta3j6zLMMcxNzi7tOCmZDXLrjf3U7rL5f9iZAPfG2wMKUXsn9T5ZPnkDcBSyhM
Cites_doi 10.1364/OE.394310
10.1016/j.nima.2009.10.137
10.1063/1.5060954
10.1107/S0909049597012843
10.1364/OPTICA.476449
10.1088/1742-6596/425/5/052026
10.1107/S1600577518015953
10.1063/1.2436154
10.1107/S1600577518015965
10.1038/s41566-021-00780-4
10.1016/j.nima.2012.10.135
10.1016/j.physrep.2022.05.001
10.1063/1.5060737
10.1107/S1600577516013308
10.1107/S1600577519005721
10.1107/S1600577514020025
10.1364/OPTICA.5.000967
10.1117/12.892719
10.1063/1.4949272
10.1364/OE.23.001605
ContentType Journal Article
Copyright open access.
2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Ioana-Theodora Nistea et al. 2025 2025
Copyright_xml – notice: open access.
– notice: 2025. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Ioana-Theodora Nistea et al. 2025 2025
DBID AAYXX
CITATION
NPM
7U5
8FD
JQ2
K9.
L7M
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1107/S1600577524011007
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
DocumentTitleAlternate Surface control of an adaptive X-ray mirror
EISSN 1600-5775
EndPage 144
ExternalDocumentID oai_doaj_org_article_780d52e6ba1e485dbf55183c94ec3fc7
10.1107/s1600577524011007
PMC11708852
39692725
10_1107_S1600577524011007
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1OC
24P
2WC
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABPVW
ABUWG
ACAHQ
ACCMX
ACGFO
ACGFS
ACPOU
ACUHS
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFPKN
AFZJQ
AGXDD
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BENPR
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
FYUFA
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HH5
HMCUK
HZI
HZ~
I-F
IX1
J0M
K48
K7-
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M1P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
PUEGO
Q.N
Q11
QB0
R.K
RCJ
ROL
RPM
RX1
SUPJJ
TUS
UB1
UKHRP
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIK
WIN
WOHZO
WQJ
WYISQ
XG1
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
NPM
WRC
7U5
8FD
JQ2
K9.
L7M
7X8
5PM
.Y3
1Y6
29L
31~
8WZ
A6W
AANHP
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADIYS
ADNMO
ADTOC
AGQPQ
AHEFC
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CAG
COF
EJD
FEDTE
HF~
HVGLF
IHE
LW6
PALCI
RIWAO
RJQFR
UNPAY
ID FETCH-LOGICAL-c446t-5b76e3ba375be4745241cafdb01e52c8a5329a9575c905ec6830ad28439648c73
IEDL.DBID DOA
ISSN 1600-5775
0909-0495
IngestDate Wed Aug 27 01:21:23 EDT 2025
Sun Sep 07 11:20:51 EDT 2025
Tue Sep 30 17:05:58 EDT 2025
Fri Sep 05 14:50:18 EDT 2025
Wed Aug 13 04:04:43 EDT 2025
Wed Feb 19 02:02:05 EST 2025
Wed Oct 01 02:24:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords closed-loop controls
X-ray mirrors
X-ray optics
adaptive optics
fibre optic interferometers
high-voltage power supplies
bimorph deformable mirrors
Language English
License open access.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-5b76e3ba375be4745241cafdb01e52c8a5329a9575c905ec6830ad28439648c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3499-216X
0000-0003-2932-5047
OpenAccessLink https://doaj.org/article/780d52e6ba1e485dbf55183c94ec3fc7
PMID 39692725
PQID 3152176090
PQPubID 1086380
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_780d52e6ba1e485dbf55183c94ec3fc7
unpaywall_primary_10_1107_s1600577524011007
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11708852
proquest_miscellaneous_3146953449
proquest_journals_3152176090
pubmed_primary_39692725
crossref_primary_10_1107_S1600577524011007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
2025-Jan-01
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Malden
PublicationTitle Journal of synchrotron radiation
PublicationTitleAlternate J Synchrotron Radiat
PublicationYear 2025
Publisher John Wiley & Sons, Inc
International Union of Crystallography
Publisher_xml – name: John Wiley & Sons, Inc
– name: International Union of Crystallography
References Alcock (mo5292_bb6) 2019; 26
Sawhney (mo5292_bb19) 2013; 425
Alcock (mo5292_bb10) 2013; 710
Seaberg (mo5292_bb20) 2019; 26
Cocco (mo5292_bb15) 2020; 28
Alcock (mo5292_bb3) 2015; 22
Cocco (mo5292_bb14) 2022; 974
Cocco (mo5292_bb16) 2019; 11111
Sutter (mo5292_bb25) 2011; 8139
Forbes (mo5292_bb17) 2021; 15
Sutter (mo5292_bb24) 2022; 35(2)
Badami (mo5292_bb11) 2019; 90
Alcock (mo5292_bb1) 2016; 87
Sutter (mo5292_bb23) 2016; 23
Alcock (mo5292_bb8) 2019; 26
Alcock (mo5292_bb9) 2010; 616
Alcock (mo5292_bb5) 2019; 90
Wang (mo5292_bb26) 2015; 23
Cautero (mo5292_bb13) 2007; 879
mo5292_bb22
Alcock (mo5292_bb4) 2023; 10
Signorato (mo5292_bb21) 1998; 5
Liu (mo5292_bb18) 2018; 5
References_xml – volume: 28
  start-page: 19242
  year: 2020
  ident: mo5292_bb15
  publication-title: Opt. Express
  doi: 10.1364/OE.394310
– volume: 616
  start-page: 224
  year: 2010
  ident: mo5292_bb9
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2009.10.137
– volume: 90
  start-page: 021703
  year: 2019
  ident: mo5292_bb11
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5060954
– ident: mo5292_bb22
– volume: 5
  start-page: 797
  year: 1998
  ident: mo5292_bb21
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049597012843
– volume: 10
  start-page: 172
  year: 2023
  ident: mo5292_bb4
  publication-title: Optica
  doi: 10.1364/OPTICA.476449
– volume: 11111
  start-page: 37
  year: 2019
  ident: mo5292_bb16
  publication-title: Proc. SPIE
– volume: 425
  start-page: 052026
  year: 2013
  ident: mo5292_bb19
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/425/5/052026
– volume: 26
  start-page: 36
  year: 2019
  ident: mo5292_bb8
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577518015953
– volume: 879
  start-page: 683
  year: 2007
  ident: mo5292_bb13
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.2436154
– volume: 26
  start-page: 45
  year: 2019
  ident: mo5292_bb6
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577518015965
– volume: 15
  start-page: 253
  year: 2021
  ident: mo5292_bb17
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-021-00780-4
– volume: 710
  start-page: 87
  year: 2013
  ident: mo5292_bb10
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2012.10.135
– volume: 974
  start-page: 1
  year: 2022
  ident: mo5292_bb14
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2022.05.001
– volume: 90
  start-page: 021712
  year: 2019
  ident: mo5292_bb5
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5060737
– volume: 23
  start-page: 1333
  year: 2016
  ident: mo5292_bb23
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577516013308
– volume: 35(2)
  start-page: 8
  year: 2022
  ident: mo5292_bb24
  publication-title: Synchrotron Radiat. News
– volume: 26
  start-page: 1115
  year: 2019
  ident: mo5292_bb20
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577519005721
– volume: 22
  start-page: 10
  year: 2015
  ident: mo5292_bb3
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577514020025
– volume: 5
  start-page: 967
  year: 2018
  ident: mo5292_bb18
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000967
– volume: 8139
  start-page: 813906
  year: 2011
  ident: mo5292_bb25
  publication-title: Proc. SPIE
  doi: 10.1117/12.892719
– volume: 87
  start-page: 051902
  year: 2016
  ident: mo5292_bb1
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4949272
– volume: 23
  start-page: 1605
  year: 2015
  ident: mo5292_bb26
  publication-title: Opt. Express
  doi: 10.1364/OE.23.001605
SSID ssj0016723
Score 2.42735
Snippet We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror...
We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed‐loop, adaptive mirror...
A closed-loop, adaptive deformable X-ray mirror system has been developed that enables synchrotron and XFEL beamlines to rapidly change and stabilize the size...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 133
SubjectTerms adaptive optics
Adaptive systems
Algorithms
Bending
bimorph deformable mirrors
Bimorphs
closed-loop controls
Deformable mirrors
Electron beams
fibre optic interferometers
Formability
Height
high-voltage power supplies
Interferometry
Laser arrays
Laser beams
Optical control
Piezoelectric actuators
Reproducibility
Research Papers
Sensor arrays
Sensors
Voltage pulses
Wave fronts
x-ray mirrors
x-ray optics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgFXDiUV6LCjISJ8DVPuy191gQVYVEVQkihdNq_FKjbnejTSKU_no8zjZqmh7gao-8fnz2zHrG3xDyQQcjw4LKmM3QzchBMW0NMAFeeyEtqm2MtjgtT8b8-0RMBrJofAtz03-fxSduJb6XlCJoHmQ3k_fJXom-pBHZG5-eHf2OXHrxgj9mWEFxhvKDB_PONrZ0UKTqv8u-3A2TfLRsZ7D6A01zQwcdP1lHb80jdSGGnlwcLhf60FzdInb8p-E9JY8HS5QeraHzjNxz7T55sM5NudonD38MXvdQGMNEzfw5uToLwLl0i96xBqON6HzZezCODhHvtPMUqGm6ubOs6brZZwoWZnik0gnrYUUvp33f9RSvf-mGqsLSYLo2DPPcx8Leuz5-ZmqoD-pVg7l4QcbH3359PWFD9gZmwi_mggktS1doKKTQjksehpgZ8FanmRO5USCKvIIqmIumSoUzpSpSsEFbFlXJlZHFSzJqu9a9JtRkwCutlVDW8zwzKnWAE-e9dHnBTUI-Xq9nPVuTdNTx5yaV9c_bM5yQL7jiG0Hk144FYV3qYbvWUqVW5K7UkDmuhA24FeHwMxV3pvAmNHJwjZd62PTzukBbSJYBjgl5v6kO2xV9MNC6bokyvKxEwXmVkFdreG16EgZe5TIXCVFbwNvq6nZNOz2PlOCYP0gpkSfk0wajO1OxA7Y3_yV9QEaLfuneBiNsod8N2-8v8x8oNw
  priority: 102
  providerName: Unpaywall
Title Picometre-level surface control of a closed-loop, adaptive X-ray mirror with integrated real-time interferometric feedback
URI https://www.ncbi.nlm.nih.gov/pubmed/39692725
https://www.proquest.com/docview/3152176090
https://www.proquest.com/docview/3146953449
https://pubmed.ncbi.nlm.nih.gov/PMC11708852
https://doi.org/10.1107/s1600577524011007
https://doaj.org/article/780d52e6ba1e485dbf55183c94ec3fc7
UnpaywallVersion publishedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: ABDBF
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1600-5775
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016723
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: 24P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BELAXBOMrMCoj8QRES2I7dh43tGlCoqqASuUpOn-Jiiyp0lao_PXYSVqtDIkXHmNbiX13zv3Od74DeKM8yDAo09ikwc3IUMbKaIw5OuW4MEFth2iLcX45ZR9nfHat1FeICevTA_eEOxEyMTyzucLUMsmNfwP3YqgLZjV1urtH7tXY1pg63IbWZ3TwYXr75uRLmodbl4J7_RVypIk9LdQl6_8bwrwZKHl_XS9w8xOr6poWungIDwb4SE77aT-CW7Y-grt9QcnNEdz7NLjKfWMX26mXj-HXxHP7yq5aG1chRIgs161DbckQpk4aR5DoqllaE1dNs3hP0OAi_AfJLG5xQ67mbdu0JJzZkl1-CUM83qziUJy-a2ydbbvPzDVxXicq1D-ewPTi_OuHy3gouRBrbxeuYq5EbqlCKriyTDBPsFSjMypJLc-0RE6zAguP8XSRcKtzSRM0XsXRImdSC_oUDuqmts-B6BRZoZTk0jiWpVomFgMbnBM2o0xH8HbLgnLRZ9YoO4skEeUNfkVwFpi0GxiSYncNXlTKQVTKf4lKBMdbFpfDTl2WNAAYkSdFEsHrXbffY8FxgrVt1mEMywtOGSsieNZLxG4mfuFFJjIegdyTlb2p7vfU8-9dHu9Q9EdKnkXwbidWN0ix_JMUL_4HKV7CYRYKGXdnScdwsGrX9pVHVys1gttiJkZw5-x8PPk86raVf5qOJ6fffgMIgCVk
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELYgFXDiUV6LCjISJ8DVPuy191gQVYVEVQkihdNq_FKjbnejTSKU_no8zjZqmh7gao-8fnz2zHrG3xDyQQcjw4LKmM3QzchBMW0NMAFeeyEtqm2MtjgtT8b8-0RMBrJofAtz03-fxSduJb6XlCJoHmQ3k_fJXom-pBHZG5-eHf2OXHrxgj9mWEFxhvKDB_PONrZ0UKTqv8u-3A2TfLRsZ7D6A01zQwcdP1lHb80jdSGGnlwcLhf60FzdInb8p-E9JY8HS5QeraHzjNxz7T55sM5NudonD38MXvdQGMNEzfw5uToLwLl0i96xBqON6HzZezCODhHvtPMUqGm6ubOs6brZZwoWZnik0gnrYUUvp33f9RSvf-mGqsLSYLo2DPPcx8Leuz5-ZmqoD-pVg7l4QcbH3359PWFD9gZmwi_mggktS1doKKTQjksehpgZ8FanmRO5USCKvIIqmIumSoUzpSpSsEFbFlXJlZHFSzJqu9a9JtRkwCutlVDW8zwzKnWAE-e9dHnBTUI-Xq9nPVuTdNTx5yaV9c_bM5yQL7jiG0Hk144FYV3qYbvWUqVW5K7UkDmuhA24FeHwMxV3pvAmNHJwjZd62PTzukBbSJYBjgl5v6kO2xV9MNC6bokyvKxEwXmVkFdreG16EgZe5TIXCVFbwNvq6nZNOz2PlOCYP0gpkSfk0wajO1OxA7Y3_yV9QEaLfuneBiNsod8N2-8v8x8oNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Picometre-level+surface+control+of+a+closed-loop%2C+adaptive+X-ray+mirror+with+integrated+real-time+interferometric+feedback&rft.jtitle=Journal+of+synchrotron+radiation&rft.au=Nistea%2C+Ioana-Theodora&rft.au=Alcock%2C+Simon+G.&rft.au=Foster%2C+Andrew&rft.au=Badami%2C+Vivek&rft.date=2025-01-01&rft.issn=1600-5775&rft.eissn=1600-5775&rft.volume=32&rft.issue=1&rft.spage=133&rft.epage=144&rft_id=info:doi/10.1107%2FS1600577524011007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S1600577524011007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5775&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5775&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5775&client=summon