Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network
Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from con...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 19; p. 6372 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
24.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21196372 |
Cover
Abstract | Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time. |
---|---|
AbstractList | Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time. Intracortical brain-computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5-12%) and online prediction (reducing 16-18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.Intracortical brain-computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5-12%) and online prediction (reducing 16-18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time. Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets ( R 2 = 0.76 ± 0.05 for monkey Indy and C C = 0.91 ± 0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time. |
Author | Huang, Chun-Jui Lai, Hsin-Yi Yang, Shih-Hung Chiu, Po-Hsiung Chen, You-Yin Huang, Jyun-We |
AuthorAffiliation | 4 Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; irradiance@so-net.net.tw 3 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China 1 Department of Mechanical Engineering, National Cheng Kung University, Tainan City 701, Taiwan; z10806026@ncku.edu.tw (J.-W.H.); n16091485@gs.ncku.edu.tw (C.-J.H.); n16090065@gs.ncku.edu.tw (P.-H.C.) 2 Key Laboratory of Medical Neurobiology of Zhejiang Province, Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310027, China; laihy@zju.edu.cn |
AuthorAffiliation_xml | – name: 3 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China – name: 2 Key Laboratory of Medical Neurobiology of Zhejiang Province, Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310027, China; laihy@zju.edu.cn – name: 1 Department of Mechanical Engineering, National Cheng Kung University, Tainan City 701, Taiwan; z10806026@ncku.edu.tw (J.-W.H.); n16091485@gs.ncku.edu.tw (C.-J.H.); n16090065@gs.ncku.edu.tw (P.-H.C.) – name: 4 Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; irradiance@so-net.net.tw |
Author_xml | – sequence: 1 givenname: Shih-Hung orcidid: 0000-0001-5893-6299 surname: Yang fullname: Yang, Shih-Hung – sequence: 2 givenname: Jyun-We surname: Huang fullname: Huang, Jyun-We – sequence: 3 givenname: Chun-Jui surname: Huang fullname: Huang, Chun-Jui – sequence: 4 givenname: Po-Hsiung surname: Chiu fullname: Chiu, Po-Hsiung – sequence: 5 givenname: Hsin-Yi orcidid: 0000-0001-6413-0179 surname: Lai fullname: Lai, Hsin-Yi – sequence: 6 givenname: You-Yin surname: Chen fullname: Chen, You-Yin |
BookMark | eNplks1u1DAQgC1URH_gwBtE4gKHpf6LY1-Q2lWBlaoiQTlbjj0pXpJ4sZ2inuAdeEOeBGe3RbScxvJ883k89iHaG8MICD0n-DVjCh8nSogSrKGP0AHhlC8kpXjvn_U-OkxpjTFljMknaJ9xwbFQ6gD9-AQ92OzDWIWuOksJxuxNX13AFEs4Kalrn2-qSz9AyrBJVRditRpzNDbE7G2BTqPx4--fv5Zh2EwZtmmInbFQnZoEriryj2CnGIv8znwB-XuIX5-ix53pEzy7jUfo89uzy-X7xfmHd6vlyfnCci7ygjeNdcQ4TqQljZBSEN6pthasVbUlrlWkUdY4yaHjpG4NEVSBkqTBBJxg7Aitdl4XzFpvoh9MvNHBeL3dCPFKm_k6PWgA5wxvgNXMcGeNoY5SpmzdAKjGQnG92bk2UzuAszBPo78nvZ8Z_Rd9Fa61rAlVeG7m5a0ghm9TmasefLLQ92aEMCVNa0kkVlSQgr54gK7DFMcyqi2FayaoLNTxjrIxpBSh09ZnM79qOd_3mmA9fxT996OUilcPKu7a_5_9A-V7wO0 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3269598 crossref_primary_10_1007_s10509_024_04356_w crossref_primary_10_1007_s10509_024_04314_6 crossref_primary_10_1016_j_cmpb_2024_108208 crossref_primary_10_1109_JSEN_2024_3487021 crossref_primary_10_3389_fnins_2025_1551656 crossref_primary_10_1109_TCDS_2024_3409555 |
Cites_doi | 10.1109/CVPR.2018.00745 10.1109/EMBC.2018.8512609 10.1126/science.286.5437.105 10.1038/sdata.2018.55 10.1109/IWW-BCI.2019.8737305 10.1152/jn.00329.2018 10.1523/JNEUROSCI.1669-18.2018 10.3389/fnins.2016.00587 10.1007/978-3-030-58571-6_30 10.1038/nm.3953 10.1109/TBME.2005.856245 10.3390/s20195528 10.1109/TNSRE.2019.2962708 10.1109/CVPR.2019.00139 10.1109/TNNLS.2016.2582924 10.1016/j.neuron.2014.04.045 10.1038/nn.4042 10.1207/s15516709cog1402_1 10.3390/math9060606 10.1371/journal.pcbi.1006822 10.1088/1741-2552/abde8a 10.1038/s41591-018-0171-y 10.1109/TNSRE.2020.3034234 10.1523/ENEURO.0506-19.2020 10.1162/neco_a_01189 10.1109/CVPR.2017.94 10.1016/j.neuron.2019.10.020 10.1523/ENEURO.0085-16.2016 10.1109/NER.2019.8717045 10.1162/neco.1997.9.8.1735 10.1088/1741-2552/aa9e95 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s21196372 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_eedda47e353a4dcaa2d2239c57ee97ce PMC8512903 10_3390_s21196372 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c446t-477cd1ad418c17688614f9b563b95c1db9179cad84ef415ba1629e981701ed633 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:41 EDT 2025 Tue Sep 09 03:26:24 EDT 2025 Thu Sep 04 22:52:11 EDT 2025 Fri Jul 25 20:24:35 EDT 2025 Tue Jul 01 03:56:20 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-477cd1ad418c17688614f9b563b95c1db9179cad84ef415ba1629e981701ed633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this paper. |
ORCID | 0000-0001-5893-6299 0000-0001-6413-0179 |
OpenAccessLink | https://doaj.org/article/eedda47e353a4dcaa2d2239c57ee97ce |
PMID | 34640699 |
PQID | 2581053628 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eedda47e353a4dcaa2d2239c57ee97ce pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512903 proquest_miscellaneous_2581809261 proquest_journals_2581053628 crossref_citationtrail_10_3390_s21196372 crossref_primary_10_3390_s21196372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210924 |
PublicationDateYYYYMMDD | 2021-09-24 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210924 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Pandarinath (ref_5) 2018; 38 Greff (ref_15) 2016; 28 Naufel (ref_13) 2019; 121 ref_14 ref_11 Li (ref_10) 2016; 10 ref_31 Makin (ref_25) 2018; 15 Gilja (ref_3) 2015; 21 Hertel (ref_33) 1999; 286 Williams (ref_12) 2020; 105 ref_18 ref_17 ref_16 ref_38 Ahmadi (ref_8) 2021; 18 Merrill (ref_35) 2005; 52 Hochreiter (ref_28) 1997; 9 Brochier (ref_24) 2018; 5 Zhang (ref_2) 2020; 29 Shaikh (ref_1) 2019; 28 Tseng (ref_6) 2019; 31 Elman (ref_27) 1990; 14 Glaser (ref_34) 2020; 7 ref_23 Jolliffe (ref_30) 2016; 374 ref_22 ref_21 ref_20 Sussillo (ref_37) 2015; 18 ref_29 Schwemmer (ref_4) 2018; 24 Razali (ref_32) 2011; 2 ref_26 ref_9 Hennequin (ref_36) 2014; 82 ref_7 Larochelle (ref_19) 2010; 23 |
References_xml | – ident: ref_20 doi: 10.1109/CVPR.2018.00745 – volume: 2 start-page: 21 year: 2011 ident: ref_32 article-title: Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests publication-title: J. Stat. Modeling Anal. – ident: ref_9 doi: 10.1109/EMBC.2018.8512609 – ident: ref_26 – volume: 286 start-page: 105 year: 1999 ident: ref_33 article-title: Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by α2 adrenoceptor blockade publication-title: Science doi: 10.1126/science.286.5437.105 – volume: 5 start-page: 1 year: 2018 ident: ref_24 article-title: Massively parallel recordings in macaque motor cortex during an instructed delayed reach-to-grasp task publication-title: Sci. Data doi: 10.1038/sdata.2018.55 – ident: ref_17 doi: 10.1109/IWW-BCI.2019.8737305 – volume: 121 start-page: 61 year: 2019 ident: ref_13 article-title: A muscle-activity-dependent gain between motor cortex and EMG publication-title: J. Neurophysiol. doi: 10.1152/jn.00329.2018 – volume: 38 start-page: 9390 year: 2018 ident: ref_5 article-title: Latent factors and dynamics in motor cortex and their application to brain–machine interfaces publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1669-18.2018 – volume: 10 start-page: 587 year: 2016 ident: ref_10 article-title: An improved unscented kalman filter based decoder for cortical brain-machine interfaces publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00587 – ident: ref_21 doi: 10.1007/978-3-030-58571-6_30 – volume: 21 start-page: 1142 year: 2015 ident: ref_3 article-title: Clinical translation of a high-performance neural prosthesis publication-title: Nat. Med. doi: 10.1038/nm.3953 – ident: ref_23 – volume: 52 start-page: 1960 year: 2005 ident: ref_35 article-title: Impedance characterization of microarray recording electrodes in vitro publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.856245 – ident: ref_11 doi: 10.3390/s20195528 – volume: 28 start-page: 380 year: 2019 ident: ref_1 article-title: Sparse Ensemble Machine Learning to improve robustness of long-term decoding in iBMIs publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2962708 – ident: ref_22 doi: 10.1109/CVPR.2019.00139 – volume: 28 start-page: 2222 year: 2016 ident: ref_15 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNNLS.2016.2582924 – ident: ref_31 – volume: 82 start-page: 1394 year: 2014 ident: ref_36 article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements publication-title: Neuron doi: 10.1016/j.neuron.2014.04.045 – ident: ref_29 – volume: 18 start-page: 1025 year: 2015 ident: ref_37 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nature Neurosci. doi: 10.1038/nn.4042 – volume: 14 start-page: 179 year: 1990 ident: ref_27 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – ident: ref_14 doi: 10.3390/math9060606 – ident: ref_7 doi: 10.1371/journal.pcbi.1006822 – volume: 18 start-page: 026011 year: 2021 ident: ref_8 article-title: Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abde8a – volume: 374 start-page: 20150202 year: 2016 ident: ref_30 article-title: Principal component analysis: A review and recent developments publication-title: Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. – volume: 24 start-page: 1669 year: 2018 ident: ref_4 article-title: Meeting brain–computer interface user performance expectations using a deep neural network decoding framework publication-title: Nat. Med. doi: 10.1038/s41591-018-0171-y – volume: 29 start-page: 60 year: 2020 ident: ref_2 article-title: Feature-Selection-Based Transfer Learning for Intracortical Brain–Machine Interface Decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3034234 – volume: 7 start-page: 1 year: 2020 ident: ref_34 article-title: Machine learning for neural decoding publication-title: Eneuro doi: 10.1523/ENEURO.0506-19.2020 – volume: 23 start-page: 1243 year: 2010 ident: ref_19 article-title: Learning to combine foveal glimpses with a third-order boltzmann machine publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 start-page: 1085 year: 2019 ident: ref_6 article-title: Decoding movements from cortical ensemble activity using a long short-term memory recurrent network publication-title: Neural Comput. doi: 10.1162/neco_a_01189 – ident: ref_18 doi: 10.1109/CVPR.2017.94 – volume: 105 start-page: 246 year: 2020 ident: ref_12 article-title: Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping publication-title: Neuron doi: 10.1016/j.neuron.2019.10.020 – ident: ref_38 doi: 10.1523/ENEURO.0085-16.2016 – ident: ref_16 doi: 10.1109/NER.2019.8717045 – volume: 9 start-page: 1735 year: 1997 ident: ref_28 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 15 start-page: 026010 year: 2018 ident: ref_25 article-title: Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9e95 |
SSID | ssj0023338 |
Score | 2.4169497 |
Snippet | Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via... Intracortical brain-computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 6372 |
SubjectTerms | Data collection Design intracortical brain–computer interface Kinematics Neural networks Performance evaluation recurrent neural network temporal attention module timestep selection |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtUwELVKu4EFKgVEaEEGsWATNfEjiVcVt-ptqUQXQKXuIj8BqUpum9t1-Qf-kC9hxnm0kVC3seNEnrFnzthzhpAPzBrYA7VLhRM8FSqYVFXMpZIbwTITCmMx3_nLWXFyLk4v5MUQcOuGa5Xjnhg3atdajJHvM1mBKwDbbXWwukqxahSerg4lNB6RrZyBJmGm-PJ4Alwc8FfPJsQB2u93yGZW8JLNbFCk6p_5l_PbkffMzXKbPB38RPqpF-wzsuGbHfLkHnvgc3L7LdawgYmlbaBHHaYRgTZR5NvAV21fGILGLI-1X3UUHFT6GT8HkDPGsOkCK0T8_f1nLO5AY4QwaOvpAuybozD4VwzJI4nTOPJZf3X8BTlfHn0_PEmHegqpBdC3TkVZWpdrJ_LK5gAzKjDNQRlZcKOkzZ0B6KasdpXwAey60XnBlFdI4Zd7V3D-kmw2beNfEZqxUFiJnJTBCstL8HpdFvLCIJtL4DIhH8cZru1ANo41Ly5rAB0ojHoSRkLeT11XPcPG_zotUExTByTFjg_a6x_1sMZqMPdOi9JzybVwVmvmwPlRVpbeq9L6hOyNQq6HldrVd3qVkHdTM6wxPDjRjW9v-j5VpgBsJqScKcfsh-Ytza-fka27Qpcq468f_vgueczwtkw879ojm-vrG_8G3J21eRt1-h_P2QU6 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtRAEC1F4QIHxCoMATWIAxeD3YvtPkSIQYkCUnIARsrN6hWQIk-YmUhwgn_IH_IlVLUXxVKOXO3y1lXteq-XVwAvubP4DzQ-l16KXOpoc91wnythJS9srKyj_c7HJ9XRUn48Vac7MNbYHBpwcy21o3pSy_XZ658_fr3FDr9PjBMp-5sNqZRVosY_8Q1MSJyC-1hOkwlcIA3rRYXm5rNUlBT7ZzBzvkjyStY5vAO3B7jI3vX-vQs7obsHt66ICN6H359TKRtsX7aK7GBDu4kwqBjJbtClrq8PwdJmj2043zDEqewDPQ6ZZxrKZgsqFPH3z-VY44GlgcJoXGALTHOe4c0_0cg8aTmNdz7pV5A_gOXhwZf3R_lQViF3yP22uaxr50vjZdm4EtlGgxk6aqsqYbVypbfI4LQzvpEhYnq3pqy4DpqU_MrgKyEewm636sIjYAWPlVMkTRmddKJG8OuLWFaWRF2iUBm8Glu4dYPmOJW-OGuRe5Az2skZGbyYTM97oY3rjBbkpsmAtLHTgdX6azt0tRazvjeyDkIJI70zhnvEQNqpOgRdu5DB3ujkdoy3lqsGkSZm8yaD59Np7Go0f2K6sLrobZpCI-fMoJ4Fx-yF5me679-SaHdDyKoQj__HFzyBm5yW1qTJsT3Y3a4vwlPERlv7LEX-P2aEFK4 priority: 102 providerName: Scholars Portal |
Title | Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network |
URI | https://www.proquest.com/docview/2581053628 https://www.proquest.com/docview/2581809261 https://pubmed.ncbi.nlm.nih.gov/PMC8512903 https://doaj.org/article/eedda47e353a4dcaa2d2239c57ee97ce |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucBhxVMElsogDlyiTfyI7SNFLQvSVmhhpd4iPwUSSle0e17-A_-QX8KMk1SNhMSFiw_xxHHssWc-P74h5DXzDuZAG0oRBC-FSa40moVScidY5VLjPN53Pl81Z5fi41quD0J94Zmwnh64b7hTmMODFSpyya0I3loWwKIZL1WMRvmIsy-YsRFMDVCLA_LqeYQ4gPrTLfKYNVyxifXJJP0Tz3J6LvLA0Czvk-PBQ6Rv-5o9ILdi95DcO-ANfERuPufoNdCkdJPoYosXiECPKDJt4Ku-DwlB8_2OXbzaUnBN6Qf8HIDNvHpN5xgb4vfPX2NYB5rXBpP1kc7BsgUKhV_gYjzSN40lr_pD44_J5XLx5d1ZOURSKD3AvV0plPKhtkHU2tcAMDQY5WScbLgz0tfBAWgz3gYtYgKL7mzdMBMNkvfVMTScPyFH3aaLTwmtWGq8RDbK5IXnCvzdUKW6ccjjkrgsyJuxhVs_0IxjtIvvLcAN7Ix23xkFebUXveq5Nf4mNMdu2gsgHXZ-AErSDkrS_ktJCnIydnI7jNFty6QG5xIMuC7Iy302jC7cMrFd3Fz3MroyADMLoibKManQNKf79jXzdGt0pir-7H_8wXNyl-FpmrwfdkKOdj-u4wtwh3ZuRm6rtYJUL9_PyJ35YvXpYpZHA6TnQv8B1NcT_A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG1F4QAcEKswCdAgkLhYsbvbSx8QYiDRDEnmAIk0N9MrICF7Ek-EOME_8B98FF9CVduexBLilqvdXtRVXfWql_cIecaMhhiobCys4LGQXseyZDbOuBYs0T7XBs87H87z6bF4t8gWG-T3cBYGt1UOMTEEatsYnCPfYVkJUADCbflqeRKjahSurg4SGp1b7Lvv36Bka1_O3oJ9nzO2t3v0Zhr3qgKxgdJnFYuiMDZVVqSlSQFsl5CgvNRZzrXMTGo1FDDSKFsK5yG7aZXmTDqJRHapszlOgELIvyJ4IpCrv1icF3gc6r2OvYhzmey0yJ6W84KNcl6QBhjh2fFuzAvpbe8mudHjUvq6c6RbZMPVt8n1C2yFd8iPD0EzBwxJG093Wzy2BN5Lkd8DHzWdEAUNp0pWbtlSAMR0hp-DEjfMmdMJKlL8-flrEJOgYUbSK-PoBPKppfDy97gEgKRRw5vn3Vb1u-T4Unr6Htmsm9rdJzRhPjcZcmB6IwwvAGXbxKe5RvYYz7OIvBh6uDI9uTlqbHytoMhBY1RrY0Tk6brpsmP0-FejCZpp3QBJuMOF5vRT1Y_pCuCFVaJwPONKWKMUswC2pMkK52RhXES2ByNXfWRoq3M_jsiT9W0Y07hQo2rXnHVtykRCcRuRYuQcox8a36m_fA7s4CVCuIQ_-P_HH5Or06PDg-pgNt_fItcY7tQJa23bZHN1euYeAtRa6UfBvyn5eNkD6i-DVUDu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIiE4IH5FoIBBIHGJNrGdOD4gxNKuuhRWCKi0txD_FSSULM1WiBO8A2_D4_AkzDjJtpEQt143TrLKjGe-scffR8hjZjTEwMrGwgoeC-V1rApm44xrwRLtc23wvPObRb5_KF4ts-UW-T2chcG2yiEmhkBtG4Nr5BOWFQAFINwWE9-3RbzdnT1ffY1RQQp3Wgc5jc5FDtz3b1C-tc_mu2DrJ4zN9j683I97hYHYQBm0joWUxqaVFWlhUgDeBSQrr3SWc60yk1oNxYwylS2E85DpdJXmTDmFpHapszkuhkL4vyC54NhOJpenxR6H2q9jMuJcJZMWmdRyLtko_wWZgBG2HXdmnkl1s6vkSo9R6YvOqa6RLVdfJ5fPMBfeID_eB_0cMCptPN1r8QgTeDJFrg-81XSiFDScMFm7VUsBHNM5vg7K3bB-TqeoTvHn569BWIKG1UlfGUenkFsthYe_w-0AJJAanrzo2tZvksNz-dK3yHbd1O42oQnzucmQD9MbYbgExG0Tn-YamWQ8zyLydPjCpemJzlFv40sJBQ8ao9wYIyKPNkNXHbvHvwZN0UybAUjIHX5ojo_Kfn6XADVsJaTjGa-ENVXFLAAvZTLpnJLGRWRnMHLZR4m2PPXpiDzcXIb5jZs2Ve2ak25MkSgodCMiR84x-kPjK_XnT4EpvEA4l_A7_3_5A3IRplL5er44uEsuMWzaCdtuO2R7fXzi7gHqWuv7wb0p-Xje8-kvLf1FKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Essential+Neural+Activity+Timesteps+for+Intracortical+Brain%E2%80%93Computer+Interface+Based+on+Recurrent+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shih-Hung+Yang&rft.au=Jyun-We+Huang&rft.au=Chun-Jui+Huang&rft.au=Po-Hsiung+Chiu&rft.date=2021-09-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=19&rft.spage=6372&rft_id=info:doi/10.3390%2Fs21196372&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eedda47e353a4dcaa2d2239c57ee97ce |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |