Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network

Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from con...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 19; p. 6372
Main Authors Yang, Shih-Hung, Huang, Jyun-We, Huang, Chun-Jui, Chiu, Po-Hsiung, Lai, Hsin-Yi, Chen, You-Yin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.09.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21196372

Cover

Abstract Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.
AbstractList Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.
Intracortical brain-computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5-12%) and online prediction (reducing 16-18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.Intracortical brain-computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets (R2=0.76±0.05 for monkey Indy and CC=0.91±0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5-12%) and online prediction (reducing 16-18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.
Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent neural networks (RNNs) are widely used as neural decoders because they can learn neural response dynamics from continuous neural activity. Nevertheless, excessively long or short input neural activity for an RNN may decrease its decoding performance. Based on the temporal attention module exploiting relations in features over time, we propose a temporal attention-aware timestep selection (TTS) method that improves the interpretability of the salience of each timestep in an input neural activity. Furthermore, TTS determines the appropriate input neural activity length for accurate neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two nonhuman primate datasets ( R 2 = 0.76 ± 0.05 for monkey Indy and C C = 0.91 ± 0.01 for monkey N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory neural activity is consecutively highlighted during arm movement, and the most recent neural activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires only a short computation time.
Author Huang, Chun-Jui
Lai, Hsin-Yi
Yang, Shih-Hung
Chiu, Po-Hsiung
Chen, You-Yin
Huang, Jyun-We
AuthorAffiliation 4 Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; irradiance@so-net.net.tw
3 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
1 Department of Mechanical Engineering, National Cheng Kung University, Tainan City 701, Taiwan; z10806026@ncku.edu.tw (J.-W.H.); n16091485@gs.ncku.edu.tw (C.-J.H.); n16090065@gs.ncku.edu.tw (P.-H.C.)
2 Key Laboratory of Medical Neurobiology of Zhejiang Province, Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310027, China; laihy@zju.edu.cn
AuthorAffiliation_xml – name: 3 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
– name: 2 Key Laboratory of Medical Neurobiology of Zhejiang Province, Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310027, China; laihy@zju.edu.cn
– name: 1 Department of Mechanical Engineering, National Cheng Kung University, Tainan City 701, Taiwan; z10806026@ncku.edu.tw (J.-W.H.); n16091485@gs.ncku.edu.tw (C.-J.H.); n16090065@gs.ncku.edu.tw (P.-H.C.)
– name: 4 Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; irradiance@so-net.net.tw
Author_xml – sequence: 1
  givenname: Shih-Hung
  orcidid: 0000-0001-5893-6299
  surname: Yang
  fullname: Yang, Shih-Hung
– sequence: 2
  givenname: Jyun-We
  surname: Huang
  fullname: Huang, Jyun-We
– sequence: 3
  givenname: Chun-Jui
  surname: Huang
  fullname: Huang, Chun-Jui
– sequence: 4
  givenname: Po-Hsiung
  surname: Chiu
  fullname: Chiu, Po-Hsiung
– sequence: 5
  givenname: Hsin-Yi
  orcidid: 0000-0001-6413-0179
  surname: Lai
  fullname: Lai, Hsin-Yi
– sequence: 6
  givenname: You-Yin
  surname: Chen
  fullname: Chen, You-Yin
BookMark eNplks1u1DAQgC1URH_gwBtE4gKHpf6LY1-Q2lWBlaoiQTlbjj0pXpJ4sZ2inuAdeEOeBGe3RbScxvJ883k89iHaG8MICD0n-DVjCh8nSogSrKGP0AHhlC8kpXjvn_U-OkxpjTFljMknaJ9xwbFQ6gD9-AQ92OzDWIWuOksJxuxNX13AFEs4Kalrn2-qSz9AyrBJVRditRpzNDbE7G2BTqPx4--fv5Zh2EwZtmmInbFQnZoEriryj2CnGIv8znwB-XuIX5-ix53pEzy7jUfo89uzy-X7xfmHd6vlyfnCci7ygjeNdcQ4TqQljZBSEN6pthasVbUlrlWkUdY4yaHjpG4NEVSBkqTBBJxg7Aitdl4XzFpvoh9MvNHBeL3dCPFKm_k6PWgA5wxvgNXMcGeNoY5SpmzdAKjGQnG92bk2UzuAszBPo78nvZ8Z_Rd9Fa61rAlVeG7m5a0ghm9TmasefLLQ92aEMCVNa0kkVlSQgr54gK7DFMcyqi2FayaoLNTxjrIxpBSh09ZnM79qOd_3mmA9fxT996OUilcPKu7a_5_9A-V7wO0
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3269598
crossref_primary_10_1007_s10509_024_04356_w
crossref_primary_10_1007_s10509_024_04314_6
crossref_primary_10_1016_j_cmpb_2024_108208
crossref_primary_10_1109_JSEN_2024_3487021
crossref_primary_10_3389_fnins_2025_1551656
crossref_primary_10_1109_TCDS_2024_3409555
Cites_doi 10.1109/CVPR.2018.00745
10.1109/EMBC.2018.8512609
10.1126/science.286.5437.105
10.1038/sdata.2018.55
10.1109/IWW-BCI.2019.8737305
10.1152/jn.00329.2018
10.1523/JNEUROSCI.1669-18.2018
10.3389/fnins.2016.00587
10.1007/978-3-030-58571-6_30
10.1038/nm.3953
10.1109/TBME.2005.856245
10.3390/s20195528
10.1109/TNSRE.2019.2962708
10.1109/CVPR.2019.00139
10.1109/TNNLS.2016.2582924
10.1016/j.neuron.2014.04.045
10.1038/nn.4042
10.1207/s15516709cog1402_1
10.3390/math9060606
10.1371/journal.pcbi.1006822
10.1088/1741-2552/abde8a
10.1038/s41591-018-0171-y
10.1109/TNSRE.2020.3034234
10.1523/ENEURO.0506-19.2020
10.1162/neco_a_01189
10.1109/CVPR.2017.94
10.1016/j.neuron.2019.10.020
10.1523/ENEURO.0085-16.2016
10.1109/NER.2019.8717045
10.1162/neco.1997.9.8.1735
10.1088/1741-2552/aa9e95
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s21196372
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_eedda47e353a4dcaa2d2239c57ee97ce
PMC8512903
10_3390_s21196372
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-477cd1ad418c17688614f9b563b95c1db9179cad84ef415ba1629e981701ed633
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:41 EDT 2025
Tue Sep 09 03:26:24 EDT 2025
Thu Sep 04 22:52:11 EDT 2025
Fri Jul 25 20:24:35 EDT 2025
Tue Jul 01 03:56:20 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-477cd1ad418c17688614f9b563b95c1db9179cad84ef415ba1629e981701ed633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this paper.
ORCID 0000-0001-5893-6299
0000-0001-6413-0179
OpenAccessLink https://doaj.org/article/eedda47e353a4dcaa2d2239c57ee97ce
PMID 34640699
PQID 2581053628
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_eedda47e353a4dcaa2d2239c57ee97ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512903
proquest_miscellaneous_2581809261
proquest_journals_2581053628
crossref_citationtrail_10_3390_s21196372
crossref_primary_10_3390_s21196372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210924
PublicationDateYYYYMMDD 2021-09-24
PublicationDate_xml – month: 9
  year: 2021
  text: 20210924
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Pandarinath (ref_5) 2018; 38
Greff (ref_15) 2016; 28
Naufel (ref_13) 2019; 121
ref_14
ref_11
Li (ref_10) 2016; 10
ref_31
Makin (ref_25) 2018; 15
Gilja (ref_3) 2015; 21
Hertel (ref_33) 1999; 286
Williams (ref_12) 2020; 105
ref_18
ref_17
ref_16
ref_38
Ahmadi (ref_8) 2021; 18
Merrill (ref_35) 2005; 52
Hochreiter (ref_28) 1997; 9
Brochier (ref_24) 2018; 5
Zhang (ref_2) 2020; 29
Shaikh (ref_1) 2019; 28
Tseng (ref_6) 2019; 31
Elman (ref_27) 1990; 14
Glaser (ref_34) 2020; 7
ref_23
Jolliffe (ref_30) 2016; 374
ref_22
ref_21
ref_20
Sussillo (ref_37) 2015; 18
ref_29
Schwemmer (ref_4) 2018; 24
Razali (ref_32) 2011; 2
ref_26
ref_9
Hennequin (ref_36) 2014; 82
ref_7
Larochelle (ref_19) 2010; 23
References_xml – ident: ref_20
  doi: 10.1109/CVPR.2018.00745
– volume: 2
  start-page: 21
  year: 2011
  ident: ref_32
  article-title: Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests
  publication-title: J. Stat. Modeling Anal.
– ident: ref_9
  doi: 10.1109/EMBC.2018.8512609
– ident: ref_26
– volume: 286
  start-page: 105
  year: 1999
  ident: ref_33
  article-title: Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by α2 adrenoceptor blockade
  publication-title: Science
  doi: 10.1126/science.286.5437.105
– volume: 5
  start-page: 1
  year: 2018
  ident: ref_24
  article-title: Massively parallel recordings in macaque motor cortex during an instructed delayed reach-to-grasp task
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.55
– ident: ref_17
  doi: 10.1109/IWW-BCI.2019.8737305
– volume: 121
  start-page: 61
  year: 2019
  ident: ref_13
  article-title: A muscle-activity-dependent gain between motor cortex and EMG
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00329.2018
– volume: 38
  start-page: 9390
  year: 2018
  ident: ref_5
  article-title: Latent factors and dynamics in motor cortex and their application to brain–machine interfaces
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1669-18.2018
– volume: 10
  start-page: 587
  year: 2016
  ident: ref_10
  article-title: An improved unscented kalman filter based decoder for cortical brain-machine interfaces
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00587
– ident: ref_21
  doi: 10.1007/978-3-030-58571-6_30
– volume: 21
  start-page: 1142
  year: 2015
  ident: ref_3
  article-title: Clinical translation of a high-performance neural prosthesis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3953
– ident: ref_23
– volume: 52
  start-page: 1960
  year: 2005
  ident: ref_35
  article-title: Impedance characterization of microarray recording electrodes in vitro
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.856245
– ident: ref_11
  doi: 10.3390/s20195528
– volume: 28
  start-page: 380
  year: 2019
  ident: ref_1
  article-title: Sparse Ensemble Machine Learning to improve robustness of long-term decoding in iBMIs
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2962708
– ident: ref_22
  doi: 10.1109/CVPR.2019.00139
– volume: 28
  start-page: 2222
  year: 2016
  ident: ref_15
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref_31
– volume: 82
  start-page: 1394
  year: 2014
  ident: ref_36
  article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.045
– ident: ref_29
– volume: 18
  start-page: 1025
  year: 2015
  ident: ref_37
  article-title: A neural network that finds a naturalistic solution for the production of muscle activity
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.4042
– volume: 14
  start-page: 179
  year: 1990
  ident: ref_27
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– ident: ref_14
  doi: 10.3390/math9060606
– ident: ref_7
  doi: 10.1371/journal.pcbi.1006822
– volume: 18
  start-page: 026011
  year: 2021
  ident: ref_8
  article-title: Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abde8a
– volume: 374
  start-page: 20150202
  year: 2016
  ident: ref_30
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci.
– volume: 24
  start-page: 1669
  year: 2018
  ident: ref_4
  article-title: Meeting brain–computer interface user performance expectations using a deep neural network decoding framework
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0171-y
– volume: 29
  start-page: 60
  year: 2020
  ident: ref_2
  article-title: Feature-Selection-Based Transfer Learning for Intracortical Brain–Machine Interface Decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3034234
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_34
  article-title: Machine learning for neural decoding
  publication-title: Eneuro
  doi: 10.1523/ENEURO.0506-19.2020
– volume: 23
  start-page: 1243
  year: 2010
  ident: ref_19
  article-title: Learning to combine foveal glimpses with a third-order boltzmann machine
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 1085
  year: 2019
  ident: ref_6
  article-title: Decoding movements from cortical ensemble activity using a long short-term memory recurrent network
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01189
– ident: ref_18
  doi: 10.1109/CVPR.2017.94
– volume: 105
  start-page: 246
  year: 2020
  ident: ref_12
  article-title: Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.10.020
– ident: ref_38
  doi: 10.1523/ENEURO.0085-16.2016
– ident: ref_16
  doi: 10.1109/NER.2019.8717045
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_28
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 15
  start-page: 026010
  year: 2018
  ident: ref_25
  article-title: Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9e95
SSID ssj0023338
Score 2.4169497
Snippet Intracortical brain–computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via...
Intracortical brain-computer interfaces (iBCIs) translate neural activity into control commands, thereby allowing paralyzed persons to control devices via...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6372
SubjectTerms Data collection
Design
intracortical brain–computer interface
Kinematics
Neural networks
Performance evaluation
recurrent neural network
temporal attention module
timestep selection
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtUwELVKu4EFKgVEaEEGsWATNfEjiVcVt-ptqUQXQKXuIj8BqUpum9t1-Qf-kC9hxnm0kVC3seNEnrFnzthzhpAPzBrYA7VLhRM8FSqYVFXMpZIbwTITCmMx3_nLWXFyLk4v5MUQcOuGa5Xjnhg3atdajJHvM1mBKwDbbXWwukqxahSerg4lNB6RrZyBJmGm-PJ4Alwc8FfPJsQB2u93yGZW8JLNbFCk6p_5l_PbkffMzXKbPB38RPqpF-wzsuGbHfLkHnvgc3L7LdawgYmlbaBHHaYRgTZR5NvAV21fGILGLI-1X3UUHFT6GT8HkDPGsOkCK0T8_f1nLO5AY4QwaOvpAuybozD4VwzJI4nTOPJZf3X8BTlfHn0_PEmHegqpBdC3TkVZWpdrJ_LK5gAzKjDNQRlZcKOkzZ0B6KasdpXwAey60XnBlFdI4Zd7V3D-kmw2beNfEZqxUFiJnJTBCstL8HpdFvLCIJtL4DIhH8cZru1ANo41Ly5rAB0ojHoSRkLeT11XPcPG_zotUExTByTFjg_a6x_1sMZqMPdOi9JzybVwVmvmwPlRVpbeq9L6hOyNQq6HldrVd3qVkHdTM6wxPDjRjW9v-j5VpgBsJqScKcfsh-Ytza-fka27Qpcq468f_vgueczwtkw879ojm-vrG_8G3J21eRt1-h_P2QU6
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtRAEC1F4QIHxCoMATWIAxeD3YvtPkSIQYkCUnIARsrN6hWQIk-YmUhwgn_IH_IlVLUXxVKOXO3y1lXteq-XVwAvubP4DzQ-l16KXOpoc91wnythJS9srKyj_c7HJ9XRUn48Vac7MNbYHBpwcy21o3pSy_XZ658_fr3FDr9PjBMp-5sNqZRVosY_8Q1MSJyC-1hOkwlcIA3rRYXm5rNUlBT7ZzBzvkjyStY5vAO3B7jI3vX-vQs7obsHt66ICN6H359TKRtsX7aK7GBDu4kwqBjJbtClrq8PwdJmj2043zDEqewDPQ6ZZxrKZgsqFPH3z-VY44GlgcJoXGALTHOe4c0_0cg8aTmNdz7pV5A_gOXhwZf3R_lQViF3yP22uaxr50vjZdm4EtlGgxk6aqsqYbVypbfI4LQzvpEhYnq3pqy4DpqU_MrgKyEewm636sIjYAWPlVMkTRmddKJG8OuLWFaWRF2iUBm8Glu4dYPmOJW-OGuRe5Az2skZGbyYTM97oY3rjBbkpsmAtLHTgdX6azt0tRazvjeyDkIJI70zhnvEQNqpOgRdu5DB3ujkdoy3lqsGkSZm8yaD59Np7Go0f2K6sLrobZpCI-fMoJ4Fx-yF5me679-SaHdDyKoQj__HFzyBm5yW1qTJsT3Y3a4vwlPERlv7LEX-P2aEFK4
  priority: 102
  providerName: Scholars Portal
Title Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network
URI https://www.proquest.com/docview/2581053628
https://www.proquest.com/docview/2581809261
https://pubmed.ncbi.nlm.nih.gov/PMC8512903
https://doaj.org/article/eedda47e353a4dcaa2d2239c57ee97ce
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucBhxVMElsogDlyiTfyI7SNFLQvSVmhhpd4iPwUSSle0e17-A_-QX8KMk1SNhMSFiw_xxHHssWc-P74h5DXzDuZAG0oRBC-FSa40moVScidY5VLjPN53Pl81Z5fi41quD0J94Zmwnh64b7hTmMODFSpyya0I3loWwKIZL1WMRvmIsy-YsRFMDVCLA_LqeYQ4gPrTLfKYNVyxifXJJP0Tz3J6LvLA0Czvk-PBQ6Rv-5o9ILdi95DcO-ANfERuPufoNdCkdJPoYosXiECPKDJt4Ku-DwlB8_2OXbzaUnBN6Qf8HIDNvHpN5xgb4vfPX2NYB5rXBpP1kc7BsgUKhV_gYjzSN40lr_pD44_J5XLx5d1ZOURSKD3AvV0plPKhtkHU2tcAMDQY5WScbLgz0tfBAWgz3gYtYgKL7mzdMBMNkvfVMTScPyFH3aaLTwmtWGq8RDbK5IXnCvzdUKW6ccjjkrgsyJuxhVs_0IxjtIvvLcAN7Ix23xkFebUXveq5Nf4mNMdu2gsgHXZ-AErSDkrS_ktJCnIydnI7jNFty6QG5xIMuC7Iy302jC7cMrFd3Fz3MroyADMLoibKManQNKf79jXzdGt0pir-7H_8wXNyl-FpmrwfdkKOdj-u4wtwh3ZuRm6rtYJUL9_PyJ35YvXpYpZHA6TnQv8B1NcT_A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG1F4QAcEKswCdAgkLhYsbvbSx8QYiDRDEnmAIk0N9MrICF7Ek-EOME_8B98FF9CVduexBLilqvdXtRVXfWql_cIecaMhhiobCys4LGQXseyZDbOuBYs0T7XBs87H87z6bF4t8gWG-T3cBYGt1UOMTEEatsYnCPfYVkJUADCbflqeRKjahSurg4SGp1b7Lvv36Bka1_O3oJ9nzO2t3v0Zhr3qgKxgdJnFYuiMDZVVqSlSQFsl5CgvNRZzrXMTGo1FDDSKFsK5yG7aZXmTDqJRHapszlOgELIvyJ4IpCrv1icF3gc6r2OvYhzmey0yJ6W84KNcl6QBhjh2fFuzAvpbe8mudHjUvq6c6RbZMPVt8n1C2yFd8iPD0EzBwxJG093Wzy2BN5Lkd8DHzWdEAUNp0pWbtlSAMR0hp-DEjfMmdMJKlL8-flrEJOgYUbSK-PoBPKppfDy97gEgKRRw5vn3Vb1u-T4Unr6Htmsm9rdJzRhPjcZcmB6IwwvAGXbxKe5RvYYz7OIvBh6uDI9uTlqbHytoMhBY1RrY0Tk6brpsmP0-FejCZpp3QBJuMOF5vRT1Y_pCuCFVaJwPONKWKMUswC2pMkK52RhXES2ByNXfWRoq3M_jsiT9W0Y07hQo2rXnHVtykRCcRuRYuQcox8a36m_fA7s4CVCuIQ_-P_HH5Or06PDg-pgNt_fItcY7tQJa23bZHN1euYeAtRa6UfBvyn5eNkD6i-DVUDu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIiE4IH5FoIBBIHGJNrGdOD4gxNKuuhRWCKi0txD_FSSULM1WiBO8A2_D4_AkzDjJtpEQt143TrLKjGe-scffR8hjZjTEwMrGwgoeC-V1rApm44xrwRLtc23wvPObRb5_KF4ts-UW-T2chcG2yiEmhkBtG4Nr5BOWFQAFINwWE9-3RbzdnT1ffY1RQQp3Wgc5jc5FDtz3b1C-tc_mu2DrJ4zN9j683I97hYHYQBm0joWUxqaVFWlhUgDeBSQrr3SWc60yk1oNxYwylS2E85DpdJXmTDmFpHapszkuhkL4vyC54NhOJpenxR6H2q9jMuJcJZMWmdRyLtko_wWZgBG2HXdmnkl1s6vkSo9R6YvOqa6RLVdfJ5fPMBfeID_eB_0cMCptPN1r8QgTeDJFrg-81XSiFDScMFm7VUsBHNM5vg7K3bB-TqeoTvHn569BWIKG1UlfGUenkFsthYe_w-0AJJAanrzo2tZvksNz-dK3yHbd1O42oQnzucmQD9MbYbgExG0Tn-YamWQ8zyLydPjCpemJzlFv40sJBQ8ao9wYIyKPNkNXHbvHvwZN0UybAUjIHX5ojo_Kfn6XADVsJaTjGa-ENVXFLAAvZTLpnJLGRWRnMHLZR4m2PPXpiDzcXIb5jZs2Ve2ak25MkSgodCMiR84x-kPjK_XnT4EpvEA4l_A7_3_5A3IRplL5er44uEsuMWzaCdtuO2R7fXzi7gHqWuv7wb0p-Xje8-kvLf1FKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Essential+Neural+Activity+Timesteps+for+Intracortical+Brain%E2%80%93Computer+Interface+Based+on+Recurrent+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shih-Hung+Yang&rft.au=Jyun-We+Huang&rft.au=Chun-Jui+Huang&rft.au=Po-Hsiung+Chiu&rft.date=2021-09-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=19&rft.spage=6372&rft_id=info:doi/10.3390%2Fs21196372&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eedda47e353a4dcaa2d2239c57ee97ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon