A deep learning–based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols

Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One f...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 73; pp. 31 - 44
Main Authors Tong, Qiqi, Gong, Ting, He, Hongjian, Wang, Zheng, Yu, Wenwen, Zhang, Jianjun, Zhai, Lihao, Cui, Hongsheng, Meng, Xin, Tax, Chantal W.M., Zhong, Jianhui
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.11.2020
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2020.08.001

Cover

Abstract Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning–based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning–based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations.
AbstractList Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning–based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning–based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations.
Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning-based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning-based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations.Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning-based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning-based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations.
Author Meng, Xin
Cui, Hongsheng
Yu, Wenwen
Tax, Chantal W.M.
He, Hongjian
Wang, Zheng
Zhang, Jianjun
Zhong, Jianhui
Zhai, Lihao
Tong, Qiqi
Gong, Ting
Author_xml – sequence: 1
  givenname: Qiqi
  surname: Tong
  fullname: Tong, Qiqi
  email: tongqq@zju.edu.cn
  organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Ting
  surname: Gong
  fullname: Gong, Ting
  email: gongting@zju.edu.cn
  organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 3
  givenname: Hongjian
  surname: He
  fullname: He, Hongjian
  email: hhezju@zju.edu.cn
  organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 4
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  email: zheng.wang@ion.ac.cn
  organization: Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
– sequence: 5
  givenname: Wenwen
  surname: Yu
  fullname: Yu, Wenwen
  email: wwyu@ion.ac.cn
  organization: Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
– sequence: 6
  givenname: Jianjun
  surname: Zhang
  fullname: Zhang, Jianjun
  organization: Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
– sequence: 7
  givenname: Lihao
  surname: Zhai
  fullname: Zhai, Lihao
  organization: Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China
– sequence: 8
  givenname: Hongsheng
  surname: Cui
  fullname: Cui, Hongsheng
  organization: Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
– sequence: 9
  givenname: Xin
  surname: Meng
  fullname: Meng, Xin
  organization: Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
– sequence: 10
  givenname: Chantal W.M.
  surname: Tax
  fullname: Tax, Chantal W.M.
  email: TaxC@cardiff.ac.uk
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
– sequence: 11
  givenname: Jianhui
  surname: Zhong
  fullname: Zhong, Jianhui
  email: jzhong@zju.edu.cn
  organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32822818$$D View this record in MEDLINE/PubMed
BookMark eNqNkL1uFDEUhS0URDaBB6BBLml2sT32rEdUUcSfFIkGJDrLY99J7sYz3tieRNtR8Aa8IU-CVxsoUgSqW9zzHR19J-RoihMQ8pKzFWe8fbNZjQlXggm2YnrFGH9CFlyvm6XSnTwiC7Zu2HIt1LdjcpLzhjGmRKOekeNGaCE01wvy44x6gC0NYNOE0-Wv7z97m8HTEcpV9HSIieK4TfG2PmmCgLbHgGVH40DHORR0MBVI1OMwzBnjRK_nVGLGXDl7uafusFzRW5uw1lp3M2PGsg_W1hJdDPk5eTrYkOHF_T0lX9-_-3L-cXnx-cOn87OLpZOyLUvJ17LxspGDsp1zzjuphAUnHG-tVF0PjHvremVBDx00YBVTHrQeQHXQQ3NKxKF3nrZ2d2dDMNtUV6ad4czslZqNqUrNXqlh2lSlFXp9gOrcmxlyMSNmByHYCeKcjZBNK1mj27ZGX91H534E_7f8j-4aWB8CLsWcEwzGYbF7GSVZDI-u4A_I_1n-9sBAdXqLkEx2CJMDjwlcMT7io3T3gHYBJ3Q2XMPuH-xvaMvS0w
CitedBy_id crossref_primary_10_1007_s10278_022_00721_9
crossref_primary_10_1093_pcmedi_pbaa029
crossref_primary_10_1016_j_neuroimage_2022_119297
crossref_primary_10_1016_j_neuroimage_2023_120125
crossref_primary_10_1016_j_inffus_2022_01_001
crossref_primary_10_1117_1_JMI_11_1_014005
crossref_primary_10_4103_jmp_jmp_10_24
crossref_primary_10_1016_j_mri_2021_11_001
crossref_primary_10_1002_jmri_28887
crossref_primary_10_1007_s12264_022_00905_x
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_3390_bioengineering10040397
Cites_doi 10.1016/j.jalz.2017.06.2110
10.1016/j.neuroimage.2010.03.046
10.1016/j.neuroimage.2018.08.073
10.1002/jmri.21604
10.1016/j.mri.2019.07.012
10.1016/j.pscychresns.2011.05.012
10.1016/j.neuroimage.2016.08.033
10.1002/mrm.26054
10.3174/ajnr.A5025
10.1016/j.neuroimage.2013.08.046
10.18632/oncotarget.5675
10.1016/j.neuroimage.2010.05.043
10.1002/mrm.26008
10.1016/j.mri.2019.02.011
10.1016/j.neuroimage.2008.12.039
10.1002/mrm.25351
10.1016/j.neuroimage.2013.05.057
10.1016/j.neuroimage.2013.05.007
10.1016/j.neuroimage.2015.10.019
10.1016/j.neuroimage.2012.02.018
10.3389/fnins.2018.00311
10.1002/nbm.3777
10.1002/mrm.20832
10.1016/j.neuroimage.2015.07.010
10.1016/j.neuroimage.2019.01.077
10.1016/j.dcn.2018.03.001
10.1109/ACCESS.2019.2919241
10.1002/mrm.24501
10.1016/j.mri.2016.08.022
10.1016/j.neuroimage.2015.06.078
10.1002/nbm.2809
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2016.04.041
10.1016/j.neuroimage.2005.03.042
10.1007/s00062-015-0490-z
10.1002/nbm.1518
10.1002/mrm.22655
10.1016/j.mri.2017.09.001
10.1109/TMI.2019.2895020
10.1148/radiol.12110927
10.1002/mrm.24743
10.1016/j.neuroimage.2007.02.056
10.1016/j.neuroimage.2018.07.066
10.1093/ije/dyq128
10.1002/mp.13555
10.1016/j.neuroimage.2016.08.016
10.1038/s41562-019-0655-x
10.1016/j.neuroimage.2017.08.047
10.1016/j.neuroimage.2015.04.057
10.1007/s11682-016-9670-y
10.1002/mrm.20508
10.1148/radiol.11102277
10.1016/j.neurobiolaging.2018.07.006
10.1016/j.neuroimage.2016.01.061
10.1148/radiol.09090819
10.1109/TMI.2016.2551324
10.1016/j.neuroimage.2007.12.035
10.1016/j.neuroimage.2012.03.072
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.mri.2020.08.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 44
ExternalDocumentID oai:http://orca-dev.cardiff.ac.uk:134540
32822818
10_1016_j_mri_2020_08_001
S0730725X20302927
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 104943/Z/14/Z
– fundername: Wellcome Trust
  grantid: 096646/Z/11/Z
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
AAYXX
ACLOT
CITATION
~HD
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c446t-41743d434f5a9cccdc452aec2c16a459be01dacb5ae8f9e3ea505de88fe59ebe3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Tue Aug 19 22:39:11 EDT 2025
Mon Sep 29 03:47:30 EDT 2025
Mon Jul 21 05:51:00 EDT 2025
Wed Oct 01 02:39:40 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Fri Feb 23 02:47:27 EST 2024
Tue Aug 26 18:33:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SCR
Diffusion magnetic resonance imaging
Diffusion kurtosis imaging
KFA
SLF
dMRI
PTR
Deep learning
Multicenter harmonization
ANOVA
SNR
WM
CSF
DWI
MD
ALIC
EC
MK
SS
AD
BCC
DKI
GCC
AK
NRMSE
RISH
CP
ROI
ACR
TE
RD
RLIC
SCC
CV
PLIC
DTI
SGM
RK
ReLU
FA
CgC
PCR
TR
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-41743d434f5a9cccdc452aec2c16a459be01dacb5ae8f9e3ea505de88fe59ebe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://orca.cardiff.ac.uk/id/eprint/134540/
PMID 32822818
PQID 2436403866
PQPubID 23479
PageCount 14
ParticipantIDs unpaywall_primary_10_1016_j_mri_2020_08_001
proquest_miscellaneous_2436403866
pubmed_primary_32822818
crossref_citationtrail_10_1016_j_mri_2020_08_001
crossref_primary_10_1016_j_mri_2020_08_001
elsevier_sciencedirect_doi_10_1016_j_mri_2020_08_001
elsevier_clinicalkey_doi_10_1016_j_mri_2020_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Teipel, Reuter, Stieltjes, Acosta-cabronero, Ernemann, Fellgiebel (bb0080) 2011; 194
Salimi-khorshidi, Smith, Keltner, Wager, Nichols (bb0105) 2009; 45
Van Cauter, Veraart, Sijbers, Peeters, Himmelreich, De Keyzer (bb0195) 2012; 263
Gong, He, Li, Lin, Tong, Li (bb0145) 2018
Gao, Zhang, Wong, Wu, Zhang, Gao (bb0200) 2012; 25
Tabesh, Jensen, Ardekani, Helpern (bb0230) 2011; 65
Yuan, Wang, Zhao, Li, Ma, Liu (bb0050) 2018; 12
Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel (bb0100) 2017; 161
Vollmar, O’Muircheartaigh, Barker, Symms, Thompson, Kumari (bb0300) 2010; 51
Wang, Lin, Lu, Ng, Weng, Ng (bb0205) 2011; 261
Falangola, Jensen, Babb, Hu, Castellanos, Di Martino (bb0220) 2008; 28
Hansen, Lund, Sangill, Jespersen (bb0310) 2013; 69
Golkov, Dosovitskiy, Sperl, Menzel, Czisch, Sämann (bb0140) 2016; 35
Veraart, Novikov, Christiaens, Ades-aron, Sijbers, Fieremans (bb0245) 2016; 142
Alexander, Hubbard, Hall, Moore, Ptito, Parker (bb0330) 2010; 52
Dyrby, Søgaard, Hall, Ptito, Alexander (bb0325) 2013; 70
Jernigan, Brown, Hagler, Akshoomoff, Bartsch, Newman (bb0025) 2016; 124
Zuo, Xu, Milham (bb0035) 2019; 3
Li, Gong, Lin, He, Tong, Li (bb0270) 2019; 7
Jiang, Jiang, Zhao, Zhang, Zhang, Yao (bb0185) 2015; 6
An, Moon, Ryu, Park, Yun, Choi (bb0060) 2017; 44
Jovicich, Minati, Marizzoni, Marchitelli, Sala-Llonch, Bartrés-Faz (bb0055) 2016; 124
Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bb0115) 2016; 12
Casey, Cannonier, Conley, Cohen, Barch, Heitzeg (bb0015) 2018; 32
Das, Wang, Bing, Bhetuwal, Yang (bb0225) 2017; 27
Collier, Veraart, Jeurissen, Den Dekker, Sijbers (bb0280) 2015; 73
Landman, Farrell, Jones, Smith, Prince, Mori (bb0305) 2007; 36
Takao, Hayashi, Ohtomo (bb0040) 2014; 84
Venkatraman, Gonzalez, Landman, Goh, Reiter, An (bb0110) 2015; 119
Ades-Aron, Veraart, Kochunov, McGuire, Sherman, Kellner (bb0275) 2018; 183
Jensen, Helpern (bb0180) 2010; 23
Huynh, Chen, Wu, Shen, Yap (bb0130) 2019; 38
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz (bb0010) 2012; 62
Assaf, Basser (bb0320) 2005; 27
Koppers, Bloy, Berman, CMW, Edgar, Merhof (bb0170) 2019
Raab, Hattingen, Franz, Zanella, Lanfermann (bb0190) 2010; 254
Tong, He, Gong, Li, Liang, Qian (bb0090) 2019; 59
Gunter, Borowski, Thostenson, Arani, Reid, Cash (bb0030) 2017; 13
Koay, Carew, Alexander, Basser, Meyerand (bb0235) 2006; 55
Koppers, Haarburger, Merhof (bb0135) 2017
Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold (bb0045) 2013; 83
Andersson, Skare, Ashburner (bb0260) 2003; 20
Sprenger, Sperl, Fernandez, Golkov, Eidner, Sämann (bb0240) 2016; 76
Palacios, Martin, Boss, Ezekiel, Chang, Yuh (bb0075) 2017; 38
Farrell, Landman, Jones, Smith, Prince, Van Zijl (bb0070) 2007; 26
Lin, Gong, Wang, Li, He, Tong (bb0150) 2019
Chuhutin, Hansen, Jespersen (bb0065) 2017; 30
Mori, Oishi, Jiang, Jiang, Li, Akhter (bb0290) 2008; 40
Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach (bb0020) 2013; 80
Andersson, Sotiropoulos (bb0255) 2016; 125
Ning, Bonet-Carne, Grussu, Sepehrband, Kaden, Veraart (bb0265) 2019
Pohl, Sullivan, Rohlfing, Chu, Kwon, Nichols (bb0095) 2016; 130
Karayumak, Bouix, Ning, James, Crow, Shenton (bb0125) 2019; 184
Andersson, Jenkinson, Smith (bb0285) 2007
Van Eijsden, Vrijkotte, Gemke, Van der Wal (bb0005) 2011; 40
Nath, Parvathaneni, Hansen, Hainline, Bermudez, Remedios (bb0155) 2019
Jensen, Helpern, Ramani, Lu, Kaczynski (bb0175) 2005; 53
Nath, Schilling, Parvathaneni, Hansen, Hainline, Huo (bb0160) 2019; 62
Tax, Grussu, Kaden, Ning, Rudrapatna, John Evans (bb0165) 2019; 195
Zhou, Sakaie, Debbins, Kirsch, Tatsuoka, Fox (bb0085) 2017; 35
Benitez, Jensen, Falangola, Nietert, Helpern (bb0215) 2018; 70
Celisse, Robin (bb0295) 2008; 52
Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bb0120) 2016; 135
Grinberg, Maximov, Farrher, Neuner, Amort, Thönneßen (bb0210) 2017; 144
Kellner, Dhital, Kiselev, Reisert (bb0250) 2016; 76
Zhang, Schneider, Wheeler-Kingshott, Alexander (bb0315) 2012; 61
Gunter (10.1016/j.mri.2020.08.001_bb0030) 2017; 13
Van Cauter (10.1016/j.mri.2020.08.001_bb0195) 2012; 263
Jovicich (10.1016/j.mri.2020.08.001_bb0055) 2016; 124
Jensen (10.1016/j.mri.2020.08.001_bb0180) 2010; 23
Van Essen (10.1016/j.mri.2020.08.001_bb0010) 2012; 62
Takao (10.1016/j.mri.2020.08.001_bb0040) 2014; 84
Li (10.1016/j.mri.2020.08.001_bb0270) 2019; 7
Sotiropoulos (10.1016/j.mri.2020.08.001_bb0020) 2013; 80
Benitez (10.1016/j.mri.2020.08.001_bb0215) 2018; 70
Andersson (10.1016/j.mri.2020.08.001_bb0255) 2016; 125
Mori (10.1016/j.mri.2020.08.001_bb0290) 2008; 40
Mirzaalian (10.1016/j.mri.2020.08.001_bb0120) 2016; 135
Andersson (10.1016/j.mri.2020.08.001_bb0285) 2007
Koppers (10.1016/j.mri.2020.08.001_bb0135) 2017
Grinberg (10.1016/j.mri.2020.08.001_bb0210) 2017; 144
Celisse (10.1016/j.mri.2020.08.001_bb0295) 2008; 52
Casey (10.1016/j.mri.2020.08.001_bb0015) 2018; 32
Andersson (10.1016/j.mri.2020.08.001_bb0260) 2003; 20
Karayumak (10.1016/j.mri.2020.08.001_bb0125) 2019; 184
Nath (10.1016/j.mri.2020.08.001_bb0160) 2019; 62
Palacios (10.1016/j.mri.2020.08.001_bb0075) 2017; 38
Fortin (10.1016/j.mri.2020.08.001_bb0100) 2017; 161
Falangola (10.1016/j.mri.2020.08.001_bb0220) 2008; 28
Salimi-khorshidi (10.1016/j.mri.2020.08.001_bb0105) 2009; 45
Jernigan (10.1016/j.mri.2020.08.001_bb0025) 2016; 124
Collier (10.1016/j.mri.2020.08.001_bb0280) 2015; 73
Hansen (10.1016/j.mri.2020.08.001_bb0310) 2013; 69
Koppers (10.1016/j.mri.2020.08.001_bb0170) 2019
Assaf (10.1016/j.mri.2020.08.001_bb0320) 2005; 27
Van Eijsden (10.1016/j.mri.2020.08.001_bb0005) 2011; 40
Gao (10.1016/j.mri.2020.08.001_bb0200) 2012; 25
Sprenger (10.1016/j.mri.2020.08.001_bb0240) 2016; 76
Tabesh (10.1016/j.mri.2020.08.001_bb0230) 2011; 65
Jovicich (10.1016/j.mri.2020.08.001_bb0045) 2013; 83
Lin (10.1016/j.mri.2020.08.001_bb0150) 2019
Jensen (10.1016/j.mri.2020.08.001_bb0175) 2005; 53
Vollmar (10.1016/j.mri.2020.08.001_bb0300) 2010; 51
Gong (10.1016/j.mri.2020.08.001_bb0145) 2018
Mirzaalian (10.1016/j.mri.2020.08.001_bb0115) 2016; 12
Wang (10.1016/j.mri.2020.08.001_bb0205) 2011; 261
Veraart (10.1016/j.mri.2020.08.001_bb0245) 2016; 142
Ning (10.1016/j.mri.2020.08.001_bb0265) 2019
Raab (10.1016/j.mri.2020.08.001_bb0190) 2010; 254
Tong (10.1016/j.mri.2020.08.001_bb0090) 2019; 59
Venkatraman (10.1016/j.mri.2020.08.001_bb0110) 2015; 119
An (10.1016/j.mri.2020.08.001_bb0060) 2017; 44
Koay (10.1016/j.mri.2020.08.001_bb0235) 2006; 55
Zhang (10.1016/j.mri.2020.08.001_bb0315) 2012; 61
Pohl (10.1016/j.mri.2020.08.001_bb0095) 2016; 130
Yuan (10.1016/j.mri.2020.08.001_bb0050) 2018; 12
Farrell (10.1016/j.mri.2020.08.001_bb0070) 2007; 26
Das (10.1016/j.mri.2020.08.001_bb0225) 2017; 27
Dyrby (10.1016/j.mri.2020.08.001_bb0325) 2013; 70
Jiang (10.1016/j.mri.2020.08.001_bb0185) 2015; 6
Huynh (10.1016/j.mri.2020.08.001_bb0130) 2019; 38
Alexander (10.1016/j.mri.2020.08.001_bb0330) 2010; 52
Chuhutin (10.1016/j.mri.2020.08.001_bb0065) 2017; 30
Zhou (10.1016/j.mri.2020.08.001_bb0085) 2017; 35
Nath (10.1016/j.mri.2020.08.001_bb0155) 2019
Golkov (10.1016/j.mri.2020.08.001_bb0140) 2016; 35
Ades-Aron (10.1016/j.mri.2020.08.001_bb0275) 2018; 183
Zuo (10.1016/j.mri.2020.08.001_bb0035) 2019; 3
Kellner (10.1016/j.mri.2020.08.001_bb0250) 2016; 76
Tax (10.1016/j.mri.2020.08.001_bb0165) 2019; 195
Teipel (10.1016/j.mri.2020.08.001_bb0080) 2011; 194
Landman (10.1016/j.mri.2020.08.001_bb0305) 2007; 36
References_xml – volume: 23
  start-page: 698
  year: 2010
  end-page: 710
  ident: bb0180
  article-title: MRI quantification of non-Gaussian water diffusion by kurtosis analysis
  publication-title: NMR Biomed
– volume: 7
  start-page: 71398
  year: 2019
  end-page: 71411
  ident: bb0270
  article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network
  publication-title: IEEE Access
– volume: 51
  start-page: 1384
  year: 2010
  end-page: 1394
  ident: bb0300
  article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners
  publication-title: Neuroimage
– volume: 30
  start-page: 1
  year: 2017
  end-page: 14
  ident: bb0065
  article-title: Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection
  publication-title: NMR Biomed
– volume: 32
  start-page: 43
  year: 2018
  end-page: 54
  ident: bb0015
  article-title: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites
  publication-title: Dev Cogn Neurosci
– volume: 44
  start-page: 125
  year: 2017
  end-page: 130
  ident: bb0060
  article-title: Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: implications for multi-center imaging studies
  publication-title: Magn Reson Imaging
– volume: 36
  start-page: 1123
  year: 2007
  end-page: 1138
  ident: bb0305
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
– volume: 55
  start-page: 930
  year: 2006
  end-page: 936
  ident: bb0235
  article-title: Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 12
  start-page: 311
  year: 2018
  ident: bb0050
  article-title: Intra- and inter-scanner reliability of scaled subprofile model of principal component analysis on ALFF in resting-state fMRI under eyes open and closed conditions
  publication-title: Front Neurosci
– volume: 59
  start-page: 1
  year: 2019
  end-page: 9
  ident: bb0090
  article-title: Reproducibility of multi-shell diffusion tractography on traveling subjects: a multicenter study prospective
  publication-title: Magn Reson Imaging
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bb0010
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 184
  start-page: 180
  year: 2019
  end-page: 200
  ident: bb0125
  article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters
  publication-title: Neuroimage
– year: 2019
  ident: bb0150
  article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network
  publication-title: Med Phys
– start-page: 217
  year: 2019
  end-page: 224
  ident: bb0265
  article-title: Muti-shell diffusion mri harmonisation and enhancement challenge (MUSHAC): progress and results
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  ident: bb0175
  article-title: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 13
  start-page: P1368
  year: 2017
  end-page: P1369
  ident: bb0030
  article-title: ADNI-3 MRI Acquisitions
  publication-title: Alzheimers Dement
– volume: 124
  start-page: 442
  year: 2016
  end-page: 454
  ident: bb0055
  article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study
  publication-title: Neuroimage
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  ident: bb0250
  article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts
  publication-title: Magn Reson Med
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  ident: bb0245
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 26
  start-page: 756
  year: 2007
  end-page: 767
  ident: bb0070
  article-title: Effects of SNR on the accuracy and reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: J Magn Reson
– volume: 52
  start-page: 1374
  year: 2010
  end-page: 1389
  ident: bb0330
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: Neuroimage
– volume: 38
  start-page: 1599
  year: 2019
  end-page: 1609
  ident: bb0130
  article-title: Multi-site harmonization of diffusion MRI data via method of moments
  publication-title: IEEE Trans Med Imaging
– volume: 6
  start-page: 42380
  year: 2015
  end-page: 42393
  ident: bb0185
  article-title: Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation
  publication-title: Oncotarget
– volume: 65
  start-page: 823
  year: 2011
  end-page: 836
  ident: bb0230
  article-title: Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging
  publication-title: Magn Reson Med
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: bb0100
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
– volume: 130
  start-page: 194
  year: 2016
  end-page: 213
  ident: bb0095
  article-title: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study
  publication-title: Neuroimage
– volume: 35
  start-page: 1344
  year: 2016
  end-page: 1351
  ident: bb0140
  article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans
  publication-title: IEEE Trans Med Imaging
– volume: 52
  start-page: 2350
  year: 2008
  end-page: 2368
  ident: bb0295
  article-title: Nonparametric density estimation by exact leave- p -out
– volume: 83
  start-page: 472
  year: 2013
  end-page: 484
  ident: bb0045
  article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
– volume: 194
  start-page: 363
  year: 2011
  end-page: 371
  ident: bb0080
  article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study
  publication-title: Psychiatry Res - Neuroimaging
– start-page: 173
  year: 2019
  end-page: 182
  ident: bb0155
  article-title: Inter-scanner harmonization of high angular resolution dw-mri using null space deep learning
  publication-title: Proc. MICCAI 2019 Comput. Diffus. MRI
– year: 2007
  ident: bb0285
  article-title: Non-linear registration aka spatial normalisation
– volume: 84
  start-page: 133
  year: 2014
  end-page: 140
  ident: bb0040
  article-title: Effects of study design in multi-scanner voxel-based morphometry studies
  publication-title: Neuroimage
– volume: 70
  start-page: 711
  year: 2013
  end-page: 721
  ident: bb0325
  article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI
  publication-title: Magn Reson Med
– volume: 35
  start-page: 81
  year: 2017
  end-page: 90
  ident: bb0085
  article-title: Quantitative quality assurance in a multicenter HARDI clinical trial at 3T
  publication-title: Magn Reson Imaging
– volume: 73
  start-page: 2174
  year: 2015
  end-page: 2184
  ident: bb0280
  article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
  publication-title: Magn Reson Med
– volume: 38
  start-page: 537
  year: 2017
  end-page: 545
  ident: bb0075
  article-title: Toward precision and reproducibility of diffusion tensor imaging: a multicenter diffusion phantom and traveling volunteer study
  publication-title: Am J Neuroradiol
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  ident: bb0315
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bb0255
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 40
  start-page: 1176
  year: 2011
  end-page: 1186
  ident: bb0005
  article-title: Cohort profile: the Amsterdam born children and their development (ABCD) study
  publication-title: Int J Epidemiol
– volume: 40
  start-page: 570
  year: 2008
  end-page: 582
  ident: bb0290
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template
  publication-title: Neuroimage
– volume: 62
  start-page: 220
  year: 2019
  end-page: 227
  ident: bb0160
  article-title: Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI
  publication-title: Magn Reson Imaging
– volume: 28
  start-page: 1345
  year: 2008
  end-page: 1350
  ident: bb0220
  article-title: Age-related non-Gaussian diffusion patterns in the prefrontal brain
  publication-title: J Magn Reson Imaging
– volume: 254
  start-page: 876
  year: 2010
  end-page: 881
  ident: bb0190
  article-title: Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences
  publication-title: Radiology
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bb0260
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 183
  start-page: 532
  year: 2018
  end-page: 543
  ident: bb0275
  article-title: Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline
  publication-title: Neuroimage
– volume: 69
  start-page: 1754
  year: 2013
  end-page: 1760
  ident: bb0310
  article-title: Experimentally and computationally fast method for estimation of a mean kurtosis
  publication-title: Magn Reson Med
– volume: 144
  start-page: 12
  year: 2017
  end-page: 22
  ident: bb0210
  article-title: Diffusion kurtosis metrics as biomarkers of microstructural development: a comparative study of a group of children and a group of adults
  publication-title: Neuroimage
– volume: 76
  start-page: 1684
  year: 2016
  end-page: 1696
  ident: bb0240
  article-title: Bias and precision analysis of diffusional kurtosis imaging for different acquisition schemes
  publication-title: Magn Reson Med
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bb0020
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage
– start-page: 173
  year: 2019
  end-page: 182
  ident: bb0170
  article-title: Spherical Harmonic Residual Network for Diffusion Signal Harmonization
  publication-title: Proc. MICCAI 2019 Comput. Diffus. MRI, Cham
– volume: 135
  start-page: 311
  year: 2016
  end-page: 323
  ident: bb0120
  article-title: Inter-site and inter-scanner diffusion MRI data harmonization
  publication-title: Neuroimage
– volume: 119
  start-page: 406
  year: 2015
  end-page: 416
  ident: bb0110
  article-title: Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths
  publication-title: Neuroimage
– volume: 3
  year: 2019
  ident: bb0035
  article-title: Harnessing reliability for neuroscience research
  publication-title: Nat Hum Behav
– volume: 195
  start-page: 285
  year: 2019
  end-page: 299
  ident: bb0165
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms
  publication-title: Neuroimage
– volume: 27
  start-page: 283
  year: 2017
  end-page: 298
  ident: bb0225
  article-title: Regional values of diffusional kurtosis estimates in the healthy brain during normal aging
  publication-title: Clin Neuroradiol
– start-page: 61
  year: 2017
  end-page: 70
  ident: bb0135
  article-title: Diffusion MRI signal augmentation: from single shell to multi shell with deep learning. Proc. MICCAI 2017 Comput. Diffus. MRI, Cham
– volume: 27
  start-page: 48
  year: 2005
  end-page: 58
  ident: bb0320
  article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain
  publication-title: Neuroimage
– volume: 261
  start-page: 210
  year: 2011
  end-page: 217
  ident: bb0205
  article-title: Parkinson disease: diagnostic utility of diffusion kurtosis imaging
  publication-title: Radiology
– volume: 263
  start-page: 492
  year: 2012
  end-page: 501
  ident: bb0195
  article-title: Gliomas: diffusion kurtosis MR imaging in grading
  publication-title: Radiology
– volume: 12
  start-page: 284
  year: 2016
  end-page: 295
  ident: bb0115
  article-title: Multi-site harmonization of diffusion MRI data in a registration framework
  publication-title: Brain Imaging Behav
– volume: 124
  start-page: 1149
  year: 2016
  end-page: 1154
  ident: bb0025
  article-title: The pediatric imaging, neurocognition, and genetics (PING) data repository
  publication-title: Neuroimage
– volume: 45
  start-page: 810
  year: 2009
  end-page: 823
  ident: bb0105
  article-title: Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies
  publication-title: Neuroimage
– start-page: 1653
  year: 2018
  ident: bb0145
  article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network
  publication-title: Proc. Int. Soc. Magn. Reson. Med
– volume: 70
  start-page: 265
  year: 2018
  end-page: 275
  ident: bb0215
  article-title: Modeling white matter tract integrity in aging with diffusional kurtosis imaging
  publication-title: Neurobiol Aging
– volume: 25
  start-page: 1369
  year: 2012
  end-page: 1377
  ident: bb0200
  article-title: Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging
  publication-title: NMR Biomed
– volume: 13
  start-page: P1368
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0030
  article-title: ADNI-3 MRI Acquisitions
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.06.2110
– volume: 51
  start-page: 1384
  year: 2010
  ident: 10.1016/j.mri.2020.08.001_bb0300
  article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.046
– volume: 52
  start-page: 2350
  year: 2008
  ident: 10.1016/j.mri.2020.08.001_bb0295
– volume: 184
  start-page: 180
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0125
  article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.073
– volume: 28
  start-page: 1345
  year: 2008
  ident: 10.1016/j.mri.2020.08.001_bb0220
  article-title: Age-related non-Gaussian diffusion patterns in the prefrontal brain
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21604
– volume: 62
  start-page: 220
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0160
  article-title: Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.07.012
– volume: 194
  start-page: 363
  year: 2011
  ident: 10.1016/j.mri.2020.08.001_bb0080
  article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study
  publication-title: Psychiatry Res - Neuroimaging
  doi: 10.1016/j.pscychresns.2011.05.012
– start-page: 173
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0170
  article-title: Spherical Harmonic Residual Network for Diffusion Signal Harmonization
– volume: 144
  start-page: 12
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0210
  article-title: Diffusion kurtosis metrics as biomarkers of microstructural development: a comparative study of a group of children and a group of adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.033
– volume: 76
  start-page: 1574
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0250
  article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26054
– volume: 38
  start-page: 537
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0075
  article-title: Toward precision and reproducibility of diffusion tensor imaging: a multicenter diffusion phantom and traveling volunteer study
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5025
– volume: 84
  start-page: 133
  year: 2014
  ident: 10.1016/j.mri.2020.08.001_bb0040
  article-title: Effects of study design in multi-scanner voxel-based morphometry studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.046
– volume: 6
  start-page: 42380
  year: 2015
  ident: 10.1016/j.mri.2020.08.001_bb0185
  article-title: Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5675
– volume: 52
  start-page: 1374
  year: 2010
  ident: 10.1016/j.mri.2020.08.001_bb0330
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.043
– volume: 76
  start-page: 1684
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0240
  article-title: Bias and precision analysis of diffusional kurtosis imaging for different acquisition schemes
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26008
– volume: 59
  start-page: 1
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0090
  article-title: Reproducibility of multi-shell diffusion tractography on traveling subjects: a multicenter study prospective
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.02.011
– volume: 45
  start-page: 810
  year: 2009
  ident: 10.1016/j.mri.2020.08.001_bb0105
  article-title: Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.039
– volume: 73
  start-page: 2174
  year: 2015
  ident: 10.1016/j.mri.2020.08.001_bb0280
  article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25351
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.mri.2020.08.001_bb0020
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 83
  start-page: 472
  year: 2013
  ident: 10.1016/j.mri.2020.08.001_bb0045
  article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.007
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0255
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 62
  start-page: 2222
  year: 2012
  ident: 10.1016/j.mri.2020.08.001_bb0010
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 12
  start-page: 311
  year: 2018
  ident: 10.1016/j.mri.2020.08.001_bb0050
  article-title: Intra- and inter-scanner reliability of scaled subprofile model of principal component analysis on ALFF in resting-state fMRI under eyes open and closed conditions
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00311
– volume: 30
  start-page: 1
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0065
  article-title: Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3777
– volume: 55
  start-page: 930
  year: 2006
  ident: 10.1016/j.mri.2020.08.001_bb0235
  article-title: Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20832
– volume: 124
  start-page: 442
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0055
  article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.010
– volume: 195
  start-page: 285
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0165
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.077
– volume: 32
  start-page: 43
  year: 2018
  ident: 10.1016/j.mri.2020.08.001_bb0015
  article-title: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites
  publication-title: Dev Cogn Neurosci
  doi: 10.1016/j.dcn.2018.03.001
– volume: 7
  start-page: 71398
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0270
  article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919241
– volume: 70
  start-page: 711
  year: 2013
  ident: 10.1016/j.mri.2020.08.001_bb0325
  article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24501
– start-page: 173
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0155
  article-title: Inter-scanner harmonization of high angular resolution dw-mri using null space deep learning
– volume: 35
  start-page: 81
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0085
  article-title: Quantitative quality assurance in a multicenter HARDI clinical trial at 3T
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2016.08.022
– volume: 119
  start-page: 406
  year: 2015
  ident: 10.1016/j.mri.2020.08.001_bb0110
  article-title: Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.06.078
– volume: 25
  start-page: 1369
  year: 2012
  ident: 10.1016/j.mri.2020.08.001_bb0200
  article-title: Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging
  publication-title: NMR Biomed
  doi: 10.1002/nbm.2809
– volume: 20
  start-page: 870
  year: 2003
  ident: 10.1016/j.mri.2020.08.001_bb0260
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 135
  start-page: 311
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0120
  article-title: Inter-site and inter-scanner diffusion MRI data harmonization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.041
– volume: 27
  start-page: 48
  year: 2005
  ident: 10.1016/j.mri.2020.08.001_bb0320
  article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.042
– volume: 27
  start-page: 283
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0225
  article-title: Regional values of diffusional kurtosis estimates in the healthy brain during normal aging
  publication-title: Clin Neuroradiol
  doi: 10.1007/s00062-015-0490-z
– volume: 23
  start-page: 698
  year: 2010
  ident: 10.1016/j.mri.2020.08.001_bb0180
  article-title: MRI quantification of non-Gaussian water diffusion by kurtosis analysis
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1518
– start-page: 1653
  year: 2018
  ident: 10.1016/j.mri.2020.08.001_bb0145
  article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network
– volume: 65
  start-page: 823
  year: 2011
  ident: 10.1016/j.mri.2020.08.001_bb0230
  article-title: Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22655
– volume: 44
  start-page: 125
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0060
  article-title: Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: implications for multi-center imaging studies
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2017.09.001
– year: 2007
  ident: 10.1016/j.mri.2020.08.001_bb0285
– volume: 38
  start-page: 1599
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0130
  article-title: Multi-site harmonization of diffusion MRI data via method of moments
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2895020
– start-page: 61
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0135
– volume: 263
  start-page: 492
  year: 2012
  ident: 10.1016/j.mri.2020.08.001_bb0195
  article-title: Gliomas: diffusion kurtosis MR imaging in grading
  publication-title: Radiology
  doi: 10.1148/radiol.12110927
– volume: 69
  start-page: 1754
  year: 2013
  ident: 10.1016/j.mri.2020.08.001_bb0310
  article-title: Experimentally and computationally fast method for estimation of a mean kurtosis
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24743
– volume: 36
  start-page: 1123
  year: 2007
  ident: 10.1016/j.mri.2020.08.001_bb0305
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.056
– volume: 183
  start-page: 532
  year: 2018
  ident: 10.1016/j.mri.2020.08.001_bb0275
  article-title: Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.066
– volume: 40
  start-page: 1176
  year: 2011
  ident: 10.1016/j.mri.2020.08.001_bb0005
  article-title: Cohort profile: the Amsterdam born children and their development (ABCD) study
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyq128
– volume: 26
  start-page: 756
  year: 2007
  ident: 10.1016/j.mri.2020.08.001_bb0070
  article-title: Effects of SNR on the accuracy and reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: J Magn Reson
– year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0150
  article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network
  publication-title: Med Phys
  doi: 10.1002/mp.13555
– start-page: 217
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0265
– volume: 142
  start-page: 394
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0245
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 3
  year: 2019
  ident: 10.1016/j.mri.2020.08.001_bb0035
  article-title: Harnessing reliability for neuroscience research
  publication-title: Nat Hum Behav
  doi: 10.1038/s41562-019-0655-x
– volume: 161
  start-page: 149
  year: 2017
  ident: 10.1016/j.mri.2020.08.001_bb0100
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 124
  start-page: 1149
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0025
  article-title: The pediatric imaging, neurocognition, and genetics (PING) data repository
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.057
– volume: 12
  start-page: 284
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0115
  article-title: Multi-site harmonization of diffusion MRI data in a registration framework
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-016-9670-y
– volume: 53
  start-page: 1432
  year: 2005
  ident: 10.1016/j.mri.2020.08.001_bb0175
  article-title: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20508
– volume: 261
  start-page: 210
  year: 2011
  ident: 10.1016/j.mri.2020.08.001_bb0205
  article-title: Parkinson disease: diagnostic utility of diffusion kurtosis imaging
  publication-title: Radiology
  doi: 10.1148/radiol.11102277
– volume: 70
  start-page: 265
  year: 2018
  ident: 10.1016/j.mri.2020.08.001_bb0215
  article-title: Modeling white matter tract integrity in aging with diffusional kurtosis imaging
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2018.07.006
– volume: 130
  start-page: 194
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0095
  article-title: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.01.061
– volume: 254
  start-page: 876
  year: 2010
  ident: 10.1016/j.mri.2020.08.001_bb0190
  article-title: Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences
  publication-title: Radiology
  doi: 10.1148/radiol.09090819
– volume: 35
  start-page: 1344
  year: 2016
  ident: 10.1016/j.mri.2020.08.001_bb0140
  article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2551324
– volume: 40
  start-page: 570
  year: 2008
  ident: 10.1016/j.mri.2020.08.001_bb0290
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.035
– volume: 61
  start-page: 1000
  year: 2012
  ident: 10.1016/j.mri.2020.08.001_bb0315
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
SSID ssj0005235
Score 2.4088888
Snippet Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31
SubjectTerms Anisotropy
Deep Learning
Diffusion kurtosis imaging
Diffusion Magnetic Resonance Imaging
Female
Humans
Image Processing, Computer-Assisted - methods
Male
Multicenter harmonization
Reproducibility of Results
White Matter - diagnostic imaging
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTiQHl3UUFG4gS4TeLHOscVoqqQtuLASsspchwHpV2SbTYBlRMH_gH_sL-kniReIUAtHCN5JFszzjw8830AL7gxgTMDS4NMMspNqmlq0og6d8KkEbnSGQ4nz47l0Zy_W4jFFrz2szBVbRDwoUZ6kGGayinFYpGrOQgZ4sUd3IBtic9JI9ieH7-ffuyQNllAJ5FYYH6lJowKFXP_iNm1c32uC5cNRkEH2DlQwPzFDf0ZZt6GW2250udf9XL5i-s53IGZ33TfcXK63zbpvvn2G57jv57qLtwZYlAy7Y3mHmzZ8j7cnA2v7A_gx5Rk1q7IwCjx6eL7T3R2GenppomLc0nhixGktsuiB_s-J1VOug5FbPm0NcGNtFiOI6dt3VTrYu3kOlokgvVf8gUT9Yxoc9YWfe8YQdyIyhnn-iHMD99-eHNEB7YGalxK2VCOuU3GGc-Fjo0xmeEi0tZEJpSaizi1QZhpkwptVR5bZrULvjKrVG5F7EyJPYJRWZV2F4j7QMwcFeZpypkNYyUnWrhEKNIql2E-hsArLzEDlDkyaiwT37N2kjh9J6jvBFk2g3AMLzciqx7H46rFkbeIxA-oul9q4rzMVUJ8IzREL31Ucp3Yc29yibvZ-FyjS1u16yTiTPKAKSnH8Li3xc3WGXb_ulhrDK82xnn9uZ781-o9GDV1a5-6oKtJnw137RJmeDAO
  priority: 102
  providerName: Unpaywall
Title A deep learning–based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X20302927
https://dx.doi.org/10.1016/j.mri.2020.08.001
https://www.ncbi.nlm.nih.gov/pubmed/32822818
https://www.proquest.com/docview/2436403866
https://orca.cardiff.ac.uk/id/eprint/134540/
UnpaywallVersion submittedVersion
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVuJxqHizPCojcQKFTWzHTY6rimoBdYUEK5WT5dgOCizJkt1Q9VJx4B_wD_klzMTOqgjUSpyiRB7JsT97ZuyZ-Qh5KoyJAQYuiq3kkTCFjgpTsAjUCZcmLTNtMTn5aCanc_H6OD3eIgdDLgyGVYa93-_p_W4dvozDaI6XVTV-h-DcZ-BsAU5ZzjCjHKt_AaZfnJ0P8_Akm9A4wtbDzWYf4_WlrcBFZHFfxTPwwvxDN_1te14nV7t6qU9P9GJxTh8d3iC7wZCkE9_Xm2TL1bfIlaNwVX6b_JhQ69ySBlqIj7--_0SNZannjKZgrNJqOFGgrVtUvmL3KW1K2ocZYtymaylSqHR4pkY_d-26WVUrkOu5jSge4tJv6G1bqs3XrvIBYBSLPzSAsNUdMj98-f5gGgXKhcjA2K0jgQ6KFVyUqc6NMdaIlGlnmEmkFmleuDix2hSpdlmZO-40WFDWZVnp0hzwwO-S7bqp3X1C4QUL32RJWRSCuyTP5L5OwZthOitlUo5IPAy2MqEeOdJiLNQQePZJwfwonB-FVJlxMiLPNiJLX4zjosZsmEE1ZJnCvqhAVVwkJDZCf8DwMrEnA0QULE-8c9G1a7qVYoJLEfNMyhG557Gz6TrHEF4wmEbk-QZMl__Xg__r4kNyDd98GuUjsr1uO_cY7Kl1sdcvmD2yM3n1ZjqD53z2dvLhN_LeJJ0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrUTpAfEqLE8jcQJFmzhONjmuKqot7e6FVurNcmwHhS7Jkt1Q9caBf8A_5JcwkzirIlArcUzikRz78zzs8XwAb4TWPsLAer6JQ0_oTHmZzriH5iSMdZQnytDl5Nk8np6KD2fR2Rbs93dhKK3S6f5Op7fa2r0ZudEcLYti9JHAOeYYbCFOecrHt2BbRKiTB7A9OTyazq9kenQ8m9jeI4H-cLNN8_pSFxglcr8t5OmoYf5hnv52P3dhpymX6vJCLRZXTNLBPbjrfEk26bp7H7Zs-QBuz9xp-UP4MWHG2iVzzBCffn3_SUbLsI42mqG_yop-U4HVdlF0RbsvWZWzNtOQUjdtzYhFpaFtNXbe1OtqVaxQrqU3YrSPy75RwG2Y0l-bossBY1T_oUKQrR7B6cH7k_2p51gXPI2h4doTFKMYEYo8UqnW2mgRcWU110GsRJRm1g-M0lmkbJKnNrQKnShjkyS3UYqQCPdgUFalfQIMH6j2TRLkWSZCG6RJPFYRBjRcJXkc5EPw-8GW2pUkJ2aMhexzzz5LnB9J8yOJLdMPhvB2I7Ls6nFc15j3Myj7i6aoGiVai-uExEboDyTeJPa6h4jEFUrHLqq0VbOSXISx8MMkjofwuMPOpushZfGizzSEdxsw3fxfT_-vi69gZ3oyO5bHh_OjZ3CHvnS3Kp_DYF039gW6V-vspVs-vwGepSWY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTiQHl3UUFG4gS4TeLHOscVoqqQtuLASsspchwHpV2SbTYBlRMH_gH_sL-kniReIUAtHCN5JFszzjw8830AL7gxgTMDS4NMMspNqmlq0og6d8KkEbnSGQ4nz47l0Zy_W4jFFrz2szBVbRDwoUZ6kGGayinFYpGrOQgZ4sUd3IBtic9JI9ieH7-ffuyQNllAJ5FYYH6lJowKFXP_iNm1c32uC5cNRkEH2DlQwPzFDf0ZZt6GW2250udf9XL5i-s53IGZ33TfcXK63zbpvvn2G57jv57qLtwZYlAy7Y3mHmzZ8j7cnA2v7A_gx5Rk1q7IwCjx6eL7T3R2GenppomLc0nhixGktsuiB_s-J1VOug5FbPm0NcGNtFiOI6dt3VTrYu3kOlokgvVf8gUT9Yxoc9YWfe8YQdyIyhnn-iHMD99-eHNEB7YGalxK2VCOuU3GGc-Fjo0xmeEi0tZEJpSaizi1QZhpkwptVR5bZrULvjKrVG5F7EyJPYJRWZV2F4j7QMwcFeZpypkNYyUnWrhEKNIql2E-hsArLzEDlDkyaiwT37N2kjh9J6jvBFk2g3AMLzciqx7H46rFkbeIxA-oul9q4rzMVUJ8IzREL31Ucp3Yc29yibvZ-FyjS1u16yTiTPKAKSnH8Li3xc3WGXb_ulhrDK82xnn9uZ781-o9GDV1a5-6oKtJnw137RJmeDAO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning%E2%80%93based+method+for+improving+reliability+of+multicenter+diffusion+kurtosis+imaging+with+varied+acquisition+protocols&rft.jtitle=Magnetic+resonance+imaging&rft.au=Tong%2C+Qiqi&rft.au=Gong%2C+Ting&rft.au=He%2C+Hongjian&rft.au=Wang%2C+Zheng&rft.date=2020-11-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=73&rft.spage=31&rft.epage=44&rft_id=info:doi/10.1016%2Fj.mri.2020.08.001&rft.externalDocID=S0730725X20302927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon