A deep learning–based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols
Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One f...
Saved in:
Published in | Magnetic resonance imaging Vol. 73; pp. 31 - 44 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0730-725X 1873-5894 1873-5894 |
DOI | 10.1016/j.mri.2020.08.001 |
Cover
Abstract | Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning–based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning–based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations. |
---|---|
AbstractList | Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning–based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning–based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations. Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning-based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning-based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations.Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers cause unavoidable data heterogeneity across centers, its impact on reliability in study outcomes has also drawn much attention recently. One fundamental issue arises in how to derive model parameters reliably from image data of varying quality. This issue is even more challenging for advanced diffusion methods such as diffusion kurtosis imaging (DKI). Recently, deep learning-based methods have been demonstrated with their potential for robust and efficient computation of diffusion-derived measures. Inspired by these approaches, the current study specifically designed a framework based on a three-dimensional hierarchical convolutional neural network, to jointly reconstruct and harmonize DKI measures from multicenter acquisition to reformulate these to a state-of-the-art hardware using data from traveling subjects. The results from the harmonized data acquired with different protocols show that: 1) the inter-scanner variation of DKI measures within white matter was reduced by 51.5% in mean kurtosis, 65.9% in axial kurtosis, 53.7% in radial kurtosis, and 61.5% in kurtosis fractional anisotropy, respectively; 2) data reliability of each single scanner was enhanced and brought to the level of the reference scanner; and 3) the harmonization network was able to reconstruct reliable DKI values from high data variability. Overall the results demonstrate the feasibility of the proposed deep learning-based method for DKI harmonization and help to simplify the protocol setup procedure for multicenter scanners with different hardware and software configurations. |
Author | Meng, Xin Cui, Hongsheng Yu, Wenwen Tax, Chantal W.M. He, Hongjian Wang, Zheng Zhang, Jianjun Zhong, Jianhui Zhai, Lihao Tong, Qiqi Gong, Ting |
Author_xml | – sequence: 1 givenname: Qiqi surname: Tong fullname: Tong, Qiqi email: tongqq@zju.edu.cn organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 2 givenname: Ting surname: Gong fullname: Gong, Ting email: gongting@zju.edu.cn organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 3 givenname: Hongjian surname: He fullname: He, Hongjian email: hhezju@zju.edu.cn organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 4 givenname: Zheng surname: Wang fullname: Wang, Zheng email: zheng.wang@ion.ac.cn organization: Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China – sequence: 5 givenname: Wenwen surname: Yu fullname: Yu, Wenwen email: wwyu@ion.ac.cn organization: Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China – sequence: 6 givenname: Jianjun surname: Zhang fullname: Zhang, Jianjun organization: Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China – sequence: 7 givenname: Lihao surname: Zhai fullname: Zhai, Lihao organization: Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China – sequence: 8 givenname: Hongsheng surname: Cui fullname: Cui, Hongsheng organization: Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China – sequence: 9 givenname: Xin surname: Meng fullname: Meng, Xin organization: Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China – sequence: 10 givenname: Chantal W.M. surname: Tax fullname: Tax, Chantal W.M. email: TaxC@cardiff.ac.uk organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom – sequence: 11 givenname: Jianhui surname: Zhong fullname: Zhong, Jianhui email: jzhong@zju.edu.cn organization: Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32822818$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkL1uFDEUhS0URDaBB6BBLml2sT32rEdUUcSfFIkGJDrLY99J7sYz3tieRNtR8Aa8IU-CVxsoUgSqW9zzHR19J-RoihMQ8pKzFWe8fbNZjQlXggm2YnrFGH9CFlyvm6XSnTwiC7Zu2HIt1LdjcpLzhjGmRKOekeNGaCE01wvy44x6gC0NYNOE0-Wv7z97m8HTEcpV9HSIieK4TfG2PmmCgLbHgGVH40DHORR0MBVI1OMwzBnjRK_nVGLGXDl7uafusFzRW5uw1lp3M2PGsg_W1hJdDPk5eTrYkOHF_T0lX9-_-3L-cXnx-cOn87OLpZOyLUvJ17LxspGDsp1zzjuphAUnHG-tVF0PjHvremVBDx00YBVTHrQeQHXQQ3NKxKF3nrZ2d2dDMNtUV6ad4czslZqNqUrNXqlh2lSlFXp9gOrcmxlyMSNmByHYCeKcjZBNK1mj27ZGX91H534E_7f8j-4aWB8CLsWcEwzGYbF7GSVZDI-u4A_I_1n-9sBAdXqLkEx2CJMDjwlcMT7io3T3gHYBJ3Q2XMPuH-xvaMvS0w |
CitedBy_id | crossref_primary_10_1007_s10278_022_00721_9 crossref_primary_10_1093_pcmedi_pbaa029 crossref_primary_10_1016_j_neuroimage_2022_119297 crossref_primary_10_1016_j_neuroimage_2023_120125 crossref_primary_10_1016_j_inffus_2022_01_001 crossref_primary_10_1117_1_JMI_11_1_014005 crossref_primary_10_4103_jmp_jmp_10_24 crossref_primary_10_1016_j_mri_2021_11_001 crossref_primary_10_1002_jmri_28887 crossref_primary_10_1007_s12264_022_00905_x crossref_primary_10_1162_imag_a_00353 crossref_primary_10_3390_bioengineering10040397 |
Cites_doi | 10.1016/j.jalz.2017.06.2110 10.1016/j.neuroimage.2010.03.046 10.1016/j.neuroimage.2018.08.073 10.1002/jmri.21604 10.1016/j.mri.2019.07.012 10.1016/j.pscychresns.2011.05.012 10.1016/j.neuroimage.2016.08.033 10.1002/mrm.26054 10.3174/ajnr.A5025 10.1016/j.neuroimage.2013.08.046 10.18632/oncotarget.5675 10.1016/j.neuroimage.2010.05.043 10.1002/mrm.26008 10.1016/j.mri.2019.02.011 10.1016/j.neuroimage.2008.12.039 10.1002/mrm.25351 10.1016/j.neuroimage.2013.05.057 10.1016/j.neuroimage.2013.05.007 10.1016/j.neuroimage.2015.10.019 10.1016/j.neuroimage.2012.02.018 10.3389/fnins.2018.00311 10.1002/nbm.3777 10.1002/mrm.20832 10.1016/j.neuroimage.2015.07.010 10.1016/j.neuroimage.2019.01.077 10.1016/j.dcn.2018.03.001 10.1109/ACCESS.2019.2919241 10.1002/mrm.24501 10.1016/j.mri.2016.08.022 10.1016/j.neuroimage.2015.06.078 10.1002/nbm.2809 10.1016/S1053-8119(03)00336-7 10.1016/j.neuroimage.2016.04.041 10.1016/j.neuroimage.2005.03.042 10.1007/s00062-015-0490-z 10.1002/nbm.1518 10.1002/mrm.22655 10.1016/j.mri.2017.09.001 10.1109/TMI.2019.2895020 10.1148/radiol.12110927 10.1002/mrm.24743 10.1016/j.neuroimage.2007.02.056 10.1016/j.neuroimage.2018.07.066 10.1093/ije/dyq128 10.1002/mp.13555 10.1016/j.neuroimage.2016.08.016 10.1038/s41562-019-0655-x 10.1016/j.neuroimage.2017.08.047 10.1016/j.neuroimage.2015.04.057 10.1007/s11682-016-9670-y 10.1002/mrm.20508 10.1148/radiol.11102277 10.1016/j.neurobiolaging.2018.07.006 10.1016/j.neuroimage.2016.01.061 10.1148/radiol.09090819 10.1109/TMI.2016.2551324 10.1016/j.neuroimage.2007.12.035 10.1016/j.neuroimage.2012.03.072 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
DOI | 10.1016/j.mri.2020.08.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 44 |
ExternalDocumentID | oai:http://orca-dev.cardiff.ac.uk:134540 32822818 10_1016_j_mri_2020_08_001 S0730725X20302927 |
Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 104943/Z/14/Z – fundername: Wellcome Trust grantid: 096646/Z/11/Z |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG AAYXX ACLOT CITATION ~HD AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c446t-41743d434f5a9cccdc452aec2c16a459be01dacb5ae8f9e3ea505de88fe59ebe3 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Tue Aug 19 22:39:11 EDT 2025 Mon Sep 29 03:47:30 EDT 2025 Mon Jul 21 05:51:00 EDT 2025 Wed Oct 01 02:39:40 EDT 2025 Thu Apr 24 23:12:54 EDT 2025 Fri Feb 23 02:47:27 EST 2024 Tue Aug 26 18:33:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SCR Diffusion magnetic resonance imaging Diffusion kurtosis imaging KFA SLF dMRI PTR Deep learning Multicenter harmonization ANOVA SNR WM CSF DWI MD ALIC EC MK SS AD BCC DKI GCC AK NRMSE RISH CP ROI ACR TE RD RLIC SCC CV PLIC DTI SGM RK ReLU FA CgC PCR TR |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-41743d434f5a9cccdc452aec2c16a459be01dacb5ae8f9e3ea505de88fe59ebe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://orca.cardiff.ac.uk/id/eprint/134540/ |
PMID | 32822818 |
PQID | 2436403866 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | unpaywall_primary_10_1016_j_mri_2020_08_001 proquest_miscellaneous_2436403866 pubmed_primary_32822818 crossref_citationtrail_10_1016_j_mri_2020_08_001 crossref_primary_10_1016_j_mri_2020_08_001 elsevier_sciencedirect_doi_10_1016_j_mri_2020_08_001 elsevier_clinicalkey_doi_10_1016_j_mri_2020_08_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Teipel, Reuter, Stieltjes, Acosta-cabronero, Ernemann, Fellgiebel (bb0080) 2011; 194 Salimi-khorshidi, Smith, Keltner, Wager, Nichols (bb0105) 2009; 45 Van Cauter, Veraart, Sijbers, Peeters, Himmelreich, De Keyzer (bb0195) 2012; 263 Gong, He, Li, Lin, Tong, Li (bb0145) 2018 Gao, Zhang, Wong, Wu, Zhang, Gao (bb0200) 2012; 25 Tabesh, Jensen, Ardekani, Helpern (bb0230) 2011; 65 Yuan, Wang, Zhao, Li, Ma, Liu (bb0050) 2018; 12 Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel (bb0100) 2017; 161 Vollmar, O’Muircheartaigh, Barker, Symms, Thompson, Kumari (bb0300) 2010; 51 Wang, Lin, Lu, Ng, Weng, Ng (bb0205) 2011; 261 Falangola, Jensen, Babb, Hu, Castellanos, Di Martino (bb0220) 2008; 28 Hansen, Lund, Sangill, Jespersen (bb0310) 2013; 69 Golkov, Dosovitskiy, Sperl, Menzel, Czisch, Sämann (bb0140) 2016; 35 Veraart, Novikov, Christiaens, Ades-aron, Sijbers, Fieremans (bb0245) 2016; 142 Alexander, Hubbard, Hall, Moore, Ptito, Parker (bb0330) 2010; 52 Dyrby, Søgaard, Hall, Ptito, Alexander (bb0325) 2013; 70 Jernigan, Brown, Hagler, Akshoomoff, Bartsch, Newman (bb0025) 2016; 124 Zuo, Xu, Milham (bb0035) 2019; 3 Li, Gong, Lin, He, Tong, Li (bb0270) 2019; 7 Jiang, Jiang, Zhao, Zhang, Zhang, Yao (bb0185) 2015; 6 An, Moon, Ryu, Park, Yun, Choi (bb0060) 2017; 44 Jovicich, Minati, Marizzoni, Marchitelli, Sala-Llonch, Bartrés-Faz (bb0055) 2016; 124 Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bb0115) 2016; 12 Casey, Cannonier, Conley, Cohen, Barch, Heitzeg (bb0015) 2018; 32 Das, Wang, Bing, Bhetuwal, Yang (bb0225) 2017; 27 Collier, Veraart, Jeurissen, Den Dekker, Sijbers (bb0280) 2015; 73 Landman, Farrell, Jones, Smith, Prince, Mori (bb0305) 2007; 36 Takao, Hayashi, Ohtomo (bb0040) 2014; 84 Venkatraman, Gonzalez, Landman, Goh, Reiter, An (bb0110) 2015; 119 Ades-Aron, Veraart, Kochunov, McGuire, Sherman, Kellner (bb0275) 2018; 183 Jensen, Helpern (bb0180) 2010; 23 Huynh, Chen, Wu, Shen, Yap (bb0130) 2019; 38 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz (bb0010) 2012; 62 Assaf, Basser (bb0320) 2005; 27 Koppers, Bloy, Berman, CMW, Edgar, Merhof (bb0170) 2019 Raab, Hattingen, Franz, Zanella, Lanfermann (bb0190) 2010; 254 Tong, He, Gong, Li, Liang, Qian (bb0090) 2019; 59 Gunter, Borowski, Thostenson, Arani, Reid, Cash (bb0030) 2017; 13 Koay, Carew, Alexander, Basser, Meyerand (bb0235) 2006; 55 Koppers, Haarburger, Merhof (bb0135) 2017 Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold (bb0045) 2013; 83 Andersson, Skare, Ashburner (bb0260) 2003; 20 Sprenger, Sperl, Fernandez, Golkov, Eidner, Sämann (bb0240) 2016; 76 Palacios, Martin, Boss, Ezekiel, Chang, Yuh (bb0075) 2017; 38 Farrell, Landman, Jones, Smith, Prince, Van Zijl (bb0070) 2007; 26 Lin, Gong, Wang, Li, He, Tong (bb0150) 2019 Chuhutin, Hansen, Jespersen (bb0065) 2017; 30 Mori, Oishi, Jiang, Jiang, Li, Akhter (bb0290) 2008; 40 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach (bb0020) 2013; 80 Andersson, Sotiropoulos (bb0255) 2016; 125 Ning, Bonet-Carne, Grussu, Sepehrband, Kaden, Veraart (bb0265) 2019 Pohl, Sullivan, Rohlfing, Chu, Kwon, Nichols (bb0095) 2016; 130 Karayumak, Bouix, Ning, James, Crow, Shenton (bb0125) 2019; 184 Andersson, Jenkinson, Smith (bb0285) 2007 Van Eijsden, Vrijkotte, Gemke, Van der Wal (bb0005) 2011; 40 Nath, Parvathaneni, Hansen, Hainline, Bermudez, Remedios (bb0155) 2019 Jensen, Helpern, Ramani, Lu, Kaczynski (bb0175) 2005; 53 Nath, Schilling, Parvathaneni, Hansen, Hainline, Huo (bb0160) 2019; 62 Tax, Grussu, Kaden, Ning, Rudrapatna, John Evans (bb0165) 2019; 195 Zhou, Sakaie, Debbins, Kirsch, Tatsuoka, Fox (bb0085) 2017; 35 Benitez, Jensen, Falangola, Nietert, Helpern (bb0215) 2018; 70 Celisse, Robin (bb0295) 2008; 52 Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bb0120) 2016; 135 Grinberg, Maximov, Farrher, Neuner, Amort, Thönneßen (bb0210) 2017; 144 Kellner, Dhital, Kiselev, Reisert (bb0250) 2016; 76 Zhang, Schneider, Wheeler-Kingshott, Alexander (bb0315) 2012; 61 Gunter (10.1016/j.mri.2020.08.001_bb0030) 2017; 13 Van Cauter (10.1016/j.mri.2020.08.001_bb0195) 2012; 263 Jovicich (10.1016/j.mri.2020.08.001_bb0055) 2016; 124 Jensen (10.1016/j.mri.2020.08.001_bb0180) 2010; 23 Van Essen (10.1016/j.mri.2020.08.001_bb0010) 2012; 62 Takao (10.1016/j.mri.2020.08.001_bb0040) 2014; 84 Li (10.1016/j.mri.2020.08.001_bb0270) 2019; 7 Sotiropoulos (10.1016/j.mri.2020.08.001_bb0020) 2013; 80 Benitez (10.1016/j.mri.2020.08.001_bb0215) 2018; 70 Andersson (10.1016/j.mri.2020.08.001_bb0255) 2016; 125 Mori (10.1016/j.mri.2020.08.001_bb0290) 2008; 40 Mirzaalian (10.1016/j.mri.2020.08.001_bb0120) 2016; 135 Andersson (10.1016/j.mri.2020.08.001_bb0285) 2007 Koppers (10.1016/j.mri.2020.08.001_bb0135) 2017 Grinberg (10.1016/j.mri.2020.08.001_bb0210) 2017; 144 Celisse (10.1016/j.mri.2020.08.001_bb0295) 2008; 52 Casey (10.1016/j.mri.2020.08.001_bb0015) 2018; 32 Andersson (10.1016/j.mri.2020.08.001_bb0260) 2003; 20 Karayumak (10.1016/j.mri.2020.08.001_bb0125) 2019; 184 Nath (10.1016/j.mri.2020.08.001_bb0160) 2019; 62 Palacios (10.1016/j.mri.2020.08.001_bb0075) 2017; 38 Fortin (10.1016/j.mri.2020.08.001_bb0100) 2017; 161 Falangola (10.1016/j.mri.2020.08.001_bb0220) 2008; 28 Salimi-khorshidi (10.1016/j.mri.2020.08.001_bb0105) 2009; 45 Jernigan (10.1016/j.mri.2020.08.001_bb0025) 2016; 124 Collier (10.1016/j.mri.2020.08.001_bb0280) 2015; 73 Hansen (10.1016/j.mri.2020.08.001_bb0310) 2013; 69 Koppers (10.1016/j.mri.2020.08.001_bb0170) 2019 Assaf (10.1016/j.mri.2020.08.001_bb0320) 2005; 27 Van Eijsden (10.1016/j.mri.2020.08.001_bb0005) 2011; 40 Gao (10.1016/j.mri.2020.08.001_bb0200) 2012; 25 Sprenger (10.1016/j.mri.2020.08.001_bb0240) 2016; 76 Tabesh (10.1016/j.mri.2020.08.001_bb0230) 2011; 65 Jovicich (10.1016/j.mri.2020.08.001_bb0045) 2013; 83 Lin (10.1016/j.mri.2020.08.001_bb0150) 2019 Jensen (10.1016/j.mri.2020.08.001_bb0175) 2005; 53 Vollmar (10.1016/j.mri.2020.08.001_bb0300) 2010; 51 Gong (10.1016/j.mri.2020.08.001_bb0145) 2018 Mirzaalian (10.1016/j.mri.2020.08.001_bb0115) 2016; 12 Wang (10.1016/j.mri.2020.08.001_bb0205) 2011; 261 Veraart (10.1016/j.mri.2020.08.001_bb0245) 2016; 142 Ning (10.1016/j.mri.2020.08.001_bb0265) 2019 Raab (10.1016/j.mri.2020.08.001_bb0190) 2010; 254 Tong (10.1016/j.mri.2020.08.001_bb0090) 2019; 59 Venkatraman (10.1016/j.mri.2020.08.001_bb0110) 2015; 119 An (10.1016/j.mri.2020.08.001_bb0060) 2017; 44 Koay (10.1016/j.mri.2020.08.001_bb0235) 2006; 55 Zhang (10.1016/j.mri.2020.08.001_bb0315) 2012; 61 Pohl (10.1016/j.mri.2020.08.001_bb0095) 2016; 130 Yuan (10.1016/j.mri.2020.08.001_bb0050) 2018; 12 Farrell (10.1016/j.mri.2020.08.001_bb0070) 2007; 26 Das (10.1016/j.mri.2020.08.001_bb0225) 2017; 27 Dyrby (10.1016/j.mri.2020.08.001_bb0325) 2013; 70 Jiang (10.1016/j.mri.2020.08.001_bb0185) 2015; 6 Huynh (10.1016/j.mri.2020.08.001_bb0130) 2019; 38 Alexander (10.1016/j.mri.2020.08.001_bb0330) 2010; 52 Chuhutin (10.1016/j.mri.2020.08.001_bb0065) 2017; 30 Zhou (10.1016/j.mri.2020.08.001_bb0085) 2017; 35 Nath (10.1016/j.mri.2020.08.001_bb0155) 2019 Golkov (10.1016/j.mri.2020.08.001_bb0140) 2016; 35 Ades-Aron (10.1016/j.mri.2020.08.001_bb0275) 2018; 183 Zuo (10.1016/j.mri.2020.08.001_bb0035) 2019; 3 Kellner (10.1016/j.mri.2020.08.001_bb0250) 2016; 76 Tax (10.1016/j.mri.2020.08.001_bb0165) 2019; 195 Teipel (10.1016/j.mri.2020.08.001_bb0080) 2011; 194 Landman (10.1016/j.mri.2020.08.001_bb0305) 2007; 36 |
References_xml | – volume: 23 start-page: 698 year: 2010 end-page: 710 ident: bb0180 article-title: MRI quantification of non-Gaussian water diffusion by kurtosis analysis publication-title: NMR Biomed – volume: 7 start-page: 71398 year: 2019 end-page: 71411 ident: bb0270 article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network publication-title: IEEE Access – volume: 51 start-page: 1384 year: 2010 end-page: 1394 ident: bb0300 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: Neuroimage – volume: 30 start-page: 1 year: 2017 end-page: 14 ident: bb0065 article-title: Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection publication-title: NMR Biomed – volume: 32 start-page: 43 year: 2018 end-page: 54 ident: bb0015 article-title: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites publication-title: Dev Cogn Neurosci – volume: 44 start-page: 125 year: 2017 end-page: 130 ident: bb0060 article-title: Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: implications for multi-center imaging studies publication-title: Magn Reson Imaging – volume: 36 start-page: 1123 year: 2007 end-page: 1138 ident: bb0305 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage – volume: 55 start-page: 930 year: 2006 end-page: 936 ident: bb0235 article-title: Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging publication-title: Magn Reson Med – volume: 12 start-page: 311 year: 2018 ident: bb0050 article-title: Intra- and inter-scanner reliability of scaled subprofile model of principal component analysis on ALFF in resting-state fMRI under eyes open and closed conditions publication-title: Front Neurosci – volume: 59 start-page: 1 year: 2019 end-page: 9 ident: bb0090 article-title: Reproducibility of multi-shell diffusion tractography on traveling subjects: a multicenter study prospective publication-title: Magn Reson Imaging – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bb0010 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage – volume: 184 start-page: 180 year: 2019 end-page: 200 ident: bb0125 article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters publication-title: Neuroimage – year: 2019 ident: bb0150 article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network publication-title: Med Phys – start-page: 217 year: 2019 end-page: 224 ident: bb0265 article-title: Muti-shell diffusion mri harmonisation and enhancement challenge (MUSHAC): progress and results – volume: 53 start-page: 1432 year: 2005 end-page: 1440 ident: bb0175 article-title: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn Reson Med – volume: 13 start-page: P1368 year: 2017 end-page: P1369 ident: bb0030 article-title: ADNI-3 MRI Acquisitions publication-title: Alzheimers Dement – volume: 124 start-page: 442 year: 2016 end-page: 454 ident: bb0055 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage – volume: 76 start-page: 1574 year: 2016 end-page: 1581 ident: bb0250 article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts publication-title: Magn Reson Med – volume: 142 start-page: 394 year: 2016 end-page: 406 ident: bb0245 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage – volume: 26 start-page: 756 year: 2007 end-page: 767 ident: bb0070 article-title: Effects of SNR on the accuracy and reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: J Magn Reson – volume: 52 start-page: 1374 year: 2010 end-page: 1389 ident: bb0330 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: Neuroimage – volume: 38 start-page: 1599 year: 2019 end-page: 1609 ident: bb0130 article-title: Multi-site harmonization of diffusion MRI data via method of moments publication-title: IEEE Trans Med Imaging – volume: 6 start-page: 42380 year: 2015 end-page: 42393 ident: bb0185 article-title: Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation publication-title: Oncotarget – volume: 65 start-page: 823 year: 2011 end-page: 836 ident: bb0230 article-title: Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging publication-title: Magn Reson Med – volume: 161 start-page: 149 year: 2017 end-page: 170 ident: bb0100 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage – volume: 130 start-page: 194 year: 2016 end-page: 213 ident: bb0095 article-title: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study publication-title: Neuroimage – volume: 35 start-page: 1344 year: 2016 end-page: 1351 ident: bb0140 article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans publication-title: IEEE Trans Med Imaging – volume: 52 start-page: 2350 year: 2008 end-page: 2368 ident: bb0295 article-title: Nonparametric density estimation by exact leave- p -out – volume: 83 start-page: 472 year: 2013 end-page: 484 ident: bb0045 article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage – volume: 194 start-page: 363 year: 2011 end-page: 371 ident: bb0080 article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study publication-title: Psychiatry Res - Neuroimaging – start-page: 173 year: 2019 end-page: 182 ident: bb0155 article-title: Inter-scanner harmonization of high angular resolution dw-mri using null space deep learning publication-title: Proc. MICCAI 2019 Comput. Diffus. MRI – year: 2007 ident: bb0285 article-title: Non-linear registration aka spatial normalisation – volume: 84 start-page: 133 year: 2014 end-page: 140 ident: bb0040 article-title: Effects of study design in multi-scanner voxel-based morphometry studies publication-title: Neuroimage – volume: 70 start-page: 711 year: 2013 end-page: 721 ident: bb0325 article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI publication-title: Magn Reson Med – volume: 35 start-page: 81 year: 2017 end-page: 90 ident: bb0085 article-title: Quantitative quality assurance in a multicenter HARDI clinical trial at 3T publication-title: Magn Reson Imaging – volume: 73 start-page: 2174 year: 2015 end-page: 2184 ident: bb0280 article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters publication-title: Magn Reson Med – volume: 38 start-page: 537 year: 2017 end-page: 545 ident: bb0075 article-title: Toward precision and reproducibility of diffusion tensor imaging: a multicenter diffusion phantom and traveling volunteer study publication-title: Am J Neuroradiol – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: bb0315 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bb0255 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 40 start-page: 1176 year: 2011 end-page: 1186 ident: bb0005 article-title: Cohort profile: the Amsterdam born children and their development (ABCD) study publication-title: Int J Epidemiol – volume: 40 start-page: 570 year: 2008 end-page: 582 ident: bb0290 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: Neuroimage – volume: 62 start-page: 220 year: 2019 end-page: 227 ident: bb0160 article-title: Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI publication-title: Magn Reson Imaging – volume: 28 start-page: 1345 year: 2008 end-page: 1350 ident: bb0220 article-title: Age-related non-Gaussian diffusion patterns in the prefrontal brain publication-title: J Magn Reson Imaging – volume: 254 start-page: 876 year: 2010 end-page: 881 ident: bb0190 article-title: Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences publication-title: Radiology – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bb0260 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 183 start-page: 532 year: 2018 end-page: 543 ident: bb0275 article-title: Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline publication-title: Neuroimage – volume: 69 start-page: 1754 year: 2013 end-page: 1760 ident: bb0310 article-title: Experimentally and computationally fast method for estimation of a mean kurtosis publication-title: Magn Reson Med – volume: 144 start-page: 12 year: 2017 end-page: 22 ident: bb0210 article-title: Diffusion kurtosis metrics as biomarkers of microstructural development: a comparative study of a group of children and a group of adults publication-title: Neuroimage – volume: 76 start-page: 1684 year: 2016 end-page: 1696 ident: bb0240 article-title: Bias and precision analysis of diffusional kurtosis imaging for different acquisition schemes publication-title: Magn Reson Med – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bb0020 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage – start-page: 173 year: 2019 end-page: 182 ident: bb0170 article-title: Spherical Harmonic Residual Network for Diffusion Signal Harmonization publication-title: Proc. MICCAI 2019 Comput. Diffus. MRI, Cham – volume: 135 start-page: 311 year: 2016 end-page: 323 ident: bb0120 article-title: Inter-site and inter-scanner diffusion MRI data harmonization publication-title: Neuroimage – volume: 119 start-page: 406 year: 2015 end-page: 416 ident: bb0110 article-title: Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths publication-title: Neuroimage – volume: 3 year: 2019 ident: bb0035 article-title: Harnessing reliability for neuroscience research publication-title: Nat Hum Behav – volume: 195 start-page: 285 year: 2019 end-page: 299 ident: bb0165 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms publication-title: Neuroimage – volume: 27 start-page: 283 year: 2017 end-page: 298 ident: bb0225 article-title: Regional values of diffusional kurtosis estimates in the healthy brain during normal aging publication-title: Clin Neuroradiol – start-page: 61 year: 2017 end-page: 70 ident: bb0135 article-title: Diffusion MRI signal augmentation: from single shell to multi shell with deep learning. Proc. MICCAI 2017 Comput. Diffus. MRI, Cham – volume: 27 start-page: 48 year: 2005 end-page: 58 ident: bb0320 article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain publication-title: Neuroimage – volume: 261 start-page: 210 year: 2011 end-page: 217 ident: bb0205 article-title: Parkinson disease: diagnostic utility of diffusion kurtosis imaging publication-title: Radiology – volume: 263 start-page: 492 year: 2012 end-page: 501 ident: bb0195 article-title: Gliomas: diffusion kurtosis MR imaging in grading publication-title: Radiology – volume: 12 start-page: 284 year: 2016 end-page: 295 ident: bb0115 article-title: Multi-site harmonization of diffusion MRI data in a registration framework publication-title: Brain Imaging Behav – volume: 124 start-page: 1149 year: 2016 end-page: 1154 ident: bb0025 article-title: The pediatric imaging, neurocognition, and genetics (PING) data repository publication-title: Neuroimage – volume: 45 start-page: 810 year: 2009 end-page: 823 ident: bb0105 article-title: Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies publication-title: Neuroimage – start-page: 1653 year: 2018 ident: bb0145 article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network publication-title: Proc. Int. Soc. Magn. Reson. Med – volume: 70 start-page: 265 year: 2018 end-page: 275 ident: bb0215 article-title: Modeling white matter tract integrity in aging with diffusional kurtosis imaging publication-title: Neurobiol Aging – volume: 25 start-page: 1369 year: 2012 end-page: 1377 ident: bb0200 article-title: Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging publication-title: NMR Biomed – volume: 13 start-page: P1368 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0030 article-title: ADNI-3 MRI Acquisitions publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2017.06.2110 – volume: 51 start-page: 1384 year: 2010 ident: 10.1016/j.mri.2020.08.001_bb0300 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.046 – volume: 52 start-page: 2350 year: 2008 ident: 10.1016/j.mri.2020.08.001_bb0295 – volume: 184 start-page: 180 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0125 article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.073 – volume: 28 start-page: 1345 year: 2008 ident: 10.1016/j.mri.2020.08.001_bb0220 article-title: Age-related non-Gaussian diffusion patterns in the prefrontal brain publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21604 – volume: 62 start-page: 220 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0160 article-title: Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.07.012 – volume: 194 start-page: 363 year: 2011 ident: 10.1016/j.mri.2020.08.001_bb0080 article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study publication-title: Psychiatry Res - Neuroimaging doi: 10.1016/j.pscychresns.2011.05.012 – start-page: 173 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0170 article-title: Spherical Harmonic Residual Network for Diffusion Signal Harmonization – volume: 144 start-page: 12 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0210 article-title: Diffusion kurtosis metrics as biomarkers of microstructural development: a comparative study of a group of children and a group of adults publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.033 – volume: 76 start-page: 1574 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0250 article-title: Gibbs-ringing artifact removal based on local subvoxel-shifts publication-title: Magn Reson Med doi: 10.1002/mrm.26054 – volume: 38 start-page: 537 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0075 article-title: Toward precision and reproducibility of diffusion tensor imaging: a multicenter diffusion phantom and traveling volunteer study publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5025 – volume: 84 start-page: 133 year: 2014 ident: 10.1016/j.mri.2020.08.001_bb0040 article-title: Effects of study design in multi-scanner voxel-based morphometry studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.046 – volume: 6 start-page: 42380 year: 2015 ident: 10.1016/j.mri.2020.08.001_bb0185 article-title: Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation publication-title: Oncotarget doi: 10.18632/oncotarget.5675 – volume: 52 start-page: 1374 year: 2010 ident: 10.1016/j.mri.2020.08.001_bb0330 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.043 – volume: 76 start-page: 1684 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0240 article-title: Bias and precision analysis of diffusional kurtosis imaging for different acquisition schemes publication-title: Magn Reson Med doi: 10.1002/mrm.26008 – volume: 59 start-page: 1 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0090 article-title: Reproducibility of multi-shell diffusion tractography on traveling subjects: a multicenter study prospective publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.02.011 – volume: 45 start-page: 810 year: 2009 ident: 10.1016/j.mri.2020.08.001_bb0105 article-title: Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.039 – volume: 73 start-page: 2174 year: 2015 ident: 10.1016/j.mri.2020.08.001_bb0280 article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters publication-title: Magn Reson Med doi: 10.1002/mrm.25351 – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.mri.2020.08.001_bb0020 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 83 start-page: 472 year: 2013 ident: 10.1016/j.mri.2020.08.001_bb0045 article-title: Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.007 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0255 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 62 start-page: 2222 year: 2012 ident: 10.1016/j.mri.2020.08.001_bb0010 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 12 start-page: 311 year: 2018 ident: 10.1016/j.mri.2020.08.001_bb0050 article-title: Intra- and inter-scanner reliability of scaled subprofile model of principal component analysis on ALFF in resting-state fMRI under eyes open and closed conditions publication-title: Front Neurosci doi: 10.3389/fnins.2018.00311 – volume: 30 start-page: 1 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0065 article-title: Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection publication-title: NMR Biomed doi: 10.1002/nbm.3777 – volume: 55 start-page: 930 year: 2006 ident: 10.1016/j.mri.2020.08.001_bb0235 article-title: Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging publication-title: Magn Reson Med doi: 10.1002/mrm.20832 – volume: 124 start-page: 442 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0055 article-title: Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: a multicentric resting-state fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.010 – volume: 195 start-page: 285 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0165 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.077 – volume: 32 start-page: 43 year: 2018 ident: 10.1016/j.mri.2020.08.001_bb0015 article-title: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites publication-title: Dev Cogn Neurosci doi: 10.1016/j.dcn.2018.03.001 – volume: 7 start-page: 71398 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0270 article-title: Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919241 – volume: 70 start-page: 711 year: 2013 ident: 10.1016/j.mri.2020.08.001_bb0325 article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI publication-title: Magn Reson Med doi: 10.1002/mrm.24501 – start-page: 173 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0155 article-title: Inter-scanner harmonization of high angular resolution dw-mri using null space deep learning – volume: 35 start-page: 81 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0085 article-title: Quantitative quality assurance in a multicenter HARDI clinical trial at 3T publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2016.08.022 – volume: 119 start-page: 406 year: 2015 ident: 10.1016/j.mri.2020.08.001_bb0110 article-title: Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.078 – volume: 25 start-page: 1369 year: 2012 ident: 10.1016/j.mri.2020.08.001_bb0200 article-title: Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging publication-title: NMR Biomed doi: 10.1002/nbm.2809 – volume: 20 start-page: 870 year: 2003 ident: 10.1016/j.mri.2020.08.001_bb0260 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 135 start-page: 311 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0120 article-title: Inter-site and inter-scanner diffusion MRI data harmonization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.041 – volume: 27 start-page: 48 year: 2005 ident: 10.1016/j.mri.2020.08.001_bb0320 article-title: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.042 – volume: 27 start-page: 283 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0225 article-title: Regional values of diffusional kurtosis estimates in the healthy brain during normal aging publication-title: Clin Neuroradiol doi: 10.1007/s00062-015-0490-z – volume: 23 start-page: 698 year: 2010 ident: 10.1016/j.mri.2020.08.001_bb0180 article-title: MRI quantification of non-Gaussian water diffusion by kurtosis analysis publication-title: NMR Biomed doi: 10.1002/nbm.1518 – start-page: 1653 year: 2018 ident: 10.1016/j.mri.2020.08.001_bb0145 article-title: Efficient reconstruction of diffusion kurtosis imaging based on a hierarchical convolutional neural network – volume: 65 start-page: 823 year: 2011 ident: 10.1016/j.mri.2020.08.001_bb0230 article-title: Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging publication-title: Magn Reson Med doi: 10.1002/mrm.22655 – volume: 44 start-page: 125 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0060 article-title: Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: implications for multi-center imaging studies publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2017.09.001 – year: 2007 ident: 10.1016/j.mri.2020.08.001_bb0285 – volume: 38 start-page: 1599 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0130 article-title: Multi-site harmonization of diffusion MRI data via method of moments publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2895020 – start-page: 61 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0135 – volume: 263 start-page: 492 year: 2012 ident: 10.1016/j.mri.2020.08.001_bb0195 article-title: Gliomas: diffusion kurtosis MR imaging in grading publication-title: Radiology doi: 10.1148/radiol.12110927 – volume: 69 start-page: 1754 year: 2013 ident: 10.1016/j.mri.2020.08.001_bb0310 article-title: Experimentally and computationally fast method for estimation of a mean kurtosis publication-title: Magn Reson Med doi: 10.1002/mrm.24743 – volume: 36 start-page: 1123 year: 2007 ident: 10.1016/j.mri.2020.08.001_bb0305 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.056 – volume: 183 start-page: 532 year: 2018 ident: 10.1016/j.mri.2020.08.001_bb0275 article-title: Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.066 – volume: 40 start-page: 1176 year: 2011 ident: 10.1016/j.mri.2020.08.001_bb0005 article-title: Cohort profile: the Amsterdam born children and their development (ABCD) study publication-title: Int J Epidemiol doi: 10.1093/ije/dyq128 – volume: 26 start-page: 756 year: 2007 ident: 10.1016/j.mri.2020.08.001_bb0070 article-title: Effects of SNR on the accuracy and reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: J Magn Reson – year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0150 article-title: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network publication-title: Med Phys doi: 10.1002/mp.13555 – start-page: 217 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0265 – volume: 142 start-page: 394 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0245 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.016 – volume: 3 year: 2019 ident: 10.1016/j.mri.2020.08.001_bb0035 article-title: Harnessing reliability for neuroscience research publication-title: Nat Hum Behav doi: 10.1038/s41562-019-0655-x – volume: 161 start-page: 149 year: 2017 ident: 10.1016/j.mri.2020.08.001_bb0100 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.047 – volume: 124 start-page: 1149 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0025 article-title: The pediatric imaging, neurocognition, and genetics (PING) data repository publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.057 – volume: 12 start-page: 284 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0115 article-title: Multi-site harmonization of diffusion MRI data in a registration framework publication-title: Brain Imaging Behav doi: 10.1007/s11682-016-9670-y – volume: 53 start-page: 1432 year: 2005 ident: 10.1016/j.mri.2020.08.001_bb0175 article-title: Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn Reson Med doi: 10.1002/mrm.20508 – volume: 261 start-page: 210 year: 2011 ident: 10.1016/j.mri.2020.08.001_bb0205 article-title: Parkinson disease: diagnostic utility of diffusion kurtosis imaging publication-title: Radiology doi: 10.1148/radiol.11102277 – volume: 70 start-page: 265 year: 2018 ident: 10.1016/j.mri.2020.08.001_bb0215 article-title: Modeling white matter tract integrity in aging with diffusional kurtosis imaging publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2018.07.006 – volume: 130 start-page: 194 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0095 article-title: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.01.061 – volume: 254 start-page: 876 year: 2010 ident: 10.1016/j.mri.2020.08.001_bb0190 article-title: Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences publication-title: Radiology doi: 10.1148/radiol.09090819 – volume: 35 start-page: 1344 year: 2016 ident: 10.1016/j.mri.2020.08.001_bb0140 article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2551324 – volume: 40 start-page: 570 year: 2008 ident: 10.1016/j.mri.2020.08.001_bb0290 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.035 – volume: 61 start-page: 1000 year: 2012 ident: 10.1016/j.mri.2020.08.001_bb0315 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 |
SSID | ssj0005235 |
Score | 2.4088888 |
Snippet | Multicenter magnetic resonance imaging is gaining more popularity in large-sample projects. Since both varying hardware and software across different centers... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 31 |
SubjectTerms | Anisotropy Deep Learning Diffusion kurtosis imaging Diffusion Magnetic Resonance Imaging Female Humans Image Processing, Computer-Assisted - methods Male Multicenter harmonization Reproducibility of Results White Matter - diagnostic imaging |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTiQHl3UUFG4gS4TeLHOscVoqqQtuLASsspchwHpV2SbTYBlRMH_gH_sL-kniReIUAtHCN5JFszzjw8830AL7gxgTMDS4NMMspNqmlq0og6d8KkEbnSGQ4nz47l0Zy_W4jFFrz2szBVbRDwoUZ6kGGayinFYpGrOQgZ4sUd3IBtic9JI9ieH7-ffuyQNllAJ5FYYH6lJowKFXP_iNm1c32uC5cNRkEH2DlQwPzFDf0ZZt6GW2250udf9XL5i-s53IGZ33TfcXK63zbpvvn2G57jv57qLtwZYlAy7Y3mHmzZ8j7cnA2v7A_gx5Rk1q7IwCjx6eL7T3R2GenppomLc0nhixGktsuiB_s-J1VOug5FbPm0NcGNtFiOI6dt3VTrYu3kOlokgvVf8gUT9Yxoc9YWfe8YQdyIyhnn-iHMD99-eHNEB7YGalxK2VCOuU3GGc-Fjo0xmeEi0tZEJpSaizi1QZhpkwptVR5bZrULvjKrVG5F7EyJPYJRWZV2F4j7QMwcFeZpypkNYyUnWrhEKNIql2E-hsArLzEDlDkyaiwT37N2kjh9J6jvBFk2g3AMLzciqx7H46rFkbeIxA-oul9q4rzMVUJ8IzREL31Ucp3Yc29yibvZ-FyjS1u16yTiTPKAKSnH8Li3xc3WGXb_ulhrDK82xnn9uZ781-o9GDV1a5-6oKtJnw137RJmeDAO priority: 102 providerName: Unpaywall |
Title | A deep learning–based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X20302927 https://dx.doi.org/10.1016/j.mri.2020.08.001 https://www.ncbi.nlm.nih.gov/pubmed/32822818 https://www.proquest.com/docview/2436403866 https://orca.cardiff.ac.uk/id/eprint/134540/ |
UnpaywallVersion | submittedVersion |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVuJxqHizPCojcQKFTWzHTY6rimoBdYUEK5WT5dgOCizJkt1Q9VJx4B_wD_klzMTOqgjUSpyiRB7JsT97ZuyZ-Qh5KoyJAQYuiq3kkTCFjgpTsAjUCZcmLTNtMTn5aCanc_H6OD3eIgdDLgyGVYa93-_p_W4dvozDaI6XVTV-h-DcZ-BsAU5ZzjCjHKt_AaZfnJ0P8_Akm9A4wtbDzWYf4_WlrcBFZHFfxTPwwvxDN_1te14nV7t6qU9P9GJxTh8d3iC7wZCkE9_Xm2TL1bfIlaNwVX6b_JhQ69ySBlqIj7--_0SNZannjKZgrNJqOFGgrVtUvmL3KW1K2ocZYtymaylSqHR4pkY_d-26WVUrkOu5jSge4tJv6G1bqs3XrvIBYBSLPzSAsNUdMj98-f5gGgXKhcjA2K0jgQ6KFVyUqc6NMdaIlGlnmEmkFmleuDix2hSpdlmZO-40WFDWZVnp0hzwwO-S7bqp3X1C4QUL32RJWRSCuyTP5L5OwZthOitlUo5IPAy2MqEeOdJiLNQQePZJwfwonB-FVJlxMiLPNiJLX4zjosZsmEE1ZJnCvqhAVVwkJDZCf8DwMrEnA0QULE-8c9G1a7qVYoJLEfNMyhG557Gz6TrHEF4wmEbk-QZMl__Xg__r4kNyDd98GuUjsr1uO_cY7Kl1sdcvmD2yM3n1ZjqD53z2dvLhN_LeJJ0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrUTpAfEqLE8jcQJFmzhONjmuKqot7e6FVurNcmwHhS7Jkt1Q9caBf8A_5JcwkzirIlArcUzikRz78zzs8XwAb4TWPsLAer6JQ0_oTHmZzriH5iSMdZQnytDl5Nk8np6KD2fR2Rbs93dhKK3S6f5Op7fa2r0ZudEcLYti9JHAOeYYbCFOecrHt2BbRKiTB7A9OTyazq9kenQ8m9jeI4H-cLNN8_pSFxglcr8t5OmoYf5hnv52P3dhpymX6vJCLRZXTNLBPbjrfEk26bp7H7Zs-QBuz9xp-UP4MWHG2iVzzBCffn3_SUbLsI42mqG_yop-U4HVdlF0RbsvWZWzNtOQUjdtzYhFpaFtNXbe1OtqVaxQrqU3YrSPy75RwG2Y0l-bossBY1T_oUKQrR7B6cH7k_2p51gXPI2h4doTFKMYEYo8UqnW2mgRcWU110GsRJRm1g-M0lmkbJKnNrQKnShjkyS3UYqQCPdgUFalfQIMH6j2TRLkWSZCG6RJPFYRBjRcJXkc5EPw-8GW2pUkJ2aMhexzzz5LnB9J8yOJLdMPhvB2I7Ls6nFc15j3Myj7i6aoGiVai-uExEboDyTeJPa6h4jEFUrHLqq0VbOSXISx8MMkjofwuMPOpushZfGizzSEdxsw3fxfT_-vi69gZ3oyO5bHh_OjZ3CHvnS3Kp_DYF039gW6V-vspVs-vwGepSWY |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQTiQHl3UUFG4gS4TeLHOscVoqqQtuLASsspchwHpV2SbTYBlRMH_gH_sL-kniReIUAtHCN5JFszzjw8830AL7gxgTMDS4NMMspNqmlq0og6d8KkEbnSGQ4nz47l0Zy_W4jFFrz2szBVbRDwoUZ6kGGayinFYpGrOQgZ4sUd3IBtic9JI9ieH7-ffuyQNllAJ5FYYH6lJowKFXP_iNm1c32uC5cNRkEH2DlQwPzFDf0ZZt6GW2250udf9XL5i-s53IGZ33TfcXK63zbpvvn2G57jv57qLtwZYlAy7Y3mHmzZ8j7cnA2v7A_gx5Rk1q7IwCjx6eL7T3R2GenppomLc0nhixGktsuiB_s-J1VOug5FbPm0NcGNtFiOI6dt3VTrYu3kOlokgvVf8gUT9Yxoc9YWfe8YQdyIyhnn-iHMD99-eHNEB7YGalxK2VCOuU3GGc-Fjo0xmeEi0tZEJpSaizi1QZhpkwptVR5bZrULvjKrVG5F7EyJPYJRWZV2F4j7QMwcFeZpypkNYyUnWrhEKNIql2E-hsArLzEDlDkyaiwT37N2kjh9J6jvBFk2g3AMLzciqx7H46rFkbeIxA-oul9q4rzMVUJ8IzREL31Ucp3Yc29yibvZ-FyjS1u16yTiTPKAKSnH8Li3xc3WGXb_ulhrDK82xnn9uZ781-o9GDV1a5-6oKtJnw137RJmeDAO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning%E2%80%93based+method+for+improving+reliability+of+multicenter+diffusion+kurtosis+imaging+with+varied+acquisition+protocols&rft.jtitle=Magnetic+resonance+imaging&rft.au=Tong%2C+Qiqi&rft.au=Gong%2C+Ting&rft.au=He%2C+Hongjian&rft.au=Wang%2C+Zheng&rft.date=2020-11-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=73&rft.spage=31&rft.epage=44&rft_id=info:doi/10.1016%2Fj.mri.2020.08.001&rft.externalDocID=S0730725X20302927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |