Particle Swarm Optimisation: A Historical Review Up to the Current Developments

The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 3; p. 362
Main Authors Freitas, Diogo, Lopes, Luiz Guerreiro, Morgado-Dias, Fernando
Format Journal Article
LanguageEnglish
Published MDPI 21.03.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e22030362

Cover

Abstract The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application.
AbstractList The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application.
The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application.The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application.
Author Freitas, Diogo
Lopes, Luiz Guerreiro
Morgado-Dias, Fernando
AuthorAffiliation 1 Madeira Interactive Technologies Institute (ITI/LARSyS/M-ITI), 9020-105 Funchal, Portugal; morgado@uma.pt
2 Faculty of Exact Sciences and Engineering, University of Madeira, Penteada Campus, 9020-105 Funchal, Portugal; lopes@uma.pt
AuthorAffiliation_xml – name: 1 Madeira Interactive Technologies Institute (ITI/LARSyS/M-ITI), 9020-105 Funchal, Portugal; morgado@uma.pt
– name: 2 Faculty of Exact Sciences and Engineering, University of Madeira, Penteada Campus, 9020-105 Funchal, Portugal; lopes@uma.pt
Author_xml – sequence: 1
  givenname: Diogo
  orcidid: 0000-0002-2351-8676
  surname: Freitas
  fullname: Freitas, Diogo
– sequence: 2
  givenname: Luiz Guerreiro
  orcidid: 0000-0002-6145-8520
  surname: Lopes
  fullname: Lopes, Luiz Guerreiro
– sequence: 3
  givenname: Fernando
  orcidid: 0000-0001-7334-3993
  surname: Morgado-Dias
  fullname: Morgado-Dias, Fernando
BookMark eNp1kVtv1DAQhSNURC_wwD_wIyAttT2JHfOAVC2XVqq0COiz5bUnrSsnDrazq_570u6qogiePPIcfzPn-Lg6GOKAVfWa0fcAip4i5xQoCP6sOmJUqUUNlB78UR9WxznfUsqBM_GiOgTgrWAgjqrVN5OKtwHJj61JPVmNxfc-m-Lj8IGckXOfS0zemkC-48bjllyNpERSbpAsp5RwKOQTbjDEsZ_r_LJ63pmQ8dX-PKmuvnz-uTxfXK6-XizPLhe2rkVZAG3arm2VlEA5lVI60am1ckw5pM5ZY5VTjWCdk5IbANOshXCNUsYggurgpLrYcV00t3pMvjfpTkfj9cNFTNd6b0yjAqEYQMtB1bYBw5UUAIAdc61scWa927GmYTR3WxPCI5BRfZ-wfkx4Fn_cicdp3aOzs-lkwpMNnnYGf6Ov40bLhokWxAx4swek-GvCXPSct8UQzIBxyprXswwEo_ezTndSm2LOCTttfXn4mpnswz-3e_vXi_87-Q1O7K3j
CitedBy_id crossref_primary_10_1016_j_marstruc_2023_103409
crossref_primary_10_35234_fumbd_1313906
crossref_primary_10_1016_j_swevo_2024_101483
crossref_primary_10_1109_ACCESS_2020_3038497
crossref_primary_10_3390_app142311116
crossref_primary_10_1038_s44172_023_00104_0
crossref_primary_10_1016_j_envpol_2023_122871
crossref_primary_10_1007_s12206_022_1113_7
crossref_primary_10_1016_j_aei_2024_102354
crossref_primary_10_4018_IJDAI_296389
crossref_primary_10_1016_j_knosys_2021_107638
crossref_primary_10_1109_ACCESS_2024_3524322
crossref_primary_10_4236_jcc_2024_127009
crossref_primary_10_1109_ACCESS_2025_3535528
crossref_primary_10_3390_buildings13082097
crossref_primary_10_1016_j_ins_2023_03_011
crossref_primary_10_1016_j_physrep_2021_09_003
crossref_primary_10_1080_19942060_2025_2474675
crossref_primary_10_3390_drones7070427
crossref_primary_10_1038_s41598_024_69365_9
crossref_primary_10_1080_17445302_2024_2403163
crossref_primary_10_1186_s40623_020_01297_w
crossref_primary_10_1038_s41598_024_79395_y
crossref_primary_10_3390_bioengineering8050060
crossref_primary_10_1177_09596518251322251
crossref_primary_10_1016_j_ecolind_2021_108426
crossref_primary_10_1007_s10596_023_10223_4
crossref_primary_10_1038_s41598_024_77251_7
crossref_primary_10_3390_app11188634
crossref_primary_10_3390_e22070734
crossref_primary_10_1007_s13369_023_08627_6
crossref_primary_10_3390_math10163019
crossref_primary_10_14500_aro_11554
crossref_primary_10_1002_sat_1509
crossref_primary_10_3390_ma14216616
crossref_primary_10_1016_j_ultramic_2024_114024
crossref_primary_10_1016_j_jfoodeng_2021_110888
crossref_primary_10_1109_ACCESS_2024_3516207
crossref_primary_10_1016_j_array_2022_100249
crossref_primary_10_1109_ACCESS_2024_3394447
crossref_primary_10_1007_s10614_020_10070_w
crossref_primary_10_31083_j_fbl2906220
crossref_primary_10_3390_ijerph191710892
crossref_primary_10_3390_electronics10212606
crossref_primary_10_3389_fams_2022_879866
crossref_primary_10_3390_app14125349
crossref_primary_10_1016_j_mechmachtheory_2022_105119
crossref_primary_10_3390_math11194093
crossref_primary_10_1109_TSC_2024_3440054
crossref_primary_10_1080_0305215X_2024_2390130
crossref_primary_10_1061_AJRUA6_RUENG_1447
crossref_primary_10_3390_s25041206
crossref_primary_10_3390_photonics12010039
crossref_primary_10_1016_j_radmeas_2024_107368
crossref_primary_10_1108_AEAT_08_2021_0247
crossref_primary_10_1007_s11071_024_10386_4
crossref_primary_10_1063_5_0107948
crossref_primary_10_1016_j_jjimei_2022_100105
crossref_primary_10_1049_sfw2_12104
crossref_primary_10_2478_cait_2024_0025
crossref_primary_10_1007_s11276_023_03472_9
crossref_primary_10_1177_14750902241263250
crossref_primary_10_1186_s10033_023_00849_x
crossref_primary_10_1109_TMLCN_2023_3309772
crossref_primary_10_1038_s41540_023_00299_0
crossref_primary_10_1016_j_fuel_2024_131633
crossref_primary_10_1016_j_jclepro_2023_137632
crossref_primary_10_20525_ijrbs_v12i4_2473
crossref_primary_10_3390_en16010347
crossref_primary_10_1109_ACCESS_2025_3538276
crossref_primary_10_3390_electronics12020462
crossref_primary_10_1177_09544062231196068
crossref_primary_10_3390_fire8010027
crossref_primary_10_1007_s42979_023_02382_z
crossref_primary_10_1007_s12065_021_00661_3
crossref_primary_10_3390_app15031165
crossref_primary_10_7717_peerj_cs_1903
crossref_primary_10_1016_j_heliyon_2022_e11525
crossref_primary_10_1016_j_ins_2022_10_118
crossref_primary_10_1016_j_seps_2020_100995
crossref_primary_10_3390_app15010235
crossref_primary_10_1186_s12889_023_15543_9
crossref_primary_10_1016_j_cie_2021_107694
crossref_primary_10_1016_j_jenvman_2024_123347
crossref_primary_10_1007_s10494_023_00408_3
crossref_primary_10_1016_j_ifacol_2021_10_220
crossref_primary_10_1016_j_rineng_2022_100637
crossref_primary_10_1007_s00521_023_08480_6
crossref_primary_10_1007_s10586_024_04683_1
crossref_primary_10_1016_j_matcom_2022_04_031
crossref_primary_10_3390_math9121417
crossref_primary_10_3390_sym14061080
crossref_primary_10_1007_s11042_022_12966_1
crossref_primary_10_1109_ACCESS_2024_3495559
crossref_primary_10_1016_j_ins_2022_10_069
crossref_primary_10_1016_j_eswa_2025_126821
crossref_primary_10_1016_j_peva_2024_102410
crossref_primary_10_23919_JSEE_2022_000089
crossref_primary_10_1016_j_egyr_2021_11_119
crossref_primary_10_1016_j_advwatres_2021_103982
crossref_primary_10_1155_2021_5491017
crossref_primary_10_3390_en14248575
crossref_primary_10_1016_j_jmsy_2023_02_015
crossref_primary_10_1007_s00500_023_09087_8
crossref_primary_10_1016_j_est_2025_115936
crossref_primary_10_1016_j_jobe_2020_101674
crossref_primary_10_1016_j_jwpe_2024_105937
crossref_primary_10_1038_s41598_024_76698_y
crossref_primary_10_3390_systems11060273
crossref_primary_10_3390_a17020076
crossref_primary_10_3390_a13060142
crossref_primary_10_1371_journal_pone_0308002
crossref_primary_10_3233_JIFS_211008
crossref_primary_10_1016_j_energy_2023_129906
crossref_primary_10_1016_j_compstruct_2022_116158
crossref_primary_10_3390_electronics13214199
crossref_primary_10_1016_j_sasc_2023_200057
crossref_primary_10_1007_s40295_025_00486_7
crossref_primary_10_3390_math9101120
crossref_primary_10_1016_j_energy_2024_131281
crossref_primary_10_3390_agronomy15010244
Cites_doi 10.1016/j.ins.2010.11.033
10.1016/j.ins.2012.10.012
10.1109/TEVC.2004.826069
10.1109/IECON.2006.347309
10.1109/SBRN.2010.48
10.20944/preprints201809.0007.v1
10.1109/ICETC.2010.5529629
10.1002/dac.1376
10.1109/CEC.2007.4424709
10.1109/TEVC.2004.826074
10.1109/SIS.2014.7011788
10.1109/CEC.2007.4424448
10.1109/SYNASC.2016.043
10.1109/CSO.2009.420
10.1007/11816102_6
10.1109/ICIEA.2017.8283141
10.1109/JSEN.2013.2290433
10.1007/978-3-642-15907-7_28
10.1109/ICNC.2010.5583169
10.14257/ijmue.2015.10.10.36
10.3390/informatics5020025
10.1109/CEC.2010.5586178
10.1109/TEVC.2012.2196047
10.1007/3-540-32839-4_8
10.1080/03052150410001704854
10.1109/CEC.2002.1004388
10.2514/1.17873
10.1109/IJCNN.2009.5178918
10.1002/nme.1646
10.1109/TNNLS.2013.2276053
10.1016/j.cor.2004.08.012
10.1109/NaBIC.2012.6402247
10.1109/ISIEA.2011.6108725
10.1162/EVCO_r_00180
10.1007/s13369-018-03713-6
10.1002/nme.1149
10.1109/SIS.2007.368034
10.1007/s00170-005-2513-4
10.1109/4235.985692
10.1109/TSMC.2013.2248146
10.1109/ICONIP.2002.1201969
10.1007/978-3-540-24854-5_10
10.1109/TSMCB.2009.2015956
10.1109/TEVC.2017.2754271
10.1109/TIE.2005.858737
10.1016/j.ins.2010.08.045
10.1109/TBME.2009.2013934
10.1080/10556788.2010.509435
10.1007/3-540-45517-5_2
10.1109/CEC.2007.4424483
10.1109/TSMCB.2003.818557
10.1016/j.procs.2015.08.152
10.1109/TEVC.2010.2059031
10.1109/CEC.2009.4983119
10.1109/TITS.2015.2505323
10.1109/FUZZY.2009.5277165
10.1007/11538059_40
10.1109/TEVC.2005.859468
10.1016/j.asoc.2018.09.027
10.1109/CEC.2010.5585967
10.1109/TEVC.2010.2050024
10.1109/HIS.2011.6122090
10.1109/CEC.2010.5586257
10.1109/ICDIM.2008.4746766
10.1023/A:1008202821328
10.1109/CEC.2008.4631335
10.1007/978-81-322-0487-9_38
10.1016/S0925-2312(02)00569-6
10.1109/TEVC.2004.826076
10.1145/1276958.1276970
10.1109/ICINIS.2011.35
10.1016/j.ejor.2008.02.035
10.1109/LGRS.2016.2530724
10.1109/TEVC.2004.826067
10.1007/978-3-7091-6230-9_80
10.1109/ACCESS.2017.2702561
10.1016/j.orl.2008.12.008
10.1016/j.ins.2012.09.030
10.1109/BRICS-CCI-CBIC.2013.68
10.1109/ICINIS.2009.171
10.1016/j.engappai.2015.06.013
10.1007/978-3-540-24653-4_50
10.1007/3-540-45105-6_10
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e22030362
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_e936913382394c53a2976333ef1d878e
10.3390/e22030362
PMC7516836
10_3390_e22030362
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c446t-3058f889773020777d6f9b9d19de0ddcac9d9561fd772a33a5b66d599aaee39f3
IEDL.DBID UNPAY
ISSN 1099-4300
IngestDate Fri Oct 03 12:20:44 EDT 2025
Sun Oct 26 03:27:51 EDT 2025
Tue Sep 30 17:05:35 EDT 2025
Fri Sep 05 06:30:49 EDT 2025
Thu Oct 16 04:38:09 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-3058f889773020777d6f9b9d19de0ddcac9d9561fd772a33a5b66d599aaee39f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7334-3993
0000-0002-6145-8520
0000-0002-2351-8676
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/22/3/362/pdf?version=1585289630
PMID 33286136
PQID 2468336102
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e936913382394c53a2976333ef1d878e
unpaywall_primary_10_3390_e22030362
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516836
proquest_miscellaneous_2468336102
crossref_citationtrail_10_3390_e22030362
crossref_primary_10_3390_e22030362
PublicationCentury 2000
PublicationDate 20200321
PublicationDateYYYYMMDD 2020-03-21
PublicationDate_xml – month: 3
  year: 2020
  text: 20200321
  day: 21
PublicationDecade 2020
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_94
ref_136
ref_92
ref_91
ref_138
Jana (ref_93) 2019; 74
Chatterjee (ref_139) 2005; 52
Mussi (ref_86) 2011; 181
ref_12
ref_131
ref_11
ref_99
ref_10
Mendes (ref_65) 2004; 8
ref_97
Juang (ref_100) 2004; 34
ref_96
ref_135
ref_95
ref_134
ref_19
ref_18
ref_17
He (ref_43) 2004; 36
ref_16
ref_15
ref_126
ref_125
ref_128
Tian (ref_105) 2016; 17
ref_25
ref_24
Ince (ref_142) 2009; 56
ref_23
ref_120
ref_21
ref_122
ref_20
Kodaz (ref_79) 2015; 45
ref_124
ref_123
Schutte (ref_73) 2004; 61
ref_29
ref_28
Awwad (ref_89) 2013; 26
ref_27
Shieh (ref_129) 2011; 218
ref_26
Hung (ref_90) 2012; 27
ref_72
ref_70
Yue (ref_64) 2018; 22
ref_150
ref_78
ref_77
ref_76
Dali (ref_82) 2015; 60
Shelokar (ref_133) 2007; 188
Zweiri (ref_151) 2003; 50
Parsopoulos (ref_53) 2004; 8
Zhan (ref_38) 2009; 39
Engelbrecht (ref_137) 1999; 2
ref_83
ref_148
He (ref_132) 2007; 186
ref_147
ref_81
ref_149
Pehlivanoglu (ref_143) 2013; 17
ref_140
ref_88
Omran (ref_121) 2009; 196
ref_141
ref_87
ref_85
ref_146
ref_84
ref_145
Wang (ref_98) 2013; 223
Zhang (ref_119) 2009; 37
Engelbrecht (ref_36) 2000; 26
Chatterjee (ref_22) 2006; 33
ref_50
Yang (ref_104) 2014; 14
Storn (ref_107) 1997; 11
ref_58
ref_57
ref_56
ref_55
ref_54
ref_52
ref_51
Senthilnath (ref_106) 2016; 13
Bonyadi (ref_3) 2017; 25
Das (ref_108) 2011; 15
ref_61
ref_60
Sun (ref_13) 2013; 221
Clerc (ref_14) 2002; 6
ref_69
ref_68
ref_67
Venter (ref_74) 2006; 3
Sun (ref_44) 2011; 181
(ref_47) 2004; 8
Li (ref_63) 2010; 14
ref_115
ref_114
ref_117
ref_116
ref_118
ref_35
Engelbrecht (ref_37) 2004; 8
ref_34
ref_33
Lalwani (ref_66) 2019; 44
ref_32
ref_111
ref_31
ref_110
ref_30
ref_113
ref_112
Quan (ref_144) 2014; 25
Fu (ref_103) 2013; 43
ref_39
Chang (ref_71) 2005; 21
Xia (ref_127) 2006; 29
Deng (ref_130) 2015; 10
Koh (ref_75) 2006; 67
Cao (ref_80) 2017; 5
ref_109
Li (ref_59) 2007; 3
ref_46
ref_45
ref_42
ref_41
ref_102
ref_40
ref_101
ref_1
ref_2
ref_49
ref_48
ref_9
ref_8
ref_5
ref_4
Parrott (ref_62) 2006; 10
ref_7
ref_6
References_xml – volume: 181
  start-page: 1153
  year: 2011
  ident: ref_44
  article-title: An improved vector particle swarm optimization for constrained optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.11.033
– volume: 223
  start-page: 119
  year: 2013
  ident: ref_98
  article-title: Diversity enhanced particle swarm optimization with neighborhood search
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.10.012
– ident: ref_68
– volume: 8
  start-page: 225
  year: 2004
  ident: ref_37
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826069
– volume: 218
  start-page: 4365
  year: 2011
  ident: ref_129
  article-title: Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification
  publication-title: Appl. Math. Comput.
– ident: ref_16
– ident: ref_39
– ident: ref_126
  doi: 10.1109/IECON.2006.347309
– ident: ref_9
  doi: 10.1109/SBRN.2010.48
– ident: ref_17
  doi: 10.20944/preprints201809.0007.v1
– ident: ref_42
– ident: ref_95
  doi: 10.1109/ICETC.2010.5529629
– ident: ref_1
– volume: 26
  start-page: 888
  year: 2013
  ident: ref_89
  article-title: Distributed topology control in large-scale hybrid RF/FSO networks: SIMT GPU-based particle swarm optimization approach
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.1376
– ident: ref_122
  doi: 10.1109/CEC.2007.4424709
– ident: ref_94
– volume: 8
  start-page: 204
  year: 2004
  ident: ref_65
  article-title: The fully informed particle swarm: Simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
– ident: ref_34
  doi: 10.1109/SIS.2014.7011788
– ident: ref_141
– ident: ref_4
– ident: ref_31
– ident: ref_56
– ident: ref_76
  doi: 10.1109/CEC.2007.4424448
– ident: ref_27
– ident: ref_120
– ident: ref_48
– ident: ref_85
  doi: 10.1109/SYNASC.2016.043
– ident: ref_21
  doi: 10.1109/CSO.2009.420
– ident: ref_128
– ident: ref_45
– ident: ref_123
  doi: 10.1007/11816102_6
– ident: ref_10
  doi: 10.1109/ICIEA.2017.8283141
– ident: ref_149
– ident: ref_97
– ident: ref_30
– volume: 14
  start-page: 882
  year: 2014
  ident: ref_104
  article-title: Task allocation for wireless sensor network using modified binary particle swarm optimization
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2290433
– ident: ref_83
  doi: 10.1007/978-3-642-15907-7_28
– ident: ref_140
– ident: ref_135
  doi: 10.1109/ICNC.2010.5583169
– volume: 10
  start-page: 369
  year: 2015
  ident: ref_130
  article-title: An improved PSO algorithm based on mutation operator and simulated annealing
  publication-title: Int. J. Multimed. Ubiquitous Eng.
  doi: 10.14257/ijmue.2015.10.10.36
– ident: ref_150
  doi: 10.3390/informatics5020025
– ident: ref_8
  doi: 10.1109/CEC.2010.5586178
– ident: ref_11
– volume: 17
  start-page: 436
  year: 2013
  ident: ref_143
  article-title: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2196047
– ident: ref_70
  doi: 10.1007/3-540-32839-4_8
– volume: 36
  start-page: 585
  year: 2004
  ident: ref_43
  article-title: An improved particle swarm optimizer for mechanical design optimization problems
  publication-title: Eng. Optim.
  doi: 10.1080/03052150410001704854
– volume: 188
  start-page: 129
  year: 2007
  ident: ref_133
  article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization
  publication-title: Appl. Math. Comput.
– ident: ref_46
  doi: 10.1109/CEC.2002.1004388
– volume: 3
  start-page: 123
  year: 2006
  ident: ref_74
  article-title: Parallel particle swarm optimization algorithm accelerated by asynchronous evaluations
  publication-title: J. Aerosp. Comput. Inf. Commun.
  doi: 10.2514/1.17873
– ident: ref_67
– ident: ref_92
– ident: ref_145
  doi: 10.1109/IJCNN.2009.5178918
– volume: 67
  start-page: 578
  year: 2006
  ident: ref_75
  article-title: Parallel asynchronous particle swarm optimization
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1646
– ident: ref_148
– volume: 25
  start-page: 303
  year: 2014
  ident: ref_144
  article-title: Short-term load and wind power forecasting using neural network-based prediction intervals
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2276053
– volume: 33
  start-page: 859
  year: 2006
  ident: ref_22
  article-title: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2004.08.012
– ident: ref_77
  doi: 10.1109/NaBIC.2012.6402247
– ident: ref_6
– ident: ref_24
  doi: 10.1109/ISIEA.2011.6108725
– ident: ref_25
– ident: ref_50
– ident: ref_81
– volume: 25
  start-page: 1
  year: 2017
  ident: ref_3
  article-title: Particle swarm optimization for single objective continuous space problems: A review
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_r_00180
– ident: ref_33
– volume: 44
  start-page: 2899
  year: 2019
  ident: ref_66
  article-title: A survey on parallel particle swarm optimization algorithms
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-03713-6
– volume: 61
  start-page: 2296
  year: 2004
  ident: ref_73
  article-title: Parallel global optimization with the particle swarm algorithm
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1149
– ident: ref_112
– ident: ref_116
  doi: 10.1109/SIS.2007.368034
– volume: 29
  start-page: 360
  year: 2006
  ident: ref_127
  article-title: A hybrid particle swarm optimization approach for the job-shop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-2513-4
– volume: 6
  start-page: 58
  year: 2002
  ident: ref_14
  article-title: The particle swarm – Explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 43
  start-page: 1451
  year: 2013
  ident: ref_103
  article-title: Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2013.2248146
– ident: ref_19
– ident: ref_146
  doi: 10.1109/ICONIP.2002.1201969
– volume: 26
  start-page: 84
  year: 2000
  ident: ref_36
  article-title: Cooperative learning in neural networks using particle swarm optimizers
  publication-title: S. Afr. Comput. J.
– ident: ref_60
  doi: 10.1007/978-3-540-24854-5_10
– volume: 39
  start-page: 1362
  year: 2009
  ident: ref_38
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2009.2015956
– volume: 22
  start-page: 805
  year: 2018
  ident: ref_64
  article-title: A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– ident: ref_78
– ident: ref_49
– ident: ref_5
– ident: ref_32
– ident: ref_55
– volume: 52
  start-page: 1478
  year: 2005
  ident: ref_139
  article-title: A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2005.858737
– ident: ref_26
– volume: 181
  start-page: 4642
  year: 2011
  ident: ref_86
  article-title: Evaluation of parallel particle swarm optimization algorithms within the CUDA™ architecture
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.08.045
– ident: ref_136
– volume: 56
  start-page: 1415
  year: 2009
  ident: ref_142
  article-title: A generic and robust system for automated patient-specific classification of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2013934
– volume: 27
  start-page: 33
  year: 2012
  ident: ref_90
  article-title: Accelerating parallel particle swarm optimization via GPU
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2010.509435
– ident: ref_61
– ident: ref_35
– ident: ref_23
– ident: ref_109
  doi: 10.1007/3-540-45517-5_2
– ident: ref_102
  doi: 10.1109/CEC.2007.4424483
– volume: 34
  start-page: 997
  year: 2004
  ident: ref_100
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2003.818557
– volume: 60
  start-page: 1070
  year: 2015
  ident: ref_82
  article-title: GPU-PSO: Parallel particle swarm optimization approaches on graphical processing unit for constraint reasoning: Case of Max-CSPs
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.08.152
– volume: 15
  start-page: 4
  year: 2011
  ident: ref_108
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– ident: ref_52
– ident: ref_84
  doi: 10.1109/CEC.2009.4983119
– ident: ref_69
– volume: 17
  start-page: 3009
  year: 2016
  ident: ref_105
  article-title: Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2505323
– ident: ref_101
  doi: 10.1109/FUZZY.2009.5277165
– ident: ref_125
  doi: 10.1007/11538059_40
– ident: ref_41
– volume: 10
  start-page: 440
  year: 2006
  ident: ref_62
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.859468
– ident: ref_110
– ident: ref_131
– ident: ref_72
– ident: ref_124
– volume: 2
  start-page: 59
  year: 1999
  ident: ref_137
  article-title: Training product unit neural networks
  publication-title: Stab. Control Theory Appl.
– ident: ref_20
– volume: 74
  start-page: 330
  year: 2019
  ident: ref_93
  article-title: Repository and mutation based particle swarm optimization (RMPSO): A new PSO variant applied to reconstruction of gene regulatory network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.027
– ident: ref_7
– ident: ref_118
  doi: 10.1109/CEC.2010.5585967
– volume: 14
  start-page: 150
  year: 2010
  ident: ref_63
  article-title: Niching without niching parameters: Particle swarm optimization using a ring topology
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2050024
– ident: ref_115
  doi: 10.1109/HIS.2011.6122090
– ident: ref_113
  doi: 10.1109/CEC.2010.5586257
– ident: ref_117
  doi: 10.1109/ICDIM.2008.4746766
– ident: ref_138
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_107
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– ident: ref_111
  doi: 10.1109/CEC.2008.4631335
– ident: ref_134
  doi: 10.1007/978-81-322-0487-9_38
– ident: ref_40
– volume: 50
  start-page: 305
  year: 2003
  ident: ref_151
  article-title: A three-term backpropagation algorithm
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00569-6
– volume: 8
  start-page: 211
  year: 2004
  ident: ref_53
  article-title: On the computation of all global minimizers through particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826076
– ident: ref_58
  doi: 10.1145/1276958.1276970
– ident: ref_18
– ident: ref_88
  doi: 10.1109/ICINIS.2011.35
– ident: ref_96
– volume: 186
  start-page: 1407
  year: 2007
  ident: ref_132
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Appl. Math. Comput.
– volume: 196
  start-page: 128
  year: 2009
  ident: ref_121
  article-title: Bare bones differential evolution
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2008.02.035
– volume: 13
  start-page: 599
  year: 2016
  ident: ref_106
  article-title: A novel approach for multispectral satellite image classification based on the Bat algorithm
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2016.2530724
– volume: 8
  start-page: 256
  year: 2004
  ident: ref_47
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– ident: ref_51
  doi: 10.1007/978-3-7091-6230-9_80
– volume: 21
  start-page: 809
  year: 2005
  ident: ref_71
  article-title: A parallel particle swarm optimization algorithm with communication strategies
  publication-title: J. Inf. Sci. Eng.
– volume: 5
  start-page: 8214
  year: 2017
  ident: ref_80
  article-title: Distributed parallel particle swarm optimization for multi-objective and many-objective large-scale optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2702561
– volume: 37
  start-page: 117
  year: 2009
  ident: ref_119
  article-title: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2008.12.008
– ident: ref_29
– volume: 221
  start-page: 355
  year: 2013
  ident: ref_13
  article-title: A new fitness estimation strategy for particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.09.030
– ident: ref_2
– ident: ref_114
  doi: 10.1109/BRICS-CCI-CBIC.2013.68
– ident: ref_12
– volume: 3
  start-page: 1707
  year: 2007
  ident: ref_59
  article-title: An efficient fine-grained parallel particle swarm optimization method based on GPU-acceleration
  publication-title: Int. J. Innov. Comput. Inf. Control.
– ident: ref_87
  doi: 10.1109/ICINIS.2009.171
– volume: 45
  start-page: 33
  year: 2015
  ident: ref_79
  article-title: A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.06.013
– ident: ref_54
  doi: 10.1007/978-3-540-24653-4_50
– ident: ref_15
– ident: ref_91
– ident: ref_28
  doi: 10.1007/3-540-45105-6_10
– ident: ref_147
– ident: ref_57
– ident: ref_99
SSID ssj0023216
Score 2.5812201
SecondaryResourceType review_article
Snippet The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 362
SubjectTerms bio-inspired algorithms
computational intelligence
optimisation
particle swarm optimisation (pso)
Review
stochastic algorithms
swarm intelligence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9swEBUll_ZStrSl6Rfqx2EvJrbHsqS9paUhFNoUuoHcjCyN2ELihMQh9N_vyHbSuHTpZa-2jKQ3HumNPXrD2EdUXiLEjjxNQpQpKyJlEKLUiETZxCalCKeRv33Pp_Ps60Iszkp9hZywVh64BW6EoeJcCKRCDW8rwKS0gQIA-sQpqTCsvrHSx2CqC7UgTfJWRwgoqB9hmsbNWt3bfRqR_h6z_Dsv8uG-2pjfB7Ncnm06kwv2uGOLfNyO8gl7gNVTNvvRjZr_PJjtis_I61ddVs4VH_M_yh-8_fLP5xterzlRPd7JMfGzXKHdMzaffLn-PI26ugiRpeCtjshFlVeKmBsQ2ZNSutzrUrtEO4yds8ZqF86rekfU2QAYUea5E1obgwjaw3M2qNYVvmAchUfjoTQK4ww9mLiUWSa1IiJnvUyH7PKIV2E70fBQu2JZUPAQoC1O0A7Z-1PTTauU8a9GnwLopwZB3Lq5QCYvOvCK_5l8yN4dTVYQvOEPh6lwvd8VaZYrAGKE1JHs2bLXY_9O9eumkdWWIqGn8yH7cLL63RN5eR8TecUepSF8j8k3ktdsUG_3-IY4Tl2-bV7nW30l-O8
  priority: 102
  providerName: Directory of Open Access Journals
Title Particle Swarm Optimisation: A Historical Review Up to the Current Developments
URI https://www.proquest.com/docview/2468336102
https://pubmed.ncbi.nlm.nih.gov/PMC7516836
https://www.mdpi.com/1099-4300/22/3/362/pdf?version=1585289630
https://doaj.org/article/e936913382394c53a2976333ef1d878e
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central [Accès libre]
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagPcCFhwBRHpV5HLhk85g4drigLtruColuBVQqp8jxA1Z006pNWcGvZ5y4ZbMCCXHJIRnLsWc8_sYefybkpRGWG4g0jjQOQSoUC4Q0ECSSxULFKi6ZO438fpKdzNJ3czb3C24bn1aJofhZ46Tdrk2QQhSFSRJCiL42XGn75rtfSYoR6mK8kAGG7P2MIRbvkf5sMh19brY4fdmWTggwtg9NkkSNy-5MQg1XfwdgXk2PvLGtVvLHhVwsLs0949uk2P11m3Ly7WBblwfq5xVCx_9v1h1yy8NSOmrt6C65Zqp75HTq7Yp-vJDrc3qK7uXcp_-8piP6m2KEtlsMdLai9ZIipqSe94leSkra3Cez8dGntyeBv4AhUBgl1gH6AmGFQIgIiCo55zqzeZnrONcm0lpJlWt3MNZqxOgSQLIyyzTLcymNgdzCA9KrlpV5SKhh1kgLpRQmSo0FGZU8TXkuEDEqy5MBebXTSKE8O7m7JGNRYJTilFfslTcgz_eiq5aS409Ch06tewHHot28WK6_FL7zCuNuM3RBursfXjGQCYIzADA21oILMyDPdkZRYPe6rRRZmeV2UyRpJgAQemJFvGMtnRq7X6qzrw1_N2cxls4G5MXerv7ekEf_JPWY3EzcQkCEoyx-Qnr1emueIlqqyyG5LsbHQ9I_PJpMPwybNQd8Hs_joR8svwAi5RO5
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAXCgLEQkHmceCS5jFx7HBBC6KqkGgrwUrlFDn2uFRss6vdLBX8esaJd2kqkBDXxJYTz3j8jWf8DWMvUTmJkFhaaRKiXBkRKY0QZVqkyqQmrYW_jfzxqDic5h9OxWk4cFuFtEpyxc87I-2jNlEOSRJnWQwx2dp4Yd2b7-EkKSWoS_5CAeSy7xSCsPiI7UyPTiZfuhBn6NvTCQH59jFmWdKZ7MEm1HH1DwDm9fTIm-tmoX9c6tnsyt5zsMuqzVf3KSff9tdtvW9-XiN0_P_fusNuB1jKJ70e3WU3sLnHjk-CXvFPl3p5wY_JvFyE9J_XfMJ_U4zwPsTApwvezjlhSh54n_iVpKTVfTY9eP_53WEUCjBEhrzENiJboJxSBBGBUKWU0haurEublhYTa402pfUXY50ljK4BtKiLwoqy1BoRSgcP2KiZN_iQcRQOtYNaK0xydKCTWua5LBUhRuNkNmavNhKpTGAn90UyZhV5KV541VZ4Y_Z823TRU3L8qdFbL9ZtA8-i3T2YL8-qMHkV-mqG3kn39eGNAJ0ROAMAdKlVUuGYPdsoRUXT60MpusH5elVleaEACHrSQHKgLYMRh2-a868df7cUKfUuxuzFVq_-_iOP_qnVY3Yr8wcBCa2ydI-N2uUanxBaauunYUn8AmW3D1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Swarm+Optimisation%3A+A+Historical+Review+Up+to+the+Current+Developments&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Freitas%2C+Diogo&rft.au=Lopes%2C+Luiz+Guerreiro&rft.au=Morgado-Dias%2C+Fernando&rft.date=2020-03-21&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=3&rft.spage=362&rft_id=info:doi/10.3390%2Fe22030362&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e22030362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon