Particle Swarm Optimisation: A Historical Review Up to the Current Developments
The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises...
Saved in:
| Published in | Entropy (Basel, Switzerland) Vol. 22; no. 3; p. 362 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
MDPI
21.03.2020
MDPI AG |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1099-4300 1099-4300 |
| DOI | 10.3390/e22030362 |
Cover
| Abstract | The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application. |
|---|---|
| AbstractList | The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application. The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application.The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application. |
| Author | Freitas, Diogo Lopes, Luiz Guerreiro Morgado-Dias, Fernando |
| AuthorAffiliation | 1 Madeira Interactive Technologies Institute (ITI/LARSyS/M-ITI), 9020-105 Funchal, Portugal; morgado@uma.pt 2 Faculty of Exact Sciences and Engineering, University of Madeira, Penteada Campus, 9020-105 Funchal, Portugal; lopes@uma.pt |
| AuthorAffiliation_xml | – name: 1 Madeira Interactive Technologies Institute (ITI/LARSyS/M-ITI), 9020-105 Funchal, Portugal; morgado@uma.pt – name: 2 Faculty of Exact Sciences and Engineering, University of Madeira, Penteada Campus, 9020-105 Funchal, Portugal; lopes@uma.pt |
| Author_xml | – sequence: 1 givenname: Diogo orcidid: 0000-0002-2351-8676 surname: Freitas fullname: Freitas, Diogo – sequence: 2 givenname: Luiz Guerreiro orcidid: 0000-0002-6145-8520 surname: Lopes fullname: Lopes, Luiz Guerreiro – sequence: 3 givenname: Fernando orcidid: 0000-0001-7334-3993 surname: Morgado-Dias fullname: Morgado-Dias, Fernando |
| BookMark | eNp1kVtv1DAQhSNURC_wwD_wIyAttT2JHfOAVC2XVqq0COiz5bUnrSsnDrazq_570u6qogiePPIcfzPn-Lg6GOKAVfWa0fcAip4i5xQoCP6sOmJUqUUNlB78UR9WxznfUsqBM_GiOgTgrWAgjqrVN5OKtwHJj61JPVmNxfc-m-Lj8IGckXOfS0zemkC-48bjllyNpERSbpAsp5RwKOQTbjDEsZ_r_LJ63pmQ8dX-PKmuvnz-uTxfXK6-XizPLhe2rkVZAG3arm2VlEA5lVI60am1ckw5pM5ZY5VTjWCdk5IbANOshXCNUsYggurgpLrYcV00t3pMvjfpTkfj9cNFTNd6b0yjAqEYQMtB1bYBw5UUAIAdc61scWa927GmYTR3WxPCI5BRfZ-wfkx4Fn_cicdp3aOzs-lkwpMNnnYGf6Ov40bLhokWxAx4swek-GvCXPSct8UQzIBxyprXswwEo_ezTndSm2LOCTttfXn4mpnswz-3e_vXi_87-Q1O7K3j |
| CitedBy_id | crossref_primary_10_1016_j_marstruc_2023_103409 crossref_primary_10_35234_fumbd_1313906 crossref_primary_10_1016_j_swevo_2024_101483 crossref_primary_10_1109_ACCESS_2020_3038497 crossref_primary_10_3390_app142311116 crossref_primary_10_1038_s44172_023_00104_0 crossref_primary_10_1016_j_envpol_2023_122871 crossref_primary_10_1007_s12206_022_1113_7 crossref_primary_10_1016_j_aei_2024_102354 crossref_primary_10_4018_IJDAI_296389 crossref_primary_10_1016_j_knosys_2021_107638 crossref_primary_10_1109_ACCESS_2024_3524322 crossref_primary_10_4236_jcc_2024_127009 crossref_primary_10_1109_ACCESS_2025_3535528 crossref_primary_10_3390_buildings13082097 crossref_primary_10_1016_j_ins_2023_03_011 crossref_primary_10_1016_j_physrep_2021_09_003 crossref_primary_10_1080_19942060_2025_2474675 crossref_primary_10_3390_drones7070427 crossref_primary_10_1038_s41598_024_69365_9 crossref_primary_10_1080_17445302_2024_2403163 crossref_primary_10_1186_s40623_020_01297_w crossref_primary_10_1038_s41598_024_79395_y crossref_primary_10_3390_bioengineering8050060 crossref_primary_10_1177_09596518251322251 crossref_primary_10_1016_j_ecolind_2021_108426 crossref_primary_10_1007_s10596_023_10223_4 crossref_primary_10_1038_s41598_024_77251_7 crossref_primary_10_3390_app11188634 crossref_primary_10_3390_e22070734 crossref_primary_10_1007_s13369_023_08627_6 crossref_primary_10_3390_math10163019 crossref_primary_10_14500_aro_11554 crossref_primary_10_1002_sat_1509 crossref_primary_10_3390_ma14216616 crossref_primary_10_1016_j_ultramic_2024_114024 crossref_primary_10_1016_j_jfoodeng_2021_110888 crossref_primary_10_1109_ACCESS_2024_3516207 crossref_primary_10_1016_j_array_2022_100249 crossref_primary_10_1109_ACCESS_2024_3394447 crossref_primary_10_1007_s10614_020_10070_w crossref_primary_10_31083_j_fbl2906220 crossref_primary_10_3390_ijerph191710892 crossref_primary_10_3390_electronics10212606 crossref_primary_10_3389_fams_2022_879866 crossref_primary_10_3390_app14125349 crossref_primary_10_1016_j_mechmachtheory_2022_105119 crossref_primary_10_3390_math11194093 crossref_primary_10_1109_TSC_2024_3440054 crossref_primary_10_1080_0305215X_2024_2390130 crossref_primary_10_1061_AJRUA6_RUENG_1447 crossref_primary_10_3390_s25041206 crossref_primary_10_3390_photonics12010039 crossref_primary_10_1016_j_radmeas_2024_107368 crossref_primary_10_1108_AEAT_08_2021_0247 crossref_primary_10_1007_s11071_024_10386_4 crossref_primary_10_1063_5_0107948 crossref_primary_10_1016_j_jjimei_2022_100105 crossref_primary_10_1049_sfw2_12104 crossref_primary_10_2478_cait_2024_0025 crossref_primary_10_1007_s11276_023_03472_9 crossref_primary_10_1177_14750902241263250 crossref_primary_10_1186_s10033_023_00849_x crossref_primary_10_1109_TMLCN_2023_3309772 crossref_primary_10_1038_s41540_023_00299_0 crossref_primary_10_1016_j_fuel_2024_131633 crossref_primary_10_1016_j_jclepro_2023_137632 crossref_primary_10_20525_ijrbs_v12i4_2473 crossref_primary_10_3390_en16010347 crossref_primary_10_1109_ACCESS_2025_3538276 crossref_primary_10_3390_electronics12020462 crossref_primary_10_1177_09544062231196068 crossref_primary_10_3390_fire8010027 crossref_primary_10_1007_s42979_023_02382_z crossref_primary_10_1007_s12065_021_00661_3 crossref_primary_10_3390_app15031165 crossref_primary_10_7717_peerj_cs_1903 crossref_primary_10_1016_j_heliyon_2022_e11525 crossref_primary_10_1016_j_ins_2022_10_118 crossref_primary_10_1016_j_seps_2020_100995 crossref_primary_10_3390_app15010235 crossref_primary_10_1186_s12889_023_15543_9 crossref_primary_10_1016_j_cie_2021_107694 crossref_primary_10_1016_j_jenvman_2024_123347 crossref_primary_10_1007_s10494_023_00408_3 crossref_primary_10_1016_j_ifacol_2021_10_220 crossref_primary_10_1016_j_rineng_2022_100637 crossref_primary_10_1007_s00521_023_08480_6 crossref_primary_10_1007_s10586_024_04683_1 crossref_primary_10_1016_j_matcom_2022_04_031 crossref_primary_10_3390_math9121417 crossref_primary_10_3390_sym14061080 crossref_primary_10_1007_s11042_022_12966_1 crossref_primary_10_1109_ACCESS_2024_3495559 crossref_primary_10_1016_j_ins_2022_10_069 crossref_primary_10_1016_j_eswa_2025_126821 crossref_primary_10_1016_j_peva_2024_102410 crossref_primary_10_23919_JSEE_2022_000089 crossref_primary_10_1016_j_egyr_2021_11_119 crossref_primary_10_1016_j_advwatres_2021_103982 crossref_primary_10_1155_2021_5491017 crossref_primary_10_3390_en14248575 crossref_primary_10_1016_j_jmsy_2023_02_015 crossref_primary_10_1007_s00500_023_09087_8 crossref_primary_10_1016_j_est_2025_115936 crossref_primary_10_1016_j_jobe_2020_101674 crossref_primary_10_1016_j_jwpe_2024_105937 crossref_primary_10_1038_s41598_024_76698_y crossref_primary_10_3390_systems11060273 crossref_primary_10_3390_a17020076 crossref_primary_10_3390_a13060142 crossref_primary_10_1371_journal_pone_0308002 crossref_primary_10_3233_JIFS_211008 crossref_primary_10_1016_j_energy_2023_129906 crossref_primary_10_1016_j_compstruct_2022_116158 crossref_primary_10_3390_electronics13214199 crossref_primary_10_1016_j_sasc_2023_200057 crossref_primary_10_1007_s40295_025_00486_7 crossref_primary_10_3390_math9101120 crossref_primary_10_1016_j_energy_2024_131281 crossref_primary_10_3390_agronomy15010244 |
| Cites_doi | 10.1016/j.ins.2010.11.033 10.1016/j.ins.2012.10.012 10.1109/TEVC.2004.826069 10.1109/IECON.2006.347309 10.1109/SBRN.2010.48 10.20944/preprints201809.0007.v1 10.1109/ICETC.2010.5529629 10.1002/dac.1376 10.1109/CEC.2007.4424709 10.1109/TEVC.2004.826074 10.1109/SIS.2014.7011788 10.1109/CEC.2007.4424448 10.1109/SYNASC.2016.043 10.1109/CSO.2009.420 10.1007/11816102_6 10.1109/ICIEA.2017.8283141 10.1109/JSEN.2013.2290433 10.1007/978-3-642-15907-7_28 10.1109/ICNC.2010.5583169 10.14257/ijmue.2015.10.10.36 10.3390/informatics5020025 10.1109/CEC.2010.5586178 10.1109/TEVC.2012.2196047 10.1007/3-540-32839-4_8 10.1080/03052150410001704854 10.1109/CEC.2002.1004388 10.2514/1.17873 10.1109/IJCNN.2009.5178918 10.1002/nme.1646 10.1109/TNNLS.2013.2276053 10.1016/j.cor.2004.08.012 10.1109/NaBIC.2012.6402247 10.1109/ISIEA.2011.6108725 10.1162/EVCO_r_00180 10.1007/s13369-018-03713-6 10.1002/nme.1149 10.1109/SIS.2007.368034 10.1007/s00170-005-2513-4 10.1109/4235.985692 10.1109/TSMC.2013.2248146 10.1109/ICONIP.2002.1201969 10.1007/978-3-540-24854-5_10 10.1109/TSMCB.2009.2015956 10.1109/TEVC.2017.2754271 10.1109/TIE.2005.858737 10.1016/j.ins.2010.08.045 10.1109/TBME.2009.2013934 10.1080/10556788.2010.509435 10.1007/3-540-45517-5_2 10.1109/CEC.2007.4424483 10.1109/TSMCB.2003.818557 10.1016/j.procs.2015.08.152 10.1109/TEVC.2010.2059031 10.1109/CEC.2009.4983119 10.1109/TITS.2015.2505323 10.1109/FUZZY.2009.5277165 10.1007/11538059_40 10.1109/TEVC.2005.859468 10.1016/j.asoc.2018.09.027 10.1109/CEC.2010.5585967 10.1109/TEVC.2010.2050024 10.1109/HIS.2011.6122090 10.1109/CEC.2010.5586257 10.1109/ICDIM.2008.4746766 10.1023/A:1008202821328 10.1109/CEC.2008.4631335 10.1007/978-81-322-0487-9_38 10.1016/S0925-2312(02)00569-6 10.1109/TEVC.2004.826076 10.1145/1276958.1276970 10.1109/ICINIS.2011.35 10.1016/j.ejor.2008.02.035 10.1109/LGRS.2016.2530724 10.1109/TEVC.2004.826067 10.1007/978-3-7091-6230-9_80 10.1109/ACCESS.2017.2702561 10.1016/j.orl.2008.12.008 10.1016/j.ins.2012.09.030 10.1109/BRICS-CCI-CBIC.2013.68 10.1109/ICINIS.2009.171 10.1016/j.engappai.2015.06.013 10.1007/978-3-540-24653-4_50 10.1007/3-540-45105-6_10 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/e22030362 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_e936913382394c53a2976333ef1d878e 10.3390/e22030362 PMC7516836 10_3390_e22030362 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c446t-3058f889773020777d6f9b9d19de0ddcac9d9561fd772a33a5b66d599aaee39f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:20:44 EDT 2025 Sun Oct 26 03:27:51 EDT 2025 Tue Sep 30 17:05:35 EDT 2025 Fri Sep 05 06:30:49 EDT 2025 Thu Oct 16 04:38:09 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-3058f889773020777d6f9b9d19de0ddcac9d9561fd772a33a5b66d599aaee39f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7334-3993 0000-0002-6145-8520 0000-0002-2351-8676 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/22/3/362/pdf?version=1585289630 |
| PMID | 33286136 |
| PQID | 2468336102 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e936913382394c53a2976333ef1d878e unpaywall_primary_10_3390_e22030362 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516836 proquest_miscellaneous_2468336102 crossref_citationtrail_10_3390_e22030362 crossref_primary_10_3390_e22030362 |
| PublicationCentury | 2000 |
| PublicationDate | 20200321 |
| PublicationDateYYYYMMDD | 2020-03-21 |
| PublicationDate_xml | – month: 3 year: 2020 text: 20200321 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | ref_94 ref_136 ref_92 ref_91 ref_138 Jana (ref_93) 2019; 74 Chatterjee (ref_139) 2005; 52 Mussi (ref_86) 2011; 181 ref_12 ref_131 ref_11 ref_99 ref_10 Mendes (ref_65) 2004; 8 ref_97 Juang (ref_100) 2004; 34 ref_96 ref_135 ref_95 ref_134 ref_19 ref_18 ref_17 He (ref_43) 2004; 36 ref_16 ref_15 ref_126 ref_125 ref_128 Tian (ref_105) 2016; 17 ref_25 ref_24 Ince (ref_142) 2009; 56 ref_23 ref_120 ref_21 ref_122 ref_20 Kodaz (ref_79) 2015; 45 ref_124 ref_123 Schutte (ref_73) 2004; 61 ref_29 ref_28 Awwad (ref_89) 2013; 26 ref_27 Shieh (ref_129) 2011; 218 ref_26 Hung (ref_90) 2012; 27 ref_72 ref_70 Yue (ref_64) 2018; 22 ref_150 ref_78 ref_77 ref_76 Dali (ref_82) 2015; 60 Shelokar (ref_133) 2007; 188 Zweiri (ref_151) 2003; 50 Parsopoulos (ref_53) 2004; 8 Zhan (ref_38) 2009; 39 Engelbrecht (ref_137) 1999; 2 ref_83 ref_148 He (ref_132) 2007; 186 ref_147 ref_81 ref_149 Pehlivanoglu (ref_143) 2013; 17 ref_140 ref_88 Omran (ref_121) 2009; 196 ref_141 ref_87 ref_85 ref_146 ref_84 ref_145 Wang (ref_98) 2013; 223 Zhang (ref_119) 2009; 37 Engelbrecht (ref_36) 2000; 26 Chatterjee (ref_22) 2006; 33 ref_50 Yang (ref_104) 2014; 14 Storn (ref_107) 1997; 11 ref_58 ref_57 ref_56 ref_55 ref_54 ref_52 ref_51 Senthilnath (ref_106) 2016; 13 Bonyadi (ref_3) 2017; 25 Das (ref_108) 2011; 15 ref_61 ref_60 Sun (ref_13) 2013; 221 Clerc (ref_14) 2002; 6 ref_69 ref_68 ref_67 Venter (ref_74) 2006; 3 Sun (ref_44) 2011; 181 (ref_47) 2004; 8 Li (ref_63) 2010; 14 ref_115 ref_114 ref_117 ref_116 ref_118 ref_35 Engelbrecht (ref_37) 2004; 8 ref_34 ref_33 Lalwani (ref_66) 2019; 44 ref_32 ref_111 ref_31 ref_110 ref_30 ref_113 ref_112 Quan (ref_144) 2014; 25 Fu (ref_103) 2013; 43 ref_39 Chang (ref_71) 2005; 21 Xia (ref_127) 2006; 29 Deng (ref_130) 2015; 10 Koh (ref_75) 2006; 67 Cao (ref_80) 2017; 5 ref_109 Li (ref_59) 2007; 3 ref_46 ref_45 ref_42 ref_41 ref_102 ref_40 ref_101 ref_1 ref_2 ref_49 ref_48 ref_9 ref_8 ref_5 ref_4 Parrott (ref_62) 2006; 10 ref_7 ref_6 |
| References_xml | – volume: 181 start-page: 1153 year: 2011 ident: ref_44 article-title: An improved vector particle swarm optimization for constrained optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.11.033 – volume: 223 start-page: 119 year: 2013 ident: ref_98 article-title: Diversity enhanced particle swarm optimization with neighborhood search publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.10.012 – ident: ref_68 – volume: 8 start-page: 225 year: 2004 ident: ref_37 article-title: A cooperative approach to particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826069 – volume: 218 start-page: 4365 year: 2011 ident: ref_129 article-title: Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification publication-title: Appl. Math. Comput. – ident: ref_16 – ident: ref_39 – ident: ref_126 doi: 10.1109/IECON.2006.347309 – ident: ref_9 doi: 10.1109/SBRN.2010.48 – ident: ref_17 doi: 10.20944/preprints201809.0007.v1 – ident: ref_42 – ident: ref_95 doi: 10.1109/ICETC.2010.5529629 – ident: ref_1 – volume: 26 start-page: 888 year: 2013 ident: ref_89 article-title: Distributed topology control in large-scale hybrid RF/FSO networks: SIMT GPU-based particle swarm optimization approach publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.1376 – ident: ref_122 doi: 10.1109/CEC.2007.4424709 – ident: ref_94 – volume: 8 start-page: 204 year: 2004 ident: ref_65 article-title: The fully informed particle swarm: Simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 – ident: ref_34 doi: 10.1109/SIS.2014.7011788 – ident: ref_141 – ident: ref_4 – ident: ref_31 – ident: ref_56 – ident: ref_76 doi: 10.1109/CEC.2007.4424448 – ident: ref_27 – ident: ref_120 – ident: ref_48 – ident: ref_85 doi: 10.1109/SYNASC.2016.043 – ident: ref_21 doi: 10.1109/CSO.2009.420 – ident: ref_128 – ident: ref_45 – ident: ref_123 doi: 10.1007/11816102_6 – ident: ref_10 doi: 10.1109/ICIEA.2017.8283141 – ident: ref_149 – ident: ref_97 – ident: ref_30 – volume: 14 start-page: 882 year: 2014 ident: ref_104 article-title: Task allocation for wireless sensor network using modified binary particle swarm optimization publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2290433 – ident: ref_83 doi: 10.1007/978-3-642-15907-7_28 – ident: ref_140 – ident: ref_135 doi: 10.1109/ICNC.2010.5583169 – volume: 10 start-page: 369 year: 2015 ident: ref_130 article-title: An improved PSO algorithm based on mutation operator and simulated annealing publication-title: Int. J. Multimed. Ubiquitous Eng. doi: 10.14257/ijmue.2015.10.10.36 – ident: ref_150 doi: 10.3390/informatics5020025 – ident: ref_8 doi: 10.1109/CEC.2010.5586178 – ident: ref_11 – volume: 17 start-page: 436 year: 2013 ident: ref_143 article-title: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2196047 – ident: ref_70 doi: 10.1007/3-540-32839-4_8 – volume: 36 start-page: 585 year: 2004 ident: ref_43 article-title: An improved particle swarm optimizer for mechanical design optimization problems publication-title: Eng. Optim. doi: 10.1080/03052150410001704854 – volume: 188 start-page: 129 year: 2007 ident: ref_133 article-title: Particle swarm and ant colony algorithms hybridized for improved continuous optimization publication-title: Appl. Math. Comput. – ident: ref_46 doi: 10.1109/CEC.2002.1004388 – volume: 3 start-page: 123 year: 2006 ident: ref_74 article-title: Parallel particle swarm optimization algorithm accelerated by asynchronous evaluations publication-title: J. Aerosp. Comput. Inf. Commun. doi: 10.2514/1.17873 – ident: ref_67 – ident: ref_92 – ident: ref_145 doi: 10.1109/IJCNN.2009.5178918 – volume: 67 start-page: 578 year: 2006 ident: ref_75 article-title: Parallel asynchronous particle swarm optimization publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1646 – ident: ref_148 – volume: 25 start-page: 303 year: 2014 ident: ref_144 article-title: Short-term load and wind power forecasting using neural network-based prediction intervals publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2276053 – volume: 33 start-page: 859 year: 2006 ident: ref_22 article-title: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2004.08.012 – ident: ref_77 doi: 10.1109/NaBIC.2012.6402247 – ident: ref_6 – ident: ref_24 doi: 10.1109/ISIEA.2011.6108725 – ident: ref_25 – ident: ref_50 – ident: ref_81 – volume: 25 start-page: 1 year: 2017 ident: ref_3 article-title: Particle swarm optimization for single objective continuous space problems: A review publication-title: Evol. Comput. doi: 10.1162/EVCO_r_00180 – ident: ref_33 – volume: 44 start-page: 2899 year: 2019 ident: ref_66 article-title: A survey on parallel particle swarm optimization algorithms publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-018-03713-6 – volume: 61 start-page: 2296 year: 2004 ident: ref_73 article-title: Parallel global optimization with the particle swarm algorithm publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1149 – ident: ref_112 – ident: ref_116 doi: 10.1109/SIS.2007.368034 – volume: 29 start-page: 360 year: 2006 ident: ref_127 article-title: A hybrid particle swarm optimization approach for the job-shop scheduling problem publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-2513-4 – volume: 6 start-page: 58 year: 2002 ident: ref_14 article-title: The particle swarm – Explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 43 start-page: 1451 year: 2013 ident: ref_103 article-title: Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2013.2248146 – ident: ref_19 – ident: ref_146 doi: 10.1109/ICONIP.2002.1201969 – volume: 26 start-page: 84 year: 2000 ident: ref_36 article-title: Cooperative learning in neural networks using particle swarm optimizers publication-title: S. Afr. Comput. J. – ident: ref_60 doi: 10.1007/978-3-540-24854-5_10 – volume: 39 start-page: 1362 year: 2009 ident: ref_38 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2009.2015956 – volume: 22 start-page: 805 year: 2018 ident: ref_64 article-title: A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2754271 – ident: ref_78 – ident: ref_49 – ident: ref_5 – ident: ref_32 – ident: ref_55 – volume: 52 start-page: 1478 year: 2005 ident: ref_139 article-title: A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2005.858737 – ident: ref_26 – volume: 181 start-page: 4642 year: 2011 ident: ref_86 article-title: Evaluation of parallel particle swarm optimization algorithms within the CUDA™ architecture publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.08.045 – ident: ref_136 – volume: 56 start-page: 1415 year: 2009 ident: ref_142 article-title: A generic and robust system for automated patient-specific classification of ECG signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2013934 – volume: 27 start-page: 33 year: 2012 ident: ref_90 article-title: Accelerating parallel particle swarm optimization via GPU publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2010.509435 – ident: ref_61 – ident: ref_35 – ident: ref_23 – ident: ref_109 doi: 10.1007/3-540-45517-5_2 – ident: ref_102 doi: 10.1109/CEC.2007.4424483 – volume: 34 start-page: 997 year: 2004 ident: ref_100 article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2003.818557 – volume: 60 start-page: 1070 year: 2015 ident: ref_82 article-title: GPU-PSO: Parallel particle swarm optimization approaches on graphical processing unit for constraint reasoning: Case of Max-CSPs publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.152 – volume: 15 start-page: 4 year: 2011 ident: ref_108 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – ident: ref_52 – ident: ref_84 doi: 10.1109/CEC.2009.4983119 – ident: ref_69 – volume: 17 start-page: 3009 year: 2016 ident: ref_105 article-title: Dual-objective scheduling of rescue vehicles to distinguish forest fires via differential evolution and particle swarm optimization combined algorithm publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2505323 – ident: ref_101 doi: 10.1109/FUZZY.2009.5277165 – ident: ref_125 doi: 10.1007/11538059_40 – ident: ref_41 – volume: 10 start-page: 440 year: 2006 ident: ref_62 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.859468 – ident: ref_110 – ident: ref_131 – ident: ref_72 – ident: ref_124 – volume: 2 start-page: 59 year: 1999 ident: ref_137 article-title: Training product unit neural networks publication-title: Stab. Control Theory Appl. – ident: ref_20 – volume: 74 start-page: 330 year: 2019 ident: ref_93 article-title: Repository and mutation based particle swarm optimization (RMPSO): A new PSO variant applied to reconstruction of gene regulatory network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.027 – ident: ref_7 – ident: ref_118 doi: 10.1109/CEC.2010.5585967 – volume: 14 start-page: 150 year: 2010 ident: ref_63 article-title: Niching without niching parameters: Particle swarm optimization using a ring topology publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2050024 – ident: ref_115 doi: 10.1109/HIS.2011.6122090 – ident: ref_113 doi: 10.1109/CEC.2010.5586257 – ident: ref_117 doi: 10.1109/ICDIM.2008.4746766 – ident: ref_138 – volume: 11 start-page: 341 year: 1997 ident: ref_107 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: ref_111 doi: 10.1109/CEC.2008.4631335 – ident: ref_134 doi: 10.1007/978-81-322-0487-9_38 – ident: ref_40 – volume: 50 start-page: 305 year: 2003 ident: ref_151 article-title: A three-term backpropagation algorithm publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00569-6 – volume: 8 start-page: 211 year: 2004 ident: ref_53 article-title: On the computation of all global minimizers through particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826076 – ident: ref_58 doi: 10.1145/1276958.1276970 – ident: ref_18 – ident: ref_88 doi: 10.1109/ICINIS.2011.35 – ident: ref_96 – volume: 186 start-page: 1407 year: 2007 ident: ref_132 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Appl. Math. Comput. – volume: 196 start-page: 128 year: 2009 ident: ref_121 article-title: Bare bones differential evolution publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2008.02.035 – volume: 13 start-page: 599 year: 2016 ident: ref_106 article-title: A novel approach for multispectral satellite image classification based on the Bat algorithm publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2016.2530724 – volume: 8 start-page: 256 year: 2004 ident: ref_47 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826067 – ident: ref_51 doi: 10.1007/978-3-7091-6230-9_80 – volume: 21 start-page: 809 year: 2005 ident: ref_71 article-title: A parallel particle swarm optimization algorithm with communication strategies publication-title: J. Inf. Sci. Eng. – volume: 5 start-page: 8214 year: 2017 ident: ref_80 article-title: Distributed parallel particle swarm optimization for multi-objective and many-objective large-scale optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2702561 – volume: 37 start-page: 117 year: 2009 ident: ref_119 article-title: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2008.12.008 – ident: ref_29 – volume: 221 start-page: 355 year: 2013 ident: ref_13 article-title: A new fitness estimation strategy for particle swarm optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.09.030 – ident: ref_2 – ident: ref_114 doi: 10.1109/BRICS-CCI-CBIC.2013.68 – ident: ref_12 – volume: 3 start-page: 1707 year: 2007 ident: ref_59 article-title: An efficient fine-grained parallel particle swarm optimization method based on GPU-acceleration publication-title: Int. J. Innov. Comput. Inf. Control. – ident: ref_87 doi: 10.1109/ICINIS.2009.171 – volume: 45 start-page: 33 year: 2015 ident: ref_79 article-title: A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.06.013 – ident: ref_54 doi: 10.1007/978-3-540-24653-4_50 – ident: ref_15 – ident: ref_91 – ident: ref_28 doi: 10.1007/3-540-45105-6_10 – ident: ref_147 – ident: ref_57 – ident: ref_99 |
| SSID | ssj0023216 |
| Score | 2.5812201 |
| SecondaryResourceType | review_article |
| Snippet | The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 362 |
| SubjectTerms | bio-inspired algorithms computational intelligence optimisation particle swarm optimisation (pso) Review stochastic algorithms swarm intelligence |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9swEBUll_ZStrSl6Rfqx2EvJrbHsqS9paUhFNoUuoHcjCyN2ELihMQh9N_vyHbSuHTpZa-2jKQ3HumNPXrD2EdUXiLEjjxNQpQpKyJlEKLUiETZxCalCKeRv33Pp_Ps60Iszkp9hZywVh64BW6EoeJcCKRCDW8rwKS0gQIA-sQpqTCsvrHSx2CqC7UgTfJWRwgoqB9hmsbNWt3bfRqR_h6z_Dsv8uG-2pjfB7Ncnm06kwv2uGOLfNyO8gl7gNVTNvvRjZr_PJjtis_I61ddVs4VH_M_yh-8_fLP5xterzlRPd7JMfGzXKHdMzaffLn-PI26ugiRpeCtjshFlVeKmBsQ2ZNSutzrUrtEO4yds8ZqF86rekfU2QAYUea5E1obgwjaw3M2qNYVvmAchUfjoTQK4ww9mLiUWSa1IiJnvUyH7PKIV2E70fBQu2JZUPAQoC1O0A7Z-1PTTauU8a9GnwLopwZB3Lq5QCYvOvCK_5l8yN4dTVYQvOEPh6lwvd8VaZYrAGKE1JHs2bLXY_9O9eumkdWWIqGn8yH7cLL63RN5eR8TecUepSF8j8k3ktdsUG_3-IY4Tl2-bV7nW30l-O8 priority: 102 providerName: Directory of Open Access Journals |
| Title | Particle Swarm Optimisation: A Historical Review Up to the Current Developments |
| URI | https://www.proquest.com/docview/2468336102 https://pubmed.ncbi.nlm.nih.gov/PMC7516836 https://www.mdpi.com/1099-4300/22/3/362/pdf?version=1585289630 https://doaj.org/article/e936913382394c53a2976333ef1d878e |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central [Accès libre] customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagPcCFhwBRHpV5HLhk85g4drigLtruColuBVQqp8jxA1Z006pNWcGvZ5y4ZbMCCXHJIRnLsWc8_sYefybkpRGWG4g0jjQOQSoUC4Q0ECSSxULFKi6ZO438fpKdzNJ3czb3C24bn1aJofhZ46Tdrk2QQhSFSRJCiL42XGn75rtfSYoR6mK8kAGG7P2MIRbvkf5sMh19brY4fdmWTggwtg9NkkSNy-5MQg1XfwdgXk2PvLGtVvLHhVwsLs0949uk2P11m3Ly7WBblwfq5xVCx_9v1h1yy8NSOmrt6C65Zqp75HTq7Yp-vJDrc3qK7uXcp_-8piP6m2KEtlsMdLai9ZIipqSe94leSkra3Cez8dGntyeBv4AhUBgl1gH6AmGFQIgIiCo55zqzeZnrONcm0lpJlWt3MNZqxOgSQLIyyzTLcymNgdzCA9KrlpV5SKhh1kgLpRQmSo0FGZU8TXkuEDEqy5MBebXTSKE8O7m7JGNRYJTilFfslTcgz_eiq5aS409Ch06tewHHot28WK6_FL7zCuNuM3RBursfXjGQCYIzADA21oILMyDPdkZRYPe6rRRZmeV2UyRpJgAQemJFvGMtnRq7X6qzrw1_N2cxls4G5MXerv7ekEf_JPWY3EzcQkCEoyx-Qnr1emueIlqqyyG5LsbHQ9I_PJpMPwybNQd8Hs_joR8svwAi5RO5 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9gAXCgLEQkHmceCS5jFx7HBBC6KqkGgrwUrlFDn2uFRss6vdLBX8esaJd2kqkBDXxJYTz3j8jWf8DWMvUTmJkFhaaRKiXBkRKY0QZVqkyqQmrYW_jfzxqDic5h9OxWk4cFuFtEpyxc87I-2jNlEOSRJnWQwx2dp4Yd2b7-EkKSWoS_5CAeSy7xSCsPiI7UyPTiZfuhBn6NvTCQH59jFmWdKZ7MEm1HH1DwDm9fTIm-tmoX9c6tnsyt5zsMuqzVf3KSff9tdtvW9-XiN0_P_fusNuB1jKJ70e3WU3sLnHjk-CXvFPl3p5wY_JvFyE9J_XfMJ_U4zwPsTApwvezjlhSh54n_iVpKTVfTY9eP_53WEUCjBEhrzENiJboJxSBBGBUKWU0haurEublhYTa402pfUXY50ljK4BtKiLwoqy1BoRSgcP2KiZN_iQcRQOtYNaK0xydKCTWua5LBUhRuNkNmavNhKpTGAn90UyZhV5KV541VZ4Y_Z823TRU3L8qdFbL9ZtA8-i3T2YL8-qMHkV-mqG3kn39eGNAJ0ROAMAdKlVUuGYPdsoRUXT60MpusH5elVleaEACHrSQHKgLYMRh2-a868df7cUKfUuxuzFVq_-_iOP_qnVY3Yr8wcBCa2ydI-N2uUanxBaauunYUn8AmW3D1M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Swarm+Optimisation%3A+A+Historical+Review+Up+to+the+Current+Developments&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Freitas%2C+Diogo&rft.au=Lopes%2C+Luiz+Guerreiro&rft.au=Morgado-Dias%2C+Fernando&rft.date=2020-03-21&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=3&rft.spage=362&rft_id=info:doi/10.3390%2Fe22030362&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e22030362 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |