Employing the Interpretable Ensemble Learning Approach to Predict the Bandgaps of the Halide Perovskites

Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and ut...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 11; p. 2686
Main Authors Ren, Chao, Wu, Yiyuan, Zou, Jijun, Cai, Bowen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.06.2024
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma17112686

Cover

Abstract Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1−xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.
AbstractList Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1−xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1-xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1-xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn Pb I . In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn[sub.1−x]Pb[sub.x]I[sub.3]. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.
Audience Academic
Author Zou, Jijun
Cai, Bowen
Wu, Yiyuan
Ren, Chao
AuthorAffiliation 3 Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China
5 School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
2 Engineering Research Center of Nuclear Technology Application, East China Institute of Technology, Ministry of Education, Nanchang 330013, China
1 Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China; 2021110241@ecut.edu.cn (C.R.)
4 School of Information Engineering, East China University of Technology, Nanchang 330013, China
AuthorAffiliation_xml – name: 4 School of Information Engineering, East China University of Technology, Nanchang 330013, China
– name: 3 Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China
– name: 5 School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
– name: 2 Engineering Research Center of Nuclear Technology Application, East China Institute of Technology, Ministry of Education, Nanchang 330013, China
– name: 1 Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China; 2021110241@ecut.edu.cn (C.R.)
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0009-0008-1291-632X
  surname: Ren
  fullname: Ren, Chao
– sequence: 2
  givenname: Yiyuan
  surname: Wu
  fullname: Wu, Yiyuan
– sequence: 3
  givenname: Jijun
  orcidid: 0000-0003-3681-2054
  surname: Zou
  fullname: Zou, Jijun
– sequence: 4
  givenname: Bowen
  surname: Cai
  fullname: Cai, Bowen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38893948$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1vFCEUhompsbX2xh9gJvHG1GyFgZ0ZrszarLbJJvZCrwkfZ3apDIzA1Oy_L9uttjZGzgUHeN4D5-UlOvDBA0KvCT6jlOMPgyQtIXXTNc_QEeG8mRHO2MGj_BCdpHSNy6CUdDV_gQ5p13HKWXeENsthdGFr_brKG6gufYY4RshSOaiWPsGwS1Ygo98xi3GMQepNlUN1FcFYne90n6Q3azmmKvR36wvprIHqCmK4ST9shvQKPe-lS3ByPx-j75-X384vZquvXy7PF6uZZqzJs7rj85aVMNoYCmZOiFKqoaBa2RslOYe6n4PBfa94LQFrWmMGqmaqY0QBPUbv93UnP8rtL-mcGKMdZNwKgsXOMvFgWaE_7ulxUgMYDT5H-aAI0oq_T7zdiHW4EYSQtjg4LxXe3VeI4ecEKYvBJg3OSQ9hSoLiFncYty0v6Nsn6HWYoi9uFKpp55gwygp1tqfW0oGwvg_lYl3CwGB1-fzelv1Fy1uOG05JEbx53MOfx__-5ALgPaBjSClCL7TNMtuwa8m6f_ty-kTyHxNvATWzyL4
CitedBy_id crossref_primary_10_3390_ma17184459
crossref_primary_10_1021_acsami_5c00218
Cites_doi 10.1016/j.solener.2021.09.030
10.1038/nphoton.2016.62
10.1016/j.orgel.2021.106426
10.1063/1.4893495
10.1021/acs.jpclett.5b01738
10.1039/C6EE03474H
10.1021/acs.jpcc.9b11768
10.1016/j.commatsci.2021.110528
10.1021/acsenergylett.6b00471
10.1002/adma.201905502
10.1016/j.mtcomm.2021.102932
10.1016/j.artint.2022.103788
10.1007/s40192-020-00178-0
10.1039/D3CP05295H
10.1016/j.nanoen.2017.02.025
10.1016/j.engstruct.2020.110927
10.1007/s11467-018-0758-2
10.1021/acs.chemmater.0c03402
10.3390/risks7030074
10.1021/ja809598r
10.1002/pip.3171
10.1021/jp409967a
10.15541/jim20200748
10.1088/1674-1056/ac5d2d
10.1002/solr.201900304
10.1038/srep19375
10.1016/j.mssp.2023.107427
10.1021/acs.jpclett.6b02800
10.1016/j.physleta.2021.127800
10.1103/PhysRevB.86.121102
10.1016/j.eswa.2022.118101
10.1016/j.energy.2021.120109
10.1016/j.nanoen.2020.105380
10.1016/j.engstruct.2020.110331
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ma17112686
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database (Proquest)
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID 10.3390/ma17112686
PMC11173945
A797906931
38893948
10_3390_ma17112686
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Key Research and Development Program of Jiangxi province
  grantid: No. 20223BBH80005
– fundername: Jiangxi Nuclear Geology Data Science and System Engineering Technology Research Center Open Fund
  grantid: JELRGBDT202101
– fundername: Key Research and Development Program of Jiangxi province
  grantid: 20223BBH80005
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c446t-289574747dcdd3ed511bbb63eb7afdba99e2f5ed0ffb92ae0c3204eb24b841be3
IEDL.DBID UNPAY
ISSN 1996-1944
IngestDate Sun Oct 26 04:17:01 EDT 2025
Tue Sep 30 17:09:11 EDT 2025
Thu Sep 04 17:51:10 EDT 2025
Fri Jul 25 11:49:40 EDT 2025
Mon Oct 20 16:59:32 EDT 2025
Mon Jul 21 05:49:49 EDT 2025
Thu Oct 16 04:43:44 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Shapley additive explanations
bandgap
machine learning
regression
halide perovskite
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-289574747dcdd3ed511bbb63eb7afdba99e2f5ed0ffb92ae0c3204eb24b841be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3681-2054
0009-0008-1291-632X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1944/17/11/2686/pdf?version=1717317836
PMID 38893948
PQID 3067501434
PQPubID 2032366
ParticipantIDs unpaywall_primary_10_3390_ma17112686
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173945
proquest_miscellaneous_3070800779
proquest_journals_3067501434
gale_infotracacademiconefile_A797906931
pubmed_primary_38893948
crossref_citationtrail_10_3390_ma17112686
crossref_primary_10_3390_ma17112686
PublicationCentury 2000
PublicationDate 20240602
PublicationDateYYYYMMDD 2024-06-02
PublicationDate_xml – month: 6
  year: 2024
  text: 20240602
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gladkikh (ref_18) 2020; 124
Pilania (ref_15) 2016; 6
Vakharia (ref_2) 2022; 422
Wang (ref_16) 2021; 29
Jino (ref_29) 2015; 6
ref_36
Castelli (ref_12) 2014; 2
Jebli (ref_35) 2021; 224
ref_33
Ghosh (ref_17) 2020; 4
Hu (ref_31) 2019; 3
Steven (ref_20) 2020; 9
Gao (ref_8) 2022; 32
Guo (ref_1) 2021; 228
Gao (ref_24) 2022; 313
Wang (ref_30) 2017; 10
Naseri (ref_9) 2018; 13
Oliveira (ref_10) 2014; 118
Mangalathu (ref_25) 2020; 208
Zhang (ref_13) 2021; 36
Jin (ref_28) 2012; 86
Yang (ref_34) 2021; 196
Liu (ref_6) 2022; 101
Obada (ref_19) 2023; 161
Mangalathu (ref_26) 2020; 219
Talapatra (ref_21) 2021; 33
Sutherland (ref_3) 2016; 10
Kojima (ref_4) 2009; 131
Kang (ref_27) 2017; 8
Pela (ref_11) 2024; 26
Zhao (ref_14) 2022; 31
Zina (ref_7) 2017; 34
Zhang (ref_22) 2020; 78
Yerlikaya (ref_23) 2022; 208
Green (ref_5) 2019; 27
Savory (ref_32) 2016; 1
References_xml – volume: 228
  start-page: 689
  year: 2021
  ident: ref_1
  article-title: Machine learning stability and bandgap of lead-free halide double perovskite materials for perovskite solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.09.030
– volume: 10
  start-page: 295
  year: 2016
  ident: ref_3
  article-title: Perovskite photonic sources
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.62
– volume: 101
  start-page: 106426
  year: 2022
  ident: ref_6
  article-title: Study on bandgap predictions of ABX3-type perovskites by machine learning
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2021.106426
– volume: 2
  start-page: 081514
  year: 2014
  ident: ref_12
  article-title: Bandgap calculations and trends of organometal halide perovskites
  publication-title: APL Mater.
  doi: 10.1063/1.4893495
– volume: 6
  start-page: 3503
  year: 2015
  ident: ref_29
  article-title: Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Bandgap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1–xPbxI3
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01738
– volume: 10
  start-page: 509
  year: 2017
  ident: ref_30
  article-title: Indirect to direct bandgap transition in methylammonium lead halide perovskite
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03474H
– volume: 124
  start-page: 8905
  year: 2020
  ident: ref_18
  article-title: Machine Learning for Predicting the Band Gaps of ABX3 Perovskites from Elemental Properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b11768
– volume: 196
  start-page: 110528
  year: 2021
  ident: ref_34
  article-title: Rapid discovery of narrow bandgap oxide double perovskites using machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110528
– volume: 1
  start-page: 949
  year: 2016
  ident: ref_32
  article-title: Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00471
– volume: 32
  start-page: 1905502
  year: 2022
  ident: ref_8
  article-title: Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905502
– volume: 29
  start-page: 102932
  year: 2021
  ident: ref_16
  article-title: Accurate bandgap predictions of solids assisted by machine learning
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2021.102932
– volume: 313
  start-page: 103788
  year: 2022
  ident: ref_24
  article-title: Towards convergence rate analysis of random forests for classification
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2022.103788
– volume: 9
  start-page: 213
  year: 2020
  ident: ref_20
  article-title: Extracting Knowledge from DFT: Experimental Band Gap Predictions Through Ensemble Learning
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1007/s40192-020-00178-0
– volume: 26
  start-page: 7504
  year: 2024
  ident: ref_11
  article-title: Electronic and optical properties of core–shell InAlN nanorods: A comparative study via LDA, LDA-1/2, mBJ, HSE06, G0W0 and BSE methods
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP05295H
– volume: 34
  start-page: 271
  year: 2017
  ident: ref_7
  article-title: Advances in hole transport materials engineering for stable and efficient perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.025
– volume: 219
  start-page: 110927
  year: 2020
  ident: ref_26
  article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110927
– volume: 13
  start-page: 138102
  year: 2018
  ident: ref_9
  article-title: Penta-P2X (X = C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction
  publication-title: Front. Phys.
  doi: 10.1007/s11467-018-0758-2
– volume: 33
  start-page: 845
  year: 2021
  ident: ref_21
  article-title: A Machine Learning Approach for the Prediction of Formability and Thermodynamic Stability of Single and Double Perovskite Oxides
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03402
– ident: ref_36
  doi: 10.3390/risks7030074
– volume: 131
  start-page: 6050
  year: 2009
  ident: ref_4
  article-title: Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 27
  start-page: 565
  year: 2019
  ident: ref_5
  article-title: Solar cell efficiency tables
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.3171
– volume: 118
  start-page: 5501
  year: 2014
  ident: ref_10
  article-title: Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409967a
– volume: 36
  start-page: 1178
  year: 2021
  ident: ref_13
  article-title: Training Model for Predicting Adsorption Energy of Metal Ions Based on Machine Learning
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20200748
– volume: 31
  start-page: 056302
  year: 2022
  ident: ref_14
  article-title: Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac5d2d
– volume: 3
  start-page: 1900304
  year: 2019
  ident: ref_31
  article-title: A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900304
– volume: 4
  start-page: 064414
  year: 2020
  ident: ref_17
  article-title: Machine learning study of magnetism in uranium-based compounds
  publication-title: Rev. Mater.
– ident: ref_33
– volume: 6
  start-page: 19375
  year: 2016
  ident: ref_15
  article-title: Machine learning bandgaps of double perovskites
  publication-title: Sci. Rep.
  doi: 10.1038/srep19375
– volume: 161
  start-page: 107427
  year: 2023
  ident: ref_19
  article-title: Explainable machine learning for predicting the band gaps of ABX3 perovskites
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2023.107427
– volume: 8
  start-page: 489
  year: 2017
  ident: ref_27
  article-title: High Defect Tolerance in Lead Halide Perovskite CsPbBr3
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02800
– volume: 422
  start-page: 127800
  year: 2022
  ident: ref_2
  article-title: Bandgap prediction of metal halide perovskites using regression machine learning models
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2021.127800
– volume: 86
  start-page: 121102
  year: 2012
  ident: ref_28
  article-title: Topological insulator phase in halide perovskite structures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.121102
– volume: 208
  start-page: 118101
  year: 2022
  ident: ref_23
  article-title: Data poisoning attacks against machine learning algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118101
– volume: 224
  start-page: 120109
  year: 2021
  ident: ref_35
  article-title: Prediction of solar energy guided by pearson correlation using machine learning
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120109
– volume: 78
  start-page: 105380
  year: 2020
  ident: ref_22
  article-title: Machine learning for halide perovskite materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105380
– volume: 208
  start-page: 110331
  year: 2020
  ident: ref_25
  article-title: Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110331
SSID ssj0000331829
Score 2.3997746
Snippet Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling,...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2686
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Atomic properties
Classification
Decision making
Decision trees
Efficiency
Energy
Energy gap
Ensemble learning
Forecasts and trends
Game theory
Informatics
Iodine
Machine learning
Mean square errors
Medical imaging
Perovskite
Perovskites
Photovoltaic cells
Python
Software
Solar cells
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaHtofRdt2lRaaD0YGJb8kOHUjZlw1LospQGcjN6OQls7O16N6H_vjN-7SaU3GQkGdkz0nwjjb4BODShCxwaAj_iPPEFj7ivuBR-oZxMpHJCNjmWfs6S6an4cRaf7cGsvwtDYZX9mtgs1LYytEd-1EBbIqMT35Z_fMoaRaerfQoN1aVWsF8birEHsB8RM9YI9o8ns_mvYdcl4KjDkWx5Sjn6-0dXKkzpGg1dpt6xTHfX5x0DdTd48uGmXKq_N2qx2LFMJ0_hSQcp2bjVgWew58rn8HiHaPAFXLSJfbHMEPCxbaShXjg2KWt3RYWOa_WcjTuicbau2HxFRznrpt-xKu25WtasKprnKYJ469jcrarrmraB65dwejL5_X3qdzkWfIOO4NpHfytGj0Kk1ljLnUX8pbVOuNOpKqxWUrqoiJ0NikLLSLnA8CgQ6I4LnYlQO_4KRmVVujfAQmvjxCTaZFoIkwSZCQuUtQq51bHmhQdf-v-bm46AnPJgLHJ0REgW-VYWHnwa2i5b2o3_tvpMYsppLuKbjOquFOB4iNUqH6cylUEieejBQS_JvJukdb5VKQ8-DtU4vejMRJWu2lCblDB1mkoPXreCHwbEMwR7UmQeZLdUYmhA1N23a8rLi4bCGy1Mil1jDw4H7bnnQ9_eP_x38ChCrNVEsEUHMFqvNu49YqW1_tBNgH_PYxZX
  priority: 102
  providerName: ProQuest
Title Employing the Interpretable Ensemble Learning Approach to Predict the Bandgaps of the Halide Perovskites
URI https://www.ncbi.nlm.nih.gov/pubmed/38893948
https://www.proquest.com/docview/3067501434
https://www.proquest.com/docview/3070800779
https://pubmed.ncbi.nlm.nih.gov/PMC11173945
https://www.mdpi.com/1996-1944/17/11/2686/pdf?version=1717317836
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate [EBSCO]
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x9gF44HsQGFUQkxAPWePYceIn1KF2FRJVhag0niJ_ZZvo0qpNh-Cv55ykXVshhMSbLZ8tWz777meffwY41sSGFg1BEFHKA0YjGkgqWJBLK7iQlonqj6XPIz6csE_n8fnWK34XVolQ_KrapKsIWUTZrEuSLiHdiKe8Ozf5h5vmLIm4O2TiHiIcQJvH6I23oD0ZjXvfqsvkpnbNSkoR3XevJVYhrp0dO7S_G2-Zo_1QyburYi5__pDT6ZYdGjwEuR5BHX7y_WRVqhP9a4_c8X-G-AgeNE6q36u16jHcscUTuL9FXfgULuuvgjHtowvp38Yuqqn1-8XSXrtEw9564fca6nK_nPnjhbscKqt6p7IwF3K-9Gd5lR8iLDDWH9vF7GbpDpaXz2Ay6H_9OAyaXxsCjdCyDBDBxYhRWGK0MdQa9OiUUpxalcjcKCmEjfLYmjDPlYikDTWNQoYAn6mUEWXpIbSKWWFfgE-MibnmSqeKMc3DVJMctUcSalSsaO7B-_UcZrqhNHc_a0wzhDZuvrPb-fbg7UZ2XhN5_FHqnVOFzK1ubEnL5pEC9sfxZGW9RCQi5IISD47W2pI1y36ZVfjLMSYyD95sinHBulsYWdjZyskkzktPEuHB81q5Nh2iKbqPgqUepDtqtxFwZOC7JcXVZUUKjjYrwaqxB8cbDf3LQF_-m9gruBehF1fFxkVH0CoXK_savbBSdeAgHZx1oH3aH42_YO7snHSaxfcbyu0xfA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeqtJnWtq6KlXVQ0QSOw8fULXQRUuB1aoCiVvqV6DSkmw32SL-XH9bx9kku6CKG7dEcSLHM-P5xvZ8A7ClfOMZdARuQGnkMhpQV1DO3EwYHnFhGK9rLB0Po8Ep-34Wnq3A3zYXxh6rbOfEeqLWhbJr5Ns1tLVkdOzr5Ldrq0bZ3dW2hIZoSivonZpirEnsODTXVxjClTsH31Den4Jgv3-yN3CbKgOuwlCocjHiCBFTs1grranRiECklBE1MhaZloJzE2Sh0V6WSR4I4ykaeAwDUiYT5ktD8bsPYA07xjH4W9vtD0c_ulUej6LNBHzOi0op97YvhR_btB2bvL3kCW_7gyWHePuw5vosn4jrKzEeL3nC_SfwuIGwpDfXuQ1YMflTeLREbPgMLuaFhPGaIMAki5ONcmxIPy_Npb1ouF3PSa8hNidVQUZTu3VU1e_tilyfi0lJiqy-H2DQoA0ZmWnxp7TLzuVzOL2X0X4Bq3mRm1dAfK3DSEVSJZIxFXmJ8jPULeFTLUNJMwe-tOObqobw3NbdGKcY-FhZpAtZOPCxazuZ03z8t9VnK6bU2j5-SYkmhQH7Y1m00l7MY-5FnPoObLaSTJtJoUwXKuzAh-4xmrPdoxG5KWa2TWwxfBxzB17OBd91iCYILjlLHEhuqETXwFKF33yS_7qoKcPRo8X4aujAVqc9d_zo67u7_x7WByfHR-nRwfDwDTwMEOfVp-eCTVitpjPzFnFaJd81xkDg533b3z-K2lWp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN41FFhEEerBiu1dP_aAUKANKYUqByr1ZvbltlJqh9ih6l_j1zHrV9IK9dabI6-tjWdm55vdmW8AtpRvPIOOwA0ojVxGA-oKypmbCcMjLgzjdY-lHwfR-JB9OwqP1uBvVwtj0yq7NbFeqHWh7B75oIa2loyODbI2LWKyM_o0--3aDlL2pLVrp9GoyL65OMfwrfy4t4Oyfh8Eo92fX8Zu22HAVRgGVS5GGyHiaRZrpTU1GtGHlDKiRsYi01JwboIsNNrLMskDYTxFA49hMMpkwnxpKL73FtyOLYu7rVIffe33dzyK1hLwhhGVUu4NzoQf24IdW7a94gOveoIVV3g1TfPuIp-Ji3Mxna74wNFDeNCCVzJstO0RrJn8MdxfoTR8AidNC2G8JggtyTKnUU4N2c1Lc2YvWlbXYzJsKc1JVZDJ3B4aVfVzn0Wuj8WsJEVW_x5juKANmZh58ae0G87lUzi8kW_9DNbzIjcbQHytw0hFUiWSMRV5ifIz1CrhUy1DSTMHtrvvm6qW6tx23JimGPJYWaRLWTjwrh87awg-_jvqgxVTaq0e36REW7yA87H8Wekw5jH3Ik59BzY7SabtclCmS-V14G1_Gw3Zns6I3BQLOya26D2OuQPPG8H3E6IJwkrOEgeSSyrRD7Ak4Zfv5KcnNVk4-rIYHw0d2Oq155o_-uL66b-BO2h16fe9g_2XcC9AgFenzQWbsF7NF-YVArRKvq4tgcCvmza9f06GU0M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wA88D0IDBTEJMRDljh2nPgJFbSpQmLqA5XGU-SvbBNdUjXpEPz1nJM0ayuEkHhzlLNly2ff_XznnwEONbGRRUMQxJTygNGYBpIKFhTSCi6kZaJ9Y-nLKZ_M2Oez5GzjFr9Lq0Qoftlu0m2GLKJsFpI0JCSMecbDhSk-XPdnScTFkIm7iHAb9niC3vgI9man0_G3Npjc1-5YSSmi-_BKYhXi2tmyQ7u78YY52k2VvLMqF_LnDzmfb9ihkwcg1yPo0k--H60adaR_7ZA7_s8QH8L93kn1x51WPYJbtnwM9zaoC5_ARfdUMJZ9dCH9m9xFNbf-cVnbK1fo2VvP_XFPXe43lT9duuBQ09b7KEtzLhe1XxXt9wRhgbH-1C6r69odLNdPYXZy_PXTJOhfbQg0QssmQASXIEZhqdHGUGvQo1NKcWpVKgujpBA2LhJroqJQIpY20jSOGAJ8pjJGlKX7MCqr0j4HnxiTcM2VzhRjmkeZJgVqjyTUqETRwoP36znMdU9p7l7WmOcIbdx85zfz7cHbQXbREXn8UeqdU4XcrW5sScv-kgL2x_Fk5eNUpCLighIPDtbakvfLvs5b_OUYE5kHb4bfuGBdFEaWtlo5mdR56WkqPHjWKdfQIZqh-yhY5kG2pXaDgCMD3_5TXl60pOBos1KsmnhwOGjoXwb64t_EXsLdGL24NjcuPoBRs1zZV-iFNep1v9B-AxfzLgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+the+Interpretable+Ensemble+Learning+Approach+to+Predict+the+Bandgaps+of+the+Halide+Perovskites&rft.jtitle=Materials&rft.au=Ren%2C+Chao&rft.au=Wu%2C+Yiyuan&rft.au=Zou%2C+Jijun&rft.au=Cai%2C+Bowen&rft.date=2024-06-02&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=11&rft_id=info:doi/10.3390%2Fma17112686&rft_id=info%3Apmid%2F38893948&rft.externalDocID=38893948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon