Employing the Interpretable Ensemble Learning Approach to Predict the Bandgaps of the Halide Perovskites
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and ut...
        Saved in:
      
    
          | Published in | Materials Vol. 17; no. 11; p. 2686 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        02.06.2024
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1944 1996-1944  | 
| DOI | 10.3390/ma17112686 | 
Cover
| Abstract | Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1−xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages. | 
    
|---|---|
| AbstractList | Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1−xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages. Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1-xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1-xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages. Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn Pb I . In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages. Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn[sub.1−x]Pb[sub.x]I[sub.3]. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages.  | 
    
| Audience | Academic | 
    
| Author | Zou, Jijun Cai, Bowen Wu, Yiyuan Ren, Chao  | 
    
| AuthorAffiliation | 3 Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China 5 School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China 2 Engineering Research Center of Nuclear Technology Application, East China Institute of Technology, Ministry of Education, Nanchang 330013, China 1 Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China; 2021110241@ecut.edu.cn (C.R.) 4 School of Information Engineering, East China University of Technology, Nanchang 330013, China  | 
    
| AuthorAffiliation_xml | – name: 4 School of Information Engineering, East China University of Technology, Nanchang 330013, China – name: 3 Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China – name: 5 School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China – name: 2 Engineering Research Center of Nuclear Technology Application, East China Institute of Technology, Ministry of Education, Nanchang 330013, China – name: 1 Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China; 2021110241@ecut.edu.cn (C.R.)  | 
    
| Author_xml | – sequence: 1 givenname: Chao orcidid: 0009-0008-1291-632X surname: Ren fullname: Ren, Chao – sequence: 2 givenname: Yiyuan surname: Wu fullname: Wu, Yiyuan – sequence: 3 givenname: Jijun orcidid: 0000-0003-3681-2054 surname: Zou fullname: Zou, Jijun – sequence: 4 givenname: Bowen surname: Cai fullname: Cai, Bowen  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38893948$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kV1vFCEUhompsbX2xh9gJvHG1GyFgZ0ZrszarLbJJvZCrwkfZ3apDIzA1Oy_L9uttjZGzgUHeN4D5-UlOvDBA0KvCT6jlOMPgyQtIXXTNc_QEeG8mRHO2MGj_BCdpHSNy6CUdDV_gQ5p13HKWXeENsthdGFr_brKG6gufYY4RshSOaiWPsGwS1Ygo98xi3GMQepNlUN1FcFYne90n6Q3azmmKvR36wvprIHqCmK4ST9shvQKPe-lS3ByPx-j75-X384vZquvXy7PF6uZZqzJs7rj85aVMNoYCmZOiFKqoaBa2RslOYe6n4PBfa94LQFrWmMGqmaqY0QBPUbv93UnP8rtL-mcGKMdZNwKgsXOMvFgWaE_7ulxUgMYDT5H-aAI0oq_T7zdiHW4EYSQtjg4LxXe3VeI4ecEKYvBJg3OSQ9hSoLiFncYty0v6Nsn6HWYoi9uFKpp55gwygp1tqfW0oGwvg_lYl3CwGB1-fzelv1Fy1uOG05JEbx53MOfx__-5ALgPaBjSClCL7TNMtuwa8m6f_ty-kTyHxNvATWzyL4 | 
    
| CitedBy_id | crossref_primary_10_3390_ma17184459 crossref_primary_10_1021_acsami_5c00218  | 
    
| Cites_doi | 10.1016/j.solener.2021.09.030 10.1038/nphoton.2016.62 10.1016/j.orgel.2021.106426 10.1063/1.4893495 10.1021/acs.jpclett.5b01738 10.1039/C6EE03474H 10.1021/acs.jpcc.9b11768 10.1016/j.commatsci.2021.110528 10.1021/acsenergylett.6b00471 10.1002/adma.201905502 10.1016/j.mtcomm.2021.102932 10.1016/j.artint.2022.103788 10.1007/s40192-020-00178-0 10.1039/D3CP05295H 10.1016/j.nanoen.2017.02.025 10.1016/j.engstruct.2020.110927 10.1007/s11467-018-0758-2 10.1021/acs.chemmater.0c03402 10.3390/risks7030074 10.1021/ja809598r 10.1002/pip.3171 10.1021/jp409967a 10.15541/jim20200748 10.1088/1674-1056/ac5d2d 10.1002/solr.201900304 10.1038/srep19375 10.1016/j.mssp.2023.107427 10.1021/acs.jpclett.6b02800 10.1016/j.physleta.2021.127800 10.1103/PhysRevB.86.121102 10.1016/j.eswa.2022.118101 10.1016/j.energy.2021.120109 10.1016/j.nanoen.2020.105380 10.1016/j.engstruct.2020.110331  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024  | 
    
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.3390/ma17112686 | 
    
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database (Proquest) Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-1944 | 
    
| ExternalDocumentID | 10.3390/ma17112686 PMC11173945 A797906931 38893948 10_3390_ma17112686  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: Key Research and Development Program of Jiangxi province grantid: No. 20223BBH80005 – fundername: Jiangxi Nuclear Geology Data Science and System Engineering Technology Research Center Open Fund grantid: JELRGBDT202101 – fundername: Key Research and Development Program of Jiangxi province grantid: 20223BBH80005  | 
    
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c446t-289574747dcdd3ed511bbb63eb7afdba99e2f5ed0ffb92ae0c3204eb24b841be3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1996-1944 | 
    
| IngestDate | Sun Oct 26 04:17:01 EDT 2025 Tue Sep 30 17:09:11 EDT 2025 Thu Sep 04 17:51:10 EDT 2025 Fri Jul 25 11:49:40 EDT 2025 Mon Oct 20 16:59:32 EDT 2025 Mon Jul 21 05:49:49 EDT 2025 Thu Oct 16 04:43:44 EDT 2025 Thu Apr 24 23:12:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | Shapley additive explanations bandgap machine learning regression halide perovskite  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c446t-289574747dcdd3ed511bbb63eb7afdba99e2f5ed0ffb92ae0c3204eb24b841be3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-3681-2054 0009-0008-1291-632X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1944/17/11/2686/pdf?version=1717317836 | 
    
| PMID | 38893948 | 
    
| PQID | 3067501434 | 
    
| PQPubID | 2032366 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_ma17112686 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11173945 proquest_miscellaneous_3070800779 proquest_journals_3067501434 gale_infotracacademiconefile_A797906931 pubmed_primary_38893948 crossref_citationtrail_10_3390_ma17112686 crossref_primary_10_3390_ma17112686  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240602 | 
    
| PublicationDateYYYYMMDD | 2024-06-02 | 
    
| PublicationDate_xml | – month: 6 year: 2024 text: 20240602 day: 2  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Materials | 
    
| PublicationTitleAlternate | Materials (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Gladkikh (ref_18) 2020; 124 Pilania (ref_15) 2016; 6 Vakharia (ref_2) 2022; 422 Wang (ref_16) 2021; 29 Jino (ref_29) 2015; 6 ref_36 Castelli (ref_12) 2014; 2 Jebli (ref_35) 2021; 224 ref_33 Ghosh (ref_17) 2020; 4 Hu (ref_31) 2019; 3 Steven (ref_20) 2020; 9 Gao (ref_8) 2022; 32 Guo (ref_1) 2021; 228 Gao (ref_24) 2022; 313 Wang (ref_30) 2017; 10 Naseri (ref_9) 2018; 13 Oliveira (ref_10) 2014; 118 Mangalathu (ref_25) 2020; 208 Zhang (ref_13) 2021; 36 Jin (ref_28) 2012; 86 Yang (ref_34) 2021; 196 Liu (ref_6) 2022; 101 Obada (ref_19) 2023; 161 Mangalathu (ref_26) 2020; 219 Talapatra (ref_21) 2021; 33 Sutherland (ref_3) 2016; 10 Kojima (ref_4) 2009; 131 Kang (ref_27) 2017; 8 Pela (ref_11) 2024; 26 Zhao (ref_14) 2022; 31 Zina (ref_7) 2017; 34 Zhang (ref_22) 2020; 78 Yerlikaya (ref_23) 2022; 208 Green (ref_5) 2019; 27 Savory (ref_32) 2016; 1  | 
    
| References_xml | – volume: 228 start-page: 689 year: 2021 ident: ref_1 article-title: Machine learning stability and bandgap of lead-free halide double perovskite materials for perovskite solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2021.09.030 – volume: 10 start-page: 295 year: 2016 ident: ref_3 article-title: Perovskite photonic sources publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.62 – volume: 101 start-page: 106426 year: 2022 ident: ref_6 article-title: Study on bandgap predictions of ABX3-type perovskites by machine learning publication-title: Org. Electron. doi: 10.1016/j.orgel.2021.106426 – volume: 2 start-page: 081514 year: 2014 ident: ref_12 article-title: Bandgap calculations and trends of organometal halide perovskites publication-title: APL Mater. doi: 10.1063/1.4893495 – volume: 6 start-page: 3503 year: 2015 ident: ref_29 article-title: Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Bandgap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1–xPbxI3 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01738 – volume: 10 start-page: 509 year: 2017 ident: ref_30 article-title: Indirect to direct bandgap transition in methylammonium lead halide perovskite publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03474H – volume: 124 start-page: 8905 year: 2020 ident: ref_18 article-title: Machine Learning for Predicting the Band Gaps of ABX3 Perovskites from Elemental Properties publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11768 – volume: 196 start-page: 110528 year: 2021 ident: ref_34 article-title: Rapid discovery of narrow bandgap oxide double perovskites using machine learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110528 – volume: 1 start-page: 949 year: 2016 ident: ref_32 article-title: Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00471 – volume: 32 start-page: 1905502 year: 2022 ident: ref_8 article-title: Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells publication-title: Adv. Mater. doi: 10.1002/adma.201905502 – volume: 29 start-page: 102932 year: 2021 ident: ref_16 article-title: Accurate bandgap predictions of solids assisted by machine learning publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2021.102932 – volume: 313 start-page: 103788 year: 2022 ident: ref_24 article-title: Towards convergence rate analysis of random forests for classification publication-title: Artif. Intell. doi: 10.1016/j.artint.2022.103788 – volume: 9 start-page: 213 year: 2020 ident: ref_20 article-title: Extracting Knowledge from DFT: Experimental Band Gap Predictions Through Ensemble Learning publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-020-00178-0 – volume: 26 start-page: 7504 year: 2024 ident: ref_11 article-title: Electronic and optical properties of core–shell InAlN nanorods: A comparative study via LDA, LDA-1/2, mBJ, HSE06, G0W0 and BSE methods publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP05295H – volume: 34 start-page: 271 year: 2017 ident: ref_7 article-title: Advances in hole transport materials engineering for stable and efficient perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.025 – volume: 219 start-page: 110927 year: 2020 ident: ref_26 article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110927 – volume: 13 start-page: 138102 year: 2018 ident: ref_9 article-title: Penta-P2X (X = C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction publication-title: Front. Phys. doi: 10.1007/s11467-018-0758-2 – volume: 33 start-page: 845 year: 2021 ident: ref_21 article-title: A Machine Learning Approach for the Prediction of Formability and Thermodynamic Stability of Single and Double Perovskite Oxides publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03402 – ident: ref_36 doi: 10.3390/risks7030074 – volume: 131 start-page: 6050 year: 2009 ident: ref_4 article-title: Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 27 start-page: 565 year: 2019 ident: ref_5 article-title: Solar cell efficiency tables publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.3171 – volume: 118 start-page: 5501 year: 2014 ident: ref_10 article-title: Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages publication-title: J. Phys. Chem. C doi: 10.1021/jp409967a – volume: 36 start-page: 1178 year: 2021 ident: ref_13 article-title: Training Model for Predicting Adsorption Energy of Metal Ions Based on Machine Learning publication-title: J. Inorg. Mater. doi: 10.15541/jim20200748 – volume: 31 start-page: 056302 year: 2022 ident: ref_14 article-title: Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac5d2d – volume: 3 start-page: 1900304 year: 2019 ident: ref_31 article-title: A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics publication-title: Sol. RRL doi: 10.1002/solr.201900304 – volume: 4 start-page: 064414 year: 2020 ident: ref_17 article-title: Machine learning study of magnetism in uranium-based compounds publication-title: Rev. Mater. – ident: ref_33 – volume: 6 start-page: 19375 year: 2016 ident: ref_15 article-title: Machine learning bandgaps of double perovskites publication-title: Sci. Rep. doi: 10.1038/srep19375 – volume: 161 start-page: 107427 year: 2023 ident: ref_19 article-title: Explainable machine learning for predicting the band gaps of ABX3 perovskites publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2023.107427 – volume: 8 start-page: 489 year: 2017 ident: ref_27 article-title: High Defect Tolerance in Lead Halide Perovskite CsPbBr3 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02800 – volume: 422 start-page: 127800 year: 2022 ident: ref_2 article-title: Bandgap prediction of metal halide perovskites using regression machine learning models publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2021.127800 – volume: 86 start-page: 121102 year: 2012 ident: ref_28 article-title: Topological insulator phase in halide perovskite structures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.121102 – volume: 208 start-page: 118101 year: 2022 ident: ref_23 article-title: Data poisoning attacks against machine learning algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118101 – volume: 224 start-page: 120109 year: 2021 ident: ref_35 article-title: Prediction of solar energy guided by pearson correlation using machine learning publication-title: Energy doi: 10.1016/j.energy.2021.120109 – volume: 78 start-page: 105380 year: 2020 ident: ref_22 article-title: Machine learning for halide perovskite materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105380 – volume: 208 start-page: 110331 year: 2020 ident: ref_25 article-title: Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110331  | 
    
| SSID | ssj0000331829 | 
    
| Score | 2.3997746 | 
    
| Snippet | Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling,... | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 2686 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Atomic properties Classification Decision making Decision trees Efficiency Energy Energy gap Ensemble learning Forecasts and trends Game theory Informatics Iodine Machine learning Mean square errors Medical imaging Perovskite Perovskites Photovoltaic cells Python Software Solar cells  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaHtofRdt2lRaaD0YGJb8kOHUjZlw1LospQGcjN6OQls7O16N6H_vjN-7SaU3GQkGdkz0nwjjb4BODShCxwaAj_iPPEFj7ivuBR-oZxMpHJCNjmWfs6S6an4cRaf7cGsvwtDYZX9mtgs1LYytEd-1EBbIqMT35Z_fMoaRaerfQoN1aVWsF8birEHsB8RM9YI9o8ns_mvYdcl4KjDkWx5Sjn6-0dXKkzpGg1dpt6xTHfX5x0DdTd48uGmXKq_N2qx2LFMJ0_hSQcp2bjVgWew58rn8HiHaPAFXLSJfbHMEPCxbaShXjg2KWt3RYWOa_WcjTuicbau2HxFRznrpt-xKu25WtasKprnKYJ469jcrarrmraB65dwejL5_X3qdzkWfIOO4NpHfytGj0Kk1ljLnUX8pbVOuNOpKqxWUrqoiJ0NikLLSLnA8CgQ6I4LnYlQO_4KRmVVujfAQmvjxCTaZFoIkwSZCQuUtQq51bHmhQdf-v-bm46AnPJgLHJ0REgW-VYWHnwa2i5b2o3_tvpMYsppLuKbjOquFOB4iNUqH6cylUEieejBQS_JvJukdb5VKQ8-DtU4vejMRJWu2lCblDB1mkoPXreCHwbEMwR7UmQeZLdUYmhA1N23a8rLi4bCGy1Mil1jDw4H7bnnQ9_eP_x38ChCrNVEsEUHMFqvNu49YqW1_tBNgH_PYxZX priority: 102 providerName: ProQuest  | 
    
| Title | Employing the Interpretable Ensemble Learning Approach to Predict the Bandgaps of the Halide Perovskites | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38893948 https://www.proquest.com/docview/3067501434 https://www.proquest.com/docview/3070800779 https://pubmed.ncbi.nlm.nih.gov/PMC11173945 https://www.mdpi.com/1996-1944/17/11/2686/pdf?version=1717317836  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: HH5 dateStart: 20080101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate [EBSCO] customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x9gF44HsQGFUQkxAPWePYceIn1KF2FRJVhag0niJ_ZZvo0qpNh-Cv55ykXVshhMSbLZ8tWz777meffwY41sSGFg1BEFHKA0YjGkgqWJBLK7iQlonqj6XPIz6csE_n8fnWK34XVolQ_KrapKsIWUTZrEuSLiHdiKe8Ozf5h5vmLIm4O2TiHiIcQJvH6I23oD0ZjXvfqsvkpnbNSkoR3XevJVYhrp0dO7S_G2-Zo_1QyburYi5__pDT6ZYdGjwEuR5BHX7y_WRVqhP9a4_c8X-G-AgeNE6q36u16jHcscUTuL9FXfgULuuvgjHtowvp38Yuqqn1-8XSXrtEw9564fca6nK_nPnjhbscKqt6p7IwF3K-9Gd5lR8iLDDWH9vF7GbpDpaXz2Ay6H_9OAyaXxsCjdCyDBDBxYhRWGK0MdQa9OiUUpxalcjcKCmEjfLYmjDPlYikDTWNQoYAn6mUEWXpIbSKWWFfgE-MibnmSqeKMc3DVJMctUcSalSsaO7B-_UcZrqhNHc_a0wzhDZuvrPb-fbg7UZ2XhN5_FHqnVOFzK1ubEnL5pEC9sfxZGW9RCQi5IISD47W2pI1y36ZVfjLMSYyD95sinHBulsYWdjZyskkzktPEuHB81q5Nh2iKbqPgqUepDtqtxFwZOC7JcXVZUUKjjYrwaqxB8cbDf3LQF_-m9gruBehF1fFxkVH0CoXK_savbBSdeAgHZx1oH3aH42_YO7snHSaxfcbyu0xfA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeqtJnWtq6KlXVQ0QSOw8fULXQRUuB1aoCiVvqV6DSkmw32SL-XH9bx9kku6CKG7dEcSLHM-P5xvZ8A7ClfOMZdARuQGnkMhpQV1DO3EwYHnFhGK9rLB0Po8Ep-34Wnq3A3zYXxh6rbOfEeqLWhbJr5Ns1tLVkdOzr5Ldrq0bZ3dW2hIZoSivonZpirEnsODTXVxjClTsH31Den4Jgv3-yN3CbKgOuwlCocjHiCBFTs1grranRiECklBE1MhaZloJzE2Sh0V6WSR4I4ykaeAwDUiYT5ktD8bsPYA07xjH4W9vtD0c_ulUej6LNBHzOi0op97YvhR_btB2bvL3kCW_7gyWHePuw5vosn4jrKzEeL3nC_SfwuIGwpDfXuQ1YMflTeLREbPgMLuaFhPGaIMAki5ONcmxIPy_Npb1ouF3PSa8hNidVQUZTu3VU1e_tilyfi0lJiqy-H2DQoA0ZmWnxp7TLzuVzOL2X0X4Bq3mRm1dAfK3DSEVSJZIxFXmJ8jPULeFTLUNJMwe-tOObqobw3NbdGKcY-FhZpAtZOPCxazuZ03z8t9VnK6bU2j5-SYkmhQH7Y1m00l7MY-5FnPoObLaSTJtJoUwXKuzAh-4xmrPdoxG5KWa2TWwxfBxzB17OBd91iCYILjlLHEhuqETXwFKF33yS_7qoKcPRo8X4aujAVqc9d_zo67u7_x7WByfHR-nRwfDwDTwMEOfVp-eCTVitpjPzFnFaJd81xkDg533b3z-K2lWp | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN41FFhEEerBiu1dP_aAUKANKYUqByr1ZvbltlJqh9ih6l_j1zHrV9IK9dabI6-tjWdm55vdmW8AtpRvPIOOwA0ojVxGA-oKypmbCcMjLgzjdY-lHwfR-JB9OwqP1uBvVwtj0yq7NbFeqHWh7B75oIa2loyODbI2LWKyM_o0--3aDlL2pLVrp9GoyL65OMfwrfy4t4Oyfh8Eo92fX8Zu22HAVRgGVS5GGyHiaRZrpTU1GtGHlDKiRsYi01JwboIsNNrLMskDYTxFA49hMMpkwnxpKL73FtyOLYu7rVIffe33dzyK1hLwhhGVUu4NzoQf24IdW7a94gOveoIVV3g1TfPuIp-Ji3Mxna74wNFDeNCCVzJstO0RrJn8MdxfoTR8AidNC2G8JggtyTKnUU4N2c1Lc2YvWlbXYzJsKc1JVZDJ3B4aVfVzn0Wuj8WsJEVW_x5juKANmZh58ae0G87lUzi8kW_9DNbzIjcbQHytw0hFUiWSMRV5ifIz1CrhUy1DSTMHtrvvm6qW6tx23JimGPJYWaRLWTjwrh87awg-_jvqgxVTaq0e36REW7yA87H8Wekw5jH3Ik59BzY7SabtclCmS-V14G1_Gw3Zns6I3BQLOya26D2OuQPPG8H3E6IJwkrOEgeSSyrRD7Ak4Zfv5KcnNVk4-rIYHw0d2Oq155o_-uL66b-BO2h16fe9g_2XcC9AgFenzQWbsF7NF-YVArRKvq4tgcCvmza9f06GU0M | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wA88D0IDBTEJMRDljh2nPgJFbSpQmLqA5XGU-SvbBNdUjXpEPz1nJM0ayuEkHhzlLNly2ff_XznnwEONbGRRUMQxJTygNGYBpIKFhTSCi6kZaJ9Y-nLKZ_M2Oez5GzjFr9Lq0Qoftlu0m2GLKJsFpI0JCSMecbDhSk-XPdnScTFkIm7iHAb9niC3vgI9man0_G3Npjc1-5YSSmi-_BKYhXi2tmyQ7u78YY52k2VvLMqF_LnDzmfb9ihkwcg1yPo0k--H60adaR_7ZA7_s8QH8L93kn1x51WPYJbtnwM9zaoC5_ARfdUMJZ9dCH9m9xFNbf-cVnbK1fo2VvP_XFPXe43lT9duuBQ09b7KEtzLhe1XxXt9wRhgbH-1C6r69odLNdPYXZy_PXTJOhfbQg0QssmQASXIEZhqdHGUGvQo1NKcWpVKgujpBA2LhJroqJQIpY20jSOGAJ8pjJGlKX7MCqr0j4HnxiTcM2VzhRjmkeZJgVqjyTUqETRwoP36znMdU9p7l7WmOcIbdx85zfz7cHbQXbREXn8UeqdU4XcrW5sScv-kgL2x_Fk5eNUpCLighIPDtbakvfLvs5b_OUYE5kHb4bfuGBdFEaWtlo5mdR56WkqPHjWKdfQIZqh-yhY5kG2pXaDgCMD3_5TXl60pOBos1KsmnhwOGjoXwb64t_EXsLdGL24NjcuPoBRs1zZV-iFNep1v9B-AxfzLgs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+the+Interpretable+Ensemble+Learning+Approach+to+Predict+the+Bandgaps+of+the+Halide+Perovskites&rft.jtitle=Materials&rft.au=Ren%2C+Chao&rft.au=Wu%2C+Yiyuan&rft.au=Zou%2C+Jijun&rft.au=Cai%2C+Bowen&rft.date=2024-06-02&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=11&rft_id=info:doi/10.3390%2Fma17112686&rft_id=info%3Apmid%2F38893948&rft.externalDocID=38893948 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |