LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement

•We propose a trainable CNN for weakly illuminated image enhancement.•We propose a Retinex model-based weakly illuminated image synthesis approach.•The proposed method generalizes well to diverse weakly illuminated images. Weak illumination or low light image enhancement as pre-processing is needed...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 104; pp. 15 - 22
Main Authors Li, Chongyi, Guo, Jichang, Porikli, Fatih, Pang, Yanwei
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2018.01.010

Cover

Abstract •We propose a trainable CNN for weakly illuminated image enhancement.•We propose a Retinex model-based weakly illuminated image synthesis approach.•The proposed method generalizes well to diverse weakly illuminated images. Weak illumination or low light image enhancement as pre-processing is needed in many computer vision tasks. Existing methods show limitations when they are used to enhance weakly illuminated images, especially for the images captured under diverse illumination circumstances. In this letter, we propose a trainable Convolutional Neural Network (CNN) for weakly illuminated image enhancement, namely LightenNet, which takes a weakly illuminated image as input and outputs its illumination map that is subsequently used to obtain the enhanced image based on Retinex model. The proposed method produces visually pleasing results without over or under-enhanced regions. Qualitative and quantitative comparisons are conducted to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method achieves superior performance than existing methods. Additionally, we propose a new weakly illuminated image synthesis approach, which can be use as a guide for weakly illuminated image enhancement networks training and full-reference image quality assessment.
AbstractList •We propose a trainable CNN for weakly illuminated image enhancement.•We propose a Retinex model-based weakly illuminated image synthesis approach.•The proposed method generalizes well to diverse weakly illuminated images. Weak illumination or low light image enhancement as pre-processing is needed in many computer vision tasks. Existing methods show limitations when they are used to enhance weakly illuminated images, especially for the images captured under diverse illumination circumstances. In this letter, we propose a trainable Convolutional Neural Network (CNN) for weakly illuminated image enhancement, namely LightenNet, which takes a weakly illuminated image as input and outputs its illumination map that is subsequently used to obtain the enhanced image based on Retinex model. The proposed method produces visually pleasing results without over or under-enhanced regions. Qualitative and quantitative comparisons are conducted to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method achieves superior performance than existing methods. Additionally, we propose a new weakly illuminated image synthesis approach, which can be use as a guide for weakly illuminated image enhancement networks training and full-reference image quality assessment.
Weak illumination or low light image enhancement as pre-processing is needed in many computer vision tasks. Existing methods show limitations when they are used to enhance weakly illuminated images, especially for the images captured under diverse illumination circumstances. In this letter, we propose a trainable Convolutional Neural Network (CNN) for weakly illuminated image enhancement, namely LightenNet, which takes a weakly illuminated image as input and outputs its illumination map that is subsequently used to obtain the enhanced image based on Retinex model. The proposed method produces visually pleasing results without over or under-enhanced regions. Qualitative and quantitative comparisons are conducted to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method achieves superior performance than existing methods. Additionally, we propose a new weakly illuminated image synthesis approach, which can be use as a guide for weakly illuminated image enhancement networks training and full-reference image quality assessment.
Author Guo, Jichang
Porikli, Fatih
Li, Chongyi
Pang, Yanwei
Author_xml – sequence: 1
  givenname: Chongyi
  orcidid: 0000-0003-2609-2460
  surname: Li
  fullname: Li, Chongyi
  organization: School of Electrical and Information Engineering, Tianjin University, Weijing Road 92, Tianjin 300300, China
– sequence: 2
  givenname: Jichang
  surname: Guo
  fullname: Guo, Jichang
  email: jcguo@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Weijing Road 92, Tianjin 300300, China
– sequence: 3
  givenname: Fatih
  surname: Porikli
  fullname: Porikli, Fatih
  organization: Research School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 0200, Australia
– sequence: 4
  givenname: Yanwei
  surname: Pang
  fullname: Pang, Yanwei
  organization: School of Electrical and Information Engineering, Tianjin University, Weijing Road 92, Tianjin 300300, China
BookMark eNqFkD1rwzAQhkVJoUnaf9DB0NmuJNuynaEQQr8gpEPbWSj2KZHjSKksJ-TfV4k7dWjh4JbnPd57RmigjQaEbgmOCCbsvo52wlkoI4pJHmHiB1-gIckzGmZxkgzQ0GNZmLM0vUKjtq0xxiwu8iF6n6vV2oFegJsE02Bm9N40nVNGiyZYQGfPyx2M3QTS2OAAYtMcA9U03VZp4aAK1FasIAC9FrqELWh3jS6laFq4-dlj9Pn0-DF7Cedvz6-z6Twsk4S5kKa-gWC5lCyVGJhMQZByGWe4TEWWF8sMpKQQwzKheUqZTHAlSJpQD1BSFPEY3fV3d9Z8ddA6XpvO-uItp5gxluH4TCU9VVrTthYk31lf2R45wfykj9e818dP-jgmfrCPTX7FSuXESYyzQjX_hR_6MPj39wosb0sFXk-lPOp4ZdTfB74B2SuQQw
CitedBy_id crossref_primary_10_1109_TCSVT_2021_3073371
crossref_primary_10_1109_ACCESS_2020_2988767
crossref_primary_10_1049_ipr2_12173
crossref_primary_10_1002_cpe_7347
crossref_primary_10_1016_j_image_2022_116916
crossref_primary_10_1109_TMM_2019_2933334
crossref_primary_10_3390_s23020792
crossref_primary_10_3390_sym11040574
crossref_primary_10_1109_ACCESS_2021_3137993
crossref_primary_10_1016_j_neucom_2025_129509
crossref_primary_10_1364_OE_484628
crossref_primary_10_1007_s10846_019_01124_9
crossref_primary_10_1007_s13369_022_06888_1
crossref_primary_10_1007_s11042_022_13411_z
crossref_primary_10_1109_TCSVT_2022_3195996
crossref_primary_10_32604_cmc_2021_016047
crossref_primary_10_1007_s41095_021_0232_x
crossref_primary_10_7498_aps_71_20220463
crossref_primary_10_1016_j_heliyon_2023_e14558
crossref_primary_10_1016_j_patcog_2024_111180
crossref_primary_10_1016_j_jksuci_2023_101666
crossref_primary_10_1109_TIM_2023_3307181
crossref_primary_10_1016_j_image_2021_116527
crossref_primary_10_1016_j_inffus_2024_102365
crossref_primary_10_1109_TPAMI_2021_3063604
crossref_primary_10_1109_JAS_2024_124263
crossref_primary_10_1007_s11042_023_15147_w
crossref_primary_10_3390_bioengineering11030270
crossref_primary_10_1016_j_asoc_2025_112865
crossref_primary_10_1016_j_patrec_2025_02_001
crossref_primary_10_1007_s11831_021_09587_6
crossref_primary_10_1109_JSYST_2023_3262593
crossref_primary_10_1016_j_bspc_2021_103208
crossref_primary_10_1109_TPAMI_2021_3126387
crossref_primary_10_1007_s11263_023_01900_z
crossref_primary_10_1016_j_eswa_2025_127263
crossref_primary_10_3389_fmars_2023_1163831
crossref_primary_10_1109_TCSVT_2024_3480930
crossref_primary_10_1007_s40747_024_01762_z
crossref_primary_10_1007_s10489_020_01923_w
crossref_primary_10_3390_jmse11081625
crossref_primary_10_1007_s11760_023_02974_5
crossref_primary_10_3390_s24092711
crossref_primary_10_1016_j_image_2023_116971
crossref_primary_10_1016_j_eswa_2022_118920
crossref_primary_10_1016_j_measen_2023_100933
crossref_primary_10_1049_ell2_70053
crossref_primary_10_1017_S0373463322000467
crossref_primary_10_1080_08839514_2021_1985799
crossref_primary_10_1364_JOSAA_468876
crossref_primary_10_1007_s00371_021_02343_8
crossref_primary_10_1016_j_patrec_2023_06_017
crossref_primary_10_3390_app13169261
crossref_primary_10_32604_iasc_2022_024961
crossref_primary_10_1016_j_jvcir_2023_103795
crossref_primary_10_12677_CSA_2023_133053
crossref_primary_10_1007_s11760_023_02687_9
crossref_primary_10_1109_ACCESS_2021_3132078
crossref_primary_10_1109_TCI_2024_3378091
crossref_primary_10_1007_s11042_024_19743_2
crossref_primary_10_1016_j_patrec_2020_08_013
crossref_primary_10_1109_TITS_2021_3117868
crossref_primary_10_3390_s23187763
crossref_primary_10_3390_sym15101850
crossref_primary_10_1080_13682199_2024_2343979
crossref_primary_10_1016_j_imavis_2023_104693
crossref_primary_10_1109_TGRS_2022_3201530
crossref_primary_10_23919_cje_2021_00_350
crossref_primary_10_3390_computers13060134
crossref_primary_10_1049_ipr2_12650
crossref_primary_10_1109_JSTSP_2024_3463416
crossref_primary_10_1016_j_dsp_2024_104802
crossref_primary_10_1109_TCSVT_2023_3239511
crossref_primary_10_3390_rs14041027
crossref_primary_10_1109_TGRS_2023_3279826
crossref_primary_10_3390_s24030772
crossref_primary_10_3390_s24165246
crossref_primary_10_1007_s41064_022_00226_8
crossref_primary_10_1016_j_sigpro_2022_108821
crossref_primary_10_1109_ACCESS_2020_3001206
crossref_primary_10_1049_ipr2_13180
crossref_primary_10_1016_j_marpetgeo_2023_106405
crossref_primary_10_3390_s24051586
crossref_primary_10_1016_j_eswa_2023_122844
crossref_primary_10_1109_LSP_2020_3036312
crossref_primary_10_1051_shsconf_202316601068
crossref_primary_10_36548_jiip_2024_4_003
crossref_primary_10_1109_TCSVT_2021_3113559
crossref_primary_10_1186_s13640_019_0418_7
crossref_primary_10_1111_coin_12648
crossref_primary_10_1007_s10044_023_01196_2
crossref_primary_10_1016_j_cmpb_2022_106800
crossref_primary_10_1109_JSEN_2023_3328995
crossref_primary_10_1016_j_jvcir_2020_102759
crossref_primary_10_32604_iasc_2022_021954
crossref_primary_10_3390_electronics12245022
crossref_primary_10_1016_j_image_2024_117246
crossref_primary_10_1109_ACCESS_2023_3297490
crossref_primary_10_1109_TMM_2024_3358962
crossref_primary_10_1016_j_measurement_2021_109973
crossref_primary_10_1016_j_knosys_2023_110730
crossref_primary_10_1049_ipr2_12418
crossref_primary_10_1117_1_JEI_34_2_023004
crossref_primary_10_1155_2021_2436486
crossref_primary_10_1007_s11042_022_12429_7
crossref_primary_10_1016_j_cviu_2023_103916
crossref_primary_10_1016_j_jvcir_2025_104392
crossref_primary_10_3389_fnins_2024_1297671
crossref_primary_10_1109_TIP_2021_3122004
crossref_primary_10_54097_fcis_v1i3_2242
crossref_primary_10_1007_s11063_024_11565_5
crossref_primary_10_1155_2022_1882464
crossref_primary_10_1109_ACCESS_2020_3007610
crossref_primary_10_1007_s11517_019_01965_4
crossref_primary_10_1109_TIP_2020_3008396
crossref_primary_10_11948_20220303
crossref_primary_10_1016_j_displa_2024_102877
crossref_primary_10_1109_TIP_2022_3140607
crossref_primary_10_1007_s00034_025_03022_y
crossref_primary_10_1109_TCSVT_2023_3260212
crossref_primary_10_1109_TNNLS_2022_3190880
crossref_primary_10_1109_TCE_2023_3280467
crossref_primary_10_1007_s11042_024_20285_w
crossref_primary_10_1016_j_jksuci_2023_101885
crossref_primary_10_3390_s24113299
crossref_primary_10_3724_SP_J_1089_2022_19719
crossref_primary_10_1007_s00521_023_08331_4
crossref_primary_10_3390_rs14184608
crossref_primary_10_11834_jig_240041
crossref_primary_10_3390_e24060815
crossref_primary_10_1109_TCSVT_2020_3009235
crossref_primary_10_3390_electronics11172750
crossref_primary_10_1016_j_image_2019_115723
crossref_primary_10_1016_j_patcog_2022_108846
crossref_primary_10_3390_agriculture14071003
crossref_primary_10_1016_j_imu_2022_101136
crossref_primary_10_1007_s00371_024_03554_5
crossref_primary_10_1109_ACCESS_2020_2992749
crossref_primary_10_1364_OE_485672
crossref_primary_10_1117_1_JEI_33_2_023042
crossref_primary_10_1007_s00034_025_03017_9
crossref_primary_10_1117_1_JEI_33_2_023040
crossref_primary_10_1109_ACCESS_2022_3161527
crossref_primary_10_1016_j_dsp_2023_103993
crossref_primary_10_3390_s23239593
crossref_primary_10_1109_TITS_2024_3495034
crossref_primary_10_1016_j_compeleceng_2024_109634
crossref_primary_10_1016_j_image_2024_117174
crossref_primary_10_1007_s11760_024_03232_y
crossref_primary_10_1109_ACCESS_2024_3381514
crossref_primary_10_1016_j_ndteint_2024_103049
crossref_primary_10_1016_j_cag_2023_08_004
crossref_primary_10_1088_1361_6560_ac6724
crossref_primary_10_1109_TNNLS_2023_3289626
crossref_primary_10_1109_TMM_2022_3194993
crossref_primary_10_3390_rs13010062
crossref_primary_10_3390_math12244025
crossref_primary_10_1016_j_asoc_2019_105889
crossref_primary_10_1109_ACCESS_2022_3202940
crossref_primary_10_3390_sym14061165
crossref_primary_10_1186_s13640_025_00663_6
crossref_primary_10_1007_s11760_023_02801_x
crossref_primary_10_1109_TETCI_2024_3369321
crossref_primary_10_1007_s00500_023_08788_4
crossref_primary_10_1016_j_neucom_2021_08_142
crossref_primary_10_1016_j_engstruct_2024_117958
crossref_primary_10_1007_s40747_024_01387_2
crossref_primary_10_1007_s11760_024_03299_7
crossref_primary_10_1109_ACCESS_2023_3336411
crossref_primary_10_1109_LSP_2020_2965824
crossref_primary_10_1109_TMM_2023_3284988
crossref_primary_10_1111_coin_12391
crossref_primary_10_1016_j_patrec_2024_10_014
crossref_primary_10_53759_7669_jmc202404060
crossref_primary_10_1016_j_eswa_2024_123470
crossref_primary_10_1016_j_resconrec_2023_107274
crossref_primary_10_1117_1_JEI_31_6_063050
crossref_primary_10_1016_j_image_2022_116848
crossref_primary_10_1016_j_compeleceng_2023_108859
crossref_primary_10_3390_mi12121458
crossref_primary_10_1109_TMM_2022_3162493
crossref_primary_10_3390_math9192499
crossref_primary_10_1109_TIP_2021_3135473
crossref_primary_10_1109_TPAMI_2022_3212995
crossref_primary_10_3390_electronics13112040
crossref_primary_10_1080_13682199_2023_2260663
crossref_primary_10_1051_jnwpu_20224030524
crossref_primary_10_1155_2022_3903453
crossref_primary_10_3390_ijgi12100400
crossref_primary_10_1016_j_autcon_2023_104930
crossref_primary_10_1017_S0373463321000783
crossref_primary_10_1080_13682199_2023_2198350
crossref_primary_10_1016_j_patcog_2019_107143
crossref_primary_10_1016_j_image_2021_116433
crossref_primary_10_1049_itr2_12534
crossref_primary_10_3390_app13148148
crossref_primary_10_1016_j_bspc_2023_104874
crossref_primary_10_1364_OE_459063
crossref_primary_10_1016_j_displa_2023_102614
crossref_primary_10_1016_j_ijleo_2025_172306
crossref_primary_10_1007_s00371_021_02289_x
crossref_primary_10_3390_math11194194
crossref_primary_10_1007_s11063_022_10872_z
crossref_primary_10_1007_s41348_022_00584_w
crossref_primary_10_1007_s00371_022_02761_2
crossref_primary_10_1038_s41598_024_65270_3
crossref_primary_10_1016_j_patcog_2022_109195
crossref_primary_10_1155_2020_6707328
crossref_primary_10_1109_ACCESS_2025_3545258
crossref_primary_10_1109_TCI_2023_3323835
crossref_primary_10_1016_j_cag_2023_10_016
crossref_primary_10_1016_j_image_2023_116966
crossref_primary_10_1016_j_image_2023_117016
crossref_primary_10_1007_s12652_021_02947_x
crossref_primary_10_1016_j_dsp_2024_104752
crossref_primary_10_1117_1_JEI_30_3_033023
crossref_primary_10_1109_TNNLS_2021_3071245
crossref_primary_10_3390_rs16071134
crossref_primary_10_1109_ACCESS_2020_3022393
crossref_primary_10_3390_math11183834
crossref_primary_10_1109_LSP_2022_3162145
crossref_primary_10_1049_ipr2_13226
crossref_primary_10_32604_cmc_2024_059000
crossref_primary_10_1109_ACCESS_2023_3290490
crossref_primary_10_1007_s00371_020_01838_0
crossref_primary_10_1109_TIP_2020_3045617
crossref_primary_10_1016_j_jvcir_2024_104211
crossref_primary_10_1007_s11265_025_01945_y
crossref_primary_10_1049_iet_ipr_2018_6380
crossref_primary_10_1007_s10921_023_01013_0
crossref_primary_10_1016_j_bspc_2021_103286
crossref_primary_10_1016_j_dsp_2022_103532
crossref_primary_10_3389_fmars_2023_1133881
crossref_primary_10_1007_s00138_021_01223_4
crossref_primary_10_3390_su15021029
crossref_primary_10_3390_s24185912
crossref_primary_10_1016_j_patrec_2024_02_011
crossref_primary_10_1007_s00521_020_05015_1
crossref_primary_10_1109_TCI_2023_3340617
crossref_primary_10_1109_TCSVT_2024_3472278
crossref_primary_10_3390_s20020495
crossref_primary_10_1049_ipr2_12148
crossref_primary_10_1016_j_jvcir_2025_104402
crossref_primary_10_1049_csy2_12110
crossref_primary_10_1016_j_patcog_2023_110025
crossref_primary_10_1016_j_image_2021_116466
crossref_primary_10_1016_j_neucom_2020_12_057
crossref_primary_10_1007_s13369_023_07923_5
crossref_primary_10_1007_s11760_024_03733_w
crossref_primary_10_1109_ACCESS_2022_3207299
crossref_primary_10_1016_j_engappai_2024_108884
crossref_primary_10_3390_electronics12092081
crossref_primary_10_1016_j_gmod_2023_101206
crossref_primary_10_1007_s11042_023_15233_z
crossref_primary_10_1007_s11390_024_3814_0
crossref_primary_10_1088_1748_0221_18_07_P07037
crossref_primary_10_1007_s00371_025_03835_7
crossref_primary_10_1007_s00530_022_00913_x
crossref_primary_10_1007_s11042_020_09919_x
Cites_doi 10.1109/TIP.2016.2598681
10.1109/TIP.2016.2639450
10.1073/pnas.83.10.3078
10.1109/TIP.2013.2261309
10.1016/j.patcog.2016.06.008
10.1016/S0734-189X(87)80186-X
10.1109/TPAMI.2012.213
10.1109/83.597272
10.1137/100806588
10.1109/TIP.2015.2474701
10.1109/TIP.2013.2293423
10.1016/j.sigpro.2016.05.031
10.1109/TPAMI.2015.2439281
10.1109/TIP.2003.819861
10.1145/3072959.3073592
10.1109/TIP.2014.2324813
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 1, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 1, 2018
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2018.01.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 22
ExternalDocumentID 10_1016_j_patrec_2018_01_010
S0167865518300163
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
SSH
VOH
WUQ
Y6R
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c446t-25398a68ff65f0e6f5ea1cb370c5a789b7eff2e3eb428526f40da154270c21993
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Sun Jul 13 05:27:58 EDT 2025
Tue Jul 01 02:40:36 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Fri Feb 23 02:24:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Weak illumination image enhancement
Low light image enhancement
41A10
65D05
65D17
Image degradation
41A05
CNNs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-25398a68ff65f0e6f5ea1cb370c5a789b7eff2e3eb428526f40da154270c21993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2609-2460
OpenAccessLink http://hdl.handle.net/1885/139409
PQID 2066670399
PQPubID 2047552
PageCount 8
ParticipantIDs proquest_journals_2066670399
crossref_primary_10_1016_j_patrec_2018_01_010
crossref_citationtrail_10_1016_j_patrec_2018_01_010
elsevier_sciencedirect_doi_10_1016_j_patrec_2018_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Fu, Zeng, Huang, Ding, Paisley (bib0007) 2016; 129
Dong, Deng, Loy, He, Tang (bib0002) 2016; 38
Wang, Xiao, Liu, Wei (bib0024) 2014; 23
Wang, Bovik, Sherikh, Simoncelli (bib0026) 2004; 13
Fu, Liao, Zeng, Huang, Zhang, Ding (bib0006) 2015; 24
Ng, Wang (bib0021) 2011; 4
Gonzalez, Woods (bib0010) 2017
He, Sun, Tang (bib0012) 2013; 35
He, Zhang, Ren, Sun (bib0013) 2016
Kim, Lee, Lee (bib0016) 2016
Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, Romeny, Zimmerman, Zuiderveld (bib0023) 1987; 39
Peng, Jayant, Le, David (bib0022) 2012
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0014) 2014
Xue, Zhang, Mou, Bovik (bib0027) 2014; 23
Jobson, Rahman, Woodell (bib0015) 1997; 6
Dong, Wang, Pang, Li, Wen, Lu (bib0004) 2011
Krizhevsky, Sutskever, Hinton (bib0017) 2012
Guo, Li, Ling (bib0011) 2017; 26
Land (bib0018) 1986; 83
Dong, Deng, Loy, Tang (bib0003) 2015
Fotiadou, Tsagkatakis, Tsakalides (bib0005) 2014
Wang, Zheng, Liu (bib0025) 2013; 22
Cai, Xu, Jia, Qing, Tao (bib0001) 2016; 25
Gharbi, Chen, Barron, Hasinoff, Durand (bib0009) 2017; 36
Zhang, Shen, Luo, Zhang, Song (bib0028) 2012
Li, Wang, Wang, Gao (bib0019) 2015
Lore, Akintayo, Sarkar (bib0020) 2017; 61
Fu, Zeng, Huang, Zhang, Ding (bib0008) 2016
Dong (10.1016/j.patrec.2018.01.010_bib0002) 2016; 38
Fu (10.1016/j.patrec.2018.01.010_bib0008) 2016
Krizhevsky (10.1016/j.patrec.2018.01.010_bib0017) 2012
Cai (10.1016/j.patrec.2018.01.010_bib0001) 2016; 25
Dong (10.1016/j.patrec.2018.01.010_bib0003) 2015
Lore (10.1016/j.patrec.2018.01.010_bib0020) 2017; 61
Li (10.1016/j.patrec.2018.01.010_bib0019) 2015
Fu (10.1016/j.patrec.2018.01.010_bib0006) 2015; 24
Pizer (10.1016/j.patrec.2018.01.010_bib0023) 1987; 39
Wang (10.1016/j.patrec.2018.01.010_bib0025) 2013; 22
Zhang (10.1016/j.patrec.2018.01.010_bib0028) 2012
Wang (10.1016/j.patrec.2018.01.010_bib0026) 2004; 13
Jia (10.1016/j.patrec.2018.01.010_bib0014) 2014
Wang (10.1016/j.patrec.2018.01.010_bib0024) 2014; 23
Xue (10.1016/j.patrec.2018.01.010_bib0027) 2014; 23
Fu (10.1016/j.patrec.2018.01.010_bib0007) 2016; 129
Gharbi (10.1016/j.patrec.2018.01.010_bib0009) 2017; 36
Land (10.1016/j.patrec.2018.01.010_bib0018) 1986; 83
Dong (10.1016/j.patrec.2018.01.010_bib0004) 2011
Jobson (10.1016/j.patrec.2018.01.010_bib0015) 1997; 6
Gonzalez (10.1016/j.patrec.2018.01.010_bib0010) 2017
Ng (10.1016/j.patrec.2018.01.010_bib0021) 2011; 4
Peng (10.1016/j.patrec.2018.01.010_bib0022) 2012
He (10.1016/j.patrec.2018.01.010_bib0012) 2013; 35
Guo (10.1016/j.patrec.2018.01.010_bib0011) 2017; 26
Fotiadou (10.1016/j.patrec.2018.01.010_bib0005) 2014
Kim (10.1016/j.patrec.2018.01.010_bib0016) 2016
He (10.1016/j.patrec.2018.01.010_bib0013) 2016
References_xml – start-page: 3730
  year: 2015
  end-page: 3734
  ident: bib0019
  article-title: A low-light image enhancement method for both denosing and contrast enlarging
  publication-title: IEEE Conference on Image Processing
– volume: 39
  start-page: 355
  year: 1987
  end-page: 368
  ident: bib0023
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
– volume: 36
  year: 2017
  ident: bib0009
  article-title: Deep bilateral learning for real-time image enhancement
  publication-title: ACM Trans. Graph.
– volume: 83
  start-page: 3078
  year: 1986
  end-page: 3080
  ident: bib0018
  article-title: An alternative technique for the computation of the designator in the Retinex theory of color vision
  publication-title: Natl. Acad. Sci. U
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: bib0002
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 675
  year: 2014
  end-page: 678
  ident: bib0014
  article-title: Caffe: convolutional architecture for fast feature embedding
  publication-title: IEEE Conference on Multimedia
– volume: 35
  start-page: 1397
  year: 2013
  end-page: 1409
  ident: bib0012
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 3381
  year: 2014
  end-page: 3396
  ident: bib0024
  article-title: Variational Bayesian method for Retinex
  publication-title: IEEE Trans. Image Process.
– start-page: 576
  year: 2015
  end-page: 584
  ident: bib0003
  article-title: Compression artifacts reduction by a deep convolutional network
  publication-title: IEEE Conference on Computer Vision
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  ident: bib0020
  article-title: Llnet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0026
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 6
  start-page: 965
  year: 1997
  end-page: 976
  ident: bib0015
  article-title: A multi-scale Retinex for bridging the gap between color images and the human observation of scenes
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 3538
  year: 2013
  end-page: 3548
  ident: bib0025
  article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images
  publication-title: IEEE Trans. Image Process.
– start-page: 2782
  year: 2016
  end-page: 2790
  ident: bib0008
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– year: 2012
  ident: bib0017
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1646
  year: 2016
  end-page: 1654
  ident: bib0016
  article-title: Accurate image super-resolution using very deep convolutional networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 84
  year: 2014
  end-page: 93
  ident: bib0005
  article-title: Low light image enhancement via sparse representations
  publication-title: IEEE Conference on Image Analysis and Recognition
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib0004
  article-title: Fast efficient algorithm for enhancement of low lighting video
  publication-title: IEEE Conference on Multimedia and Expo
– volume: 26
  start-page: 982
  year: 2017
  end-page: 993
  ident: bib0011
  article-title: Lime: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
– volume: 129
  start-page: 82
  year: 2016
  end-page: 96
  ident: bib0007
  article-title: A fusion-based enhancing method for weakly illuminated images
  publication-title: Signal Process.
– start-page: 2034
  year: 2012
  end-page: 2037
  ident: bib0028
  article-title: Enhancement and noise reduction of very low light level images
  publication-title: IEEE Conference on Pattern Recognition
– volume: 24
  start-page: 4965
  year: 2015
  end-page: 4977
  ident: bib0006
  article-title: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation
  publication-title: IEEE Trans. Image Process.
– year: 2017
  ident: bib0010
  article-title: Digital Image Processing
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0013
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 23
  start-page: 684
  year: 2014
  end-page: 695
  ident: bib0027
  article-title: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index
  publication-title: IEEE Trans. Image Process.
– volume: 4
  start-page: 345
  year: 2011
  end-page: 365
  ident: bib0021
  article-title: A total variation model for Retinex
  publication-title: SIAM J. Imaging Sci.
– start-page: 1098
  year: 2012
  end-page: 1105
  ident: bib0022
  article-title: Unsuperived feature learning framework for non-reference image quality assessment
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 25
  start-page: 5187
  year: 2016
  end-page: 5198
  ident: bib0001
  article-title: DehazeNet: an end-to-end system for single image haze removel
  publication-title: IEEE Trans. Image Process.
– year: 2012
  ident: 10.1016/j.patrec.2018.01.010_bib0017
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 576
  year: 2015
  ident: 10.1016/j.patrec.2018.01.010_bib0003
  article-title: Compression artifacts reduction by a deep convolutional network
– volume: 25
  start-page: 5187
  year: 2016
  ident: 10.1016/j.patrec.2018.01.010_bib0001
  article-title: DehazeNet: an end-to-end system for single image haze removel
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2598681
– start-page: 770
  year: 2016
  ident: 10.1016/j.patrec.2018.01.010_bib0013
  article-title: Deep residual learning for image recognition
– volume: 26
  start-page: 982
  year: 2017
  ident: 10.1016/j.patrec.2018.01.010_bib0011
  article-title: Lime: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2639450
– volume: 83
  start-page: 3078
  year: 1986
  ident: 10.1016/j.patrec.2018.01.010_bib0018
  article-title: An alternative technique for the computation of the designator in the Retinex theory of color vision
  publication-title: Natl. Acad. Sci. U
  doi: 10.1073/pnas.83.10.3078
– volume: 22
  start-page: 3538
  year: 2013
  ident: 10.1016/j.patrec.2018.01.010_bib0025
  article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2261309
– start-page: 675
  year: 2014
  ident: 10.1016/j.patrec.2018.01.010_bib0014
  article-title: Caffe: convolutional architecture for fast feature embedding
– start-page: 84
  year: 2014
  ident: 10.1016/j.patrec.2018.01.010_bib0005
  article-title: Low light image enhancement via sparse representations
– start-page: 2782
  year: 2016
  ident: 10.1016/j.patrec.2018.01.010_bib0008
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
– volume: 61
  start-page: 650
  year: 2017
  ident: 10.1016/j.patrec.2018.01.010_bib0020
  article-title: Llnet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.008
– volume: 39
  start-page: 355
  year: 1987
  ident: 10.1016/j.patrec.2018.01.010_bib0023
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– start-page: 1
  year: 2011
  ident: 10.1016/j.patrec.2018.01.010_bib0004
  article-title: Fast efficient algorithm for enhancement of low lighting video
– volume: 35
  start-page: 1397
  year: 2013
  ident: 10.1016/j.patrec.2018.01.010_bib0012
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– start-page: 3730
  year: 2015
  ident: 10.1016/j.patrec.2018.01.010_bib0019
  article-title: A low-light image enhancement method for both denosing and contrast enlarging
– volume: 6
  start-page: 965
  year: 1997
  ident: 10.1016/j.patrec.2018.01.010_bib0015
  article-title: A multi-scale Retinex for bridging the gap between color images and the human observation of scenes
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.597272
– volume: 4
  start-page: 345
  year: 2011
  ident: 10.1016/j.patrec.2018.01.010_bib0021
  article-title: A total variation model for Retinex
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/100806588
– volume: 24
  start-page: 4965
  year: 2015
  ident: 10.1016/j.patrec.2018.01.010_bib0006
  article-title: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2474701
– start-page: 2034
  year: 2012
  ident: 10.1016/j.patrec.2018.01.010_bib0028
  article-title: Enhancement and noise reduction of very low light level images
– volume: 23
  start-page: 684
  year: 2014
  ident: 10.1016/j.patrec.2018.01.010_bib0027
  article-title: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2293423
– start-page: 1098
  year: 2012
  ident: 10.1016/j.patrec.2018.01.010_bib0022
  article-title: Unsuperived feature learning framework for non-reference image quality assessment
– year: 2017
  ident: 10.1016/j.patrec.2018.01.010_bib0010
– volume: 129
  start-page: 82
  year: 2016
  ident: 10.1016/j.patrec.2018.01.010_bib0007
  article-title: A fusion-based enhancing method for weakly illuminated images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.05.031
– start-page: 1646
  year: 2016
  ident: 10.1016/j.patrec.2018.01.010_bib0016
  article-title: Accurate image super-resolution using very deep convolutional networks
– volume: 38
  start-page: 295
  year: 2016
  ident: 10.1016/j.patrec.2018.01.010_bib0002
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.patrec.2018.01.010_bib0026
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 36
  year: 2017
  ident: 10.1016/j.patrec.2018.01.010_bib0009
  article-title: Deep bilateral learning for real-time image enhancement
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073592
– volume: 23
  start-page: 3381
  year: 2014
  ident: 10.1016/j.patrec.2018.01.010_bib0024
  article-title: Variational Bayesian method for Retinex
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2324813
SSID ssj0006398
Score 2.6665864
Snippet •We propose a trainable CNN for weakly illuminated image enhancement.•We propose a Retinex model-based weakly illuminated image synthesis approach.•The...
Weak illumination or low light image enhancement as pre-processing is needed in many computer vision tasks. Existing methods show limitations when they are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Artificial neural networks
CNNs
Computer vision
Illumination
Image degradation
Image enhancement
Image processing systems
Image quality
Light
Low light image enhancement
Mathematical models
Neural networks
Qualitative research
Quality assessment
Quality control
Retinex (algorithm)
Weak illumination image enhancement
Title LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement
URI https://dx.doi.org/10.1016/j.patrec.2018.01.010
https://www.proquest.com/docview/2066670399
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB72cWkPTfMoTZMuOuTqrNZayXZuy5Kwee0lDeQm_BhRt6kTWrcll_z2zNjy0pTAQsBg_JAwo9E3I3nmG4CDQmsVRbIItCqyYIoyDWLUWeDyODcyjlzhOHf4cmkW19OzG33Tg3mXC8NhlR77W0xv0NrfGXtpju_LcnzFAfScVklKyY6L6sMwVInRAxjOTs8XyxUgkxGOO4pvbtBl0DVhXrzljMxlOIkb_k5OpX3ZQv2H1Y0BOnkP77znKGbtx21CD6st2OiqMgg_Sbfg7T8Ug9twdcGrb6yWWB-JmZjfVX-8slFfzMzRnJpQcEH-q_iL6ffbB1FyAeSyIke0EOUPwhyB1VdWEN5M3IHrk-Mv80XgCykEOa326iDUJIHUxM4Z7SQapzGd5JmKZK7TKE6yCJ0LUWFGixEdGjeVRUq-VUgvhBzh9wEG1V2FH0Fk9NQoGWOizLSIMMvJ6GPOP09dSD3uguqEZ3PPMs7FLm5tF072zbYityxyKyd0yF0IVq3uW5aNNe9H3bjYZ9piyRCsabnfDaP1s_WXZUp7Q9CXJJ9e3fEevOGrNjxtHwb1z9_4mfyVOhtB__BxMvJa-QQDruqZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb_FtDl7rZtsm7XqTRVl13YsK3kIfE6yPKroqXvztzrSpLwRBKBSaR8tkMjNJv_kCsJ0rFUSRzD0V5KkXoky8GFXq2SzOtIwjm1vOHT4Z6N55eHShLkag2-TCMKzS2f7aplfW2j1pOWm27ouidcoAek6rJKXkwCUYhfGQXsy4vp23T5wHueC4Ifjm6k3-XAXy4g1nZCbDdlyxd3Ii7e_-6YelrtzPwSxMu7hR7NWfNgcjWM7DTHMmg3BTdB6mvhAMLsBpn9feWA5wuCv2RPeufHaqRn0xL0d1q4DggqJX8YLJ9c2rKPj446KkMDQXxS1ZHIHlJasHbyUuwvnB_lm357ljFLyM1npDz1ckgUTH1mplJWqrMGlnaRDJTCVR3EkjtNbHAFNaiihf21DmCUVWPlXwGd-3BGPlXYnLIFIq1YGMsRPoMI8wzcjlY8a_Tq1PPa5A0AjPZI5jnI-6uDENmOzK1CI3LHIj23TJFfA-Wt3XHBt_1I-acTHfdMWQG_ij5XozjMbN1UfDhPaaDF-ns_rvjrdgond20jf9w8HxGkxySQ1UW4ex4cMTblDkMkw3K818B_4e62Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LightenNet%3A+A+Convolutional+Neural+Network+for+weakly+illuminated+image+enhancement&rft.jtitle=Pattern+recognition+letters&rft.au=Li%2C+Chongyi&rft.au=Guo%2C+Jichang&rft.au=Porikli%2C+Fatih&rft.au=Pang%2C+Yanwei&rft.date=2018-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=104&rft.spage=15&rft_id=info:doi/10.1016%2Fj.patrec.2018.01.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon