An Analysis of the Influence of Surface Roughness and Clearance on the Dynamic Behavior of Deep Groove Ball Bearings Using Artificial Neural Networks
The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and...
        Saved in:
      
    
          | Published in | Materials Vol. 16; no. 9; p. 3529 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        04.05.2023
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1944 1996-1944  | 
| DOI | 10.3390/ma16093529 | 
Cover
| Abstract | The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations. | 
    
|---|---|
| AbstractList | The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations. The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations.The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations.  | 
    
| Audience | Academic | 
    
| Author | Rackov, Milan Tica, Milan Buljević, Anja Knežević, Ivan Kanović, Željko Antić, Aco Živković, Aleksandar  | 
    
| AuthorAffiliation | 1 Department of Mechanization and Design Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; ivanknezevic@uns.ac.rs 3 Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; antica@uns.ac.rs (A.A.); acoz@uns.ac.rs (A.Ž.) 2 Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; kanovic@uns.ac.rs (Ž.K.); anjabuljevic@uns.ac.rs (A.B.) 4 Department of Mechanics and Construction, Faculty of Mechanical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; milan.tica@mf.unibl.org  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; kanovic@uns.ac.rs (Ž.K.); anjabuljevic@uns.ac.rs (A.B.) – name: 3 Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; antica@uns.ac.rs (A.A.); acoz@uns.ac.rs (A.Ž.) – name: 4 Department of Mechanics and Construction, Faculty of Mechanical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; milan.tica@mf.unibl.org – name: 1 Department of Mechanization and Design Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; ivanknezevic@uns.ac.rs  | 
    
| Author_xml | – sequence: 1 givenname: Ivan orcidid: 0000-0002-6573-756X surname: Knežević fullname: Knežević, Ivan – sequence: 2 givenname: Milan orcidid: 0000-0003-4956-5849 surname: Rackov fullname: Rackov, Milan – sequence: 3 givenname: Željko orcidid: 0000-0003-1456-1135 surname: Kanović fullname: Kanović, Željko – sequence: 4 givenname: Anja surname: Buljević fullname: Buljević, Anja – sequence: 5 givenname: Aco orcidid: 0000-0002-8520-762X surname: Antić fullname: Antić, Aco – sequence: 6 givenname: Milan orcidid: 0000-0002-0754-6140 surname: Tica fullname: Tica, Milan – sequence: 7 givenname: Aleksandar orcidid: 0000-0003-2274-4927 surname: Živković fullname: Živković, Aleksandar  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37176412$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9ks1uEzEQx1eoiJbSCw-ALHFBoBR_rDf2CaUplEoVSEDPq4l3nLg4drB3W-VBeF-cpJRSIezDjMa__3hm7KfVXogBq-o5o8dCaPp2CayhWkiuH1UHTOtmxHRd793z96ujnK9oWUIwxfWTal-M2bipGT-ofk4CmQTw6-wyiZb0CyTnwfoBg8FN4OuQLBT3Sxzmi4A5EwgdmXqEBFskbDWn6wBLZ8gJLuDaxbSRniKuyFmK8RrJCXhfDiG5MM_kMhdDJql31hkHnnzCIW1NfxPT9_ysemzBZzy6tYfV5Yf336YfRxefz86nk4uRqeumH3FKwSo1llI1OIMZ71AbJSTTTCKXcgy0m0FnVKes7IysZzUYZi1thLC8A3FYvdnlHcIK1jelxnaV3BLSumW03cy3_TPfQr_b0athtsTOYOhL0XeKCK79-yS4RTuP1yUXU1Q0Tcnw6jZDij8GzH27dNmg9xAwDrnligkpNeesoC8foFdxSOWlthRvmFJaFep4R83BY-uCjeViU3aH5TXKT7GuxCfjWlOtqJZF8OJ-D3fF__4RBXi9A0yKOSe0_58IfQAb10Pv4qZ_5_8l-QX7T9d_ | 
    
| CitedBy_id | crossref_primary_10_1007_s12008_024_01963_3 | 
    
| Cites_doi | 10.1250/ast.7.343 10.1109/TMECH.2020.2971503 10.3390/en16041654 10.3390/en14227632 10.1016/j.ymssp.2014.04.014 10.3390/app9071462 10.1016/j.ymssp.2021.107779 10.3390/s20071884 10.3390/app8122357 10.1016/j.asoc.2019.105919 10.1109/TIT.2018.2854560 10.1016/j.mechmachtheory.2017.10.016 10.1016/j.measurement.2021.109196 10.1109/ACCESS.2018.2804930 10.3390/app10113941 10.1109/TIE.2018.2844856 10.1016/j.neucom.2019.10.064 10.1016/j.measurement.2020.108198 10.1016/j.jsv.2017.03.007 10.3390/math10224258 10.1016/j.engfailanal.2018.04.050 10.1016/j.ymssp.2018.02.016  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023  | 
    
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.3390/ma16093529 | 
    
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-1944 | 
    
| ExternalDocumentID | 10.3390/ma16093529 PMC10180366 A749098095 37176412 10_3390_ma16093529  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Provincial Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina grantid: 142-451-2671/2021-01/02  | 
    
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c446t-200af8875586ebab2de9c8351915e2557a0dbadc8d8f5dc54b4ac1ff0633f2da3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1996-1944 | 
    
| IngestDate | Sun Oct 26 02:46:58 EDT 2025 Tue Sep 30 17:13:57 EDT 2025 Thu Sep 04 18:16:17 EDT 2025 Fri Jul 25 11:40:52 EDT 2025 Mon Oct 20 16:47:24 EDT 2025 Wed Feb 19 02:23:25 EST 2025 Thu Apr 24 23:09:15 EDT 2025 Thu Oct 16 04:28:01 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | clearance vibration neural network bearing surface roughness  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c446t-200af8875586ebab2de9c8351915e2557a0dbadc8d8f5dc54b4ac1ff0633f2da3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-4956-5849 0000-0002-6573-756X 0000-0003-1456-1135 0000-0002-0754-6140 0000-0002-8520-762X 0000-0003-2274-4927  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2812618898?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 37176412 | 
    
| PQID | 2812618898 | 
    
| PQPubID | 2032366 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_ma16093529 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180366 proquest_miscellaneous_2813559221 proquest_journals_2812618898 gale_infotracacademiconefile_A749098095 pubmed_primary_37176412 crossref_primary_10_3390_ma16093529 crossref_citationtrail_10_3390_ma16093529  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-04 | 
    
| PublicationDateYYYYMMDD | 2023-05-04 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-04 day: 04  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Materials | 
    
| PublicationTitleAlternate | Materials (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Yunlong (ref_6) 2018; 121 Liu (ref_2) 2017; 398 ref_14 ref_13 Kanai (ref_5) 1986; 7 Zhu (ref_22) 2018; 66 Cheng (ref_19) 2020; 25 Xu (ref_17) 2021; 158 Chen (ref_18) 2020; 86 ref_16 (ref_7) 2021; 27 Ren (ref_20) 2018; 6 Rackov (ref_11) 2021; 1009 Choudhary (ref_12) 2021; 176 ref_25 ref_24 ref_23 Wang (ref_21) 2020; 379 Soltanolkotabi (ref_27) 2018; 65 Meserkhani (ref_15) 2021; 168 ref_26 ref_8 Petersen (ref_4) 2015; 50 Rackov (ref_10) 2019; 16 Miskovic (ref_3) 2017; 24 Liu (ref_9) 2018; 108 Xu (ref_1) 2018; 91  | 
    
| References_xml | – volume: 7 start-page: 343 year: 1986 ident: ref_5 article-title: Accurate estimation of the surface roughness on the rolling ring in a ball bearing by vibration analysis publication-title: J. Acoust. Soc. Jpn. doi: 10.1250/ast.7.343 – volume: 25 start-page: 1243 year: 2020 ident: ref_19 article-title: A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings publication-title: J. IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2020.2971503 – ident: ref_25 doi: 10.3390/en16041654 – ident: ref_26 doi: 10.3390/en14227632 – volume: 16 start-page: 178 year: 2019 ident: ref_10 article-title: Analysis of the impact of lubrication on the dynamic behavior of ball bearings using artificial neural networks publication-title: Rom. J. Acoust. Vib. – volume: 50 start-page: 139 year: 2015 ident: ref_4 article-title: Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.04.014 – ident: ref_23 doi: 10.3390/app9071462 – volume: 158 start-page: 107779 year: 2021 ident: ref_17 article-title: The Enfigram: A robust method for extracting repetitive transients in rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107779 – ident: ref_16 doi: 10.3390/s20071884 – ident: ref_14 doi: 10.3390/app8122357 – volume: 24 start-page: 1941 year: 2017 ident: ref_3 article-title: Analysis and prediction of vibrations of ball bearings contaminated by open pit coal mine debris particles publication-title: Teh. Vjesn. = Tech. Gaz. – volume: 27 start-page: 356 year: 2021 ident: ref_7 article-title: Influence of bearing raceway surface topography on the level of generated vibration as an example of operational heredity publication-title: Indian J. Eng. Mater. Sci. – volume: 86 start-page: 105919 year: 2020 ident: ref_18 article-title: A Novel Deep Learning Method Based on Attention Mechanism for Bearing Remaining Useful Life Prediction publication-title: J. Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105919 – volume: 65 start-page: 742 year: 2018 ident: ref_27 article-title: Theoretical insights into the optimization landscape of over-parameterized shallow neural networks publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2018.2854560 – ident: ref_8 – volume: 121 start-page: 198 year: 2018 ident: ref_6 article-title: Effects of raceway surface roughness in an angular contact ball bearing publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2017.10.016 – volume: 1009 start-page: 010028 year: 2021 ident: ref_11 article-title: Prediction of radial clearance based on bearing vibration using artificial neural network publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 176 start-page: 109196 year: 2021 ident: ref_12 article-title: Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images publication-title: Measurement doi: 10.1016/j.measurement.2021.109196 – volume: 6 start-page: 13041 year: 2018 ident: ref_20 article-title: Prediction of bearing remaining useful life with deep convolution neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2804930 – ident: ref_24 doi: 10.3390/app10113941 – volume: 66 start-page: 3208 year: 2018 ident: ref_22 article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2844856 – volume: 379 start-page: 117 year: 2020 ident: ref_21 article-title: Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.064 – volume: 168 start-page: 108198 year: 2021 ident: ref_15 article-title: Experimental comparison of acoustic emission sensors in the detection of outer race defect of angular contact ball bearings by artificial neural network publication-title: Measurement doi: 10.1016/j.measurement.2020.108198 – volume: 398 start-page: 84 year: 2017 ident: ref_2 article-title: Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.03.007 – ident: ref_13 doi: 10.3390/math10224258 – volume: 91 start-page: 449 year: 2018 ident: ref_1 article-title: Analysis of varying contact angles and load distributions in defective angular contact ball bearing publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2018.04.050 – volume: 108 start-page: 33 year: 2018 ident: ref_9 article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.016  | 
    
| SSID | ssj0000331829 | 
    
| Score | 2.3594835 | 
    
| Snippet | The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory... | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 3529 | 
    
| SubjectTerms | Algorithms Analysis Artificial intelligence Artificial neural networks Back propagation networks Ball bearings Clearances Control algorithms Digitization Fault diagnosis Grooves Machine learning Motion systems Multilayer perceptrons Neural networks Quality control Quality management Signal processing Surface roughness Velocity Vibration Vibration analysis Vibration measurement  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQegAOvB9bCjKiEuKQ7nofjveEQkspHCoERCqnZdZri6jpJkqyReV_8H-Z8XrTNEIIiUs2iseJnYzH3xfPfsPYbhlloAdUvl2osp_GtuqXkACyVg24mwEVSKJsi2N5NEo_nGQnvs7pwqdVIhUfuyDtMmSRZaehkGEeIlbIw1llX5_7v5KERPyAD0R_tmSGYLzHtkbHH4df3Vmy79yKkiZI7sMzEJJO_hygvNyGNoPx2m60mSl5valncPEDJpO1bejwNvvWTaDNPjnda5blnv65oe34HzO8w255iMqHrU_dZddMfY_dXBMuvM9-DWveyZnwqeWIIvn7rtwJvfC5mVvAp5-oCBBFUw51xfepRgU4k9r1Obio4WysuVdpnFPXA2Nm_B0C-nPD3-A3gI1An7rgLr3BjauVveCkLOIuLpV98YCNDt9-2T_q-wIPfY0sdEkrFCxGuSxT0pRQxpXJNU04F5lBrjOAqCqh0qpSNqt0lpYpaGEtwqrExhUkD1mvntbmMeNKKq0FxGAQb2QQgY5skkuwaZlkMFABe9X93oX26udUhGNSIAsi3ygufSNgL1a2s1bz449WL8ltCgoE-E4a_P0MOB6S1CqGgzSPcoUQNmA7nWcVPkIsihiRlRRK5Ti056tmXNt0YAO1mTbOBuFgHsciYI9aR1wNKEEeLlMRB0xdcdGVAemGX22px9-dfrgTbUukDNjuypv_MtHtfzN7wm7ECABdMmi6w3rLeWOeImBbls_8ovwNxe08jg priority: 102 providerName: Unpaywall  | 
    
| Title | An Analysis of the Influence of Surface Roughness and Clearance on the Dynamic Behavior of Deep Groove Ball Bearings Using Artificial Neural Networks | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37176412 https://www.proquest.com/docview/2812618898 https://www.proquest.com/docview/2813559221 https://pubmed.ncbi.nlm.nih.gov/PMC10180366 https://www.mdpi.com/1996-1944/16/9/3529/pdf?version=1683516861  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: HH5 dateStart: 20080101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616QF6QLwxlGoRlRCHqPb6kfUBofSRFA5RVYgUTtZ4vSuQUifkAeKH8H-ZWT-SVqgn29l1MtHO0zv-PoCj3I9R95i-PVB5N5K26OYYIlWtGimaIRMkcbfFKLkYR58n8WQHRs27MNxW2fhE56iLmeZn5MeSIlESKJWqj_OfXWaN4t3VhkIDa2qF4oODGNuFPcnIWB3YOzkfXV61T138kHRYphVOaUj1_vE1BglvBroccxOZbvvnrQB1u3ny3rqc45_fOJ1uRabBQ3hQp5SiX-nAI9gx5WPY3wIafAJ_-6Vo4EfEzArK-sSnhp6EP_iyXlik0ysm7WHvJ7AsxClzSqCbUrp7zir-elGjKi741jNj5mJICfgvI05IPBpE_tWlcO0ITq4KpkIwEog7uNbz5VMYD86_nl50a0KGrqaqccUWhZa8UhyrxOSYy8KkWjHFXxAbqk166Bc5FloVysaFjqM8Qh1YS2lQaGWB4TPolLPSvAChEqV1gBIN5Qcx-qh9G6YJ2igPY-wpD943i5HpGq2cSTOmGVUtvHDZZuE8eNvOnVcYHf-d9Y7XNGPDpW_SWL9_QPIwBFbW70WpnypKOT04aJY9qy16mW30z4M37TDZIm-wYGlmazeH0rdUysCD55WWtAKFVDcnUSA9UDf0p53AON83R8of3x3etwNZC5PEg6NW1e74oy_vFv8V3JeUqLmmzegAOqvF2rymxGqVH8KuGgwPa5uhq-EkoKvx6LL_7R8JrCjg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IMrTUMoiihCHqPb6kfWhQmnTktASodJKvZnxei0qpU7Igyo_hL_Db2NmYztphXrrKVF2bG80s_Pwzn4fwHbqhqibTN_uqbQRyDxrpOgjVa0aKZohEyRxt0Uv6pwFX87D8xX4W52F4bbKyidaR50NNL8j35EUiSJPqVh9Gv5qMGsU765WFBpYUitkuxZirDzYcWRmV1TCjXe7bdL3eykPD073O42SZaChqRSasJlgTkstDFVkUkxlZmKtmLfOCw0l3E10sxQzrTKVh5kOgzRA7eU5xXY_lxn6dN97sBb4QUzF39reQe_bSf2Wx_Vpzch4jovq-7G7c4lexJuPNqddRMKb8WApIN5s1lyfFkOcXWG_vxQJDx_BwzKFFa25zW3Aiikew4MlYMMn8KdViAruRAxyQVmm6FZ0KPzD9-koR_p6wiRB7G0FFpnYZw4LtCKFvaY9K_DyQosSxXHEl7aNGYrPlPD_NmKPpkeDyE8dC9v-YOc1h8UQjDxiP2yr-_gpnN2Jap7BajEozAsQKlJaeyjRUD4Soovazf04wjxI_RCbyoGPlTISXaKjM0lHP6EqiRWXLBTnwLtadjjHBPmv1AfWacKOgu6ksTzvQPNhyK2k1QxiN1aU4jqwWak9KT3IOFnYuwNv62Fa-7yhg4UZTK0MpYuxlJ4Dz-dWUk_Ipzo9CjzpgLpmP7UA44pfHykuflp8cQvq5keRA9u1qd3yR1_ePv03sN45_XqcHHd7R6_gvqQk0TaMBpuwOhlNzWtK6ibpVrlyBPy468X6DwtEY48 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBRZRhPpgxV4fWT8gFBrShqIKAZX6ZsbrtaiUOiEHVX4If4Zfx8z6SFqhvvUpUXZsTzS3d_YbgO3Mi1B3eXy7rzI3lEXuZhggVa0aKZohD0jibovDeP8o_HQcHW_A3-YsDLdVNj7ROup8rPkdeUdSJIp9pRLVKeq2iC_9wfvJL5cnSPFOazNOo1KRA7M8o_Jt9m7YJ1m_kXLw8fvuvltPGHA1lUFzVhEsyMyiSMUmw0zmJtGKZ9b5kaFku4tenmGuVa6KKNdRmIWo_aKguB4UMseA7nsNrncZxZ1PqQ_22vc7XkDWIpMKETUIEq9zin7M2442m13FwIuRYC0UXmzTvLkoJ7g8w9FoLQYO7sKdOnkVvUrb7sGGKe_D7TVIwwfwp1eKBuhEjAtB-aUYNoNQ-Idvi2mB9PUrjwdiPyuwzMUuT69AS1Laa_rLEk9PtKjxG6d8ad-YidijVP-3ER-IPVpEfupM2MYHy1cFiCEYc8R-2Cb32UM4uhLBPILNclyaJyBUrLT2UaKhTCRCD7VXBEmMRZgFEXaVAzuNMFJd46LzeI5RSvURCy5dCc6B1y3tpEID-S_VW5Zpyi6C7qSxPulA_DDYVtrrhomXKEpuHdhqxJ7WvmOWrjTdgVftMlk9b-VgacYLS0OJYiKl78DjSktahgKq0OPQlw6oc_rTEjCi-PmV8uSnRRa3cG5BHDuw3araJX_06eXsv4QbZKLp5-HhwTO4JSk7tJ2i4RZszqcL85yyuXn2wpqNgB9Xbaf_AGWbYSk | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQegAOvB9bCjKiEuKQ7nofjveEQkspHCoERCqnZdZri6jpJkqyReV_8H-Z8XrTNEIIiUs2iseJnYzH3xfPfsPYbhlloAdUvl2osp_GtuqXkACyVg24mwEVSKJsi2N5NEo_nGQnvs7pwqdVIhUfuyDtMmSRZaehkGEeIlbIw1llX5_7v5KERPyAD0R_tmSGYLzHtkbHH4df3Vmy79yKkiZI7sMzEJJO_hygvNyGNoPx2m60mSl5valncPEDJpO1bejwNvvWTaDNPjnda5blnv65oe34HzO8w255iMqHrU_dZddMfY_dXBMuvM9-DWveyZnwqeWIIvn7rtwJvfC5mVvAp5-oCBBFUw51xfepRgU4k9r1Obio4WysuVdpnFPXA2Nm_B0C-nPD3-A3gI1An7rgLr3BjauVveCkLOIuLpV98YCNDt9-2T_q-wIPfY0sdEkrFCxGuSxT0pRQxpXJNU04F5lBrjOAqCqh0qpSNqt0lpYpaGEtwqrExhUkD1mvntbmMeNKKq0FxGAQb2QQgY5skkuwaZlkMFABe9X93oX26udUhGNSIAsi3ygufSNgL1a2s1bz449WL8ltCgoE-E4a_P0MOB6S1CqGgzSPcoUQNmA7nWcVPkIsihiRlRRK5Ti056tmXNt0YAO1mTbOBuFgHsciYI9aR1wNKEEeLlMRB0xdcdGVAemGX22px9-dfrgTbUukDNjuypv_MtHtfzN7wm7ECABdMmi6w3rLeWOeImBbls_8ovwNxe08jg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Analysis+of+the+Influence+of+Surface+Roughness+and+Clearance+on+the+Dynamic+Behavior+of+Deep+Groove+Ball+Bearings+Using+Artificial+Neural+Networks&rft.jtitle=Materials&rft.au=Kne%C5%BEevi%C4%87%2C+Ivan&rft.au=Rackov%2C+Milan&rft.au=Kanovi%C4%87%2C+%C5%BDeljko&rft.au=Buljevi%C4%87%2C+Anja&rft.date=2023-05-04&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=16&rft.issue=9&rft.spage=3529&rft_id=info:doi/10.3390%2Fma16093529&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |