An Analysis of the Influence of Surface Roughness and Clearance on the Dynamic Behavior of Deep Groove Ball Bearings Using Artificial Neural Networks

The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 9; p. 3529
Main Authors Knežević, Ivan, Rackov, Milan, Kanović, Željko, Buljević, Anja, Antić, Aco, Tica, Milan, Živković, Aleksandar
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.05.2023
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma16093529

Cover

Abstract The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations.
AbstractList The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations.
The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations.The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory assembly, new ball bearings need to pass quality control. The conventional approach relies on measuring the vibration amplitudes for each unit and sorting them into classes according to the vibration level. In this paper, based on experimental research, models are created to predict the vibration class and analyze the dynamic behavior of new ball bearings. The models are based on artificial neural networks. A feedforward multilayer perceptron (MLP) was applied, and a backpropagation learning algorithm was used. A specific method of training groups of artificial neural networks was applied, where each network provided an answer to the input within the group, and the final answer was the mean value of the answers of all networks in the group. The models achieved a prediction accuracy of over 90%. The main aim of the research was to construct models that are able to predict the vibration class of a new ball bearing based on the geometric parameters of the bearing rings. The models are also applied to analyze the influence of surface roughness of the raceways and the internal radial clearance on bearing vibrations.
Audience Academic
Author Rackov, Milan
Tica, Milan
Buljević, Anja
Knežević, Ivan
Kanović, Željko
Antić, Aco
Živković, Aleksandar
AuthorAffiliation 1 Department of Mechanization and Design Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; ivanknezevic@uns.ac.rs
3 Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; antica@uns.ac.rs (A.A.); acoz@uns.ac.rs (A.Ž.)
2 Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; kanovic@uns.ac.rs (Ž.K.); anjabuljevic@uns.ac.rs (A.B.)
4 Department of Mechanics and Construction, Faculty of Mechanical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; milan.tica@mf.unibl.org
AuthorAffiliation_xml – name: 2 Department of Computing and Control Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; kanovic@uns.ac.rs (Ž.K.); anjabuljevic@uns.ac.rs (A.B.)
– name: 3 Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; antica@uns.ac.rs (A.A.); acoz@uns.ac.rs (A.Ž.)
– name: 4 Department of Mechanics and Construction, Faculty of Mechanical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; milan.tica@mf.unibl.org
– name: 1 Department of Mechanization and Design Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; ivanknezevic@uns.ac.rs
Author_xml – sequence: 1
  givenname: Ivan
  orcidid: 0000-0002-6573-756X
  surname: Knežević
  fullname: Knežević, Ivan
– sequence: 2
  givenname: Milan
  orcidid: 0000-0003-4956-5849
  surname: Rackov
  fullname: Rackov, Milan
– sequence: 3
  givenname: Željko
  orcidid: 0000-0003-1456-1135
  surname: Kanović
  fullname: Kanović, Željko
– sequence: 4
  givenname: Anja
  surname: Buljević
  fullname: Buljević, Anja
– sequence: 5
  givenname: Aco
  orcidid: 0000-0002-8520-762X
  surname: Antić
  fullname: Antić, Aco
– sequence: 6
  givenname: Milan
  orcidid: 0000-0002-0754-6140
  surname: Tica
  fullname: Tica, Milan
– sequence: 7
  givenname: Aleksandar
  orcidid: 0000-0003-2274-4927
  surname: Živković
  fullname: Živković, Aleksandar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37176412$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEQx1eoiJbSCw-ALHFBoBR_rDf2CaUplEoVSEDPq4l3nLg4drB3W-VBeF-cpJRSIezDjMa__3hm7KfVXogBq-o5o8dCaPp2CayhWkiuH1UHTOtmxHRd793z96ujnK9oWUIwxfWTal-M2bipGT-ofk4CmQTw6-wyiZb0CyTnwfoBg8FN4OuQLBT3Sxzmi4A5EwgdmXqEBFskbDWn6wBLZ8gJLuDaxbSRniKuyFmK8RrJCXhfDiG5MM_kMhdDJql31hkHnnzCIW1NfxPT9_ysemzBZzy6tYfV5Yf336YfRxefz86nk4uRqeumH3FKwSo1llI1OIMZ71AbJSTTTCKXcgy0m0FnVKes7IysZzUYZi1thLC8A3FYvdnlHcIK1jelxnaV3BLSumW03cy3_TPfQr_b0athtsTOYOhL0XeKCK79-yS4RTuP1yUXU1Q0Tcnw6jZDij8GzH27dNmg9xAwDrnligkpNeesoC8foFdxSOWlthRvmFJaFep4R83BY-uCjeViU3aH5TXKT7GuxCfjWlOtqJZF8OJ-D3fF__4RBXi9A0yKOSe0_58IfQAb10Pv4qZ_5_8l-QX7T9d_
CitedBy_id crossref_primary_10_1007_s12008_024_01963_3
Cites_doi 10.1250/ast.7.343
10.1109/TMECH.2020.2971503
10.3390/en16041654
10.3390/en14227632
10.1016/j.ymssp.2014.04.014
10.3390/app9071462
10.1016/j.ymssp.2021.107779
10.3390/s20071884
10.3390/app8122357
10.1016/j.asoc.2019.105919
10.1109/TIT.2018.2854560
10.1016/j.mechmachtheory.2017.10.016
10.1016/j.measurement.2021.109196
10.1109/ACCESS.2018.2804930
10.3390/app10113941
10.1109/TIE.2018.2844856
10.1016/j.neucom.2019.10.064
10.1016/j.measurement.2020.108198
10.1016/j.jsv.2017.03.007
10.3390/math10224258
10.1016/j.engfailanal.2018.04.050
10.1016/j.ymssp.2018.02.016
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ma16093529
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID 10.3390/ma16093529
PMC10180366
A749098095
37176412
10_3390_ma16093529
Genre Journal Article
GrantInformation_xml – fundername: Provincial Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina
  grantid: 142-451-2671/2021-01/02
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c446t-200af8875586ebab2de9c8351915e2557a0dbadc8d8f5dc54b4ac1ff0633f2da3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Sun Oct 26 02:46:58 EDT 2025
Tue Sep 30 17:13:57 EDT 2025
Thu Sep 04 18:16:17 EDT 2025
Fri Jul 25 11:40:52 EDT 2025
Mon Oct 20 16:47:24 EDT 2025
Wed Feb 19 02:23:25 EST 2025
Thu Apr 24 23:09:15 EDT 2025
Thu Oct 16 04:28:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords clearance
vibration
neural network
bearing
surface roughness
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-200af8875586ebab2de9c8351915e2557a0dbadc8d8f5dc54b4ac1ff0633f2da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4956-5849
0000-0002-6573-756X
0000-0003-1456-1135
0000-0002-0754-6140
0000-0002-8520-762X
0000-0003-2274-4927
OpenAccessLink https://www.proquest.com/docview/2812618898?pq-origsite=%requestingapplication%&accountid=15518
PMID 37176412
PQID 2812618898
PQPubID 2032366
ParticipantIDs unpaywall_primary_10_3390_ma16093529
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10180366
proquest_miscellaneous_2813559221
proquest_journals_2812618898
gale_infotracacademiconefile_A749098095
pubmed_primary_37176412
crossref_primary_10_3390_ma16093529
crossref_citationtrail_10_3390_ma16093529
PublicationCentury 2000
PublicationDate 2023-05-04
PublicationDateYYYYMMDD 2023-05-04
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yunlong (ref_6) 2018; 121
Liu (ref_2) 2017; 398
ref_14
ref_13
Kanai (ref_5) 1986; 7
Zhu (ref_22) 2018; 66
Cheng (ref_19) 2020; 25
Xu (ref_17) 2021; 158
Chen (ref_18) 2020; 86
ref_16
(ref_7) 2021; 27
Ren (ref_20) 2018; 6
Rackov (ref_11) 2021; 1009
Choudhary (ref_12) 2021; 176
ref_25
ref_24
ref_23
Wang (ref_21) 2020; 379
Soltanolkotabi (ref_27) 2018; 65
Meserkhani (ref_15) 2021; 168
ref_26
ref_8
Petersen (ref_4) 2015; 50
Rackov (ref_10) 2019; 16
Miskovic (ref_3) 2017; 24
Liu (ref_9) 2018; 108
Xu (ref_1) 2018; 91
References_xml – volume: 7
  start-page: 343
  year: 1986
  ident: ref_5
  article-title: Accurate estimation of the surface roughness on the rolling ring in a ball bearing by vibration analysis
  publication-title: J. Acoust. Soc. Jpn.
  doi: 10.1250/ast.7.343
– volume: 25
  start-page: 1243
  year: 2020
  ident: ref_19
  article-title: A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings
  publication-title: J. IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2020.2971503
– ident: ref_25
  doi: 10.3390/en16041654
– ident: ref_26
  doi: 10.3390/en14227632
– volume: 16
  start-page: 178
  year: 2019
  ident: ref_10
  article-title: Analysis of the impact of lubrication on the dynamic behavior of ball bearings using artificial neural networks
  publication-title: Rom. J. Acoust. Vib.
– volume: 50
  start-page: 139
  year: 2015
  ident: ref_4
  article-title: Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.04.014
– ident: ref_23
  doi: 10.3390/app9071462
– volume: 158
  start-page: 107779
  year: 2021
  ident: ref_17
  article-title: The Enfigram: A robust method for extracting repetitive transients in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107779
– ident: ref_16
  doi: 10.3390/s20071884
– ident: ref_14
  doi: 10.3390/app8122357
– volume: 24
  start-page: 1941
  year: 2017
  ident: ref_3
  article-title: Analysis and prediction of vibrations of ball bearings contaminated by open pit coal mine debris particles
  publication-title: Teh. Vjesn. = Tech. Gaz.
– volume: 27
  start-page: 356
  year: 2021
  ident: ref_7
  article-title: Influence of bearing raceway surface topography on the level of generated vibration as an example of operational heredity
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 86
  start-page: 105919
  year: 2020
  ident: ref_18
  article-title: A Novel Deep Learning Method Based on Attention Mechanism for Bearing Remaining Useful Life Prediction
  publication-title: J. Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105919
– volume: 65
  start-page: 742
  year: 2018
  ident: ref_27
  article-title: Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2018.2854560
– ident: ref_8
– volume: 121
  start-page: 198
  year: 2018
  ident: ref_6
  article-title: Effects of raceway surface roughness in an angular contact ball bearing
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.10.016
– volume: 1009
  start-page: 010028
  year: 2021
  ident: ref_11
  article-title: Prediction of radial clearance based on bearing vibration using artificial neural network
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 176
  start-page: 109196
  year: 2021
  ident: ref_12
  article-title: Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109196
– volume: 6
  start-page: 13041
  year: 2018
  ident: ref_20
  article-title: Prediction of bearing remaining useful life with deep convolution neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2804930
– ident: ref_24
  doi: 10.3390/app10113941
– volume: 66
  start-page: 3208
  year: 2018
  ident: ref_22
  article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2844856
– volume: 379
  start-page: 117
  year: 2020
  ident: ref_21
  article-title: Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.064
– volume: 168
  start-page: 108198
  year: 2021
  ident: ref_15
  article-title: Experimental comparison of acoustic emission sensors in the detection of outer race defect of angular contact ball bearings by artificial neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108198
– volume: 398
  start-page: 84
  year: 2017
  ident: ref_2
  article-title: Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.03.007
– ident: ref_13
  doi: 10.3390/math10224258
– volume: 91
  start-page: 449
  year: 2018
  ident: ref_1
  article-title: Analysis of varying contact angles and load distributions in defective angular contact ball bearing
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2018.04.050
– volume: 108
  start-page: 33
  year: 2018
  ident: ref_9
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
SSID ssj0000331829
Score 2.3594835
Snippet The deep groove ball bearing is one of the most important components of the rotary motion system and is the research subject in this paper. After factory...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3529
SubjectTerms Algorithms
Analysis
Artificial intelligence
Artificial neural networks
Back propagation networks
Ball bearings
Clearances
Control algorithms
Digitization
Fault diagnosis
Grooves
Machine learning
Motion systems
Multilayer perceptrons
Neural networks
Quality control
Quality management
Signal processing
Surface roughness
Velocity
Vibration
Vibration analysis
Vibration measurement
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQegAOvB9bCjKiEuKQ7nofjveEQkspHCoERCqnZdZri6jpJkqyReV_8H-Z8XrTNEIIiUs2iseJnYzH3xfPfsPYbhlloAdUvl2osp_GtuqXkACyVg24mwEVSKJsi2N5NEo_nGQnvs7pwqdVIhUfuyDtMmSRZaehkGEeIlbIw1llX5_7v5KERPyAD0R_tmSGYLzHtkbHH4df3Vmy79yKkiZI7sMzEJJO_hygvNyGNoPx2m60mSl5valncPEDJpO1bejwNvvWTaDNPjnda5blnv65oe34HzO8w255iMqHrU_dZddMfY_dXBMuvM9-DWveyZnwqeWIIvn7rtwJvfC5mVvAp5-oCBBFUw51xfepRgU4k9r1Obio4WysuVdpnFPXA2Nm_B0C-nPD3-A3gI1An7rgLr3BjauVveCkLOIuLpV98YCNDt9-2T_q-wIPfY0sdEkrFCxGuSxT0pRQxpXJNU04F5lBrjOAqCqh0qpSNqt0lpYpaGEtwqrExhUkD1mvntbmMeNKKq0FxGAQb2QQgY5skkuwaZlkMFABe9X93oX26udUhGNSIAsi3ygufSNgL1a2s1bz449WL8ltCgoE-E4a_P0MOB6S1CqGgzSPcoUQNmA7nWcVPkIsihiRlRRK5Ti056tmXNt0YAO1mTbOBuFgHsciYI9aR1wNKEEeLlMRB0xdcdGVAemGX22px9-dfrgTbUukDNjuypv_MtHtfzN7wm7ECABdMmi6w3rLeWOeImBbls_8ovwNxe08jg
  priority: 102
  providerName: Unpaywall
Title An Analysis of the Influence of Surface Roughness and Clearance on the Dynamic Behavior of Deep Groove Ball Bearings Using Artificial Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/37176412
https://www.proquest.com/docview/2812618898
https://www.proquest.com/docview/2813559221
https://pubmed.ncbi.nlm.nih.gov/PMC10180366
https://www.mdpi.com/1996-1944/16/9/3529/pdf?version=1683516861
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616QF6QLwxlGoRlRCHqPb6kfUBofSRFA5RVYgUTtZ4vSuQUifkAeKH8H-ZWT-SVqgn29l1MtHO0zv-PoCj3I9R95i-PVB5N5K26OYYIlWtGimaIRMkcbfFKLkYR58n8WQHRs27MNxW2fhE56iLmeZn5MeSIlESKJWqj_OfXWaN4t3VhkIDa2qF4oODGNuFPcnIWB3YOzkfXV61T138kHRYphVOaUj1_vE1BglvBroccxOZbvvnrQB1u3ny3rqc45_fOJ1uRabBQ3hQp5SiX-nAI9gx5WPY3wIafAJ_-6Vo4EfEzArK-sSnhp6EP_iyXlik0ysm7WHvJ7AsxClzSqCbUrp7zir-elGjKi741jNj5mJICfgvI05IPBpE_tWlcO0ITq4KpkIwEog7uNbz5VMYD86_nl50a0KGrqaqccUWhZa8UhyrxOSYy8KkWjHFXxAbqk166Bc5FloVysaFjqM8Qh1YS2lQaGWB4TPolLPSvAChEqV1gBIN5Qcx-qh9G6YJ2igPY-wpD943i5HpGq2cSTOmGVUtvHDZZuE8eNvOnVcYHf-d9Y7XNGPDpW_SWL9_QPIwBFbW70WpnypKOT04aJY9qy16mW30z4M37TDZIm-wYGlmazeH0rdUysCD55WWtAKFVDcnUSA9UDf0p53AON83R8of3x3etwNZC5PEg6NW1e74oy_vFv8V3JeUqLmmzegAOqvF2rymxGqVH8KuGgwPa5uhq-EkoKvx6LL_7R8JrCjg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IMrTUMoiihCHqPb6kfWhQmnTktASodJKvZnxei0qpU7Igyo_hL_Db2NmYztphXrrKVF2bG80s_Pwzn4fwHbqhqibTN_uqbQRyDxrpOgjVa0aKZohEyRxt0Uv6pwFX87D8xX4W52F4bbKyidaR50NNL8j35EUiSJPqVh9Gv5qMGsU765WFBpYUitkuxZirDzYcWRmV1TCjXe7bdL3eykPD073O42SZaChqRSasJlgTkstDFVkUkxlZmKtmLfOCw0l3E10sxQzrTKVh5kOgzRA7eU5xXY_lxn6dN97sBb4QUzF39reQe_bSf2Wx_Vpzch4jovq-7G7c4lexJuPNqddRMKb8WApIN5s1lyfFkOcXWG_vxQJDx_BwzKFFa25zW3Aiikew4MlYMMn8KdViAruRAxyQVmm6FZ0KPzD9-koR_p6wiRB7G0FFpnYZw4LtCKFvaY9K_DyQosSxXHEl7aNGYrPlPD_NmKPpkeDyE8dC9v-YOc1h8UQjDxiP2yr-_gpnN2Jap7BajEozAsQKlJaeyjRUD4Soovazf04wjxI_RCbyoGPlTISXaKjM0lHP6EqiRWXLBTnwLtadjjHBPmv1AfWacKOgu6ksTzvQPNhyK2k1QxiN1aU4jqwWak9KT3IOFnYuwNv62Fa-7yhg4UZTK0MpYuxlJ4Dz-dWUk_Ipzo9CjzpgLpmP7UA44pfHykuflp8cQvq5keRA9u1qd3yR1_ePv03sN45_XqcHHd7R6_gvqQk0TaMBpuwOhlNzWtK6ibpVrlyBPy468X6DwtEY48
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBRZRhPpgxV4fWT8gFBrShqIKAZX6ZsbrtaiUOiEHVX4If4Zfx8z6SFqhvvUpUXZsTzS3d_YbgO3Mi1B3eXy7rzI3lEXuZhggVa0aKZohD0jibovDeP8o_HQcHW_A3-YsDLdVNj7ROup8rPkdeUdSJIp9pRLVKeq2iC_9wfvJL5cnSPFOazNOo1KRA7M8o_Jt9m7YJ1m_kXLw8fvuvltPGHA1lUFzVhEsyMyiSMUmw0zmJtGKZ9b5kaFku4tenmGuVa6KKNdRmIWo_aKguB4UMseA7nsNrncZxZ1PqQ_22vc7XkDWIpMKETUIEq9zin7M2442m13FwIuRYC0UXmzTvLkoJ7g8w9FoLQYO7sKdOnkVvUrb7sGGKe_D7TVIwwfwp1eKBuhEjAtB-aUYNoNQ-Idvi2mB9PUrjwdiPyuwzMUuT69AS1Laa_rLEk9PtKjxG6d8ad-YidijVP-3ER-IPVpEfupM2MYHy1cFiCEYc8R-2Cb32UM4uhLBPILNclyaJyBUrLT2UaKhTCRCD7VXBEmMRZgFEXaVAzuNMFJd46LzeI5RSvURCy5dCc6B1y3tpEID-S_VW5Zpyi6C7qSxPulA_DDYVtrrhomXKEpuHdhqxJ7WvmOWrjTdgVftMlk9b-VgacYLS0OJYiKl78DjSktahgKq0OPQlw6oc_rTEjCi-PmV8uSnRRa3cG5BHDuw3araJX_06eXsv4QbZKLp5-HhwTO4JSk7tJ2i4RZszqcL85yyuXn2wpqNgB9Xbaf_AGWbYSk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQegAOvB9bCjKiEuKQ7nofjveEQkspHCoERCqnZdZri6jpJkqyReV_8H-Z8XrTNEIIiUs2iseJnYzH3xfPfsPYbhlloAdUvl2osp_GtuqXkACyVg24mwEVSKJsi2N5NEo_nGQnvs7pwqdVIhUfuyDtMmSRZaehkGEeIlbIw1llX5_7v5KERPyAD0R_tmSGYLzHtkbHH4df3Vmy79yKkiZI7sMzEJJO_hygvNyGNoPx2m60mSl5valncPEDJpO1bejwNvvWTaDNPjnda5blnv65oe34HzO8w255iMqHrU_dZddMfY_dXBMuvM9-DWveyZnwqeWIIvn7rtwJvfC5mVvAp5-oCBBFUw51xfepRgU4k9r1Obio4WysuVdpnFPXA2Nm_B0C-nPD3-A3gI1An7rgLr3BjauVveCkLOIuLpV98YCNDt9-2T_q-wIPfY0sdEkrFCxGuSxT0pRQxpXJNU04F5lBrjOAqCqh0qpSNqt0lpYpaGEtwqrExhUkD1mvntbmMeNKKq0FxGAQb2QQgY5skkuwaZlkMFABe9X93oX26udUhGNSIAsi3ygufSNgL1a2s1bz449WL8ltCgoE-E4a_P0MOB6S1CqGgzSPcoUQNmA7nWcVPkIsihiRlRRK5Ti056tmXNt0YAO1mTbOBuFgHsciYI9aR1wNKEEeLlMRB0xdcdGVAemGX22px9-dfrgTbUukDNjuypv_MtHtfzN7wm7ECABdMmi6w3rLeWOeImBbls_8ovwNxe08jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Analysis+of+the+Influence+of+Surface+Roughness+and+Clearance+on+the+Dynamic+Behavior+of+Deep+Groove+Ball+Bearings+Using+Artificial+Neural+Networks&rft.jtitle=Materials&rft.au=Kne%C5%BEevi%C4%87%2C+Ivan&rft.au=Rackov%2C+Milan&rft.au=Kanovi%C4%87%2C+%C5%BDeljko&rft.au=Buljevi%C4%87%2C+Anja&rft.date=2023-05-04&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=16&rft.issue=9&rft.spage=3529&rft_id=info:doi/10.3390%2Fma16093529&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon