A Nonlocal Structure Tensor-Based Approach for Multicomponent Image Recovery Problems

Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 23; no. 12; pp. 5531 - 5544
Main Authors Chierchia, Giovanni, Pustelnik, Nelly, Pesquet-Popescu, Beatrice, Pesquet, Jean-Christophe
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2014.2364141

Cover

Abstract Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various ℓ 1,p -matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.
AbstractList Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various $ \boldsymbol {\ell }_{1,p}$ -matrix-norms with $p \ge 1$ . To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.
Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various l(1, p)-matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various l(1, p)-matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.
Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various ℓ 1,p -matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.
Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various l(1, p)-matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.
Author Chierchia, Giovanni
Pesquet, Jean-Christophe
Pesquet-Popescu, Beatrice
Pustelnik, Nelly
Author_xml – sequence: 1
  givenname: Giovanni
  surname: Chierchia
  fullname: Chierchia, Giovanni
  email: chierchi@telecom-paristech.fr
  organization: Lab. Traitement et Commun. de l'Inf., Telecom ParisTech, Paris, France
– sequence: 2
  givenname: Nelly
  surname: Pustelnik
  fullname: Pustelnik, Nelly
  email: nelly.pustelnik@ens-lyon.fr
  organization: Lab. de Phys., Univ. de Lyon, Lyon, France
– sequence: 3
  givenname: Beatrice
  surname: Pesquet-Popescu
  fullname: Pesquet-Popescu, Beatrice
  email: pesquet@telecom-paristech.fr
  organization: Lab. Traitement et Commun. de l'Inf., Telecom ParisTech, Paris, France
– sequence: 4
  givenname: Jean-Christophe
  surname: Pesquet
  fullname: Pesquet, Jean-Christophe
  email: jean-christophe.pesquet@univ-paris-est.fr
  organization: Lab. d'Inf. Gaspard-Monge, Univ. Paris-Est, Marne-la-Vallée, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25347882$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1rFDEYBvAgFfuhd0GQAS9eZs3Hm2RyXIsfC1WLbs8hk3lHp8xMtklG6H9vlt166EE8JYTf85LkOScnc5iRkJeMrhij5t12c73ilMGKCwUM2BNyxgywmlLgJ2VPpa41A3NKzlO6pUVKpp6RUy4F6KbhZ-RmXX0N8xi8G6sfOS4-LxGrLc4pxPq9S9hV690uBud_VX2I1ZdlzIMP065cZM7VZnI_sfqOPvzGeF9dx9COOKXn5GnvxoQvjusFufn4YXv5ub769mlzub6qPYDKNfONkR11Qvqu4UD3p23rGccWEEEphI5jrzQa3QuPHjove6Y9d1II34kL8vYwt9zwbsGU7TQkj-PoZgxLskxJDoIaJv6HMqBaaSj0zSN6G5Y4l4cUxZXWwkhT1OujWtoJO7uLw-TivX342wLUAfgYUorYWz9kl4cw5-iG0TJq9yXaUqLdl2iPJZYgfRR8mP2PyKtDZEDEv1wZQXUD4g80ZqXI
CODEN IIPRE4
CitedBy_id crossref_primary_10_1088_1361_6420_ab2ae9
crossref_primary_10_1109_TSP_2021_3056598
crossref_primary_10_1007_s10851_022_01122_x
crossref_primary_10_1007_s10851_018_0867_0
crossref_primary_10_1109_TII_2020_2980577
crossref_primary_10_1109_TIP_2015_2459653
crossref_primary_10_1016_j_jat_2021_105606
crossref_primary_10_1109_TSP_2015_2472365
crossref_primary_10_1007_s11760_021_01884_8
crossref_primary_10_1109_LSP_2022_3153229
crossref_primary_10_1109_TCI_2016_2575740
crossref_primary_10_1007_s11042_019_07912_7
crossref_primary_10_1587_transinf_2016PCP0003
crossref_primary_10_1109_TIP_2016_2627812
crossref_primary_10_1117_1_JEI_26_3_033016
crossref_primary_10_1109_TCI_2018_2887136
crossref_primary_10_1109_TGRS_2018_2872888
crossref_primary_10_1137_18M118116X
crossref_primary_10_1109_TGRS_2023_3323485
crossref_primary_10_1051_0004_6361_202039618
crossref_primary_10_1109_LSP_2018_2815003
crossref_primary_10_1049_iet_ipr_2016_1004
crossref_primary_10_1137_23M1582345
crossref_primary_10_1145_3341728
crossref_primary_10_1109_TCI_2015_2434616
crossref_primary_10_1137_14098154X
crossref_primary_10_1109_TSP_2021_3069677
crossref_primary_10_1117_1_JEI_25_6_063023
crossref_primary_10_1109_TCI_2017_2700203
crossref_primary_10_1109_TGRS_2016_2517627
crossref_primary_10_3390_rs14040856
crossref_primary_10_1109_JSTSP_2021_3054506
crossref_primary_10_1109_TSIPN_2020_2970313
crossref_primary_10_1109_TSP_2014_2373318
crossref_primary_10_1088_1361_6420_aaccca
crossref_primary_10_1016_j_media_2021_102341
crossref_primary_10_1364_BOE_10_001097
Cites_doi 10.1016/S0262-8856(98)00102-4
10.1007/978-3-642-38267-3_11
10.24033/bsmf.1625
10.1109/ICASSP.2013.6637873
10.1088/0266-5611/29/2/025011
10.1109/ICASSP.2012.6288484
10.1137/08072975X
10.1007/s11760-014-0664-1
10.1109/TIP.2007.901238
10.1137/09076934X
10.1109/78.330356
10.1137/060669358
10.1109/83.661180
10.1109/TSP.2011.2173684
10.1109/TIP.2014.2329448
10.1016/0167-2789(92)90242-F
10.1109/MSP.2013.2279731
10.1137/070698592
10.1109/TIP.2011.2175741
10.1016/0734-189X(86)90223-9
10.1109/83.661181
10.1007/s10444-011-9254-8
10.1109/TIP.2010.2092433
10.1007/s11228-011-0191-y
10.1109/ICIP.2012.6467476
10.1109/TIT.2011.2158250
10.1007/BF02196592
10.1088/0266-5611/24/6/065014
10.1109/TIP.2012.2231687
10.1088/0266-5611/23/4/008
10.1109/JSTSP.2007.910281
10.1109/TSP.2008.921757
10.1007/978-1-4419-9569-8_10
10.1109/TIP.2005.857247
10.1109/TIP.2010.2076294
10.1109/TSP.2006.881199
10.1137/110823766
10.1137/10081602X
10.1007/s10851-009-0179-5
10.1137/080714488
10.1109/TIT.2008.920190
10.1007/BF01582566
10.1137/1.9780898718782
10.1109/TIP.2010.2047910
10.1007/s10851-009-0149-y
10.1109/TIP.2012.2216278
10.1109/TIP.2004.832922
10.1109/TIP.2012.2210725
10.1109/79.916318
10.1109/TGRS.2012.2227329
10.1007/s10851-010-0243-1
10.1109/TIP.2010.2072512
10.1109/TIP.2012.2183143
10.1109/TASSP.1984.1164297
10.1109/83.541429
10.1109/TGRS.2013.2245509
10.1016/j.sigpro.2012.01.020
10.1007/978-3-642-38267-3_5
10.1109/TIP.2014.2315156
10.1137/080716542
10.1007/978-3-642-02256-2_25
10.1137/1035134
10.1007/BF01581204
10.1109/ICASSP.2014.6854541
10.1093/comjnl/bxm055
10.1109/ICASSP.2013.6638043
10.1109/TGRS.2012.2237521
10.1088/0266-5611/29/3/035007
10.1109/TPAMI.2005.87
10.1109/JSTARS.2013.2266732
10.1016/j.jvcir.2009.10.006
10.1007/s10957-012-0245-9
10.1002/cpa.20042
10.1109/TGRS.2014.2307354
10.1109/LGRS.2010.2054062
10.3934/ipi.2008.2.455
10.1137/090769521
10.1186/1687-6180-2013-186
10.1137/040616024
10.1145/1970392.1970395
10.1137/070710779
10.1117/12.912217
10.1109/ICASSP.2012.6288628
10.1109/TSP.2009.2025797
10.1109/TIP.2011.2176954
10.1109/JSTSP.2007.910264
10.1109/MSP.2006.1628875
10.1137/070696143
10.1109/CVPR.2013.232
10.1109/JPROC.2009.2037655
10.1109/TGRS.2012.2185054
10.1109/TGRS.2007.894569
10.1007/978-3-540-74936-3_22
10.1007/s10851-010-0251-1
10.1109/TIP.2007.891788
10.1109/TIP.2013.2286328
10.1109/TMI.1982.4307555
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TIP.2014.2364141
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5544
ExternalDocumentID 3503478951
25347882
10_1109_TIP_2014_2364141
6930784
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c446t-1c895d0a35cd8240c446bbc12eb4ee466e4d2ef67e97f3cec4dc5f17c2a533cd3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 11:49:33 EDT 2025
Sat Sep 27 21:26:58 EDT 2025
Mon Jun 30 10:23:30 EDT 2025
Wed Feb 19 01:56:28 EST 2025
Wed Oct 01 02:44:42 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Aug 26 16:50:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords image restoration
Convex optimization
nonlocal total variation
hyperspectral imagery
multicomponent images
singular value decomposition
epigraph
structure tensor
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-1c895d0a35cd8240c446bbc12eb4ee466e4d2ef67e97f3cec4dc5f17c2a533cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25347882
PQID 1626773959
PQPubID 85429
PageCount 14
ParticipantIDs proquest_journals_1626773959
crossref_primary_10_1109_TIP_2014_2364141
proquest_miscellaneous_1651407674
proquest_miscellaneous_1652430913
crossref_citationtrail_10_1109_TIP_2014_2364141
ieee_primary_6930784
pubmed_primary_25347882
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-Dec.
2014-12-00
2014-Dec
20141201
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
komodakis (ref96) 2014
ref56
ref59
ref58
ref53
ref55
ref54
quattoni (ref74) 2009
tofighi (ref77) 2014
ref50
li (ref29) 2014; 52
ref46
ref45
ref48
ref47
ref42
ref44
ref43
studer (ref51) 2014
ref49
ref8
ref7
ref9
ref4
ref3
ref6
hiriart-urruty (ref52) 1996; 305
ref5
ref100
ref101
ref40
mallat (ref21) 1997
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref39
ref38
chaux (ref24) 2010
condat (ref110) 2014
moreau (ref97) 1965; 93
ref23
ref26
ref25
ref20
ref22
ref28
ref13
ref12
ref15
ref14
rockafellar (ref78) 2004
ref99
ref11
ref98
ref10
foi (ref71) 2012; 8291
ref17
ref16
ref19
ref18
pesquet (ref87) 2012; 8
aharon (ref27) 2006; 54
harizanov (ref76) 2013; 7893
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref85
ref88
duval (ref36) 2009; 5567
tschumperlé (ref41) 2001
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref106
ref107
ref75
ref104
ref102
ref103
ref2
ref1
combettes (ref86) 2011
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
peyré (ref105) 2011
ref62
ref61
condat (ref109) 2014; 21
References_xml – ident: ref40
  doi: 10.1016/S0262-8856(98)00102-4
– volume: 7893
  start-page: 125
  year: 2013
  ident: ref76
  article-title: Epigraphical projection for solving least squares Anscombe transformed constrained optimization problems
  publication-title: Proc Scale Space Variational Methods Comput Vis
  doi: 10.1007/978-3-642-38267-3_11
– volume: 93
  start-page: 273
  year: 1965
  ident: ref97
  article-title: Proximité et dualité dans un espace Hilbertien
  publication-title: Bull Soc Math France
  doi: 10.24033/bsmf.1625
– ident: ref9
  doi: 10.1109/ICASSP.2013.6637873
– ident: ref95
  doi: 10.1088/0266-5611/29/2/025011
– start-page: 857
  year: 2009
  ident: ref74
  article-title: An efficient projection for $\ell _{1,\infty }$ regularization
  publication-title: Proc Int Conf Mach Learn
– ident: ref3
  doi: 10.1109/ICASSP.2012.6288484
– ident: ref2
  doi: 10.1137/08072975X
– ident: ref75
  doi: 10.1007/s11760-014-0664-1
– ident: ref30
  doi: 10.1109/TIP.2007.901238
– ident: ref89
  doi: 10.1137/09076934X
– ident: ref48
  doi: 10.1109/78.330356
– ident: ref72
  doi: 10.1137/060669358
– ident: ref33
  doi: 10.1109/83.661180
– ident: ref104
  doi: 10.1109/TSP.2011.2173684
– ident: ref19
  doi: 10.1109/TIP.2014.2329448
– ident: ref12
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref66
  doi: 10.1109/MSP.2013.2279731
– year: 2014
  ident: ref96
  publication-title: Playing with duality An overview of recent primal-dual approaches for solving large-scale optimization problems
– volume: 305
  year: 1996
  ident: ref52
  article-title: Convex analysis and minimization algorithms, Part I: Fundamentals
  publication-title: Grundlehren der Mathematischen Wissenschaften
– ident: ref18
  doi: 10.1137/070698592
– ident: ref56
  doi: 10.1109/TIP.2011.2175741
– ident: ref37
  doi: 10.1016/0734-189X(86)90223-9
– ident: ref39
  doi: 10.1109/83.661181
– ident: ref93
  doi: 10.1007/s10444-011-9254-8
– ident: ref43
  doi: 10.1109/TIP.2010.2092433
– ident: ref92
  doi: 10.1007/s11228-011-0191-y
– ident: ref108
  doi: 10.1109/ICIP.2012.6467476
– ident: ref62
  doi: 10.1109/TIT.2011.2158250
– ident: ref101
  doi: 10.1007/BF02196592
– ident: ref102
  doi: 10.1088/0266-5611/24/6/065014
– ident: ref53
  doi: 10.1109/TIP.2012.2231687
– ident: ref80
  doi: 10.1088/0266-5611/23/4/008
– ident: ref82
  doi: 10.1109/JSTSP.2007.910281
– ident: ref23
  doi: 10.1109/TSP.2008.921757
– start-page: 185
  year: 2011
  ident: ref86
  article-title: Proximal splitting methods in signal processing
  publication-title: Fixed-Point Algorithms For Inverse Problems in Science and Engineering
  doi: 10.1007/978-1-4419-9569-8_10
– ident: ref22
  doi: 10.1109/TIP.2005.857247
– year: 2014
  ident: ref110
  publication-title: Fast Projection onto the Simplex and the l1 Ball
– ident: ref100
  doi: 10.1109/TIP.2010.2076294
– volume: 54
  start-page: 4311
  year: 2006
  ident: ref27
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.881199
– ident: ref44
  doi: 10.1137/110823766
– ident: ref91
  doi: 10.1137/10081602X
– ident: ref85
  doi: 10.1007/s10851-009-0179-5
– ident: ref73
  doi: 10.1137/080714488
– ident: ref1
  doi: 10.1109/TIT.2008.920190
– ident: ref88
  doi: 10.1007/BF01582566
– ident: ref34
  doi: 10.1137/1.9780898718782
– year: 2014
  ident: ref51
  article-title: Democratic representations
– ident: ref103
  doi: 10.1109/TIP.2010.2047910
– ident: ref69
  doi: 10.1007/s10851-009-0149-y
– ident: ref20
  doi: 10.1109/TIP.2012.2216278
– ident: ref13
  doi: 10.1109/TIP.2004.832922
– ident: ref31
  doi: 10.1109/TIP.2012.2210725
– ident: ref54
  doi: 10.1109/79.916318
– ident: ref5
  doi: 10.1109/TGRS.2012.2227329
– ident: ref25
  doi: 10.1007/s10851-010-0243-1
– ident: ref107
  doi: 10.1109/TIP.2010.2072512
– volume: 8
  start-page: 273
  year: 2012
  ident: ref87
  article-title: A parallel inertial proximal optimization method
  publication-title: Pacific J Optim
– ident: ref16
  doi: 10.1109/TIP.2012.2183143
– ident: ref47
  doi: 10.1109/TASSP.1984.1164297
– ident: ref38
  doi: 10.1109/83.541429
– ident: ref6
  doi: 10.1109/TGRS.2013.2245509
– ident: ref7
  doi: 10.1016/j.sigpro.2012.01.020
– ident: ref45
  doi: 10.1007/978-3-642-38267-3_5
– ident: ref17
  doi: 10.1109/TIP.2014.2315156
– ident: ref83
  doi: 10.1137/080716542
– volume: 5567
  start-page: 295
  year: 2009
  ident: ref36
  article-title: Projected gradient based color image decomposition
  publication-title: Scale Space and Variational Methods in Computer Vision
  doi: 10.1007/978-3-642-02256-2_25
– ident: ref67
  doi: 10.1137/1035134
– start-page: 153
  year: 2001
  ident: ref41
  article-title: Constrained and unconstrained PDE's for vector image restoration
  publication-title: Proc Scandin Conf Img Anal
– ident: ref98
  doi: 10.1007/BF01581204
– ident: ref15
  doi: 10.1109/ICASSP.2014.6854541
– ident: ref4
  doi: 10.1093/comjnl/bxm055
– ident: ref63
  doi: 10.1109/ICASSP.2013.6638043
– volume: 21
  start-page: 1054
  year: 2014
  ident: ref109
  article-title: A generic proximal algorithm for convex optimization-Application to total variation minimization
  publication-title: IEEE Signal Process Lett
– year: 1997
  ident: ref21
  publication-title: A Wavelet Tour of Signal Processing
– year: 2014
  ident: ref77
  article-title: Signal reconstruction framework based on projections onto epigraph set of a convex cost function (PESC)
– ident: ref11
  doi: 10.1109/TGRS.2012.2237521
– ident: ref50
  doi: 10.1088/0266-5611/29/3/035007
– ident: ref57
  doi: 10.1109/TPAMI.2005.87
– ident: ref65
  doi: 10.1109/JSTARS.2013.2266732
– ident: ref99
  doi: 10.1016/j.jvcir.2009.10.006
– ident: ref94
  doi: 10.1007/s10957-012-0245-9
– ident: ref79
  doi: 10.1002/cpa.20042
– volume: 52
  start-page: 7086
  year: 2014
  ident: ref29
  article-title: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2307354
– ident: ref59
  doi: 10.1109/LGRS.2010.2054062
– ident: ref42
  doi: 10.3934/ipi.2008.2.455
– ident: ref14
  doi: 10.1137/090769521
– ident: ref60
  doi: 10.1186/1687-6180-2013-186
– ident: ref70
  doi: 10.1137/040616024
– ident: ref61
  doi: 10.1145/1970392.1970395
– ident: ref84
  doi: 10.1137/070710779
– volume: 8291
  start-page: 829110
  year: 2012
  ident: ref71
  article-title: Foveated self-similarity in nonlocal image filtering
  publication-title: Proc SPIE
  doi: 10.1117/12.912217
– ident: ref49
  doi: 10.1109/ICASSP.2012.6288628
– ident: ref64
  doi: 10.1109/TSP.2009.2025797
– ident: ref32
  doi: 10.1109/TIP.2011.2176954
– ident: ref81
  doi: 10.1109/JSTSP.2007.910264
– ident: ref55
  doi: 10.1109/MSP.2006.1628875
– ident: ref106
  doi: 10.1137/070696143
– ident: ref68
  doi: 10.1109/CVPR.2013.232
– start-page: 303
  year: 2011
  ident: ref105
  article-title: Group sparsity with overlapping partition functions
  publication-title: Proc Eur Signal Image Process Conf
– ident: ref28
  doi: 10.1109/JPROC.2009.2037655
– start-page: 203
  year: 2010
  ident: ref24
  article-title: Wavelet transform for the denoising of multivariate images
  publication-title: Multivariate Image Processing
– ident: ref10
  doi: 10.1109/TGRS.2012.2185054
– ident: ref58
  doi: 10.1109/TGRS.2007.894569
– ident: ref35
  doi: 10.1007/978-3-540-74936-3_22
– year: 2004
  ident: ref78
  publication-title: Variational Analysis
– ident: ref90
  doi: 10.1007/s10851-010-0251-1
– ident: ref26
  doi: 10.1109/TIP.2007.891788
– ident: ref8
  doi: 10.1109/TIP.2013.2286328
– ident: ref46
  doi: 10.1109/TMI.1982.4307555
SSID ssj0014516
Score 2.4073515
Snippet Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5531
SubjectTerms Algorithms
Convex analysis
Convex functions
Convex optimization
Degradation
epigraph
hyperspectral imagery
Hyperspectral imaging
image restoration
Imaging
multicomponent images
Noise
nonlocal total variation
Optimization
Recovery
Regularization
singular value decomposition
structure tensor
Tensile stress
Tensors
Variational methods
Title A Nonlocal Structure Tensor-Based Approach for Multicomponent Image Recovery Problems
URI https://ieeexplore.ieee.org/document/6930784
https://www.ncbi.nlm.nih.gov/pubmed/25347882
https://www.proquest.com/docview/1626773959
https://www.proquest.com/docview/1651407674
https://www.proquest.com/docview/1652430913
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQCrQlfFRG6gWJ7G4Sx4mP26oIkEBI3ZW4RWt7cikkFbt7aH99ZxwnKqhFvUWJo3E0M_abzPgNwKcCU-2ynIzXuDKWtcpjrYyJ9cIoUyplkpJPI1_fqIu5vLrL7zbgbDgLg4i--AxHfOlz-a61a_5VNua2fUUpN2GzKFV3VmvIGHDDWZ_ZJLkFwf4-JTnR49nlLddwyRGTpSeSm8Okeca88emT3ci3V_k30vQ7zvk2XPdz7QpNvo_WKzOyv57ROP7vx7yFNwF6imlnKzuwgc0ubAcYKoKTL3fh9R8chXswn4qbtvFbnvjmyWbXjyhmFP22j_Fn2gOdmAZeckEAWPgTvVyo3jYkX1w-0IIlOMgln_kpbrv-Nct3MD__OvtyEYdeDLGlgHEVJ7bUuZssMiYTIBTAd42xSYpGIkqlULoUa1WgLurMopXO5nVS2HRBgNK67D1sNSR4H0RWWmYtQ44kJZPrJIlGV9PqkOVlXdsIxr1OKhuIyrlfxn3lA5aJrkihFSu0CgqN4HR440dH0vHC2D3WxTAuqCGCo17tVfDiZZVQtFdwJlNHcDI8Jv_jpMqiwXbNYwhyTpgS6cUxqcyYgTWCD51JDfJ7Szz4-7wO4RXPviugOYIt0jMeEwxamY_e_n8DPGoAhw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB0tywE4sLDLR2ABI3FBIm2T2E58LIhVC9tqJVppb1HtTC5AgrbtAX49M44TAYIVtyhxNLFmxn6TGb8BeJVjaqpMkfHaqohlrVVstLWx2VhtC61tUvBp5MVSz9byw6W6PIA3w1kYRPTFZzjiS5_Lr1q3519lY27blxfyBtxUUkrVndYacgbcctbnNklyTsC_T0pOzHg1v-AqLjliuvREcnuYVGXMHJ_-th_5Biv_xpp-zzk7gkX_tV2pyefRfmdH7scfRI7_O517cDeATzHtrOU-HGBzDEcBiIrg5ttjuPMLS-EJrKdi2TZ-0xOfPN3s_grFiuLf9ip-S7tgJaaBmVwQBBb-TC-XqrcNyRfzr7RkCQ5zyWu-i4uug832AazP3q_ezeLQjSF2FDLu4sQVRlWTTcZ0AoQD-K61LknRSkSpNcoqxVrnaPI6c-hk5VSd5C7dEKR0VfYQDhsS_BhEVjjmLUOOJSXT6ySJwaqm9SFTRV27CMa9TkoXqMq5Y8aX0ocsE1OSQktWaBkUGsHr4Y1vHU3HNWNPWBfDuKCGCE57tZfBj7dlQvFezrlME8HL4TF5IKdVNg22ex5DoHPCpEjXjkllxhysETzqTGqQ31vik79_1wu4NVstzsvz-fLjU7jNM-nKaU7hkHSOzwgU7exz7ws_Ac3MA9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nonlocal+Structure+Tensor-Based+Approach+for+Multicomponent+Image+Recovery+Problems&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Chierchia%2C+Giovanni&rft.au=Pustelnik%2C+Nelly&rft.au=Pesquet-Popescu%2C+Beatrice&rft.au=Pesquet%2C+Jean-Christophe&rft.date=2014-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=23&rft.issue=12&rft.spage=5531&rft_id=info:doi/10.1109%2FTIP.2014.2364141&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3503478951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon