A Nonlocal Structure Tensor-Based Approach for Multicomponent Image Recovery Problems
Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The...
        Saved in:
      
    
          | Published in | IEEE transactions on image processing Vol. 23; no. 12; pp. 5531 - 5544 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.12.2014
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1057-7149 1941-0042 1941-0042  | 
| DOI | 10.1109/TIP.2014.2364141 | 
Cover
| Abstract | Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various ℓ 1,p -matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers. | 
    
|---|---|
| AbstractList | Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various $ \boldsymbol {\ell }_{1,p}$ -matrix-norms with $p \ge 1$ . To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers. Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various l(1, p)-matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various l(1, p)-matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers. Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various ℓ 1,p -matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers. Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the structure tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the nonlocal variations, jointly for the different components, through various l(1, p)-matrix-norms with p ≥ 1. To facilitate the choice of the hyperparameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented because of the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for color, multispectral, and hyperspectral images. The results demonstrate the interest of introducing a nonlocal ST regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods, such as the alternating direction method of multipliers.  | 
    
| Author | Chierchia, Giovanni Pesquet, Jean-Christophe Pesquet-Popescu, Beatrice Pustelnik, Nelly  | 
    
| Author_xml | – sequence: 1 givenname: Giovanni surname: Chierchia fullname: Chierchia, Giovanni email: chierchi@telecom-paristech.fr organization: Lab. Traitement et Commun. de l'Inf., Telecom ParisTech, Paris, France – sequence: 2 givenname: Nelly surname: Pustelnik fullname: Pustelnik, Nelly email: nelly.pustelnik@ens-lyon.fr organization: Lab. de Phys., Univ. de Lyon, Lyon, France – sequence: 3 givenname: Beatrice surname: Pesquet-Popescu fullname: Pesquet-Popescu, Beatrice email: pesquet@telecom-paristech.fr organization: Lab. Traitement et Commun. de l'Inf., Telecom ParisTech, Paris, France – sequence: 4 givenname: Jean-Christophe surname: Pesquet fullname: Pesquet, Jean-Christophe email: jean-christophe.pesquet@univ-paris-est.fr organization: Lab. d'Inf. Gaspard-Monge, Univ. Paris-Est, Marne-la-Vallée, France  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25347882$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqN0c1rFDEYBvAgFfuhd0GQAS9eZs3Hm2RyXIsfC1WLbs8hk3lHp8xMtklG6H9vlt166EE8JYTf85LkOScnc5iRkJeMrhij5t12c73ilMGKCwUM2BNyxgywmlLgJ2VPpa41A3NKzlO6pUVKpp6RUy4F6KbhZ-RmXX0N8xi8G6sfOS4-LxGrLc4pxPq9S9hV690uBud_VX2I1ZdlzIMP065cZM7VZnI_sfqOPvzGeF9dx9COOKXn5GnvxoQvjusFufn4YXv5ub769mlzub6qPYDKNfONkR11Qvqu4UD3p23rGccWEEEphI5jrzQa3QuPHjove6Y9d1II34kL8vYwt9zwbsGU7TQkj-PoZgxLskxJDoIaJv6HMqBaaSj0zSN6G5Y4l4cUxZXWwkhT1OujWtoJO7uLw-TivX342wLUAfgYUorYWz9kl4cw5-iG0TJq9yXaUqLdl2iPJZYgfRR8mP2PyKtDZEDEv1wZQXUD4g80ZqXI | 
    
| CODEN | IIPRE4 | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6420_ab2ae9 crossref_primary_10_1109_TSP_2021_3056598 crossref_primary_10_1007_s10851_022_01122_x crossref_primary_10_1007_s10851_018_0867_0 crossref_primary_10_1109_TII_2020_2980577 crossref_primary_10_1109_TIP_2015_2459653 crossref_primary_10_1016_j_jat_2021_105606 crossref_primary_10_1109_TSP_2015_2472365 crossref_primary_10_1007_s11760_021_01884_8 crossref_primary_10_1109_LSP_2022_3153229 crossref_primary_10_1109_TCI_2016_2575740 crossref_primary_10_1007_s11042_019_07912_7 crossref_primary_10_1587_transinf_2016PCP0003 crossref_primary_10_1109_TIP_2016_2627812 crossref_primary_10_1117_1_JEI_26_3_033016 crossref_primary_10_1109_TCI_2018_2887136 crossref_primary_10_1109_TGRS_2018_2872888 crossref_primary_10_1137_18M118116X crossref_primary_10_1109_TGRS_2023_3323485 crossref_primary_10_1051_0004_6361_202039618 crossref_primary_10_1109_LSP_2018_2815003 crossref_primary_10_1049_iet_ipr_2016_1004 crossref_primary_10_1137_23M1582345 crossref_primary_10_1145_3341728 crossref_primary_10_1109_TCI_2015_2434616 crossref_primary_10_1137_14098154X crossref_primary_10_1109_TSP_2021_3069677 crossref_primary_10_1117_1_JEI_25_6_063023 crossref_primary_10_1109_TCI_2017_2700203 crossref_primary_10_1109_TGRS_2016_2517627 crossref_primary_10_3390_rs14040856 crossref_primary_10_1109_JSTSP_2021_3054506 crossref_primary_10_1109_TSIPN_2020_2970313 crossref_primary_10_1109_TSP_2014_2373318 crossref_primary_10_1088_1361_6420_aaccca crossref_primary_10_1016_j_media_2021_102341 crossref_primary_10_1364_BOE_10_001097  | 
    
| Cites_doi | 10.1016/S0262-8856(98)00102-4 10.1007/978-3-642-38267-3_11 10.24033/bsmf.1625 10.1109/ICASSP.2013.6637873 10.1088/0266-5611/29/2/025011 10.1109/ICASSP.2012.6288484 10.1137/08072975X 10.1007/s11760-014-0664-1 10.1109/TIP.2007.901238 10.1137/09076934X 10.1109/78.330356 10.1137/060669358 10.1109/83.661180 10.1109/TSP.2011.2173684 10.1109/TIP.2014.2329448 10.1016/0167-2789(92)90242-F 10.1109/MSP.2013.2279731 10.1137/070698592 10.1109/TIP.2011.2175741 10.1016/0734-189X(86)90223-9 10.1109/83.661181 10.1007/s10444-011-9254-8 10.1109/TIP.2010.2092433 10.1007/s11228-011-0191-y 10.1109/ICIP.2012.6467476 10.1109/TIT.2011.2158250 10.1007/BF02196592 10.1088/0266-5611/24/6/065014 10.1109/TIP.2012.2231687 10.1088/0266-5611/23/4/008 10.1109/JSTSP.2007.910281 10.1109/TSP.2008.921757 10.1007/978-1-4419-9569-8_10 10.1109/TIP.2005.857247 10.1109/TIP.2010.2076294 10.1109/TSP.2006.881199 10.1137/110823766 10.1137/10081602X 10.1007/s10851-009-0179-5 10.1137/080714488 10.1109/TIT.2008.920190 10.1007/BF01582566 10.1137/1.9780898718782 10.1109/TIP.2010.2047910 10.1007/s10851-009-0149-y 10.1109/TIP.2012.2216278 10.1109/TIP.2004.832922 10.1109/TIP.2012.2210725 10.1109/79.916318 10.1109/TGRS.2012.2227329 10.1007/s10851-010-0243-1 10.1109/TIP.2010.2072512 10.1109/TIP.2012.2183143 10.1109/TASSP.1984.1164297 10.1109/83.541429 10.1109/TGRS.2013.2245509 10.1016/j.sigpro.2012.01.020 10.1007/978-3-642-38267-3_5 10.1109/TIP.2014.2315156 10.1137/080716542 10.1007/978-3-642-02256-2_25 10.1137/1035134 10.1007/BF01581204 10.1109/ICASSP.2014.6854541 10.1093/comjnl/bxm055 10.1109/ICASSP.2013.6638043 10.1109/TGRS.2012.2237521 10.1088/0266-5611/29/3/035007 10.1109/TPAMI.2005.87 10.1109/JSTARS.2013.2266732 10.1016/j.jvcir.2009.10.006 10.1007/s10957-012-0245-9 10.1002/cpa.20042 10.1109/TGRS.2014.2307354 10.1109/LGRS.2010.2054062 10.3934/ipi.2008.2.455 10.1137/090769521 10.1186/1687-6180-2013-186 10.1137/040616024 10.1145/1970392.1970395 10.1137/070710779 10.1117/12.912217 10.1109/ICASSP.2012.6288628 10.1109/TSP.2009.2025797 10.1109/TIP.2011.2176954 10.1109/JSTSP.2007.910264 10.1109/MSP.2006.1628875 10.1137/070696143 10.1109/CVPR.2013.232 10.1109/JPROC.2009.2037655 10.1109/TGRS.2012.2185054 10.1109/TGRS.2007.894569 10.1007/978-3-540-74936-3_22 10.1007/s10851-010-0251-1 10.1109/TIP.2007.891788 10.1109/TIP.2013.2286328 10.1109/TMI.1982.4307555  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 | 
    
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8  | 
    
| DOI | 10.1109/TIP.2014.2364141 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1941-0042 | 
    
| EndPage | 5544 | 
    
| ExternalDocumentID | 3503478951 25347882 10_1109_TIP_2014_2364141 6930784  | 
    
| Genre | orig-research Journal Article  | 
    
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8  | 
    
| ID | FETCH-LOGICAL-c446t-1c895d0a35cd8240c446bbc12eb4ee466e4d2ef67e97f3cec4dc5f17c2a533cd3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1057-7149 1941-0042  | 
    
| IngestDate | Thu Oct 02 11:49:33 EDT 2025 Sat Sep 27 21:26:58 EDT 2025 Mon Jun 30 10:23:30 EDT 2025 Wed Feb 19 01:56:28 EST 2025 Wed Oct 01 02:44:42 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Aug 26 16:50:04 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Keywords | image restoration Convex optimization nonlocal total variation hyperspectral imagery multicomponent images singular value decomposition epigraph structure tensor  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c446t-1c895d0a35cd8240c446bbc12eb4ee466e4d2ef67e97f3cec4dc5f17c2a533cd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 25347882 | 
    
| PQID | 1626773959 | 
    
| PQPubID | 85429 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_1626773959 crossref_primary_10_1109_TIP_2014_2364141 proquest_miscellaneous_1651407674 proquest_miscellaneous_1652430913 crossref_citationtrail_10_1109_TIP_2014_2364141 ieee_primary_6930784 pubmed_primary_25347882  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-Dec. 2014-12-00 2014-Dec 20141201  | 
    
| PublicationDateYYYYMMDD | 2014-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-Dec.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on image processing | 
    
| PublicationTitleAbbrev | TIP | 
    
| PublicationTitleAlternate | IEEE Trans Image Process | 
    
| PublicationYear | 2014 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref57 komodakis (ref96) 2014 ref56 ref59 ref58 ref53 ref55 ref54 quattoni (ref74) 2009 tofighi (ref77) 2014 ref50 li (ref29) 2014; 52 ref46 ref45 ref48 ref47 ref42 ref44 ref43 studer (ref51) 2014 ref49 ref8 ref7 ref9 ref4 ref3 ref6 hiriart-urruty (ref52) 1996; 305 ref5 ref100 ref101 ref40 mallat (ref21) 1997 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref39 ref38 chaux (ref24) 2010 condat (ref110) 2014 moreau (ref97) 1965; 93 ref23 ref26 ref25 ref20 ref22 ref28 ref13 ref12 ref15 ref14 rockafellar (ref78) 2004 ref99 ref11 ref98 ref10 foi (ref71) 2012; 8291 ref17 ref16 ref19 ref18 pesquet (ref87) 2012; 8 aharon (ref27) 2006; 54 harizanov (ref76) 2013; 7893 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref85 ref88 duval (ref36) 2009; 5567 tschumperlé (ref41) 2001 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref106 ref107 ref75 ref104 ref102 ref103 ref2 ref1 combettes (ref86) 2011 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 peyré (ref105) 2011 ref62 ref61 condat (ref109) 2014; 21  | 
    
| References_xml | – ident: ref40 doi: 10.1016/S0262-8856(98)00102-4 – volume: 7893 start-page: 125 year: 2013 ident: ref76 article-title: Epigraphical projection for solving least squares Anscombe transformed constrained optimization problems publication-title: Proc Scale Space Variational Methods Comput Vis doi: 10.1007/978-3-642-38267-3_11 – volume: 93 start-page: 273 year: 1965 ident: ref97 article-title: Proximité et dualité dans un espace Hilbertien publication-title: Bull Soc Math France doi: 10.24033/bsmf.1625 – ident: ref9 doi: 10.1109/ICASSP.2013.6637873 – ident: ref95 doi: 10.1088/0266-5611/29/2/025011 – start-page: 857 year: 2009 ident: ref74 article-title: An efficient projection for $\ell _{1,\infty }$ regularization publication-title: Proc Int Conf Mach Learn – ident: ref3 doi: 10.1109/ICASSP.2012.6288484 – ident: ref2 doi: 10.1137/08072975X – ident: ref75 doi: 10.1007/s11760-014-0664-1 – ident: ref30 doi: 10.1109/TIP.2007.901238 – ident: ref89 doi: 10.1137/09076934X – ident: ref48 doi: 10.1109/78.330356 – ident: ref72 doi: 10.1137/060669358 – ident: ref33 doi: 10.1109/83.661180 – ident: ref104 doi: 10.1109/TSP.2011.2173684 – ident: ref19 doi: 10.1109/TIP.2014.2329448 – ident: ref12 doi: 10.1016/0167-2789(92)90242-F – ident: ref66 doi: 10.1109/MSP.2013.2279731 – year: 2014 ident: ref96 publication-title: Playing with duality An overview of recent primal-dual approaches for solving large-scale optimization problems – volume: 305 year: 1996 ident: ref52 article-title: Convex analysis and minimization algorithms, Part I: Fundamentals publication-title: Grundlehren der Mathematischen Wissenschaften – ident: ref18 doi: 10.1137/070698592 – ident: ref56 doi: 10.1109/TIP.2011.2175741 – ident: ref37 doi: 10.1016/0734-189X(86)90223-9 – ident: ref39 doi: 10.1109/83.661181 – ident: ref93 doi: 10.1007/s10444-011-9254-8 – ident: ref43 doi: 10.1109/TIP.2010.2092433 – ident: ref92 doi: 10.1007/s11228-011-0191-y – ident: ref108 doi: 10.1109/ICIP.2012.6467476 – ident: ref62 doi: 10.1109/TIT.2011.2158250 – ident: ref101 doi: 10.1007/BF02196592 – ident: ref102 doi: 10.1088/0266-5611/24/6/065014 – ident: ref53 doi: 10.1109/TIP.2012.2231687 – ident: ref80 doi: 10.1088/0266-5611/23/4/008 – ident: ref82 doi: 10.1109/JSTSP.2007.910281 – ident: ref23 doi: 10.1109/TSP.2008.921757 – start-page: 185 year: 2011 ident: ref86 article-title: Proximal splitting methods in signal processing publication-title: Fixed-Point Algorithms For Inverse Problems in Science and Engineering doi: 10.1007/978-1-4419-9569-8_10 – ident: ref22 doi: 10.1109/TIP.2005.857247 – year: 2014 ident: ref110 publication-title: Fast Projection onto the Simplex and the l1 Ball – ident: ref100 doi: 10.1109/TIP.2010.2076294 – volume: 54 start-page: 4311 year: 2006 ident: ref27 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.881199 – ident: ref44 doi: 10.1137/110823766 – ident: ref91 doi: 10.1137/10081602X – ident: ref85 doi: 10.1007/s10851-009-0179-5 – ident: ref73 doi: 10.1137/080714488 – ident: ref1 doi: 10.1109/TIT.2008.920190 – ident: ref88 doi: 10.1007/BF01582566 – ident: ref34 doi: 10.1137/1.9780898718782 – year: 2014 ident: ref51 article-title: Democratic representations – ident: ref103 doi: 10.1109/TIP.2010.2047910 – ident: ref69 doi: 10.1007/s10851-009-0149-y – ident: ref20 doi: 10.1109/TIP.2012.2216278 – ident: ref13 doi: 10.1109/TIP.2004.832922 – ident: ref31 doi: 10.1109/TIP.2012.2210725 – ident: ref54 doi: 10.1109/79.916318 – ident: ref5 doi: 10.1109/TGRS.2012.2227329 – ident: ref25 doi: 10.1007/s10851-010-0243-1 – ident: ref107 doi: 10.1109/TIP.2010.2072512 – volume: 8 start-page: 273 year: 2012 ident: ref87 article-title: A parallel inertial proximal optimization method publication-title: Pacific J Optim – ident: ref16 doi: 10.1109/TIP.2012.2183143 – ident: ref47 doi: 10.1109/TASSP.1984.1164297 – ident: ref38 doi: 10.1109/83.541429 – ident: ref6 doi: 10.1109/TGRS.2013.2245509 – ident: ref7 doi: 10.1016/j.sigpro.2012.01.020 – ident: ref45 doi: 10.1007/978-3-642-38267-3_5 – ident: ref17 doi: 10.1109/TIP.2014.2315156 – ident: ref83 doi: 10.1137/080716542 – volume: 5567 start-page: 295 year: 2009 ident: ref36 article-title: Projected gradient based color image decomposition publication-title: Scale Space and Variational Methods in Computer Vision doi: 10.1007/978-3-642-02256-2_25 – ident: ref67 doi: 10.1137/1035134 – start-page: 153 year: 2001 ident: ref41 article-title: Constrained and unconstrained PDE's for vector image restoration publication-title: Proc Scandin Conf Img Anal – ident: ref98 doi: 10.1007/BF01581204 – ident: ref15 doi: 10.1109/ICASSP.2014.6854541 – ident: ref4 doi: 10.1093/comjnl/bxm055 – ident: ref63 doi: 10.1109/ICASSP.2013.6638043 – volume: 21 start-page: 1054 year: 2014 ident: ref109 article-title: A generic proximal algorithm for convex optimization-Application to total variation minimization publication-title: IEEE Signal Process Lett – year: 1997 ident: ref21 publication-title: A Wavelet Tour of Signal Processing – year: 2014 ident: ref77 article-title: Signal reconstruction framework based on projections onto epigraph set of a convex cost function (PESC) – ident: ref11 doi: 10.1109/TGRS.2012.2237521 – ident: ref50 doi: 10.1088/0266-5611/29/3/035007 – ident: ref57 doi: 10.1109/TPAMI.2005.87 – ident: ref65 doi: 10.1109/JSTARS.2013.2266732 – ident: ref99 doi: 10.1016/j.jvcir.2009.10.006 – ident: ref94 doi: 10.1007/s10957-012-0245-9 – ident: ref79 doi: 10.1002/cpa.20042 – volume: 52 start-page: 7086 year: 2014 ident: ref29 article-title: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2014.2307354 – ident: ref59 doi: 10.1109/LGRS.2010.2054062 – ident: ref42 doi: 10.3934/ipi.2008.2.455 – ident: ref14 doi: 10.1137/090769521 – ident: ref60 doi: 10.1186/1687-6180-2013-186 – ident: ref70 doi: 10.1137/040616024 – ident: ref61 doi: 10.1145/1970392.1970395 – ident: ref84 doi: 10.1137/070710779 – volume: 8291 start-page: 829110 year: 2012 ident: ref71 article-title: Foveated self-similarity in nonlocal image filtering publication-title: Proc SPIE doi: 10.1117/12.912217 – ident: ref49 doi: 10.1109/ICASSP.2012.6288628 – ident: ref64 doi: 10.1109/TSP.2009.2025797 – ident: ref32 doi: 10.1109/TIP.2011.2176954 – ident: ref81 doi: 10.1109/JSTSP.2007.910264 – ident: ref55 doi: 10.1109/MSP.2006.1628875 – ident: ref106 doi: 10.1137/070696143 – ident: ref68 doi: 10.1109/CVPR.2013.232 – start-page: 303 year: 2011 ident: ref105 article-title: Group sparsity with overlapping partition functions publication-title: Proc Eur Signal Image Process Conf – ident: ref28 doi: 10.1109/JPROC.2009.2037655 – start-page: 203 year: 2010 ident: ref24 article-title: Wavelet transform for the denoising of multivariate images publication-title: Multivariate Image Processing – ident: ref10 doi: 10.1109/TGRS.2012.2185054 – ident: ref58 doi: 10.1109/TGRS.2007.894569 – ident: ref35 doi: 10.1007/978-3-540-74936-3_22 – year: 2004 ident: ref78 publication-title: Variational Analysis – ident: ref90 doi: 10.1007/s10851-010-0251-1 – ident: ref26 doi: 10.1109/TIP.2007.891788 – ident: ref8 doi: 10.1109/TIP.2013.2286328 – ident: ref46 doi: 10.1109/TMI.1982.4307555  | 
    
| SSID | ssj0014516 | 
    
| Score | 2.4073515 | 
    
| Snippet | Nonlocal total variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 5531 | 
    
| SubjectTerms | Algorithms Convex analysis Convex functions Convex optimization Degradation epigraph hyperspectral imagery Hyperspectral imaging image restoration Imaging multicomponent images Noise nonlocal total variation Optimization Recovery Regularization singular value decomposition structure tensor Tensile stress Tensors Variational methods  | 
    
| Title | A Nonlocal Structure Tensor-Based Approach for Multicomponent Image Recovery Problems | 
    
| URI | https://ieeexplore.ieee.org/document/6930784 https://www.ncbi.nlm.nih.gov/pubmed/25347882 https://www.proquest.com/docview/1626773959 https://www.proquest.com/docview/1651407674 https://www.proquest.com/docview/1652430913  | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQCrQlfFRG6gWJ7G4Sx4mP26oIkEBI3ZW4RWt7cikkFbt7aH99ZxwnKqhFvUWJo3E0M_abzPgNwKcCU-2ynIzXuDKWtcpjrYyJ9cIoUyplkpJPI1_fqIu5vLrL7zbgbDgLg4i--AxHfOlz-a61a_5VNua2fUUpN2GzKFV3VmvIGHDDWZ_ZJLkFwf4-JTnR49nlLddwyRGTpSeSm8Okeca88emT3ci3V_k30vQ7zvk2XPdz7QpNvo_WKzOyv57ROP7vx7yFNwF6imlnKzuwgc0ubAcYKoKTL3fh9R8chXswn4qbtvFbnvjmyWbXjyhmFP22j_Fn2gOdmAZeckEAWPgTvVyo3jYkX1w-0IIlOMgln_kpbrv-Nct3MD__OvtyEYdeDLGlgHEVJ7bUuZssMiYTIBTAd42xSYpGIkqlULoUa1WgLurMopXO5nVS2HRBgNK67D1sNSR4H0RWWmYtQ44kJZPrJIlGV9PqkOVlXdsIxr1OKhuIyrlfxn3lA5aJrkihFSu0CgqN4HR440dH0vHC2D3WxTAuqCGCo17tVfDiZZVQtFdwJlNHcDI8Jv_jpMqiwXbNYwhyTpgS6cUxqcyYgTWCD51JDfJ7Szz4-7wO4RXPviugOYIt0jMeEwxamY_e_n8DPGoAhw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB0tywE4sLDLR2ABI3FBIm2T2E58LIhVC9tqJVppb1HtTC5AgrbtAX49M44TAYIVtyhxNLFmxn6TGb8BeJVjaqpMkfHaqohlrVVstLWx2VhtC61tUvBp5MVSz9byw6W6PIA3w1kYRPTFZzjiS5_Lr1q3519lY27blxfyBtxUUkrVndYacgbcctbnNklyTsC_T0pOzHg1v-AqLjliuvREcnuYVGXMHJ_-th_5Biv_xpp-zzk7gkX_tV2pyefRfmdH7scfRI7_O517cDeATzHtrOU-HGBzDEcBiIrg5ttjuPMLS-EJrKdi2TZ-0xOfPN3s_grFiuLf9ip-S7tgJaaBmVwQBBb-TC-XqrcNyRfzr7RkCQ5zyWu-i4uug832AazP3q_ezeLQjSF2FDLu4sQVRlWTTcZ0AoQD-K61LknRSkSpNcoqxVrnaPI6c-hk5VSd5C7dEKR0VfYQDhsS_BhEVjjmLUOOJSXT6ySJwaqm9SFTRV27CMa9TkoXqMq5Y8aX0ocsE1OSQktWaBkUGsHr4Y1vHU3HNWNPWBfDuKCGCE57tZfBj7dlQvFezrlME8HL4TF5IKdVNg22ex5DoHPCpEjXjkllxhysETzqTGqQ31vik79_1wu4NVstzsvz-fLjU7jNM-nKaU7hkHSOzwgU7exz7ws_Ac3MA9Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nonlocal+Structure+Tensor-Based+Approach+for+Multicomponent+Image+Recovery+Problems&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Chierchia%2C+Giovanni&rft.au=Pustelnik%2C+Nelly&rft.au=Pesquet-Popescu%2C+Beatrice&rft.au=Pesquet%2C+Jean-Christophe&rft.date=2014-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=23&rft.issue=12&rft.spage=5531&rft_id=info:doi/10.1109%2FTIP.2014.2364141&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3503478951 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |