Light-Cured Junction Formation and Broad-Band Imaging Application in Thermally Mismatched van der Waals Heterointerface

Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multipl...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 16; p. 3988
Main Authors Cheng, Liyuan, Quan, Qinglin, Hu, Liang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.08.2024
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma17163988

Cover

Abstract Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS3 (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC–PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 1010 Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor.
AbstractList Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS3 (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC–PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 1010 Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor.
Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC-PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 10 Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor.
Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS[sub.3] (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC–PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 10[sup.10] Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor.
Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS3 (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC-PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 1010 Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor.Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap, residual strains, and defect species. The realization of interface fusion and repair holds significant implications for the modulation of multiple photoelectric conversion processes. In this work, we propose a thermally mismatched strategy to trigger broad-band and high-speed photodetection performance based on a type-I heterostructure composed of black phosphorus (BP) and FePS3 (FPS) nanoflakes. The BP acts as photothermal source to promote interface fusion when large optical power is adopted. The regulation of optical power enables the device from pyroelectric (PE) and/or alternating current photovoltaic (AC-PV) mode to a mixed photovoltaic (PV)/photothermoelectric (PTE)/PE mode. The fused heterostructure device presents an extended detection range (405~980 nm) for the FPS. The maximum responsivity and detectivity are 329.86 mA/W and 6.95 × 1010 Jones, respectively, and the corresponding external quantum efficiency (EQE) approaches ~100%. Thanks to these thermally-related photoelectric conversion mechanism, the response and decay time constants of device are as fast as 290 μs and 265 μs, respectively, superior to current all FPS-based photodetectors. The robust environmental durability also renders itself as a high-speed and broad-band imaging sensor.
Audience Academic
Author Cheng, Liyuan
Hu, Liang
Quan, Qinglin
AuthorAffiliation Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; liyuancheng115@163.com (L.C.); quanqinglin2022@163.com (Q.Q.)
AuthorAffiliation_xml – name: Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; liyuancheng115@163.com (L.C.); quanqinglin2022@163.com (Q.Q.)
Author_xml – sequence: 1
  givenname: Liyuan
  surname: Cheng
  fullname: Cheng, Liyuan
– sequence: 2
  givenname: Qinglin
  surname: Quan
  fullname: Quan, Qinglin
– sequence: 3
  givenname: Liang
  orcidid: 0000-0001-7042-2717
  surname: Hu
  fullname: Hu, Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39203166$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu3CAUhlGVqknTbPoAlaVuqlZOuNhgVtVk1DSpJuomUZboDMYeIhscbCeaty-Oc2tUFSQ4gu8_B354j3acdwahjwQfMibxUQtEEM5kUbxBe0RKnhKZZTsv4l100PfXODbGSEHlO7TLJMWMcL6H7la23gzpcgymTH6NTg_Wu-TEhxbuI3Blchw8lOnxFJ61UFtXJ4uua6yeEeuSi42JgqbZJue2j0q9idluwSWlCckVQNMnp2YwwVsXxwq0-YDeVnHZHDzM--jy5MfF8jRd_f55tlysUp1lfEgJXlcUF9Ua1rqsCDBaCM1ZQaTQkgiaMZqXOjOMVsB5mdNCMkMZBaEh5zlm--jbnHd0HWzv4hlVF2wLYasIVpOD6tnBSH-f6W5ct6bUxg0BnhUerPp7x9mNqv2tIoTlnLKp3peHDMHfjKYfVGt7bZoGnPFjrxiWUkhGsqnY51fotR-Di25MVEGYEFxG6nCmamiMsq7ysbCOvTSt1fEvVDauLwossgwLLKLg08s7PB3-8c0jgGdAB9_3wVRK2-H-KWNm2_zbl6-vJP8x8Q-GHMxd
CitedBy_id crossref_primary_10_1063_5_0241920
Cites_doi 10.1038/srep07938
10.1021/acs.nanolett.2c01370
10.3866/PKU.WHXB202108017
10.1126/science.aaz9146
10.1002/adma.202008761
10.1126/science.1211384
10.1021/nl303321g
10.1021/acs.nanolett.9b05165
10.1038/s41565-017-0008-8
10.1016/j.apsusc.2020.147738
10.1039/C8NR09060B
10.1021/acscatal.6b02203
10.1038/nnano.2014.182
10.1002/adfm.202306668
10.1038/s41467-023-38131-2
10.1038/s41467-018-07860-0
10.1021/ic50197a018
10.1002/adma.201907249
10.1002/aelm.202100207
10.1038/s41377-020-00364-x
10.1002/aenm.202201449
10.1002/smll.201905924
10.1021/acsami.1c24308
10.1038/s41467-021-25164-8
10.1038/nnano.2011.243
10.1021/acsnano.9b09839
10.1103/PhysRevB.90.081408
10.1038/nnano.2015.54
10.1002/adom.202001551
10.1063/5.0083272
10.1038/s41699-021-00199-z
10.1002/adom.201800440
10.1002/advs.201902699
10.1002/advs.201600062
10.1038/s41467-023-37918-7
10.1002/aelm.202200650
10.1038/s41467-018-08284-6
10.1021/acs.nanolett.6b01977
10.1016/j.mtcomm.2023.105959
10.1021/acscatal.7b02134
10.1002/adma.201902044
10.1002/adfm.202204230
10.1021/acs.jpcc.1c01938
10.1021/acs.nanolett.6b03078
10.1002/adma.201705893
10.1021/jacs.0c04101
10.1038/s41586-019-1013-x
10.1021/acsnano.2c11654
10.1002/adma.201801232
10.1021/acs.nanolett.6b03052
10.1021/acscatal.7b02575
10.1088/1361-6528/aab9d2
10.1002/aelm.202200392
10.1002/adfm.201803807
10.1002/adfm.201800548
10.1002/adfm.202104787
10.1002/adfm.201701342
10.1038/s41467-018-05343-w
10.1038/s41565-023-01579-w
10.1039/D1MH00009H
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ma17163988
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID 10.3390/ma17163988
PMC11356230
A807440707
39203166
10_3390_ma17163988
Genre Journal Article
GeographicLocations China
United States--US
Japan
GeographicLocations_xml – name: China
– name: United States--US
– name: Japan
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62274050
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ21E020002
– fundername: Open Project of State Key Laboratory of Silicon and Advanced Semiconductor Materials
  grantid: SKL2020-03
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c446t-10bf208fbabcdf1a3287c638197c91724325dc4e32fa66d52893e232a7ca56503
IEDL.DBID UNPAY
ISSN 1996-1944
IngestDate Sun Oct 26 04:15:52 EDT 2025
Tue Sep 30 17:09:17 EDT 2025
Fri Sep 05 11:13:45 EDT 2025
Fri Jul 25 11:39:35 EDT 2025
Mon Oct 20 16:58:55 EDT 2025
Wed Feb 19 02:04:39 EST 2025
Thu Oct 16 04:31:53 EDT 2025
Thu Apr 24 23:14:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords broad-band imaging
van der Waals heterostructure
black phosphorus
thermal mismatch
interface
transition metal chalcogenophosphates
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-10bf208fbabcdf1a3287c638197c91724325dc4e32fa66d52893e232a7ca56503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7042-2717
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/ma17163988
PMID 39203166
PQID 3098137769
PQPubID 2032366
ParticipantIDs unpaywall_primary_10_3390_ma17163988
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356230
proquest_miscellaneous_3099793148
proquest_journals_3098137769
gale_infotracacademiconefile_A807440707
pubmed_primary_39203166
crossref_citationtrail_10_3390_ma17163988
crossref_primary_10_3390_ma17163988
PublicationCentury 2000
PublicationDate 20240811
PublicationDateYYYYMMDD 2024-08-11
PublicationDate_xml – month: 8
  year: 2024
  text: 20240811
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_2) 2019; 567
Dai (ref_7) 2020; 9
Duan (ref_45) 2022; 14
Brec (ref_41) 1979; 10
Shifa (ref_38) 2018; 28
Sun (ref_10) 2012; 7
Bai (ref_32) 2020; 142
Kargar (ref_30) 2020; 14
Long (ref_1) 2018; 29
Konkena (ref_36) 2017; 7
Dai (ref_52) 2018; 30
Huang (ref_4) 2023; 14
Cen (ref_53) 2023; 33
Akamatsu (ref_3) 2021; 372
Liu (ref_5) 2024; 19
Hu (ref_51) 2018; 6
Xu (ref_26) 2021; 7
Tielrooij (ref_12) 2017; 13
You (ref_49) 2018; 9
Lu (ref_18) 2019; 10
Duan (ref_48) 2021; 125
Song (ref_37) 2017; 7
Xia (ref_40) 2022; 12
Budniak (ref_23) 2020; 16
Long (ref_24) 2022; 32
Buscema (ref_59) 2013; 13
Guo (ref_20) 2016; 16
Shi (ref_46) 2022; 120
Gao (ref_47) 2023; 35
Chu (ref_25) 2017; 27
Singh (ref_57) 2021; 536
Albarakati (ref_27) 2022; 22
Hu (ref_50) 2018; 30
Sofer (ref_39) 2017; 7
Zhu (ref_21) 2023; 14
Guo (ref_14) 2020; 7
Gao (ref_44) 2018; 29
Cai (ref_15) 2013; 9
Yan (ref_22) 2021; 33
Lee (ref_29) 2016; 16
Low (ref_8) 2014; 90
Naranjo (ref_28) 2023; 17
Hu (ref_58) 2021; 8
Singh (ref_56) 2022; 8
Lee (ref_42) 2022; 9
Zou (ref_55) 2020; 32
Lu (ref_60) 2019; 31
Kim (ref_34) 2019; 10
Belvin (ref_31) 2021; 12
Tielrooij (ref_11) 2015; 10
Long (ref_33) 2020; 20
Chang (ref_6) 2021; 37
Ramos (ref_43) 2021; 5
Gabor (ref_17) 2011; 334
Viti (ref_19) 2019; 11
Li (ref_13) 2021; 31
ref_9
Zhang (ref_35) 2016; 3
Jung (ref_16) 2016; 16
Guo (ref_54) 2021; 9
References_xml – ident: ref_9
  doi: 10.1038/srep07938
– volume: 22
  start-page: 6166
  year: 2022
  ident: ref_27
  article-title: Electric Control of Exchange Bias Effect in FePS3-Fe5GeTe2 van der Waals Heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01370
– volume: 37
  start-page: 2108017
  year: 2021
  ident: ref_6
  article-title: Recent Progress on Two-Dimensional Materials
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB202108017
– volume: 372
  start-page: 68
  year: 2021
  ident: ref_3
  article-title: A Van der Waals Interface That Creates In-Plane Polarization and A Spontaneous Photovoltaic Effect
  publication-title: Science
  doi: 10.1126/science.aaz9146
– volume: 33
  start-page: 2008761
  year: 2021
  ident: ref_22
  article-title: Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 eV in a 2D Semiconductor: Gallium Thiophosphate
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008761
– volume: 334
  start-page: 648
  year: 2011
  ident: ref_17
  article-title: Hot Carrier-Assisted Intrinsic Photoresponse in Graphene
  publication-title: Science
  doi: 10.1126/science.1211384
– volume: 13
  start-page: 358
  year: 2013
  ident: ref_59
  article-title: Large and Tunable Photothermoelectric Effect in Single-Layer MoS2
  publication-title: Nano Lett.
  doi: 10.1021/nl303321g
– volume: 20
  start-page: 2452
  year: 2020
  ident: ref_33
  article-title: Persistence of Magnetism in Atomically Thin MnPS3 crystals
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b05165
– volume: 13
  start-page: 41
  year: 2017
  ident: ref_12
  article-title: Out-of-Plane Heat Transfer in Van der Waals Stacks through Electron–Hyperbolic Phonon Coupling
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0008-8
– volume: 536
  start-page: 147738
  year: 2021
  ident: ref_57
  article-title: Highly Transparent Solid-State Artificial Synapse Based on Oxide Memristor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147738
– volume: 11
  start-page: 1995
  year: 2019
  ident: ref_19
  article-title: Thermoelectric Terahertz Photodetectors Based on Selenium-Doped Black Phosphorus Flakes
  publication-title: Nanoscale
  doi: 10.1039/C8NR09060B
– volume: 7
  start-page: 229
  year: 2017
  ident: ref_36
  article-title: Metallic NiPS3@NiOOH Core–Shell Heterostructures as Highly Efficient and Stable Electrocatalyst for the Oxygen Evolution Reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02203
– volume: 9
  start-page: 814
  year: 2013
  ident: ref_15
  article-title: Sensitive Room-Temperature Terahertz Detection via the Photothermoelectric Effect in Graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.182
– volume: 33
  start-page: 2306668
  year: 2023
  ident: ref_53
  article-title: Photoinduced Contact Evolution and Junction Rearrangement in Two-Dimensional van der Waals Heterostructure
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306668
– volume: 14
  start-page: 2521
  year: 2023
  ident: ref_21
  article-title: Two-Dimensional Semiconducting SnP2Se6 with Giant Second-Harmonic-Generation for Monolithic on-Chip Electronic-Photonic Integration
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38131-2
– volume: 10
  start-page: 138
  year: 2019
  ident: ref_18
  article-title: Phonon-Enhanced Photothermoelectric Effect in SrTiO3 Ultra-Broadband Photodetector
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07860-0
– volume: 10
  start-page: 1814
  year: 1979
  ident: ref_41
  article-title: Physical Properties of Lithium Intercalation Compounds of the Layered Transition-Metal Chalcogenophosphites
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50197a018
– volume: 32
  start-page: 1907249
  year: 2020
  ident: ref_55
  article-title: Alternating Current Photovoltaic Effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907249
– volume: 7
  start-page: 2100207
  year: 2021
  ident: ref_26
  article-title: Ternary 2D Layered Material FePSe3 and Near-Infrared Photodetector
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202100207
– volume: 9
  start-page: 120
  year: 2020
  ident: ref_7
  article-title: Giant Photothermoelectric Effect in Silicon Nanoribbon Photodetectors
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-00364-x
– volume: 12
  start-page: 2201449
  year: 2022
  ident: ref_40
  article-title: TiO2/FePS3 S-Scheme Heterojunction for Greatly Raised Photocatalytic Hydrogen Evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201449
– volume: 16
  start-page: 1905924
  year: 2020
  ident: ref_23
  article-title: Exfoliated CrPS4 with Promising Photoconductivity
  publication-title: Small
  doi: 10.1002/smll.201905924
– volume: 14
  start-page: 11927
  year: 2022
  ident: ref_45
  article-title: Self-Driven Broadband Photodetectors Based on MoSe2/FePS3 Van der Waals n-p Type-II Heterostructures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c24308
– volume: 12
  start-page: 4837
  year: 2021
  ident: ref_31
  article-title: Exciton-Driven Antiferromagnetic Metal in a Correlated Van der Waals Insulator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25164-8
– volume: 7
  start-page: 114
  year: 2012
  ident: ref_10
  article-title: Ultrafast Hot-Carrier-Dominated Photocurrent in Graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.243
– volume: 14
  start-page: 2424
  year: 2020
  ident: ref_30
  article-title: Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09839
– volume: 90
  start-page: 081408
  year: 2014
  ident: ref_8
  article-title: Origin of Photoresponse in Black Phosphorus Phototransistors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.081408
– volume: 10
  start-page: 437
  year: 2015
  ident: ref_11
  article-title: Generation of Photovoltage in Graphene on a Femtosecond Timescale Through Efficient Carrier Heating
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.54
– volume: 9
  start-page: 2001551
  year: 2021
  ident: ref_54
  article-title: 2D Allotrope of Carbon for Self-Powered, Flexible, and Transparent Optoelectronics
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202001551
– volume: 120
  start-page: 081101
  year: 2022
  ident: ref_46
  article-title: Broadband and High-Performance SnS2/FePS3/Graphene Van der Waals Heterojunction Photodetector
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0083272
– volume: 5
  start-page: 19
  year: 2021
  ident: ref_43
  article-title: Ultra-Broad Spectral Photo-Response in FePS3 Air-Stable Devices
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-021-00199-z
– volume: 6
  start-page: 1800440
  year: 2018
  ident: ref_51
  article-title: Charge Transfer Doping Modulated Raman Scattering and Enhanced Stability of Black Phosphorus Quantum Dots on a ZnO Nanorod
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800440
– volume: 7
  start-page: 1902699
  year: 2020
  ident: ref_14
  article-title: Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902699
– volume: 3
  start-page: 1600062
  year: 2016
  ident: ref_35
  article-title: MnPSe3 Monolayer: A Promising 2D Visible-Light Photohydrolytic Catalyst with High Carrier Mobility
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600062
– volume: 14
  start-page: 2190
  year: 2023
  ident: ref_4
  article-title: Manipulating Exchange Bias in 2D Magnetic Heterojunction for High-Performance Robust Memory Applications
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37918-7
– volume: 9
  start-page: 2200650
  year: 2022
  ident: ref_42
  article-title: Giant Magnetic Anisotropy in the Atomically Thin van der Waals Antiferromagnet FePS3
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202200650
– volume: 10
  start-page: 345
  year: 2019
  ident: ref_34
  article-title: Suppression of Magnetic Ordering in XXZ-type Antiferromagnetic Monolayer NiPS3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08284-6
– volume: 16
  start-page: 4648
  year: 2016
  ident: ref_20
  article-title: Black Phosphorus Mid-Infrared Photodetectors with High Gain
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01977
– volume: 35
  start-page: 105959
  year: 2023
  ident: ref_47
  article-title: Enhanced Optoelectronic Performances of FePS3/ReS2 Van der Waals Heterostructures with Type-II Band Alignment
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.105959
– volume: 7
  start-page: 8159
  year: 2017
  ident: ref_39
  article-title: The Role of the Metal Element in Layered Metal Phosphorus Triselenides upon Their Electrochemical Sensing and Energy Applications
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02134
– volume: 31
  start-page: 1902044
  year: 2019
  ident: ref_60
  article-title: Progress of Photodetectors Based on the Photothermoelectric Effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902044
– volume: 32
  start-page: 2204230
  year: 2022
  ident: ref_24
  article-title: Ultrasensitive Solar-Blind Ultraviolet Photodetector Based on FePSe3/MoS2 Heterostructure Response to 10.6 µm
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204230
– volume: 125
  start-page: 9526
  year: 2021
  ident: ref_48
  article-title: FePS3 Nanosheet-Based Photoelectrochemical-Type Photodetector with Superior Flexibility
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c01938
– volume: 16
  start-page: 6988
  year: 2016
  ident: ref_16
  article-title: Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p-n Junction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03078
– volume: 30
  start-page: 1705893
  year: 2018
  ident: ref_52
  article-title: Self-Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on Pyro-phototronic Effect: An Approach for Photosensing below Bandgap Energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705893
– volume: 142
  start-page: 10849
  year: 2020
  ident: ref_32
  article-title: Parasitic Ferromagnetism in Few-Layered Transition-Metal Chalcogenophosphate
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04101
– volume: 567
  start-page: 323
  year: 2019
  ident: ref_2
  article-title: Van der Waals Integration Before and Beyond Two-Dimensional Materials
  publication-title: Nature
  doi: 10.1038/s41586-019-1013-x
– volume: 17
  start-page: 3007
  year: 2023
  ident: ref_28
  article-title: Direct Magnetic Evidence, Functionalization, and Low-Temperature Magneto-Electron Transport in Liquid-Phase Exfoliated FePS3
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11654
– volume: 30
  start-page: 1801232
  year: 2018
  ident: ref_50
  article-title: Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801232
– volume: 16
  start-page: 7433
  year: 2016
  ident: ref_29
  article-title: Ising-Type Magnetic Ordering in Atomically Thin FePS3
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03052
– volume: 7
  start-page: 8549
  year: 2017
  ident: ref_37
  article-title: Tuning Mixed Nickel Iron Phosphosulfide Nanosheet Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02575
– volume: 29
  start-page: 244001
  year: 2018
  ident: ref_44
  article-title: Bias-Switchable Negative and Positive Photoconductivity in 2D FePS3 Ultraviolet Photodetectors
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aab9d2
– volume: 8
  start-page: 2200392
  year: 2022
  ident: ref_56
  article-title: Self-Powered and High-Performance Alternating Current Photodetectors to enhance Broadband Photodetection
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202200392
– volume: 29
  start-page: 1803807
  year: 2018
  ident: ref_1
  article-title: Progress, Challenges, and Opportunities for 2D Material Based Photodetectors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803807
– volume: 28
  start-page: 1800548
  year: 2018
  ident: ref_38
  article-title: High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and their Photocatalytic Activity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800548
– volume: 31
  start-page: 2104787
  year: 2021
  ident: ref_13
  article-title: Fast Photothermoelectric Response in CVD-Grown PdSe2 Photodetectors with In-Plane Anisotropy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104787
– volume: 27
  start-page: 1701342
  year: 2017
  ident: ref_25
  article-title: High-Performance Ultraviolet Photodetector Based on a Few-Layered 2D NiPS3 Nanosheet
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701342
– volume: 9
  start-page: 2889
  year: 2018
  ident: ref_49
  article-title: Room-Temperature Pyro-Catalytic Hydrogen Generation of 2D Few-Layer Black Phosphorene under Cold-Hot Alternation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05343-w
– volume: 19
  start-page: 448
  year: 2024
  ident: ref_5
  article-title: Controllable Van der Waals Gaps by Water Adsorption
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01579-w
– volume: 8
  start-page: 1286
  year: 2021
  ident: ref_58
  article-title: Two-Dimensional Magneto-Photoconductivity in Non-Van der Waals Manganese Selenide
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH00009H
SSID ssj0000331829
Score 2.3936684
Snippet Van der Waals (vdW) heterostructures are mainly fabricated by a classic dry transfer procedure, but the interface quality is often subject to the vdW gap,...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3988
SubjectTerms Alternating current
Electrodes
Engineering
Graphite
Heterostructures
High speed
Imaging systems
Interfaces
Photoelectricity
Photothermal conversion
Photovoltaic cells
Quantum efficiency
Sensors
Single crystals
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS9xAFD7Y9aHtQ7G1takXpiiUPgSTmSSbPIis4rIVXaRU6ls4mZnQhZjdrruI_95zskl2FfEtMDNhknP95vIdgANJWbI0YeJKNOiSJZIfjAmsxMxUYsKYIiAv6F8Oo8F1cH4T3qzBsLkLw8cqG59YOWoz1rxGfqi8JGZ2vCg5nvx3uWoU7642JTSwLq1gjiqKsTewLpkZqwPrJ2fDq9_tqounSIdlsuApVYT3D2-RCWNUUpVeWUam5_55JUA9Pzz5dl5O8OEei2IlMvU34EOdUoreQgc-wpotP8H7FaLBTbi_qPhCTudTa8Q5hTIWh-g3FxcFlkYQIEfjnvDjr9uqdpHoLXe3xagUpFI0oCgexOXojkaSvI2gTFwYOxV_kRRZDPh0zZg5KKY5avsZrvtnf04Hbl1ywdWEC2fklLNcenGeYaZN7qMiQKUjRnVdTcBOBkqGRgdWyRyjyIQE15SlpAy7Gik19NQX6JTj0n4FESdBaFWEYW4zGuAjE81kvkWJiae7mQM_m9-d6pqPnMtiFCnhEhZNuhSNA_tt38mChePFXj9YaimbJr1JY33DgObDJFdpj4l_AuY3cmCnEWxa2-xdutQwB763zWRtvIWCpR3Pqz4JeTTCkA5sLfSgnRBlmuQho8iB-ImGtB2YyftpSzn6VzF6-77iPNRz4KBVplc-9Nvr09-Gd5JSL1759v0d6Mymc7tLqdMs26vt4REZsxkw
  priority: 102
  providerName: ProQuest
Title Light-Cured Junction Formation and Broad-Band Imaging Application in Thermally Mismatched van der Waals Heterointerface
URI https://www.ncbi.nlm.nih.gov/pubmed/39203166
https://www.proquest.com/docview/3098137769
https://www.proquest.com/docview/3099793148
https://pubmed.ncbi.nlm.nih.gov/PMC11356230
https://doi.org/10.3390/ma17163988
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Free
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a2gfYA_dLYFQGJiEeMpI4SZ3HrlpXJlZNiIryFDm2I6pl6dQ1msav55zc1lZo4q1RjisnPpfvi-3PAAceomRPB5HtSS1tjETMgwLJiiClEh0IrID0Qf9sEo6n_uksmO3Ah2YvzNr8PUc6_uVSkp4Lj4TYhW4YIN7uQHc6OR_8KqeLo9BGFu5XuqNbDTYqzXa-XSs424shHxT5lby9kVm2VmlGj2HY9LFaYHJxWKySQ_VnS77x_od4Ao9qoMkGlWc8hR2TP4O9NfnB53DzrVQRGRZLo9kpFjgaJDZqtjMymWuGNF1q-4h-fr0sTzRig7s5bzbPGToaNsiyW3Y2v8aW6AWaIT5n2izZT4nuzca05mZByhTLVCrzAqaj4x_DsV0fxGArZIsrTNVJ6jkiTWSidOpKjjRLhcT1-grpnudzL9DKN9xLZRjqAEkcNwjVZF9JBIwOfwmdfJGb18BE5AeGhzJITYINXEnyM4lrpCcjR_UTCz43gxarWqWcDsvIYmQr9DLju5dpwcfW9qrS5vin1Sca-5gCFv9JyXrfAfaHpK_iAckB-aR6ZMF-4x5xHcnXMXciQaqMYWTB-_Y2xiBNrMjcLIrSJsI8h8zSgleVN7UdQvyJeTMMLRAbftYakL735p18_rvU-XZdTujUseCgdcl7HvTN_5m9hYceAjP6Lu66-9BZLQvzDoHVKunBrhid9KB7dDw5_45XJzO3V0fbX2zBIiA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLwxFFhEEeJg1d61HftQoaQ0StokQqgVvbnr3bUaKbVDHory5_htzDi2k1aot94sedda7zy_fXwDcMAxS-baj2wutbTREtEPhghWQmIq0X6IEZAW9PuDoHPhnV76l1vwt7oLQ8cqK59YOGqdK1ojPxROFBI7XhB9H_-xqWoU7a5WJTRkWVpBHxUUY-XFjjOzXCCEmx51f6C8v3DePjk_7thllQFbIRSaoR9KUu6EaSITpVNXCsQQKiAg01CIZbgnuK-VZwRPZRBoHxGKMJiHyIaSmA05Ar_7CHY84UUI_nZaJ4Ofv-pVHkegzfBoxYsqROQc3kgiqBFRUeplHQnvxoONgHj3sObuPBvL5UKORhuRsP0UnpQpLGuudO4ZbJnsOextEBu-gEWv4Cc5nk-MZqcYOkn8rF1dlGQy06w1yaW2W_TYvSlqJbHmejedDTOGKowdRqMl6w-n2BP1SzPM_Jk2E_ZbouGwDp3myYnzYpJKZV7CxYNM_ivYzvLMvAEWRp5vRCD91CTYwZVEbJO4RnIZOaqRWPCtmu5YlfznVIZjFCMOItHEa9FY8LluO16xfvy31VeSWkyuAL-kZHmjAcdDpFpxk4iGPOJTsmC_Emxc-ohpvNZoCz7Vr9G6actGZiafF20i9KCIWS14vdKDekCY2aJHDgILwlsaUjcg5vDbb7LhdcEg7rqC8l7HgoName750bf3D_8j7HbO-7241x2cvYPHHNM-WnV33X3Ynk3m5j2mbbPkQ2kbDK4e2hz_AWZmVRo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qRWI5IHYMBQZRhDhYsWdixz4gFFpC0k0cqNqbeZ4Zi0iuE7Ioyl_j1_GeYztphXrrzZJnrPG89ZvlewC7krJkaYLYlWjQJUskPxgRWImYqcQEEUVAXtA_Pgn7p-2D8-B8C_7Wd2H4WGXtE0tHbUaa18hbyosjZscL41ZWHYv4sd_7Mv7jcgUp3mmty2msVOTQLhcE36afB_sk6w9S9r793Ou7VYUBVxMMmpEPSjPpRVmKqTaZj4rwgw4ZxHQ04RjZVjIwum2VzDAMTUDoRFnKQbCjkTIhT9F3b8HtDrO48y313vdmfcdTZC0yXjGiKhV7rQtkahoVl0Ve1jHwaiTYCIVXj2nenRdjXC4wzzdiYO8hPKiSV9Fdadsj2LLFY7i_QWn4BBZHJTPJ3nxijTigoMmCF736iqTAwgiC_mjcr_w4uCirJInueh9dDAtByksd8nwpjodT6kmaZQTl_MLYiThDMhnR53M8I2a7mGSo7VM4vZGpfwbbxaiwL0BEcTuwKsQgsyl18JEpbVLfosTY053UgU_1dCe6Yj7nAhx5QgiIRZOsRePA-6bteMX38d9WH1lqCTsB-pLG6i4DjYfptJIuUwy1mUnJgZ1asEnlHabJWpcdeNe8JrvmzRos7GhetonJdxJadeD5Sg-aAVFOS744DB2ILmlI04A5wy-_KYa_S-5w31ec8XoO7DbKdM2Pvrx--G_hDhlhcjQ4OXwF9yTle7zc7vs7sD2bzO1rytdm6ZvSMAT8umlL_AcZe1K0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98KYYClqgEuLgYnvtjX0MEVGoaMWBiHKyxrtrEeE6VRqrKr-eGb-aRKjiZsmz1to7j-_z7n4LcBgQSg5MlLgBGnQpEikPxkRWYlYqMVFMFZB_6J-cquksPD6LznbgbbcXZm3-XhId_3iOrOcikzi-A7sqIrw9gN3Z6bfRz3q6OFEusfCw0R3darBRabbz7VrB2V4MebcqL_D6CotirdJMHsC462OzwOT3UbXKjvSfLfnG21_iIdxvgaYYNZ7xCHZs-Rj21uQHn8DV11pFZFwtrRHHVOB4kMSk284osDSCaDoa9xNffjmvTzQSo5s5bzEvBTkaNSiKa3Eyv6SW5AVGED4Xxi7FDyT3FlNec7NgZYpljto-hdnk8_fx1G0PYnA1scUVpeosD7w4zzDTJvdREs3SirneUBPdC0IZREaHVgY5KmUiInHSElTDoUYCjJ58BoNyUdrnIOIkjKxUGOU2owY-svxM5lsMMPH0MHPgQzdoqW5VyvmwjCIltsIfM735mA68620vGm2Of1q957FPOWDpSRrbfQfUH5a-SkcsBxSy6pEDB517pG0kX6bSS2JWZVSJA2_62xSDPLGCpV1UtU1CeY6YpQP7jTf1HSL8SXlTKQfiDT_rDVjfe_NOOf9V63z7vmR06jlw2LvkLS_64v_MXsK9gIAZ_xf3_QMYrJaVfUXAapW9biPrL-z3Hq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-Cured+Junction+Formation+and+Broad-Band+Imaging+Application+in+Thermally+Mismatched+van+der+Waals+Heterointerface&rft.jtitle=Materials&rft.au=Cheng%2C+Liyuan&rft.au=Quan%2C+Qinglin&rft.au=Hu%2C+Liang&rft.date=2024-08-11&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=17&rft.issue=16&rft.spage=3988&rft_id=info:doi/10.3390%2Fma17163988&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma17163988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon