Lesion quantification in oncological positron emission tomography: A maximum likelihood partial volume correction strategy

A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F 18 -FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions i...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 36; no. 7; pp. 3040 - 3049
Main Authors De Bernardi, Elisabetta, Faggiano, Elena, Zito, Felicia, Gerundini, Paolo, Baselli, Giuseppe
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.07.2009
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
DOI10.1118/1.3130019

Cover

Abstract A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F 18 -FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a k -means algorithm in three regions: A central region surrounded by a partial volume region and a spill-out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore “frozen” in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation-weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction-segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill-out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.
AbstractList A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F18‐FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a k‐means algorithm in three regions: A central region surrounded by a partial volume region and a spill‐out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore “frozen” in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation‐weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction‐segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill‐out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.
A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in 18F-FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a k-means algorithm in three regions: A central region surrounded by a partial volume region and a spill-out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore "frozen" in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation-weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction-segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill-out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in 18F-FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a k-means algorithm in three regions: A central region surrounded by a partial volume region and a spill-out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore "frozen" in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation-weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction-segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill-out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.
A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in ‐FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a ‐means algorithm in three regions: A central region surrounded by a partial volume region and a spill‐out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore “frozen” in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation‐weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction‐segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill‐out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.
A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in 18F-FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a k-means algorithm in three regions: A central region surrounded by a partial volume region and a spill-out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore "frozen" in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation-weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction-segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill-out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.
A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F 18 -FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a k -means algorithm in three regions: A central region surrounded by a partial volume region and a spill-out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore “frozen” in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation-weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction-segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill-out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.
Author Faggiano, Elena
Gerundini, Paolo
De Bernardi, Elisabetta
Baselli, Giuseppe
Zito, Felicia
Author_xml – sequence: 1
  givenname: Elisabetta
  surname: De Bernardi
  fullname: De Bernardi, Elisabetta
  email: elisabetta.debernardi@polimi.it
  organization: Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
– sequence: 2
  givenname: Elena
  surname: Faggiano
  fullname: Faggiano, Elena
  organization: Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
– sequence: 3
  givenname: Felicia
  surname: Zito
  fullname: Zito, Felicia
  organization: Department of Nuclear Medicine, Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, 20122 Milano, Italy
– sequence: 4
  givenname: Paolo
  surname: Gerundini
  fullname: Gerundini, Paolo
  organization: Department of Nuclear Medicine, Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, 20122 Milano, Italy
– sequence: 5
  givenname: Giuseppe
  surname: Baselli
  fullname: Baselli, Giuseppe
  organization: Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19673203$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhi1EBcvHoX-gyqlSKwXsOHbWPSAh1C9pERzgbDnOZHHrxMF2aLe_vmazoFKVitNoRs_7ambePbTdux4Qek3wESFkfkyOKKEYE7GFZkVZ0bwssNhGM4xFmRclZrtoL4RvGGNOGd5Bu0TwihaYztCvBQTj-ux2VH00rdEq3remz1yvnXXLNLHZ4IKJPs2hM2HNR9e5pVfDzepDdpp16qfpxi6z5jtYc-Nckw3KR5Okd86OHWTaeQ967R2iVxGWqwP0qlU2wOGm7qPrTx-vzr7ki4vPX89OF7kuSy5yVusCOGs1xYDnbS0YkKapheZcMUGUInWhoK4YU02t50xUvOKtIAzPoQDa0n30dvIdvLsdIUSZjtBgrerBjUHyilW8KGkC32zAse6gkYM3nfIr-fCtBBxPgPYuBA-t1CauH5ZOMlYSLO_zkERu8kiKd38pHk3_weYT-8NYWD0PyvPLDX8y8eFhi-c1U8ryScrJ4P2LDf4H3zn_x3ZD09Lf5jLMYA
CODEN MPHYA6
CitedBy_id crossref_primary_10_1016_j_ejmp_2023_103165
crossref_primary_10_1002_mp_12124
crossref_primary_10_1118_1_4805112
crossref_primary_10_1118_1_4728219
crossref_primary_10_1088_0031_9155_59_22_6979
crossref_primary_10_1088_1361_6560_ab8535
crossref_primary_10_1016_j_compmedimag_2014_03_008
crossref_primary_10_1016_j_cviu_2016_10_002
crossref_primary_10_1088_1361_6560_ac01f4
crossref_primary_10_1109_MPUL_2011_941522
Cites_doi 10.1088/0031-9155/53/10/009
10.1007/s00259-006-0363-4
10.2967/jnumed.106.035774
10.1109/42.938248
10.1109/TNS.2007.905167
10.1007/s00259-004-1532-y
10.1109/42.563660
10.1109/JPROC.2003.817882
10.1007/s002590050022
10.1016/j.ctrv.2006.02.002
10.1088/0031-9155/52/12/010
10.1109/TMI.2006.873222
10.1118/1.2712043
10.1118/1.2432404
10.1097/00004728-198607000-00021
10.1109/42.222672
10.1088/0031-9155/38/1/005
10.1109/TMI.2006.876171
10.1007/s00259‐006‐0363‐4
10.1088/0031‐9155/38/1/005
10.1007/s00259‐004‐1532‐y
10.1088/0031‐9155/53/10/009
10.1088/0031‐9155/52/12/010
10.1097/00004728‐198607000‐00021
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2009 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2009 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1118/1.3130019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3049
ExternalDocumentID 19673203
10_1118_1_3130019
MP0019
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4469-5bc2e65fc30e08fb95e1ddb9c66a591aa1b2aeb755adbc8597676f91508e2e3f3
ISSN 0094-2405
IngestDate Fri Sep 05 09:02:27 EDT 2025
Thu Apr 03 07:05:26 EDT 2025
Wed Oct 01 03:17:37 EDT 2025
Thu Apr 24 23:03:55 EDT 2025
Wed Jan 22 16:32:40 EST 2025
Fri Jun 21 00:19:58 EDT 2024
Fri Jun 21 00:29:07 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords partial volume effect correction
volume estimate
maximum likelihood reconstruction
uptake quantification
PET
regional basis functions
Language English
License 0094-2405/2009/36(7)/3040/10/$25.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4469-5bc2e65fc30e08fb95e1ddb9c66a591aa1b2aeb755adbc8597676f91508e2e3f3
Notes elisabetta.debernardi@polimi.it
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19673203
PQID 67576243
PQPubID 23479
PageCount 10
ParticipantIDs scitation_primary_10_1118_1_3130019
scitation_primary_10_1118_1_3130019Lesion_quantificatio
proquest_miscellaneous_67576243
crossref_primary_10_1118_1_3130019
pubmed_primary_19673203
wiley_primary_10_1118_1_3130019_MP0019
crossref_citationtrail_10_1118_1_3130019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2009
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: July 2009
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2009
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Panin, Kehren, Michel, Casey (c5) 2006; 25
Soret, Bacharach, Buvat (c10) 2007; 48
Carson (c16) 1986; 10
Montgomery, Amira, Zaidi (c13) 2007; 34
Formiconi (c17) 1993; 12
Defrise, Kinahan, Townsend, Michel, Sibomana, Newport (c21) 1997; 16
Alessio, Kinahan, Lewellen (c6) 2006; 25
Drever, Roa, McEwan, Robinson (c11) 2007; 34
Lange, Carson (c1) 1984; 8
Lewitt, Matej (c20) 2003; 91
Teo, Seo, Bacharach, Carrasquillo, Ributti, Shukla, Hasegawa, Hawkins, Franc (c9) 2007; 48
van Baardwijk, Baumert, Bosmans, van Kroonenburgh, Stroobants, Gregoire, Lambin, De Ruysscher (c24) 2006; 32
Liow, Strother (c3) 1993; 38
Hatt, Lamare, Boussion, Turzo, Collet, Salzenstein, Roux, Jarritt, Carson, Cheze-Le Rest, Visvikis (c12) 2007; 52
De Bernardi, Mazzoli, Zito, Baselli (c4) 2007; 54
Liu, Comtat, Michel, Kinahan, Defrise, Townsend (c2) 2001; 20
Kirov, Piao, Schmidtlein (c8) 2008; 53
Krak, Hoekstra, Lammertsma (c23) 2004; 31
Geets, Lee, Bol, Lonneux, Gregoire (c14) 2007; 34
Geworski, Knoop, de Cabrejas, Knapp, Munz (c22) 2000; 27
Panin, V.; Kehren, F.; Michel, C.; Casey, M. 2006; 25
Teo, B.; Seo, Y.; Bacharach, S.; Carrasquillo, J.; Ributti, S.; Shukla, H.; Hasegawa, B.; Hawkins, R.; Franc, B. 2007; 48
Defrise, M.; Kinahan, P.; Townsend, D.; Michel, C.; Sibomana, M.; Newport, D. 1997; 16
Formiconi, A. 1993; 12
Carson, R. 1986; 10
Lange, K.; Carson, R. 1984; 8
Geets, X.; Lee, J.; Bol, A.; Lonneux, M.; Gregoire, V. 2007; 34
Lewitt, R.; Matej, S. 2003; 91
Liu, X.; Comtat, C.; Michel, C.; Kinahan, P.; Defrise, M.; Townsend, D. 2001; 20
Kirov, A.; Piao, J.; Schmidtlein, C. 2008; 53
De Bernardi, E.; Mazzoli, M.; Zito, F.; Baselli, G. 2007; 54
van Baardwijk, A.; Baumert, B.; Bosmans, G.; van Kroonenburgh, M.; Stroobants, S.; Gregoire, V.; Lambin, P.; De Ruysscher, D. 2006; 32
Soret, M.; Bacharach, S.; Buvat, I. 2007; 48
Hatt, M.; Lamare, F.; Boussion, N.; Turzo, A.; Collet, C.; Salzenstein, F.; Roux, C.; Jarritt, P.; Carson, K.; Cheze-Le Rest, C.; Visvikis, D. 2007; 52
Alessio, A.; Kinahan, P.; Lewellen, T. 2006; 25
Drever, L.; Roa, W.; McEwan, A.; Robinson, D. 2007; 34
Montgomery, D.; Amira, A.; Zaidi, H. 2007; 34
Krak, N.; Hoekstra, O.; Lammertsma, A. 2004; 31
Liow, J.; Strother, S. 1993; 38
Geworski, L.; Knoop, B.; de Cabrejas, M.; Knapp, W.; Munz, D. 2000; 27
1993; 12
2004; 31
2003; 91
2000; 27
1993; 38
1986; 10
2006; 32
1984; 8
2006; 25
2007
2006
1997; 16
2008; 53
2007; 52
2007; 54
2007; 34
2001; 20
2007; 48
e_1_2_7_6_1
La Rivière P. (e_1_2_7_20_1) 2006
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
Boussion N. (e_1_2_7_8_1) 2007
El Bitar Z. (e_1_2_7_19_1) 2006
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_25_1
e_1_2_7_13_1
e_1_2_7_24_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_21_1
Lange K. (e_1_2_7_2_1) 1984; 8
Hatt M. (e_1_2_7_16_1) 2007
Teo B. (e_1_2_7_10_1) 2007; 48
References_xml – volume: 16
  start-page: 145
  issn: 0278-0062
  year: 1997
  ident: c21
  article-title: Exact and approximate rebinning algorithms for 3D PET data
  publication-title: IEEE Trans. Med. Imaging
– volume: 48
  start-page: 932
  issn: 0161-5505
  year: 2007
  ident: c10
  article-title: Partial-volume effect in PET tumor imaging
  publication-title: J. Nucl. Med.
– volume: 10
  start-page: 654
  issn: 0363-8715
  year: 1986
  ident: c16
  article-title: A maximum likelihood method for region-of-interest evaluation in emission tomography
  publication-title: J. Comput. Assist. Tomogr.
– volume: 31
  start-page: S103
  issn: 1619-7070
  year: 2004
  ident: c23
  article-title: Measuring response to chemotherapy in locally advanced breast cancer: Methodological considerations
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 27
  start-page: 161
  issn: 0340-6997
  year: 2000
  ident: c22
  article-title: Recovery correction for quantization in emission tomography: A feasibility study
  publication-title: Eur. J. Nucl. Med.
– volume: 91
  start-page: 1588
  issn: 0018-9219
  year: 2003
  ident: c20
  article-title: Overview of methods for image reconstruction form projections in emission computed tomography
  publication-title: Proc. IEEE
– volume: 34
  start-page: 1253
  issn: 0094-2405
  year: 2007
  ident: c11
  article-title: Iterative threshold segmentation for PET target volume delineation
  publication-title: Med. Phys.
– volume: 25
  start-page: 907
  issn: 0278-0062
  year: 2006
  ident: c5
  article-title: Fully 3-D PET reconstruction with system matrix derived from point source measurements
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 722
  issn: 0094-2405
  year: 2007
  ident: c13
  article-title: Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model
  publication-title: Med. Phys.
– volume: 53
  start-page: 2577
  issn: 0031-9155
  year: 2008
  ident: c8
  article-title: Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology
  publication-title: Phys. Med. Biol.
– volume: 48
  start-page: 802
  issn: 0161-5505
  year: 2007
  ident: c9
  article-title: Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data
  publication-title: J. Nucl. Med.
– volume: 52
  start-page: 3467
  issn: 0031-9155
  year: 2007
  ident: c12
  article-title: Fuzzy hidden Markov chains segmentation for volume determination and quantization in PET
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 1427
  issn: 1619-7070
  year: 2007
  ident: c14
  article-title: A gradient-based method for segmenting FDG-PET images: Methodology and validation
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 38
  start-page: 55
  issn: 0031-9155
  year: 1993
  ident: c3
  article-title: The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction
  publication-title: Phys. Med. Biol.
– volume: 32
  start-page: 245
  issn: 0305-7372
  year: 2006
  ident: c24
  article-title: The current status of FDG-PET in tumor volume definition in radiotherapy treatment planning
  publication-title: Cancer Treat. Rev.
– volume: 25
  start-page: 828
  issn: 0278-0062
  year: 2006
  ident: c6
  article-title: Modeling and incorporation of system response functions in 3-D whole body PET
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 306
  issn: 0363-8715
  year: 1984
  ident: c1
  article-title: EM reconstruction algorithms for emission and transmission tomography
  publication-title: J. Comput. Assist. Tomogr.
– volume: 20
  start-page: 804
  issn: 0278-0062
  year: 2001
  ident: c2
  article-title: Comparison of 3-D reconstruction with 3D-OSEM and with
  publication-title: IEEE Trans. Med. Imaging
– volume: 54
  start-page: 1626
  issn: 0018-9499
  year: 2007
  ident: c4
  article-title: Resolution recovery in PET during AWOSEM reconstruction: A performance evaluation study
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 12
  start-page: 90
  issn: 0278-0062
  year: 1993
  ident: c17
  article-title: Least squares algorithm for region-of-interest evaluation in emission tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 48
  start-page: 802-810
  year: 2007
  publication-title: J. Nucl. Med.
– volume: 53
  start-page: 2577-2591
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/10/009
– volume: 34
  start-page: 1427-1438
  year: 2007
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-006-0363-4
– volume: 8
  start-page: 306-316
  year: 1984
  publication-title: J. Comput. Assist. Tomogr.
– volume: 48
  start-page: 932-945
  year: 2007
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.106.035774
– volume: 20
  start-page: 804-814
  year: 2001
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.938248
– volume: 54
  start-page: 1626-1638
  year: 2007
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2007.905167
– volume: 31
  start-page: S103-S111
  year: 2004
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-004-1532-y
– volume: 16
  start-page: 145-158
  year: 1997
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.563660
– volume: 91
  start-page: 1588-1611
  year: 2003
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.817882
– volume: 27
  start-page: 161-169
  year: 2000
  publication-title: Eur. J. Nucl. Med.
  doi: 10.1007/s002590050022
– volume: 32
  start-page: 245-260
  year: 2006
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2006.02.002
– volume: 52
  start-page: 3467-3491
  year: 2007
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/12/010
– volume: 25
  start-page: 828-837
  year: 2006
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.873222
– volume: 34
  start-page: 1253-1265
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2712043
– volume: 34
  start-page: 722-736
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2432404
– volume: 10
  start-page: 654-663
  year: 1986
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-198607000-00021
– volume: 12
  start-page: 90-100
  year: 1993
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.222672
– volume: 38
  start-page: 55-70
  year: 1993
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/38/1/005
– volume: 25
  start-page: 907-921
  year: 2006
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.876171
– volume: 20
  start-page: 804
  year: 2001
  end-page: 814
  article-title: Comparison of 3‐D reconstruction with 3D‐OSEM and with
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2812
  year: 2007
  end-page: 2816
  article-title: Fully automated partial volume correction in PET based on a wavelet approach without the use of anatomical information
– volume: 34
  start-page: 722
  year: 2007
  end-page: 736
  article-title: Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model
  publication-title: Med. Phys.
– volume: 34
  start-page: 1253
  year: 2007
  end-page: 1265
  article-title: Iterative threshold segmentation for PET target volume delineation
  publication-title: Med. Phys.
– volume: 27
  start-page: 161
  year: 2000
  end-page: 169
  article-title: Recovery correction for quantization in emission tomography: A feasibility study
  publication-title: Eur. J. Nucl. Med.
– volume: 16
  start-page: 145
  year: 1997
  end-page: 158
  article-title: Exact and approximate rebinning algorithms for 3D PET data
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 306
  year: 1984
  end-page: 316
  article-title: EM reconstruction algorithms for emission and transmission tomography
  publication-title: J. Comput. Assist. Tomogr.
– volume: 53
  start-page: 2577
  year: 2008
  end-page: 2591
  article-title: Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology
  publication-title: Phys. Med. Biol.
– volume: 38
  start-page: 55
  year: 1993
  end-page: 70
  article-title: The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction
  publication-title: Phys. Med. Biol.
– volume: 12
  start-page: 90
  year: 1993
  end-page: 100
  article-title: Least squares algorithm for region‐of‐interest evaluation in emission tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 32
  start-page: 245
  year: 2006
  end-page: 260
  article-title: The current status of FDG‐PET in tumor volume definition in radiotherapy treatment planning
  publication-title: Cancer Treat. Rev.
– volume: 54
  start-page: 1626
  year: 2007
  end-page: 1638
  article-title: Resolution recovery in PET during AWOSEM reconstruction: A performance evaluation study
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 91
  start-page: 1588
  year: 2003
  end-page: 1611
  article-title: Overview of methods for image reconstruction form projections in emission computed tomography
  publication-title: Proc. IEEE
– volume: 31
  start-page: S103
  year: 2004
  end-page: S111
  article-title: Measuring response to chemotherapy in locally advanced breast cancer: Methodological considerations
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– start-page: 2924
  year: 2006
  end-page: 2928
  article-title: Monotonic iterative reconstruction algorithms for targeted reconstruction in emission and transmission computed tomography
– volume: 52
  start-page: 3467
  year: 2007
  end-page: 3491
  article-title: Fuzzy hidden Markov chains segmentation for volume determination and quantization in PET
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 907
  year: 2006
  end-page: 921
  article-title: Fully 3‐D PET reconstruction with system matrix derived from point source measurements
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1427
  year: 2007
  end-page: 1438
  article-title: A gradient‐based method for segmenting FDG‐PET images: Methodology and validation
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 48
  start-page: 932
  year: 2007
  end-page: 945
  article-title: Partial‐volume effect in PET tumor imaging
  publication-title: J. Nucl. Med.
– start-page: 3410
  year: 2006
  end-page: 3413
  article-title: Targeted fully 3D Monte Carlo reconstruction in SPECT
– volume: 48
  start-page: 802
  year: 2007
  end-page: 810
  article-title: Partial‐volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data
  publication-title: J. Nucl. Med.
– start-page: 3939
  year: 2007
  end-page: 3945
  article-title: A segmentation algorithm for heterogeneous tumor automatic delineation in PET
– volume: 25
  start-page: 828
  year: 2006
  end-page: 837
  article-title: Modeling and incorporation of system response functions in 3‐D whole body PET
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  start-page: 654
  year: 1986
  end-page: 663
  article-title: A maximum likelihood method for region‐of‐interest evaluation in emission tomography
  publication-title: J. Comput. Assist. Tomogr.
– ident: e_1_2_7_12_1
  doi: 10.1118/1.2712043
– volume: 8
  start-page: 306
  year: 1984
  ident: e_1_2_7_2_1
  article-title: EM reconstruction algorithms for emission and transmission tomography
  publication-title: J. Comput. Assist. Tomogr.
– ident: e_1_2_7_11_1
  doi: 10.2967/jnumed.106.035774
– ident: e_1_2_7_14_1
  doi: 10.1118/1.2432404
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ctrv.2006.02.002
– ident: e_1_2_7_15_1
  doi: 10.1007/s00259‐006‐0363‐4
– ident: e_1_2_7_18_1
  doi: 10.1109/42.222672
– ident: e_1_2_7_4_1
  doi: 10.1088/0031‐9155/38/1/005
– ident: e_1_2_7_7_1
  doi: 10.1109/TMI.2006.873222
– start-page: 2924
  year: 2006
  ident: e_1_2_7_20_1
– ident: e_1_2_7_24_1
  doi: 10.1007/s00259‐004‐1532‐y
– start-page: 3939
  year: 2007
  ident: e_1_2_7_16_1
– ident: e_1_2_7_23_1
  doi: 10.1007/s002590050022
– start-page: 3410
  year: 2006
  ident: e_1_2_7_19_1
– ident: e_1_2_7_9_1
  doi: 10.1088/0031‐9155/53/10/009
– ident: e_1_2_7_5_1
  doi: 10.1109/TNS.2007.905167
– ident: e_1_2_7_3_1
  doi: 10.1109/42.938248
– ident: e_1_2_7_21_1
  doi: 10.1109/JPROC.2003.817882
– ident: e_1_2_7_22_1
  doi: 10.1109/42.563660
– ident: e_1_2_7_6_1
  doi: 10.1109/TMI.2006.876171
– ident: e_1_2_7_13_1
  doi: 10.1088/0031‐9155/52/12/010
– ident: e_1_2_7_17_1
  doi: 10.1097/00004728‐198607000‐00021
– start-page: 2812
  year: 2007
  ident: e_1_2_7_8_1
– volume: 48
  start-page: 802
  year: 2007
  ident: e_1_2_7_10_1
  article-title: Partial‐volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data
  publication-title: J. Nucl. Med.
SSID ssj0006350
Score 2.0116537
Snippet A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F 18 -FDG...
A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F18‐FDG...
A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in ‐FDG positron...
A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in 18F-FDG...
SourceID proquest
pubmed
crossref
wiley
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3040
SubjectTerms Algorithms
Cancer
Fluorodeoxyglucose F18
Image Interpretation, Computer-Assisted - methods
image reconstruction
image resolution
Image scanners
image segmentation
Iteration theory
iterative methods
Likelihood Functions
maximum likelihood estimation
maximum likelihood reconstruction
Medical image artifacts
Medical image noise
medical image processing
Medical image reconstruction
Medical image smoothing
Medical imaging
Neoplasms - diagnostic imaging
Numerical approximation and analysis
partial volume effect correction
PET
phantoms
Phantoms, Imaging
positron emission tomography
Positron emission tomography (PET)
Positron-Emission Tomography - methods
Positron-Emission Tomography - statistics & numerical data
Probability theory, stochastic processes, and statistics
Radiography
Reconstruction
regional basis functions
Segmentation
tumours
uptake quantification
volume estimate
wounds
Title Lesion quantification in oncological positron emission tomography: A maximum likelihood partial volume correction strategy
URI http://dx.doi.org/10.1118/1.3130019
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3130019
https://www.ncbi.nlm.nih.gov/pubmed/19673203
https://www.proquest.com/docview/67576243
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ24PCMatXC1ACKnKyMVJat4Ko0xoRZPYpImXyHbcKaJNqrZBaH-LP8hx7DgN61DhJa0cXxKfL_bxuSL0iqYubLKRdDySSofA8drhMqAO9waUpdIX1FO-w-Mv0cEJ-XwannY6v9aslsoV3xPnG_1K_oeqUAZ0VV6y_0BZ2ykUwH-gL1yBwnDdisaHUsm6lGOkNvlhteVikQu7qFVmWQsoV5ndqvqrYmYCVWu_9Bn7mc3KWX-afZfTrIpzPFejQWO9ePWFyuGhk4ovdTjblja41vZoMUklx1W-1Uxn_bCihn3Zf6_Ej4BJY1G2VILfld0ZRuzsDOBa6Lsytze-ZVW2p_4Ink9ktviTXJTKKyfTvDC8ckuIQa3Bq12YKVGKHq3gllWZT-JAoYeuL9Y6WooBZby28gauDvtkdnGlPbxkh1BeD95eoPR4ZrVuReH-Y3e0Nov6tDRIvMQ0vYJ2fNhK3C7aGe6PD79aBgB4OO35ZN7JBLSCxm_tuG026MLZ5ia6DhyQNsZoH5sqvuf4NrplDix4qNF3B3VkvouujY1Jxi66eqSJfhedazjiNhxxluM1OOIajriGI27g-A4PsQEjbsCIDRixJg5uwIhrMN5DJ6OPxx8OHJPawxGERNQJufBlFE5E4Ep3MOE0lF6aciqiiIWwPDCP-0zyOAxZysUATr1RHE2oSl4gfRlMgvuomxe5fIgwIcDxh5xFqUiJEOlAseAqe4zLPSb8oIfe1DOd1FOq0q9MkwsU7aEXtupcB3vZVOl5Ta4EJkrp11gui3KZwNkb8EBgxAeaik0nNIoD34U7Ly1Z_zZCvEUtTdOkRdON_f8oFk2rZJ5Oeuh1BajL-07GR-rn0Tbz8RjdaL7oJ6i7WpTyKTDqK_7MfBi_AVLD6w4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lesion+quantification+in+oncological+positron+emission+tomography%3A+A+maximum+likelihood+partial+volume+correction+strategy&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=De+Bernardi%2C+Elisabetta&rft.au=Faggiano%2C+Elena&rft.au=Zito%2C+Felicia&rft.au=Gerundini%2C+Paolo&rft.date=2009-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=36&rft.issue=7&rft.spage=3040&rft.epage=3049&rft_id=info:doi/10.1118%2F1.3130019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_3130019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon