Lesion quantification in oncological positron emission tomography: A maximum likelihood partial volume correction strategy

A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F 18 -FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions i...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 36; no. 7; pp. 3040 - 3049
Main Authors De Bernardi, Elisabetta, Faggiano, Elena, Zito, Felicia, Gerundini, Paolo, Baselli, Giuseppe
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.07.2009
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
DOI10.1118/1.3130019

Cover

More Information
Summary:A maximum likelihood (ML) partial volume effect correction (PVEC) strategy for the quantification of uptake and volume of oncological lesions in F 18 -FDG positron emission tomography is proposed. The algorithm is based on the application of ML reconstruction on volumetric regional basis functions initially defined on a smooth standard clinical image and iteratively updated in terms of their activity and volume. The volume of interest (VOI) containing a previously detected region is segmented by a k -means algorithm in three regions: A central region surrounded by a partial volume region and a spill-out region. All volume outside the VOI (background with all other structures) is handled as a unique basis function and therefore “frozen” in the reconstruction process except for a gain coefficient. The coefficients of the regional basis functions are iteratively estimated with an attenuation-weighted ordered subset expectation maximization (AWOSEM) algorithm in which a 3D, anisotropic, space variant model of point spread function (PSF) is included for resolution recovery. The reconstruction-segmentation process is iterated until convergence; at each iteration, segmentation is performed on the reconstructed image blurred by the system PSF in order to update the partial volume and spill-out regions. The developed PVEC strategy was tested on sphere phantom studies with activity contrasts of 7.5 and 4 and compared to a conventional recovery coefficient method. Improved volume and activity estimates were obtained with low computational costs, thanks to blur recovery and to a better local approximation to ML convergence.
Bibliography:elisabetta.debernardi@polimi.it
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0094-2405
2473-4209
DOI:10.1118/1.3130019