A generic geometric calibration method for tomographic imaging systems with flat-panel detectors—A detailed implementation guide

Purpose: To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. Methods: The method is based on a projection matrix which represents a mapping from 3D object coor...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 37; no. 7; pp. 3844 - 3854
Main Authors Li, Xinhua, Zhang, Da, Liu, Bob
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.07.2010
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
DOI10.1118/1.3431996

Cover

Abstract Purpose: To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. Methods: The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary. Results: Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp–Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method. Conclusions: The method is suitable for tomographic imaging systems with flat-panel detectors.
AbstractList Purpose: To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. Methods: The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary. Results: Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp–Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method. Conclusions: The method is suitable for tomographic imaging systems with flat-panel detectors.
Purpose To present a generic geometric calibration method for tomographic imaging systems with flat‐panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. Methods The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source‐detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone‐beam CT system, as well as to three tomosynthesis prototypes of different source‐detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary. Results Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp–Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method. Conclusions The method is suitable for tomographic imaging systems with flat‐panel detectors.
To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain.PURPOSETo present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain.The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary.METHODSThe method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary.Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp-Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method.RESULTSProjection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp-Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method.The method is suitable for tomographic imaging systems with flat-panel detectors.CONCLUSIONSThe method is suitable for tomographic imaging systems with flat-panel detectors.
To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary. Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp-Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method. The method is suitable for tomographic imaging systems with flat-panel detectors.
Author Liu, Bob
Li, Xinhua
Zhang, Da
Author_xml – sequence: 1
  givenname: Xinhua
  surname: Li
  fullname: Li, Xinhua
  organization: Department of Radiology, Division of Diagnostic Imaging Physics, Massachusetts General Hospital, Boston, Massachusetts 02114
– sequence: 2
  givenname: Da
  surname: Zhang
  fullname: Zhang, Da
  organization: Department of Radiology, Division of Diagnostic Imaging Physics, Massachusetts General Hospital, Boston, Massachusetts 02114
– sequence: 3
  givenname: Bob
  surname: Liu
  fullname: Liu, Bob
  email: bliu7@bics.bwh.harvard.edu
  organization: Department of Radiology, Division of Diagnostic Imaging Physics, Massachusetts General Hospital, Boston, Massachusetts 02114
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20831092$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi3Uim4LB14A5YZASjv-k38HDqsKaKUiOMDZcuJJ1iiJg-1ttTfEM_CEPAleJVshRBGnsUe_b_TNfKfkaLQjEvKMwjmltLyg51xwWlX5I7JiouCpYFAdkRVAJVImIDshp95_AYCcZ_CYnDAoOYWKrcj3ddLhiM40sdoBw_7VqN7UTgVjxyS2NlYnrXVJsIPtnJo2ETGD6szYJX7nAw4-uTNhk7S9CumkRuwTjQGbYJ3_-e3Hev9TpkcdZVOPA45hHt5tjcYn5LhVvcenSz0jn9---XR5ld58eHd9ub5JGyHyPK0r1grGOOOtQAotK4qyEaApal6XVGdKV00NGdKsKJGXWJQ15xUUmJUqa3N-Rl7Mcydnv27RBzkY32DfR8N262WRCQCWAYvk84Xc1gNqObm4rtvJw9kicDEDjbPeO2xlY-aVgouLSgpyH4ykcgkmKl7-oTgM_RubzuxdvNnuYVC-_7jwr2feH1w8rFnLJW55H3fUv_pv_b_gW-t-Mzfplv8CjTvOVA
CODEN MPHYA6
CitedBy_id crossref_primary_10_1002_mp_17041
crossref_primary_10_1088_1361_6560_aa77e5
crossref_primary_10_3390_s25051282
crossref_primary_10_1049_iet_ipr_2017_0772
crossref_primary_10_1016_j_ndteint_2020_102222
crossref_primary_10_1117_1_OE_55_6_063105
crossref_primary_10_1118_1_3591990
crossref_primary_10_1371_journal_pone_0216054
crossref_primary_10_3233_XST_240023
crossref_primary_10_1088_0031_9155_56_23_003
crossref_primary_10_1088_0031_9155_61_20_7300
crossref_primary_10_1088_1361_6560_aa9910
crossref_primary_10_1117_1_JMI_6_3_031404
crossref_primary_10_1002_mp_12393
crossref_primary_10_1109_TMI_2024_3474250
crossref_primary_10_1109_TIM_2023_3307182
crossref_primary_10_3390_jimaging8100292
crossref_primary_10_1088_1361_6501_ac08c4
crossref_primary_10_1080_24699322_2018_1560085
crossref_primary_10_1088_1361_6560_ad29b8
crossref_primary_10_1088_1361_6501_ac9856
crossref_primary_10_1371_journal_pone_0275732
crossref_primary_10_1007_s10527_020_09984_4
crossref_primary_10_1002_acm2_13426
crossref_primary_10_1117_1_OE_57_6_063104
crossref_primary_10_1109_TIM_2025_3527524
crossref_primary_10_1016_j_ejmp_2011_03_006
crossref_primary_10_1007_s10527_018_9770_7
crossref_primary_10_1109_TNS_2013_2293969
crossref_primary_10_1118_1_4742866
crossref_primary_10_1088_2631_8695_ac8224
crossref_primary_10_1109_TMI_2012_2224360
crossref_primary_10_1002_mp_16257
crossref_primary_10_1016_j_knosys_2021_107343
crossref_primary_10_1088_1361_6560_abe75f
crossref_primary_10_1109_TNS_2018_2843807
crossref_primary_10_1088_1361_6560_ac16c1
crossref_primary_10_1109_TRPMS_2024_3408870
crossref_primary_10_1364_BOE_3_002339
crossref_primary_10_1109_ACCESS_2023_3266989
crossref_primary_10_1007_s11548_018_1823_6
crossref_primary_10_1088_1748_0221_12_09_P09011
crossref_primary_10_1371_journal_pone_0188367
crossref_primary_10_3390_tomography8050212
crossref_primary_10_1118_1_3524221
crossref_primary_10_1118_1_4736532
crossref_primary_10_1088_0031_9155_61_7_2613
crossref_primary_10_1088_0031_9155_59_19_5667
crossref_primary_10_1109_TNS_2013_2279675
crossref_primary_10_1118_1_4818059
crossref_primary_10_1109_TBME_2020_2967802
crossref_primary_10_3938_jkps_60_1457
crossref_primary_10_1118_1_4770281
crossref_primary_10_1080_24699322_2018_1557907
crossref_primary_10_1002_mp_12163
Cites_doi 10.1117/12.653197
10.1109/42.870250
10.1118/1.1803792
10.1006/cviu.2000.0848
10.1117/12.479945
10.1117/12.595833
10.1118/1.596505
10.1088/0031-9155/53/14/009
10.1117/12.844369
10.1118/1.595715
10.1117/12.698714
10.1118/1.1869652
10.1088/0031-9155/52/23/012
10.1088/0031-9155/53/22/001
10.1088/0031-9155/45/11/327
10.1118/1.2900000
10.1117/12.237798
10.1118/1.2198187
10.1118/1.598854
10.1109/TPAMI.1986.4767851
10.1088/0031-9155/54/24/001
10.1117/1.3070650
10.1118/1.1382609
10.1117/12.653474
10.1088/0031-9155/54/6/016
10.1118/1.2710328
10.1117/12.713813
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2010 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2010 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1118/1.3431996
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3854
ExternalDocumentID 20831092
10_1118_1_3431996
MP1996
Genre article
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4466-b92f422323f4e10f2778c40d1ed3b81d5ad9cb05e1578e38e78b33907e58a5f63
ISSN 0094-2405
IngestDate Fri Sep 05 06:35:46 EDT 2025
Mon Jul 21 06:05:45 EDT 2025
Wed Oct 01 03:17:46 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Wed Jan 22 17:10:54 EST 2025
Fri Jun 21 00:19:59 EDT 2024
Fri Jun 21 00:28:29 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords geometric calibration
tomographic imaging
flat-panel detector
Language English
License 0094-2405/2010/37(7)/3844/11/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4466-b92f422323f4e10f2778c40d1ed3b81d5ad9cb05e1578e38e78b33907e58a5f63
Notes 0094‐2405/2010/37(7)/3844/11/$30.00
bliu7@bics.bwh.harvard.edu
Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20831092
PQID 754002502
PQPubID 23479
PageCount 11
ParticipantIDs scitation_primary_10_1118_1_3431996A_generic_geometric
crossref_citationtrail_10_1118_1_3431996
pubmed_primary_20831092
proquest_miscellaneous_754002502
wiley_primary_10_1118_1_3431996_MP1996
scitation_primary_10_1118_1_3431996
crossref_primary_10_1118_1_3431996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2010
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: July 2010
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2010
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Stevens, Saunders, Pelc (c5) 2001; 28
Gracias, Santos-Victor (c27) 2000; 79
Ren, Ruth, Stein, Smith, Shaw, Jing (c32) 2005; 5745
Siddon (c30) 1985; 12
Kyriakou, Lapp, Hillebrand, Ertel, Kalender (c2) 2008; 53
Narayanan, Cho (c13) 2006; 6141
Fahrig, Holdsworth (c17) 2000; 27
Gullberg, Tsui, Crawford, Ballard, Hagius (c6) 1990; 17
Kachelrieß, Knaup, Bockenbach (c31) 2007; 34
He, Li (c25) 2009; 48
Wang, Mainprize, Kempston, Mawdsley, Yaffe (c21) 2007; 6510
Robert, Watt, Wang, Mainprize (c19) 2009; 54
Wiesent, Barth, Navab, Durlak, Brunner, Schuetz, Seissler (c16) 2000; 19
Canny (c23) 1986; PAMI-8
Johnston, Johnson, Badea (c3) 2008; 35
Yang, Kwan, Miller, Boone (c10) 2006; 33
Cho, Moseley, Siewerdsen, Jaffray (c8) 2005; 32
Noo, Clackdoyle, Mennessier, White, Roney (c7) 2000; 45
Chen, Zambelli, Nett, Supanich, Riddell, Belanger, Mistretta (c14) 2006; 6142
Panetta, Belcari, Guerra, Moehrs (c11) 2008; 53
von Smekal, Kachelrieß, Stepina, Kalender (c1) 2004; 31
Mennessier, Clackdoyle, Noo (c12) 2009; 54
Strobel, Heigl, Brunner, Schuetz, Mitschke, Wiesent, Mertelmeier (c4) 2003; 5030
Li, Liu (c28) 2010; 7622
Zambelli, Nett, Leng, Riddell, Belanger, Chen (c20) 2007; 6510
Hoppe, Noo, Dennerlein, Lauritsch, Hornegger (c15) 2007; 52
Navab, Bani-Hashemi, Mitschke, Holdsworth, Fahrig, Fox, Graumann (c18) 1996; 2708
Wang, X.; Mainprize, J.; Kempston, M.; Mawdsley, G.; Yaffe, M. 2007; 6510
Canny, J. 1986; PAMI-8
Kyriakou, Y.; Lapp, R.; Hillebrand, L.; Ertel, D.; Kalender, W. 2008; 53
Johnston, S.; Johnson, G.; Badea, C. 2008; 35
Li, X.; Liu, B. 2010; 7622
Yang, K.; Kwan, A.; Miller, D.; Boone, J. 2006; 33
Ren, B.; Ruth, C.; Stein, J.; Smith, A.; Shaw, I.; Jing, Z. 2005; 5745
He, B.; Li, Y. 2009; 48
Robert, N.; Watt, K.; Wang, X.; Mainprize, J. 2009; 54
Fahrig, R.; Holdsworth, D. 2000; 27
Gracias, N.; Santos-Victor, J. 2000; 79
Wiesent, K.; Barth, K.; Navab, N.; Durlak, P.; Brunner, T.; Schuetz, O.; Seissler, W. 2000; 19
von Smekal, L.; Kachelrieß, M.; Stepina, E.; Kalender, W. 2004; 31
Strobel, N.; Heigl, B.; Brunner, T.; Schuetz, O.; Mitschke, M.; Wiesent, K.; Mertelmeier, T. 2003; 5030
Siddon, R. 1985; 12
Zambelli, J.; Nett, B.; Leng, S.; Riddell, C.; Belanger, B.; Chen, G. 2007; 6510
Mennessier, C.; Clackdoyle, R.; Noo, F. 2009; 54
Stevens, G.; Saunders, R.; Pelc, N. 2001; 28
Kachelrieß, M.; Knaup, M.; Bockenbach, O. 2007; 34
Navab, N.; Bani-Hashemi, A.; Mitschke, M.; Holdsworth, D.; Fahrig, R.; Fox, A.; Graumann, R. 1996; 2708
Narayanan, S.; Cho, P. 2006; 6141
Chen, G.; Zambelli, J.; Nett, B.; Supanich, M.; Riddell, C.; Belanger, B.; Mistretta, C. 2006; 6142
Hoppe, S.; Noo, F.; Dennerlein, F.; Lauritsch, G.; Hornegger, J. 2007; 52
Cho, Y.; Moseley, D.; Siewerdsen, J.; Jaffray, D. 2005; 32
Noo, F.; Clackdoyle, R.; Mennessier, C.; White, T.; Roney, T. 2000; 45
Gullberg, G.; Tsui, B.; Crawford, C.; Ballard, J.; Hagius, J. 1990; 17
Panetta, D.; Belcari, N.; Guerra, A.; Moehrs, S. 2008; 53
2000; 27
1990; 17
2000; 45
2006; 33
2007; 6510
1996; 2708
2008; 35
2001; 28
2003
2008; 53
2007; 52
2007; 34
2009; 48
2004; 31
2000; 19
2009; 54
2000; 79
2005; 5
2003; 5030
2005; 5745
2005; 32
1986; PAMI‐8
1985; 12
2006; 6142
2010; 7622
2006; 6141
1988
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Strubel G. (e_1_2_6_10_1) 2005
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 17
  start-page: 264
  issn: 0094-2405
  year: 1990
  ident: c6
  article-title: Estimation of geometrical parameters and collimator evaluation for cone beam tomography
  publication-title: Med. Phys.
– volume: 19
  start-page: 391
  issn: 0278-0062
  year: 2000
  ident: c16
  article-title: Enhanced 3-D-reconstruction algorithm for c-arm systems suitable for interventional procedures
  publication-title: IEEE Trans. Med. Imaging
– volume: 79
  start-page: 66
  issn: 1077-3142
  year: 2000
  ident: c27
  article-title: Underwater video mosaics as visual navigation maps
  publication-title: Comput. Vis. Image Underst.
– volume: 6510
  start-page: 65101Q
  issn: 0277-786X
  year: 2007
  ident: c20
  article-title: Novel C-arm based cone-beam CT using a source trajectory of two concentric arcs
  publication-title: Proc. SPIE
– volume: 48
  start-page: 013603
  issn: 0091-3286
  year: 2009
  ident: c25
  article-title: Camera calibration with lens distortion and from vanishing points
  publication-title: Opt. Eng. (Bellingham)
– volume: 6141
  start-page: 61411I
  issn: 0277-786X
  year: 2006
  ident: c13
  article-title: A perspective matrix-based seed reconstruction algorithm with applications to C-arm based intra-operative dosimetry
  publication-title: Proc. SPIE
– volume: 32
  start-page: 968
  issn: 0094-2405
  year: 2005
  ident: c8
  article-title: Accurate technique for complete geometric calibration of cone-beam computed tomography systems
  publication-title: Med. Phys.
– volume: 12
  start-page: 252
  issn: 0094-2405
  year: 1985
  ident: c30
  article-title: Fast calculation of the exact radiological path for a three-dimensional CT array
  publication-title: Med. Phys.
– volume: 28
  start-page: 1472
  issn: 0094-2405
  year: 2001
  ident: c5
  article-title: Alignment of a volumetric tomography system
  publication-title: Med. Phys.
– volume: 33
  start-page: 1695
  issn: 0094-2405
  year: 2006
  ident: c10
  article-title: A geometric calibration method for cone beam CT systems
  publication-title: Med. Phys.
– volume: 54
  start-page: 1633
  issn: 0031-9155
  year: 2009
  ident: c12
  article-title: Direct determination of geometric alignment parameters for cone-beam scanners
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 1474
  issn: 0094-2405
  year: 2007
  ident: c31
  article-title: Hyperfast parallel-beam and cone-beam backprojection using the cell general purpose hardware
  publication-title: Med. Phys.
– volume: 2708
  start-page: 361
  issn: 0277-786X
  year: 1996
  ident: c18
  article-title: Dynamic geometrical calibration for 3D cerebral angiography
  publication-title: Proc. SPIE
– volume: 31
  start-page: 3242
  issn: 0094-2405
  year: 2004
  ident: c1
  article-title: Geometric misalignment and calibration in cone-beam tomography
  publication-title: Med. Phys.
– volume: 7622
  start-page: 762245
  issn: 0277-786X
  year: 2010
  ident: c28
  article-title: Quantifying breast density with a cone-beam breast CT
  publication-title: Proc. SPIE
– volume: 5030
  start-page: 943
  issn: 0277-786X
  year: 2003
  ident: c4
  article-title: Improving 3D image quality of x-ray c-arm imaging systems by using properly designed pose determination systems for calibrating the projection geometry
  publication-title: Proc. SPIE
– volume: 27
  start-page: 30
  issn: 0094-2405
  year: 2000
  ident: c17
  article-title: Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Image-based correction of gantry motion nonidealities
  publication-title: Med. Phys.
– volume: 35
  start-page: 1820
  issn: 0094-2405
  year: 2008
  ident: c3
  article-title: Geometric calibration for a dual tube/detector micro-CT system
  publication-title: Med. Phys.
– volume: 6142
  start-page: 614210
  issn: 0277-786X
  year: 2006
  ident: c14
  article-title: Design and development of C-arm based cone-beam CT for image-guided interventions: Initial results
  publication-title: Proc. SPIE
– volume: 6510
  start-page: 65103B
  issn: 0277-786X
  year: 2007
  ident: c21
  article-title: Digital breast tomosynthesis geometry calibration
  publication-title: Proc. SPIE
– volume: 54
  start-page: 7239
  issn: 0031-9155
  year: 2009
  ident: c19
  article-title: The geometric calibration of cone-beam systems with arbitrary geometry
  publication-title: Phys. Med. Biol.
– volume: 52
  start-page: 6943
  issn: 0031-9155
  year: 2007
  ident: c15
  article-title: Geometric calibration of the circle-plus-arc trajectory
  publication-title: Phys. Med. Biol.
– volume: 5745
  start-page: 550
  issn: 0277-786X
  year: 2005
  ident: c32
  article-title: Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector
  publication-title: Proc. SPIE
– volume: 53
  start-page: 6267
  issn: 0031-9155
  year: 2008
  ident: c2
  article-title: Simultaneous misalignment correction for approximate circular cone-beam computed tomography
  publication-title: Phys. Med. Biol.
– volume: 45
  start-page: 3489
  issn: 0031-9155
  year: 2000
  ident: c7
  article-title: Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography
  publication-title: Phys. Med. Biol.
– volume: PAMI-8
  start-page: 679
  issn: 0162-8828
  year: 1986
  ident: c23
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 53
  start-page: 3841
  issn: 0031-9155
  year: 2008
  ident: c11
  article-title: An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms
  publication-title: Phys. Med. Biol.
– volume: 6142
  start-page: 614210
  year: 2006
  publication-title: Proc. SPIE
  doi: 10.1117/12.653197
– volume: 19
  start-page: 391-403
  year: 2000
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.870250
– volume: 31
  start-page: 3242-3266
  year: 2004
  publication-title: Med. Phys.
  doi: 10.1118/1.1803792
– volume: 79
  start-page: 66-91
  year: 2000
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.2000.0848
– volume: 5030
  start-page: 943-954
  year: 2003
  publication-title: Proc. SPIE
  doi: 10.1117/12.479945
– volume: 5745
  start-page: 550-561
  year: 2005
  publication-title: Proc. SPIE
  doi: 10.1117/12.595833
– volume: 17
  start-page: 264-272
  year: 1990
  publication-title: Med. Phys.
  doi: 10.1118/1.596505
– volume: 53
  start-page: 3841-3861
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/14/009
– volume: 7622
  start-page: 762245
  year: 2010
  publication-title: Proc. SPIE
  doi: 10.1117/12.844369
– volume: 12
  start-page: 252-255
  year: 1985
  publication-title: Med. Phys.
  doi: 10.1118/1.595715
– volume: 6510
  start-page: 65103B
  year: 2007
  publication-title: Proc. SPIE
  doi: 10.1117/12.698714
– volume: 32
  start-page: 968-983
  year: 2005
  publication-title: Med. Phys.
  doi: 10.1118/1.1869652
– volume: 52
  start-page: 6943-6960
  year: 2007
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/23/012
– volume: 53
  start-page: 6267-6289
  year: 2008
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/22/001
– volume: 45
  start-page: 3489-3508
  year: 2000
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/11/327
– volume: 35
  start-page: 1820-1829
  year: 2008
  publication-title: Med. Phys.
  doi: 10.1118/1.2900000
– volume: 2708
  start-page: 361-370
  year: 1996
  publication-title: Proc. SPIE
  doi: 10.1117/12.237798
– volume: 33
  start-page: 1695-1706
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2198187
– volume: 27
  start-page: 30-38
  year: 2000
  publication-title: Med. Phys.
  doi: 10.1118/1.598854
– volume: PAMI-8
  start-page: 679-698
  year: 1986
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 54
  start-page: 7239-7261
  year: 2009
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/24/001
– volume: 48
  start-page: 013603
  year: 2009
  publication-title: Opt. Eng. (Bellingham)
  doi: 10.1117/1.3070650
– volume: 28
  start-page: 1472-1481
  year: 2001
  publication-title: Med. Phys.
  doi: 10.1118/1.1382609
– volume: 6141
  start-page: 61411I
  year: 2006
  publication-title: Proc. SPIE
  doi: 10.1117/12.653474
– volume: 54
  start-page: 1633-1660
  year: 2009
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/6/016
– volume: 34
  start-page: 1474-1486
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2710328
– volume: 6510
  start-page: 65101Q
  year: 2007
  publication-title: Proc. SPIE
  doi: 10.1117/12.713813
– volume: 5
  start-page: 2731
  year: 2005
  end-page: 2735
  article-title: Analytic calibration of cone‐beam scanners
– volume: 6510
  start-page: 65103B
  year: 2007
  article-title: Digital breast tomosynthesis geometry calibration
  publication-title: Proc. SPIE
– volume: 17
  start-page: 264
  year: 1990
  end-page: 272
  article-title: Estimation of geometrical parameters and collimator evaluation for cone beam tomography
  publication-title: Med. Phys.
– volume: 31
  start-page: 3242
  year: 2004
  end-page: 3266
  article-title: Geometric misalignment and calibration in cone‐beam tomography
  publication-title: Med. Phys.
– volume: 2708
  start-page: 361
  year: 1996
  end-page: 370
  article-title: Dynamic geometrical calibration for 3D cerebral angiography
  publication-title: Proc. SPIE
– year: 1988
  article-title: Principles of Computerized Tomographic Imaging
– volume: 19
  start-page: 391
  year: 2000
  end-page: 403
  article-title: Enhanced 3‐D‐reconstruction algorithm for c‐arm systems suitable for interventional procedures
  publication-title: IEEE Trans. Med. Imaging
– volume: 7622
  start-page: 762245
  year: 2010
  article-title: Quantifying breast density with a cone‐beam breast CT
  publication-title: Proc. SPIE
– volume: 52
  start-page: 6943
  year: 2007
  end-page: 6960
  article-title: Geometric calibration of the circle‐plus‐arc trajectory
  publication-title: Phys. Med. Biol.
– volume: 6141
  start-page: 61411I
  year: 2006
  article-title: A perspective matrix‐based seed reconstruction algorithm with applications to C‐arm based intra‐operative dosimetry
  publication-title: Proc. SPIE
– volume: 34
  start-page: 1474
  year: 2007
  end-page: 1486
  article-title: Hyperfast parallel‐beam and cone‐beam backprojection using the cell general purpose hardware
  publication-title: Med. Phys.
– volume: 33
  start-page: 1695
  year: 2006
  end-page: 1706
  article-title: A geometric calibration method for cone beam CT systems
  publication-title: Med. Phys.
– volume: 12
  start-page: 252
  year: 1985
  end-page: 255
  article-title: Fast calculation of the exact radiological path for a three‐dimensional CT array
  publication-title: Med. Phys.
– volume: 5030
  start-page: 943
  year: 2003
  end-page: 954
  article-title: Improving 3D image quality of x‐ray c‐arm imaging systems by using properly designed pose determination systems for calibrating the projection geometry
  publication-title: Proc. SPIE
– volume: 28
  start-page: 1472
  year: 2001
  end-page: 1481
  article-title: Alignment of a volumetric tomography system
  publication-title: Med. Phys.
– year: 2003
  article-title: Multiple View Geometry in Computer Vision
– volume: 35
  start-page: 1820
  year: 2008
  end-page: 1829
  article-title: Geometric calibration for a dual tube/detector micro‐CT system
  publication-title: Med. Phys.
– volume: 79
  start-page: 66
  year: 2000
  end-page: 91
  article-title: Underwater video mosaics as visual navigation maps
  publication-title: Comput. Vis. Image Underst.
– volume: 27
  start-page: 30
  year: 2000
  end-page: 38
  article-title: Three‐dimensional computed tomographic reconstruction using a C‐arm mounted XRII: Image‐based correction of gantry motion nonidealities
  publication-title: Med. Phys.
– volume: 53
  start-page: 6267
  year: 2008
  end-page: 6289
  article-title: Simultaneous misalignment correction for approximate circular cone‐beam computed tomography
  publication-title: Phys. Med. Biol.
– volume: 53
  start-page: 3841
  year: 2008
  end-page: 3861
  article-title: An optimization‐based method for geometrical calibration in cone‐beam CT without dedicated phantoms
  publication-title: Phys. Med. Biol.
– volume: 48
  start-page: 013603
  year: 2009
  article-title: Camera calibration with lens distortion and from vanishing points
  publication-title: Opt. Eng. (Bellingham)
– volume: 5745
  start-page: 550
  year: 2005
  end-page: 561
  article-title: Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector
  publication-title: Proc. SPIE
– volume: 6142
  start-page: 614210
  year: 2006
  article-title: Design and development of C‐arm based cone‐beam CT for image‐guided interventions: Initial results
  publication-title: Proc. SPIE
– volume: 45
  start-page: 3489
  year: 2000
  end-page: 3508
  article-title: Analytic method based on identification of ellipse parameters for scanner calibration in cone‐beam tomography
  publication-title: Phys. Med. Biol.
– volume: 54
  start-page: 1633
  year: 2009
  end-page: 1660
  article-title: Direct determination of geometric alignment parameters for cone‐beam scanners
  publication-title: Phys. Med. Biol.
– volume: 54
  start-page: 7239
  year: 2009
  end-page: 7261
  article-title: The geometric calibration of cone‐beam systems with arbitrary geometry
  publication-title: Phys. Med. Biol.
– volume: 6510
  start-page: 65101Q
  year: 2007
  article-title: Novel C‐arm based cone‐beam CT using a source trajectory of two concentric arcs
  publication-title: Proc. SPIE
– volume: PAMI‐8
  start-page: 679
  year: 1986
  end-page: 698
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 968
  year: 2005
  end-page: 983
  article-title: Accurate technique for complete geometric calibration of cone‐beam computed tomography systems
  publication-title: Med. Phys.
– ident: e_1_2_6_23_1
– ident: e_1_2_6_19_1
  doi: 10.1117/12.237798
– ident: e_1_2_6_34_1
– ident: e_1_2_6_18_1
  doi: 10.1118/1.598854
– ident: e_1_2_6_4_1
  doi: 10.1118/1.2900000
– ident: e_1_2_6_21_1
  doi: 10.1117/12.713813
– start-page: 2731
  year: 2005
  ident: e_1_2_6_10_1
– ident: e_1_2_6_9_1
  doi: 10.1118/1.1869652
– ident: e_1_2_6_26_1
  doi: 10.1117/1.3070650
– ident: e_1_2_6_7_1
  doi: 10.1118/1.596505
– ident: e_1_2_6_28_1
  doi: 10.1006/cviu.2000.0848
– ident: e_1_2_6_32_1
  doi: 10.1118/1.2710328
– ident: e_1_2_6_25_1
– ident: e_1_2_6_6_1
  doi: 10.1118/1.1382609
– ident: e_1_2_6_13_1
  doi: 10.1088/0031-9155/54/6/016
– ident: e_1_2_6_12_1
  doi: 10.1088/0031-9155/53/14/009
– ident: e_1_2_6_30_1
– ident: e_1_2_6_33_1
  doi: 10.1117/12.595833
– ident: e_1_2_6_5_1
  doi: 10.1117/12.479945
– ident: e_1_2_6_27_1
– ident: e_1_2_6_17_1
  doi: 10.1109/42.870250
– ident: e_1_2_6_11_1
  doi: 10.1118/1.2198187
– ident: e_1_2_6_22_1
  doi: 10.1117/12.698714
– ident: e_1_2_6_20_1
  doi: 10.1088/0031-9155/54/24/001
– ident: e_1_2_6_14_1
  doi: 10.1117/12.653474
– ident: e_1_2_6_31_1
  doi: 10.1118/1.595715
– ident: e_1_2_6_3_1
  doi: 10.1088/0031-9155/53/22/001
– ident: e_1_2_6_24_1
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_2_6_29_1
  doi: 10.1117/12.844369
– ident: e_1_2_6_2_1
  doi: 10.1118/1.1803792
– ident: e_1_2_6_16_1
  doi: 10.1088/0031-9155/52/23/012
– ident: e_1_2_6_8_1
  doi: 10.1088/0031-9155/45/11/327
– ident: e_1_2_6_15_1
  doi: 10.1117/12.653197
SSID ssj0006350
Score 2.2727435
Snippet Purpose: To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to...
Purpose To present a generic geometric calibration method for tomographic imaging systems with flat‐panel detectors in a very detailed manner, in the aim to...
To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a...
SourceID proquest
pubmed
crossref
wiley
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3844
SubjectTerms Algorithms
C++ language
Calibration
Computed tomography
computerised tomography
Cone beam computed tomography
Digital tomosynthesis mammography
flat panel displays
flat-panel detector
Gaussian noise
geometric calibration
Image detection systems
Image Processing, Computer-Assisted
image reconstruction
Image sensors
Mammography
medical image processing
Medical image reconstruction
Medical imaging
phantoms
Phantoms, Imaging
Reconstruction
Reproducibility of Results
tomographic imaging
Tomography - methods
X‐ray detectors
Title A generic geometric calibration method for tomographic imaging systems with flat-panel detectors—A detailed implementation guide
URI http://dx.doi.org/10.1118/1.3431996
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3431996
https://www.ncbi.nlm.nih.gov/pubmed/20831092
https://www.proquest.com/docview/754002502
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE7cHBGNAuckChJCqjCS2c3mMGGhCK5rEJvUtcmJnVGqbaUt44AnxG_iF_BKOL3FSUVDhpa1Sx4n8fTk55_hcEHopE1pFNGEe41Xp0aCiHi9F7FUSdOOIM0lKlZw8_RgdntIPMzbr26Xq7JKm2C-_bswr-R9U4RjgqrJk_wFZNykcgN-AL3wCwvC5FcaZaoCsY-HPZL1UvbHKCay5soA1rKY9tIkkrJemODUMmS9NayJTxdnmt1UL3nggGuRiImSjffmXXSQEzSYm1BS00_myizjXlzhr52Itmqjb-TEuE-3TVXnW3HQAcW6HIx1FMJuvPrfuxeCc1we8H9ZqBtbF0D2hdtbjzj1hRW5K1RaO2bqW-lhIY-LR0E-HYtjUfrF0iwcylSSmQqR9P5PEVJ3eIPtVPkOwT0AnAivuKtoJQdL7I7STHUyPPrn3M6hYJjHJ3pitNwWnv3Enr2spv5ket9ANUFDMQq9bNVotObmDblt7AmeGHHfRFbnaRdenNmJiF107NjjcQ98zbNmCHVvwgC3YsAUDW_CALdiyBVu2YMUW3LMFO7b8_PYjwx1P8DpPsObJHjp9_-7k7aFnO3B4pdrn94o0rCgokCGpqAz8KozjpKS-CKQgBVg6jIu0LHwmAxD8kiQyTgpCUj-WLOGsish9NFrVK_kQ4dDnccg5jQQrqOABl8qXEBVS0jLxBRuj192K593Sqi4pi9yYqUke5BacMXruhp6bmiybBuEOthwkptoGg0Wp28s8BiNFaf7hGD0wcLpZQt13L4V_Xjh8_3aJaItRWW7BzR24G6f_Ul_0J-XnohqjV5pYf546nx6rr0db3e1jdLN_Pp-gUXPRyqegUDfFM_uE_AL_Wsvz
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generic+geometric+calibration+method+for+tomographic+imaging+systems+with+flat-panel+detectors%E2%80%94A+detailed+implementation+guide&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Li%2C+Xinhua&rft.au=Zhang%2C+Da&rft.au=Liu%2C+Bob&rft.date=2010-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=37&rft.issue=7&rft.spage=3844&rft.epage=3854&rft_id=info:doi/10.1118%2F1.3431996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon