A generic geometric calibration method for tomographic imaging systems with flat-panel detectors—A detailed implementation guide
Purpose: To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. Methods: The method is based on a projection matrix which represents a mapping from 3D object coor...
Saved in:
| Published in | Medical physics (Lancaster) Vol. 37; no. 7; pp. 3844 - 3854 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Association of Physicists in Medicine
01.07.2010
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-2405 2473-4209 |
| DOI | 10.1118/1.3431996 |
Cover
| Abstract | Purpose:
To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain.
Methods:
The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary.
Results:
Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp–Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method.
Conclusions:
The method is suitable for tomographic imaging systems with flat-panel detectors. |
|---|---|
| AbstractList | Purpose:
To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain.
Methods:
The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary.
Results:
Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp–Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method.
Conclusions:
The method is suitable for tomographic imaging systems with flat-panel detectors. Purpose To present a generic geometric calibration method for tomographic imaging systems with flat‐panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. Methods The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source‐detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone‐beam CT system, as well as to three tomosynthesis prototypes of different source‐detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary. Results Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp–Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method. Conclusions The method is suitable for tomographic imaging systems with flat‐panel detectors. To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain.PURPOSETo present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain.The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary.METHODSThe method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary.Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp-Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method.RESULTSProjection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp-Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method.The method is suitable for tomographic imaging systems with flat-panel detectors.CONCLUSIONSThe method is suitable for tomographic imaging systems with flat-panel detectors. To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a useful tool to the public domain. The method is based on a projection matrix which represents a mapping from 3D object coordinate system to 2D projection image plane. The projection matrix can be determined experimentally through the imaging of a phantom of known marker geometry. Accurate implementation was accomplished through direct computation algorithms, including a novel ellipse fitting using singular value decomposition and data normalization. Benefits of the method include: (1) It is capable of being applied to systems of different scan trajectories, source-detector alignments, and detector orientations; (2) projection matrices can be utilized in image reconstructions or in the extraction of explicit geometrical parameters; and (3) the method imposes minimal limits on the design of calibration phantom. C++ programs that calculate projection matrices and extract geometric parameters from them are also provided. For validation, the calibration method was applied to the computer simulation of a cone-beam CT system, as well as to three tomosynthesis prototypes of different source-detector movement patterns: Source and detector rotating synchronizedly; source rotating and detector wobbling; and source rotating and detector staying stationary. Projection matrices were computed on a view by view basis. Geometric parameters extracted from projection matrices were consistent with actual settings. Images were reconstructed by directly using projection matrices, and were compared to virtual Shepp-Logan image for CT simulation and to central projection images of CIRS breast phantoms for tomosynthesis prototypes. They showed no obvious distortion or blurring, indicating the high quality of geometric calibration results. When the computed central ray offsets were perturbed with Gaussian noises of 1 pixel standard deviation, the reconstructed image showed apparent distortion, which further demonstrated the accuracy of the geometric calibration method. The method is suitable for tomographic imaging systems with flat-panel detectors. |
| Author | Liu, Bob Li, Xinhua Zhang, Da |
| Author_xml | – sequence: 1 givenname: Xinhua surname: Li fullname: Li, Xinhua organization: Department of Radiology, Division of Diagnostic Imaging Physics, Massachusetts General Hospital, Boston, Massachusetts 02114 – sequence: 2 givenname: Da surname: Zhang fullname: Zhang, Da organization: Department of Radiology, Division of Diagnostic Imaging Physics, Massachusetts General Hospital, Boston, Massachusetts 02114 – sequence: 3 givenname: Bob surname: Liu fullname: Liu, Bob email: bliu7@bics.bwh.harvard.edu organization: Department of Radiology, Division of Diagnostic Imaging Physics, Massachusetts General Hospital, Boston, Massachusetts 02114 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20831092$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc9u1DAQxi3Uim4LB14A5YZASjv-k38HDqsKaKUiOMDZcuJJ1iiJg-1ttTfEM_CEPAleJVshRBGnsUe_b_TNfKfkaLQjEvKMwjmltLyg51xwWlX5I7JiouCpYFAdkRVAJVImIDshp95_AYCcZ_CYnDAoOYWKrcj3ddLhiM40sdoBw_7VqN7UTgVjxyS2NlYnrXVJsIPtnJo2ETGD6szYJX7nAw4-uTNhk7S9CumkRuwTjQGbYJ3_-e3Hev9TpkcdZVOPA45hHt5tjcYn5LhVvcenSz0jn9---XR5ld58eHd9ub5JGyHyPK0r1grGOOOtQAotK4qyEaApal6XVGdKV00NGdKsKJGXWJQ15xUUmJUqa3N-Rl7Mcydnv27RBzkY32DfR8N262WRCQCWAYvk84Xc1gNqObm4rtvJw9kicDEDjbPeO2xlY-aVgouLSgpyH4ykcgkmKl7-oTgM_RubzuxdvNnuYVC-_7jwr2feH1w8rFnLJW55H3fUv_pv_b_gW-t-Mzfplv8CjTvOVA |
| CODEN | MPHYA6 |
| CitedBy_id | crossref_primary_10_1002_mp_17041 crossref_primary_10_1088_1361_6560_aa77e5 crossref_primary_10_3390_s25051282 crossref_primary_10_1049_iet_ipr_2017_0772 crossref_primary_10_1016_j_ndteint_2020_102222 crossref_primary_10_1117_1_OE_55_6_063105 crossref_primary_10_1118_1_3591990 crossref_primary_10_1371_journal_pone_0216054 crossref_primary_10_3233_XST_240023 crossref_primary_10_1088_0031_9155_56_23_003 crossref_primary_10_1088_0031_9155_61_20_7300 crossref_primary_10_1088_1361_6560_aa9910 crossref_primary_10_1117_1_JMI_6_3_031404 crossref_primary_10_1002_mp_12393 crossref_primary_10_1109_TMI_2024_3474250 crossref_primary_10_1109_TIM_2023_3307182 crossref_primary_10_3390_jimaging8100292 crossref_primary_10_1088_1361_6501_ac08c4 crossref_primary_10_1080_24699322_2018_1560085 crossref_primary_10_1088_1361_6560_ad29b8 crossref_primary_10_1088_1361_6501_ac9856 crossref_primary_10_1371_journal_pone_0275732 crossref_primary_10_1007_s10527_020_09984_4 crossref_primary_10_1002_acm2_13426 crossref_primary_10_1117_1_OE_57_6_063104 crossref_primary_10_1109_TIM_2025_3527524 crossref_primary_10_1016_j_ejmp_2011_03_006 crossref_primary_10_1007_s10527_018_9770_7 crossref_primary_10_1109_TNS_2013_2293969 crossref_primary_10_1118_1_4742866 crossref_primary_10_1088_2631_8695_ac8224 crossref_primary_10_1109_TMI_2012_2224360 crossref_primary_10_1002_mp_16257 crossref_primary_10_1016_j_knosys_2021_107343 crossref_primary_10_1088_1361_6560_abe75f crossref_primary_10_1109_TNS_2018_2843807 crossref_primary_10_1088_1361_6560_ac16c1 crossref_primary_10_1109_TRPMS_2024_3408870 crossref_primary_10_1364_BOE_3_002339 crossref_primary_10_1109_ACCESS_2023_3266989 crossref_primary_10_1007_s11548_018_1823_6 crossref_primary_10_1088_1748_0221_12_09_P09011 crossref_primary_10_1371_journal_pone_0188367 crossref_primary_10_3390_tomography8050212 crossref_primary_10_1118_1_3524221 crossref_primary_10_1118_1_4736532 crossref_primary_10_1088_0031_9155_61_7_2613 crossref_primary_10_1088_0031_9155_59_19_5667 crossref_primary_10_1109_TNS_2013_2279675 crossref_primary_10_1118_1_4818059 crossref_primary_10_1109_TBME_2020_2967802 crossref_primary_10_3938_jkps_60_1457 crossref_primary_10_1118_1_4770281 crossref_primary_10_1080_24699322_2018_1557907 crossref_primary_10_1002_mp_12163 |
| Cites_doi | 10.1117/12.653197 10.1109/42.870250 10.1118/1.1803792 10.1006/cviu.2000.0848 10.1117/12.479945 10.1117/12.595833 10.1118/1.596505 10.1088/0031-9155/53/14/009 10.1117/12.844369 10.1118/1.595715 10.1117/12.698714 10.1118/1.1869652 10.1088/0031-9155/52/23/012 10.1088/0031-9155/53/22/001 10.1088/0031-9155/45/11/327 10.1118/1.2900000 10.1117/12.237798 10.1118/1.2198187 10.1118/1.598854 10.1109/TPAMI.1986.4767851 10.1088/0031-9155/54/24/001 10.1117/1.3070650 10.1118/1.1382609 10.1117/12.653474 10.1088/0031-9155/54/6/016 10.1118/1.2710328 10.1117/12.713813 |
| ContentType | Journal Article |
| Copyright | American Association of Physicists in Medicine 2010 American Association of Physicists in Medicine |
| Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2010 American Association of Physicists in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1118/1.3431996 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 3854 |
| ExternalDocumentID | 20831092 10_1118_1_3431996 MP1996 |
| Genre | article Journal Article |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMNL AAYCA ABDPE AFWVQ AITYG ALVPJ AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c4466-b92f422323f4e10f2778c40d1ed3b81d5ad9cb05e1578e38e78b33907e58a5f63 |
| ISSN | 0094-2405 |
| IngestDate | Fri Sep 05 06:35:46 EDT 2025 Mon Jul 21 06:05:45 EDT 2025 Wed Oct 01 03:17:46 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Wed Jan 22 17:10:54 EST 2025 Fri Jun 21 00:19:59 EDT 2024 Fri Jun 21 00:28:29 EDT 2024 Sun Jul 14 10:05:20 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | geometric calibration tomographic imaging flat-panel detector |
| Language | English |
| License | 0094-2405/2010/37(7)/3844/11/$30.00 http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c4466-b92f422323f4e10f2778c40d1ed3b81d5ad9cb05e1578e38e78b33907e58a5f63 |
| Notes | 0094‐2405/2010/37(7)/3844/11/$30.00 bliu7@bics.bwh.harvard.edu Electronic mail ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 20831092 |
| PQID | 754002502 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | scitation_primary_10_1118_1_3431996A_generic_geometric crossref_citationtrail_10_1118_1_3431996 pubmed_primary_20831092 proquest_miscellaneous_754002502 wiley_primary_10_1118_1_3431996_MP1996 scitation_primary_10_1118_1_3431996 crossref_primary_10_1118_1_3431996 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2010 |
| PublicationDateYYYYMMDD | 2010-07-01 |
| PublicationDate_xml | – month: 07 year: 2010 text: July 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2010 |
| Publisher | American Association of Physicists in Medicine |
| Publisher_xml | – name: American Association of Physicists in Medicine |
| References | Stevens, Saunders, Pelc (c5) 2001; 28 Gracias, Santos-Victor (c27) 2000; 79 Ren, Ruth, Stein, Smith, Shaw, Jing (c32) 2005; 5745 Siddon (c30) 1985; 12 Kyriakou, Lapp, Hillebrand, Ertel, Kalender (c2) 2008; 53 Narayanan, Cho (c13) 2006; 6141 Fahrig, Holdsworth (c17) 2000; 27 Gullberg, Tsui, Crawford, Ballard, Hagius (c6) 1990; 17 Kachelrieß, Knaup, Bockenbach (c31) 2007; 34 He, Li (c25) 2009; 48 Wang, Mainprize, Kempston, Mawdsley, Yaffe (c21) 2007; 6510 Robert, Watt, Wang, Mainprize (c19) 2009; 54 Wiesent, Barth, Navab, Durlak, Brunner, Schuetz, Seissler (c16) 2000; 19 Canny (c23) 1986; PAMI-8 Johnston, Johnson, Badea (c3) 2008; 35 Yang, Kwan, Miller, Boone (c10) 2006; 33 Cho, Moseley, Siewerdsen, Jaffray (c8) 2005; 32 Noo, Clackdoyle, Mennessier, White, Roney (c7) 2000; 45 Chen, Zambelli, Nett, Supanich, Riddell, Belanger, Mistretta (c14) 2006; 6142 Panetta, Belcari, Guerra, Moehrs (c11) 2008; 53 von Smekal, Kachelrieß, Stepina, Kalender (c1) 2004; 31 Mennessier, Clackdoyle, Noo (c12) 2009; 54 Strobel, Heigl, Brunner, Schuetz, Mitschke, Wiesent, Mertelmeier (c4) 2003; 5030 Li, Liu (c28) 2010; 7622 Zambelli, Nett, Leng, Riddell, Belanger, Chen (c20) 2007; 6510 Hoppe, Noo, Dennerlein, Lauritsch, Hornegger (c15) 2007; 52 Navab, Bani-Hashemi, Mitschke, Holdsworth, Fahrig, Fox, Graumann (c18) 1996; 2708 Wang, X.; Mainprize, J.; Kempston, M.; Mawdsley, G.; Yaffe, M. 2007; 6510 Canny, J. 1986; PAMI-8 Kyriakou, Y.; Lapp, R.; Hillebrand, L.; Ertel, D.; Kalender, W. 2008; 53 Johnston, S.; Johnson, G.; Badea, C. 2008; 35 Li, X.; Liu, B. 2010; 7622 Yang, K.; Kwan, A.; Miller, D.; Boone, J. 2006; 33 Ren, B.; Ruth, C.; Stein, J.; Smith, A.; Shaw, I.; Jing, Z. 2005; 5745 He, B.; Li, Y. 2009; 48 Robert, N.; Watt, K.; Wang, X.; Mainprize, J. 2009; 54 Fahrig, R.; Holdsworth, D. 2000; 27 Gracias, N.; Santos-Victor, J. 2000; 79 Wiesent, K.; Barth, K.; Navab, N.; Durlak, P.; Brunner, T.; Schuetz, O.; Seissler, W. 2000; 19 von Smekal, L.; Kachelrieß, M.; Stepina, E.; Kalender, W. 2004; 31 Strobel, N.; Heigl, B.; Brunner, T.; Schuetz, O.; Mitschke, M.; Wiesent, K.; Mertelmeier, T. 2003; 5030 Siddon, R. 1985; 12 Zambelli, J.; Nett, B.; Leng, S.; Riddell, C.; Belanger, B.; Chen, G. 2007; 6510 Mennessier, C.; Clackdoyle, R.; Noo, F. 2009; 54 Stevens, G.; Saunders, R.; Pelc, N. 2001; 28 Kachelrieß, M.; Knaup, M.; Bockenbach, O. 2007; 34 Navab, N.; Bani-Hashemi, A.; Mitschke, M.; Holdsworth, D.; Fahrig, R.; Fox, A.; Graumann, R. 1996; 2708 Narayanan, S.; Cho, P. 2006; 6141 Chen, G.; Zambelli, J.; Nett, B.; Supanich, M.; Riddell, C.; Belanger, B.; Mistretta, C. 2006; 6142 Hoppe, S.; Noo, F.; Dennerlein, F.; Lauritsch, G.; Hornegger, J. 2007; 52 Cho, Y.; Moseley, D.; Siewerdsen, J.; Jaffray, D. 2005; 32 Noo, F.; Clackdoyle, R.; Mennessier, C.; White, T.; Roney, T. 2000; 45 Gullberg, G.; Tsui, B.; Crawford, C.; Ballard, J.; Hagius, J. 1990; 17 Panetta, D.; Belcari, N.; Guerra, A.; Moehrs, S. 2008; 53 2000; 27 1990; 17 2000; 45 2006; 33 2007; 6510 1996; 2708 2008; 35 2001; 28 2003 2008; 53 2007; 52 2007; 34 2009; 48 2004; 31 2000; 19 2009; 54 2000; 79 2005; 5 2003; 5030 2005; 5745 2005; 32 1986; PAMI‐8 1985; 12 2006; 6142 2010; 7622 2006; 6141 1988 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 Strubel G. (e_1_2_6_10_1) 2005 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 17 start-page: 264 issn: 0094-2405 year: 1990 ident: c6 article-title: Estimation of geometrical parameters and collimator evaluation for cone beam tomography publication-title: Med. Phys. – volume: 19 start-page: 391 issn: 0278-0062 year: 2000 ident: c16 article-title: Enhanced 3-D-reconstruction algorithm for c-arm systems suitable for interventional procedures publication-title: IEEE Trans. Med. Imaging – volume: 79 start-page: 66 issn: 1077-3142 year: 2000 ident: c27 article-title: Underwater video mosaics as visual navigation maps publication-title: Comput. Vis. Image Underst. – volume: 6510 start-page: 65101Q issn: 0277-786X year: 2007 ident: c20 article-title: Novel C-arm based cone-beam CT using a source trajectory of two concentric arcs publication-title: Proc. SPIE – volume: 48 start-page: 013603 issn: 0091-3286 year: 2009 ident: c25 article-title: Camera calibration with lens distortion and from vanishing points publication-title: Opt. Eng. (Bellingham) – volume: 6141 start-page: 61411I issn: 0277-786X year: 2006 ident: c13 article-title: A perspective matrix-based seed reconstruction algorithm with applications to C-arm based intra-operative dosimetry publication-title: Proc. SPIE – volume: 32 start-page: 968 issn: 0094-2405 year: 2005 ident: c8 article-title: Accurate technique for complete geometric calibration of cone-beam computed tomography systems publication-title: Med. Phys. – volume: 12 start-page: 252 issn: 0094-2405 year: 1985 ident: c30 article-title: Fast calculation of the exact radiological path for a three-dimensional CT array publication-title: Med. Phys. – volume: 28 start-page: 1472 issn: 0094-2405 year: 2001 ident: c5 article-title: Alignment of a volumetric tomography system publication-title: Med. Phys. – volume: 33 start-page: 1695 issn: 0094-2405 year: 2006 ident: c10 article-title: A geometric calibration method for cone beam CT systems publication-title: Med. Phys. – volume: 54 start-page: 1633 issn: 0031-9155 year: 2009 ident: c12 article-title: Direct determination of geometric alignment parameters for cone-beam scanners publication-title: Phys. Med. Biol. – volume: 34 start-page: 1474 issn: 0094-2405 year: 2007 ident: c31 article-title: Hyperfast parallel-beam and cone-beam backprojection using the cell general purpose hardware publication-title: Med. Phys. – volume: 2708 start-page: 361 issn: 0277-786X year: 1996 ident: c18 article-title: Dynamic geometrical calibration for 3D cerebral angiography publication-title: Proc. SPIE – volume: 31 start-page: 3242 issn: 0094-2405 year: 2004 ident: c1 article-title: Geometric misalignment and calibration in cone-beam tomography publication-title: Med. Phys. – volume: 7622 start-page: 762245 issn: 0277-786X year: 2010 ident: c28 article-title: Quantifying breast density with a cone-beam breast CT publication-title: Proc. SPIE – volume: 5030 start-page: 943 issn: 0277-786X year: 2003 ident: c4 article-title: Improving 3D image quality of x-ray c-arm imaging systems by using properly designed pose determination systems for calibrating the projection geometry publication-title: Proc. SPIE – volume: 27 start-page: 30 issn: 0094-2405 year: 2000 ident: c17 article-title: Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Image-based correction of gantry motion nonidealities publication-title: Med. Phys. – volume: 35 start-page: 1820 issn: 0094-2405 year: 2008 ident: c3 article-title: Geometric calibration for a dual tube/detector micro-CT system publication-title: Med. Phys. – volume: 6142 start-page: 614210 issn: 0277-786X year: 2006 ident: c14 article-title: Design and development of C-arm based cone-beam CT for image-guided interventions: Initial results publication-title: Proc. SPIE – volume: 6510 start-page: 65103B issn: 0277-786X year: 2007 ident: c21 article-title: Digital breast tomosynthesis geometry calibration publication-title: Proc. SPIE – volume: 54 start-page: 7239 issn: 0031-9155 year: 2009 ident: c19 article-title: The geometric calibration of cone-beam systems with arbitrary geometry publication-title: Phys. Med. Biol. – volume: 52 start-page: 6943 issn: 0031-9155 year: 2007 ident: c15 article-title: Geometric calibration of the circle-plus-arc trajectory publication-title: Phys. Med. Biol. – volume: 5745 start-page: 550 issn: 0277-786X year: 2005 ident: c32 article-title: Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector publication-title: Proc. SPIE – volume: 53 start-page: 6267 issn: 0031-9155 year: 2008 ident: c2 article-title: Simultaneous misalignment correction for approximate circular cone-beam computed tomography publication-title: Phys. Med. Biol. – volume: 45 start-page: 3489 issn: 0031-9155 year: 2000 ident: c7 article-title: Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography publication-title: Phys. Med. Biol. – volume: PAMI-8 start-page: 679 issn: 0162-8828 year: 1986 ident: c23 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 53 start-page: 3841 issn: 0031-9155 year: 2008 ident: c11 article-title: An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms publication-title: Phys. Med. Biol. – volume: 6142 start-page: 614210 year: 2006 publication-title: Proc. SPIE doi: 10.1117/12.653197 – volume: 19 start-page: 391-403 year: 2000 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.870250 – volume: 31 start-page: 3242-3266 year: 2004 publication-title: Med. Phys. doi: 10.1118/1.1803792 – volume: 79 start-page: 66-91 year: 2000 publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.2000.0848 – volume: 5030 start-page: 943-954 year: 2003 publication-title: Proc. SPIE doi: 10.1117/12.479945 – volume: 5745 start-page: 550-561 year: 2005 publication-title: Proc. SPIE doi: 10.1117/12.595833 – volume: 17 start-page: 264-272 year: 1990 publication-title: Med. Phys. doi: 10.1118/1.596505 – volume: 53 start-page: 3841-3861 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/14/009 – volume: 7622 start-page: 762245 year: 2010 publication-title: Proc. SPIE doi: 10.1117/12.844369 – volume: 12 start-page: 252-255 year: 1985 publication-title: Med. Phys. doi: 10.1118/1.595715 – volume: 6510 start-page: 65103B year: 2007 publication-title: Proc. SPIE doi: 10.1117/12.698714 – volume: 32 start-page: 968-983 year: 2005 publication-title: Med. Phys. doi: 10.1118/1.1869652 – volume: 52 start-page: 6943-6960 year: 2007 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/23/012 – volume: 53 start-page: 6267-6289 year: 2008 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/22/001 – volume: 45 start-page: 3489-3508 year: 2000 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/45/11/327 – volume: 35 start-page: 1820-1829 year: 2008 publication-title: Med. Phys. doi: 10.1118/1.2900000 – volume: 2708 start-page: 361-370 year: 1996 publication-title: Proc. SPIE doi: 10.1117/12.237798 – volume: 33 start-page: 1695-1706 year: 2006 publication-title: Med. Phys. doi: 10.1118/1.2198187 – volume: 27 start-page: 30-38 year: 2000 publication-title: Med. Phys. doi: 10.1118/1.598854 – volume: PAMI-8 start-page: 679-698 year: 1986 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 54 start-page: 7239-7261 year: 2009 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/24/001 – volume: 48 start-page: 013603 year: 2009 publication-title: Opt. Eng. (Bellingham) doi: 10.1117/1.3070650 – volume: 28 start-page: 1472-1481 year: 2001 publication-title: Med. Phys. doi: 10.1118/1.1382609 – volume: 6141 start-page: 61411I year: 2006 publication-title: Proc. SPIE doi: 10.1117/12.653474 – volume: 54 start-page: 1633-1660 year: 2009 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/6/016 – volume: 34 start-page: 1474-1486 year: 2007 publication-title: Med. Phys. doi: 10.1118/1.2710328 – volume: 6510 start-page: 65101Q year: 2007 publication-title: Proc. SPIE doi: 10.1117/12.713813 – volume: 5 start-page: 2731 year: 2005 end-page: 2735 article-title: Analytic calibration of cone‐beam scanners – volume: 6510 start-page: 65103B year: 2007 article-title: Digital breast tomosynthesis geometry calibration publication-title: Proc. SPIE – volume: 17 start-page: 264 year: 1990 end-page: 272 article-title: Estimation of geometrical parameters and collimator evaluation for cone beam tomography publication-title: Med. Phys. – volume: 31 start-page: 3242 year: 2004 end-page: 3266 article-title: Geometric misalignment and calibration in cone‐beam tomography publication-title: Med. Phys. – volume: 2708 start-page: 361 year: 1996 end-page: 370 article-title: Dynamic geometrical calibration for 3D cerebral angiography publication-title: Proc. SPIE – year: 1988 article-title: Principles of Computerized Tomographic Imaging – volume: 19 start-page: 391 year: 2000 end-page: 403 article-title: Enhanced 3‐D‐reconstruction algorithm for c‐arm systems suitable for interventional procedures publication-title: IEEE Trans. Med. Imaging – volume: 7622 start-page: 762245 year: 2010 article-title: Quantifying breast density with a cone‐beam breast CT publication-title: Proc. SPIE – volume: 52 start-page: 6943 year: 2007 end-page: 6960 article-title: Geometric calibration of the circle‐plus‐arc trajectory publication-title: Phys. Med. Biol. – volume: 6141 start-page: 61411I year: 2006 article-title: A perspective matrix‐based seed reconstruction algorithm with applications to C‐arm based intra‐operative dosimetry publication-title: Proc. SPIE – volume: 34 start-page: 1474 year: 2007 end-page: 1486 article-title: Hyperfast parallel‐beam and cone‐beam backprojection using the cell general purpose hardware publication-title: Med. Phys. – volume: 33 start-page: 1695 year: 2006 end-page: 1706 article-title: A geometric calibration method for cone beam CT systems publication-title: Med. Phys. – volume: 12 start-page: 252 year: 1985 end-page: 255 article-title: Fast calculation of the exact radiological path for a three‐dimensional CT array publication-title: Med. Phys. – volume: 5030 start-page: 943 year: 2003 end-page: 954 article-title: Improving 3D image quality of x‐ray c‐arm imaging systems by using properly designed pose determination systems for calibrating the projection geometry publication-title: Proc. SPIE – volume: 28 start-page: 1472 year: 2001 end-page: 1481 article-title: Alignment of a volumetric tomography system publication-title: Med. Phys. – year: 2003 article-title: Multiple View Geometry in Computer Vision – volume: 35 start-page: 1820 year: 2008 end-page: 1829 article-title: Geometric calibration for a dual tube/detector micro‐CT system publication-title: Med. Phys. – volume: 79 start-page: 66 year: 2000 end-page: 91 article-title: Underwater video mosaics as visual navigation maps publication-title: Comput. Vis. Image Underst. – volume: 27 start-page: 30 year: 2000 end-page: 38 article-title: Three‐dimensional computed tomographic reconstruction using a C‐arm mounted XRII: Image‐based correction of gantry motion nonidealities publication-title: Med. Phys. – volume: 53 start-page: 6267 year: 2008 end-page: 6289 article-title: Simultaneous misalignment correction for approximate circular cone‐beam computed tomography publication-title: Phys. Med. Biol. – volume: 53 start-page: 3841 year: 2008 end-page: 3861 article-title: An optimization‐based method for geometrical calibration in cone‐beam CT without dedicated phantoms publication-title: Phys. Med. Biol. – volume: 48 start-page: 013603 year: 2009 article-title: Camera calibration with lens distortion and from vanishing points publication-title: Opt. Eng. (Bellingham) – volume: 5745 start-page: 550 year: 2005 end-page: 561 article-title: Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector publication-title: Proc. SPIE – volume: 6142 start-page: 614210 year: 2006 article-title: Design and development of C‐arm based cone‐beam CT for image‐guided interventions: Initial results publication-title: Proc. SPIE – volume: 45 start-page: 3489 year: 2000 end-page: 3508 article-title: Analytic method based on identification of ellipse parameters for scanner calibration in cone‐beam tomography publication-title: Phys. Med. Biol. – volume: 54 start-page: 1633 year: 2009 end-page: 1660 article-title: Direct determination of geometric alignment parameters for cone‐beam scanners publication-title: Phys. Med. Biol. – volume: 54 start-page: 7239 year: 2009 end-page: 7261 article-title: The geometric calibration of cone‐beam systems with arbitrary geometry publication-title: Phys. Med. Biol. – volume: 6510 start-page: 65101Q year: 2007 article-title: Novel C‐arm based cone‐beam CT using a source trajectory of two concentric arcs publication-title: Proc. SPIE – volume: PAMI‐8 start-page: 679 year: 1986 end-page: 698 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 968 year: 2005 end-page: 983 article-title: Accurate technique for complete geometric calibration of cone‐beam computed tomography systems publication-title: Med. Phys. – ident: e_1_2_6_23_1 – ident: e_1_2_6_19_1 doi: 10.1117/12.237798 – ident: e_1_2_6_34_1 – ident: e_1_2_6_18_1 doi: 10.1118/1.598854 – ident: e_1_2_6_4_1 doi: 10.1118/1.2900000 – ident: e_1_2_6_21_1 doi: 10.1117/12.713813 – start-page: 2731 year: 2005 ident: e_1_2_6_10_1 – ident: e_1_2_6_9_1 doi: 10.1118/1.1869652 – ident: e_1_2_6_26_1 doi: 10.1117/1.3070650 – ident: e_1_2_6_7_1 doi: 10.1118/1.596505 – ident: e_1_2_6_28_1 doi: 10.1006/cviu.2000.0848 – ident: e_1_2_6_32_1 doi: 10.1118/1.2710328 – ident: e_1_2_6_25_1 – ident: e_1_2_6_6_1 doi: 10.1118/1.1382609 – ident: e_1_2_6_13_1 doi: 10.1088/0031-9155/54/6/016 – ident: e_1_2_6_12_1 doi: 10.1088/0031-9155/53/14/009 – ident: e_1_2_6_30_1 – ident: e_1_2_6_33_1 doi: 10.1117/12.595833 – ident: e_1_2_6_5_1 doi: 10.1117/12.479945 – ident: e_1_2_6_27_1 – ident: e_1_2_6_17_1 doi: 10.1109/42.870250 – ident: e_1_2_6_11_1 doi: 10.1118/1.2198187 – ident: e_1_2_6_22_1 doi: 10.1117/12.698714 – ident: e_1_2_6_20_1 doi: 10.1088/0031-9155/54/24/001 – ident: e_1_2_6_14_1 doi: 10.1117/12.653474 – ident: e_1_2_6_31_1 doi: 10.1118/1.595715 – ident: e_1_2_6_3_1 doi: 10.1088/0031-9155/53/22/001 – ident: e_1_2_6_24_1 doi: 10.1109/TPAMI.1986.4767851 – ident: e_1_2_6_29_1 doi: 10.1117/12.844369 – ident: e_1_2_6_2_1 doi: 10.1118/1.1803792 – ident: e_1_2_6_16_1 doi: 10.1088/0031-9155/52/23/012 – ident: e_1_2_6_8_1 doi: 10.1088/0031-9155/45/11/327 – ident: e_1_2_6_15_1 doi: 10.1117/12.653197 |
| SSID | ssj0006350 |
| Score | 2.2727435 |
| Snippet | Purpose:
To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to... Purpose To present a generic geometric calibration method for tomographic imaging systems with flat‐panel detectors in a very detailed manner, in the aim to... To present a generic geometric calibration method for tomographic imaging systems with flat-panel detectors in a very detailed manner, in the aim to provide a... |
| SourceID | proquest pubmed crossref wiley scitation |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3844 |
| SubjectTerms | Algorithms C++ language Calibration Computed tomography computerised tomography Cone beam computed tomography Digital tomosynthesis mammography flat panel displays flat-panel detector Gaussian noise geometric calibration Image detection systems Image Processing, Computer-Assisted image reconstruction Image sensors Mammography medical image processing Medical image reconstruction Medical imaging phantoms Phantoms, Imaging Reconstruction Reproducibility of Results tomographic imaging Tomography - methods X‐ray detectors |
| Title | A generic geometric calibration method for tomographic imaging systems with flat-panel detectors—A detailed implementation guide |
| URI | http://dx.doi.org/10.1118/1.3431996 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3431996 https://www.ncbi.nlm.nih.gov/pubmed/20831092 https://www.proquest.com/docview/754002502 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE7cHBGNAuckChJCqjCS2c3mMGGhCK5rEJvUtcmJnVGqbaUt44AnxG_iF_BKOL3FSUVDhpa1Sx4n8fTk55_hcEHopE1pFNGEe41Xp0aCiHi9F7FUSdOOIM0lKlZw8_RgdntIPMzbr26Xq7JKm2C-_bswr-R9U4RjgqrJk_wFZNykcgN-AL3wCwvC5FcaZaoCsY-HPZL1UvbHKCay5soA1rKY9tIkkrJemODUMmS9NayJTxdnmt1UL3nggGuRiImSjffmXXSQEzSYm1BS00_myizjXlzhr52Itmqjb-TEuE-3TVXnW3HQAcW6HIx1FMJuvPrfuxeCc1we8H9ZqBtbF0D2hdtbjzj1hRW5K1RaO2bqW-lhIY-LR0E-HYtjUfrF0iwcylSSmQqR9P5PEVJ3eIPtVPkOwT0AnAivuKtoJQdL7I7STHUyPPrn3M6hYJjHJ3pitNwWnv3Enr2spv5ket9ANUFDMQq9bNVotObmDblt7AmeGHHfRFbnaRdenNmJiF107NjjcQ98zbNmCHVvwgC3YsAUDW_CALdiyBVu2YMUW3LMFO7b8_PYjwx1P8DpPsObJHjp9_-7k7aFnO3B4pdrn94o0rCgokCGpqAz8KozjpKS-CKQgBVg6jIu0LHwmAxD8kiQyTgpCUj-WLOGsish9NFrVK_kQ4dDnccg5jQQrqOABl8qXEBVS0jLxBRuj192K593Sqi4pi9yYqUke5BacMXruhp6bmiybBuEOthwkptoGg0Wp28s8BiNFaf7hGD0wcLpZQt13L4V_Xjh8_3aJaItRWW7BzR24G6f_Ul_0J-XnohqjV5pYf546nx6rr0db3e1jdLN_Pp-gUXPRyqegUDfFM_uE_AL_Wsvz |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generic+geometric+calibration+method+for+tomographic+imaging+systems+with+flat-panel+detectors%E2%80%94A+detailed+implementation+guide&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Li%2C+Xinhua&rft.au=Zhang%2C+Da&rft.au=Liu%2C+Bob&rft.date=2010-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=37&rft.issue=7&rft.spage=3844&rft.epage=3854&rft_id=info:doi/10.1118%2F1.3431996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |